1
|
Cottone G, Chiodo L, Maragliano L. Thermodynamics and Kinetics of Ion Permeation in Wild-Type and Mutated Open Active Conformation of the Human α7 Nicotinic Receptor. J Chem Inf Model 2020; 60:5045-5056. [PMID: 32803965 PMCID: PMC8011927 DOI: 10.1021/acs.jcim.0c00549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Molecular
studies of human pentameric ligand-gated ion channels
(LGICs) expressed in neurons and at neuromuscular junctions are of
utmost importance in the development of therapeutic strategies for
neurological disorders. We focus here on the nicotinic acetylcholine
receptor nAChR-α7, a homopentameric channel widely expressed
in the human brain, with a proven role in a wide spectrum of disorders
including schizophrenia and Alzheimer’s disease. By exploiting
an all-atom structural model of the full (transmembrane and extracellular)
protein in the open, agonist-bound conformation we recently developed,
we evaluate the free energy and the mean first passage time of single-ion
permeation using molecular dynamics simulations and the milestoning
method with Voronoi tessellation. The results for the wild-type channel
provide the first available mapping of the potential of mean force
in the full-length α7 nAChR, reveal its expected cationic nature,
and are in good agreement with simulation data for other channels
of the LGIC family and with experimental data on nAChRs. We then investigate
the role of a specific mutation directly related to ion selectivity
in LGICs, the E-1′ → A-1′ substitution at the
cytoplasmatic selectivity filter. We find that the mutation strongly
affects sodium and chloride permeation in opposite directions, leading
to a complete inversion of selectivity, at variance with the limited
experimental results available that classify this mutant as cationic.
We thus provide structural determinants for the observed cationic-to-anionic
inversion, revealing a key role of the protonation state of residue
rings far from the mutation, in the proximity of the hydrophobic channel
gate.
Collapse
Affiliation(s)
- Grazia Cottone
- Department of Physics and Chemistry-Emilio Segrè, University of Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Letizia Chiodo
- Department of Engineering, Campus Bio-Medico University of Rome, Via Á. del Portillo 21, 00128 Rome, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| |
Collapse
|
2
|
Rahman MM, Teng J, Worrell BT, Noviello CM, Lee M, Karlin A, Stowell MHB, Hibbs RE. Structure of the Native Muscle-type Nicotinic Receptor and Inhibition by Snake Venom Toxins. Neuron 2020; 106:952-962.e5. [PMID: 32275860 DOI: 10.1016/j.neuron.2020.03.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 03/15/2020] [Indexed: 12/28/2022]
Abstract
The nicotinic acetylcholine receptor, a pentameric ligand-gated ion channel, converts the free energy of binding of the neurotransmitter acetylcholine into opening of its central pore. Here we present the first high-resolution structure of the receptor type found in muscle-endplate membrane and in the muscle-derived electric tissues of fish. The native receptor was purified from Torpedo electric tissue and functionally reconstituted in lipids optimal for cryo-electron microscopy. The receptor was stabilized in a closed state by the binding of α-bungarotoxin. The structure reveals the binding of a toxin molecule at each of two subunit interfaces in a manner that would block the binding of acetylcholine. It also reveals a closed gate in the ion-conducting pore, formed by hydrophobic amino acid side chains, located ∼60 Å from the toxin binding sites. The structure provides a framework for understanding gating in ligand-gated channels and how mutations in the acetylcholine receptor cause congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brady T Worrell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Colleen M Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Myeongseon Lee
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Arthur Karlin
- Center for Molecular Recognition & Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Tejada MG, Sudhakar S, Kim NK, Aoyama H, Shilton BH, Bai D. Variants with increased negative electrostatic potential in the Cx50 gap junction pore increased unitary channel conductance and magnesium modulation. Biochem J 2018; 475:3315-3330. [PMID: 30287491 DOI: 10.1042/bcj20180523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022]
Abstract
Gap junction (GJ) channels are oligomers of connexins forming channels linking neighboring cells. GJs formed by different connexins show distinct unitary channel conductance (γj), transjunctional voltage-dependent gating (Vj-gating) properties, and modulation by intracellular magnesium ([Mg2+]i). The underlying molecular determinants are not fully clear. Previous experimental evidence indicates that residues in the amino terminal (NT) and initial segment of the first extracellular (E1) domain influence the γj, Vj-gating, and/or [Mg2+]i modulation in several GJs. Increasing negatively charged residues in Cx50 (connexin50) E1 (G46D or G46E) increased γj, while increasing positively charged residue (G46K) reduced the γj Sequence alignment of Cx50 and Cx37 in the NT and E1 domains revealed that in Cx50 G8 and V53, positions are negatively charged residues in Cx37 (E8 and E53, respectively). To evaluate these residues together, we generated a triple variant in Cx50, G8E, G46E, and V53E simultaneously to study its γj, Vj-gating properties, and modulation by [Mg2+]i Our data indicate that the triple variant and individual variants G8E, G46E, and V53E significantly increased Cx50 GJ γj without a significant change in the Vj gating. In addition, elevated [Mg2+]i reduced γj in Cx50 and all the variant GJs. These results and our homology structural models suggest that these NT/E1 residues are likely to be pore-lining and the variants increased the negative electrostatic potentials along the GJ pore to facilitate the γj of this cation-preferring GJ channel. Our results indicate that electrostatic properties of the Cx50 GJ pore are important for the γj and the [Mg2+]i modulation.
Collapse
Affiliation(s)
- Mary Grace Tejada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Swathy Sudhakar
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Nicholas K Kim
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Brian H Shilton
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
MacDonald K, Buxton S, Kimber MJ, Day TA, Robertson AP, Ribeiro P. Functional characterization of a novel family of acetylcholine-gated chloride channels in Schistosoma mansoni. PLoS Pathog 2014; 10:e1004181. [PMID: 24945827 PMCID: PMC4055736 DOI: 10.1371/journal.ppat.1004181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/28/2014] [Indexed: 12/25/2022] Open
Abstract
Acetylcholine is the canonical excitatory neurotransmitter of the mammalian neuromuscular system. However, in the trematode parasite Schistosoma mansoni, cholinergic stimulation leads to muscle relaxation and a flaccid paralysis, suggesting an inhibitory mode of action. Information about the pharmacological mechanism of this inhibition is lacking. Here, we used a combination of techniques to assess the role of cholinergic receptors in schistosome motor function. The neuromuscular effects of acetylcholine are typically mediated by gated cation channels of the nicotinic receptor (nAChR) family. Bioinformatics analyses identified numerous nAChR subunits in the S. mansoni genome but, interestingly, nearly half of these subunits carried a motif normally associated with chloride-selectivity. These putative schistosome acetylcholine-gated chloride channels (SmACCs) are evolutionarily divergent from those of nematodes and form a unique clade within the larger family of nAChRs. Pharmacological and RNA interference (RNAi) behavioral screens were used to assess the role of the SmACCs in larval motor function. Treatment with antagonists produced the same effect as RNAi suppression of SmACCs; both led to a hypermotile phenotype consistent with abrogation of an inhibitory neuromuscular mediator. Antibodies were then generated against two of the SmACCs for use in immunolocalization studies. SmACC-1 and SmACC-2 localize to regions of the peripheral nervous system that innervate the body wall muscles, yet neither appears to be expressed directly on the musculature. One gene, SmACC-1, was expressed in HEK-293 cells and characterized using an iodide flux assay. The results indicate that SmACC-1 formed a functional homomeric chloride channel and was activated selectively by a panel of cholinergic agonists. The results described in this study identify a novel clade of nicotinic chloride channels that act as inhibitory modulators of schistosome neuromuscular function. Additionally, the iodide flux assay used to characterize SmACC-1 represents a new high-throughput tool for drug screening against these unique parasite ion channels.
Collapse
Affiliation(s)
- Kevin MacDonald
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | - Samuel Buxton
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Michael J. Kimber
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Tim A. Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
5
|
Bar-Lev DD, Degani-Katzav N, Perelman A, Paas Y. Molecular dissection of Cl--selective Cys-loop receptor points to components that are dispensable or essential for channel activity. J Biol Chem 2011; 286:43830-43841. [PMID: 21987577 DOI: 10.1074/jbc.m111.282715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) that bind neurotransmitters to open an intrinsic transmembrane ion channel pore. The recent crystal structure of a prokaryotic pLGIC from the cyanobacterium Gloeobacter violaceus (GLIC) revealed that it naturally lacks an N-terminal extracellular α helix and an intracellular domain that are typical of eukaryotic pLGICs. GLIC does not respond to neurotransmitters acting at eukaryotic pLGICs but is activated by protons. To determine whether the structural differences account for functional differences, we used a eukaryotic chimeric acetylcholine-glutamate pLGIC that was modified to carry deletions corresponding to the sequences missing in the prokaryotic homolog GLIC. Deletions made in the N-terminal extracellular α helix did not prevent the expression of receptor subunits and the appearance of receptor assemblies on the cell surface but abolished the capability of the receptor to bind α-bungarotoxin (a competitive antagonist) and to respond to the neurotransmitter. Other truncated chimeric receptors that lacked the intracellular domain did bind ligands; displayed robust acetylcholine-elicited responses; and shared with the full-length chimeric receptor similar anionic selectivity, effective open pore diameter, and unitary conductance. We suggest that the integrity of the N-terminal α helix is crucial for ligand accommodation because it stabilizes the intersubunit interfaces adjacent to the neurotransmitter-binding pocket(s). We also conclude that the intracellular domain of the chimeric acetylcholine-glutamate receptor does not modulate the ion channel conductance and is not involved in positioning of the pore-lining helices in the conformation necessary for coordinating a Cl- ion within the intracellular vestibule of the ion channel pore.
Collapse
Affiliation(s)
- Dekel D Bar-Lev
- Laboratory of Ion Channels, Bar-Ilan University, Ramat Gan 52900, Israel; Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Nurit Degani-Katzav
- Laboratory of Ion Channels, Bar-Ilan University, Ramat Gan 52900, Israel; Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Alexander Perelman
- Scientific Equipment Unit, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yoav Paas
- Laboratory of Ion Channels, Bar-Ilan University, Ramat Gan 52900, Israel; Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
6
|
Hibbs RE, Gouaux E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 2011; 474:54-60. [PMID: 21572436 PMCID: PMC3160419 DOI: 10.1038/nature10139] [Citation(s) in RCA: 797] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/21/2011] [Indexed: 01/07/2023]
Abstract
Fast inhibitory neurotransmission is essential for nervous system function and is mediated by binding of inhibitory neurotransmitters to receptors of the Cys-loop family embedded in the membranes of neurons. Neurotransmitter binding triggers a conformational change in the receptor, opening an intrinsic chloride channel and thereby dampening neuronal excitability. Here we present the first three-dimensional structure, to our knowledge, of an inhibitory anion-selective Cys-loop receptor, the homopentameric Caenorhabditis elegans glutamate-gated chloride channel α (GluCl), at 3.3 Å resolution. The X-ray structure of the GluCl-Fab complex was determined with the allosteric agonist ivermectin and in additional structures with the endogenous neurotransmitter L-glutamate and the open-channel blocker picrotoxin. Ivermectin, used to treat river blindness, binds in the transmembrane domain of the receptor and stabilizes an open-pore conformation. Glutamate binds in the classical agonist site at subunit interfaces, and picrotoxin directly occludes the pore near its cytosolic base. GluCl provides a framework for understanding mechanisms of fast inhibitory neurotransmission and allosteric modulation of Cys-loop receptors.
Collapse
Affiliation(s)
- Ryan E. Hibbs
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland OR 97239 USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland OR 97239 USA,Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland OR 97239 USA
| |
Collapse
|
7
|
Hilf RJC, Bertozzi C, Zimmermann I, Reiter A, Trauner D, Dutzler R. Structural basis of open channel block in a prokaryotic pentameric ligand-gated ion channel. Nat Struct Mol Biol 2010; 17:1330-6. [PMID: 21037567 DOI: 10.1038/nsmb.1933] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 09/07/2010] [Indexed: 11/09/2022]
Abstract
The flow of ions through cation-selective members of the pentameric ligand-gated ion channel family is inhibited by a structurally diverse class of molecules that bind to the transmembrane pore in the open state of the protein. To obtain insight into the mechanism of channel block, we have investigated the binding of positively charged inhibitors to the open channel of the bacterial homolog GLIC by using X-ray crystallography and electrophysiology. Our studies reveal the location of two regions for interactions, with larger blockers binding in the center of the membrane and divalent transition metal ions binding to the narrow intracellular pore entry. The results provide a structural foundation for understanding the interactions of the channel with inhibitors that is relevant for the entire family.
Collapse
Affiliation(s)
- Ricarda J C Hilf
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABAA and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABAA and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors could therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience.In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poorly understood. We also describe some of the current methods that are beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.
Collapse
|
9
|
Accessibility of the CLC-0 pore to charged methanethiosulfonate reagents. Biophys J 2010; 98:377-85. [PMID: 20141750 DOI: 10.1016/j.bpj.2009.09.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/31/2009] [Accepted: 09/24/2009] [Indexed: 11/21/2022] Open
Abstract
Using the substituted-cysteine-accessibility method, we previously showed that a cysteine residue introduced to the Y512 position of CLC-0 was more rapidly modified by a negatively charged methanethiosulfonate (MTS) reagent, 2-sulfonatoethyl MTS (MTSES), than by the positively charged 2-(trimethylammonium)ethyl MTS (MTSET). This result suggests that a positive intrinsic pore potential attracts the negatively charged MTS molecule. In this study, we further test this hypothesis of a positive pore potential in CLC-0 and find that the preference for the negatively charged MTS is diminished significantly in modifying the substituted cysteine at a deeper pore position, E166. To examine this conundrum, we study the rates of MTS inhibitions of the E166C current and those of the control mutant current from E166A. The results suggest that the inhibition of E166C by intracellularly applied MTS reagents is tainted by the modification of an endogenous cysteine, C229, located at the channel's dimer interface. After this endogenous cysteine is mutated, CLC-0 resumes its preference for selecting MTSES in modifying E166C, reconfirming the idea that the pore of CLC-0 is indeed built with a positive intrinsic potential. These experiments also reveal that MTS modification of C229 can inhibit the current of CLC-0 depending on the amino acid placed at position 166.
Collapse
|
10
|
Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 2008; 457:115-8. [PMID: 18987630 DOI: 10.1038/nature07461] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/26/2008] [Indexed: 11/09/2022]
Abstract
The X-ray structure of a pentameric ligand-gated ion channel from Erwinia chrysanthemi (ELIC) has recently provided structural insight into this family of ion channels at high resolution. The structure shows a homo-pentameric protein with a barrel-stave architecture that defines an ion-conduction pore located on the fivefold axis of symmetry. In this structure, the wide aqueous vestibule that is encircled by the extracellular ligand-binding domains of the five subunits narrows to a discontinuous pore that spans the lipid bilayer. The pore is constricted by bulky hydrophobic residues towards the extracellular side, which probably serve as barriers that prevent the diffusion of ions. This interrupted pore architecture in ELIC thus depicts a non-conducting conformation of a pentameric ligand-gated ion channel, the thermodynamically stable state in the absence of bound ligand. As ligand binding promotes pore opening in these ion channels and the specific ligand for ELIC has not yet been identified, we have turned our attention towards a homologous protein from the cyanobacterium Gloebacter violaceus (GLIC). GLIC was shown to form proton-gated channels that are activated by a pH decrease on the extracellular side and that do not desensitize after activation. Both prokaryotic proteins, ELIC and GLIC form ion channels that are selective for cations over anions with poor discrimination among monovalent cations, characteristics that resemble the conduction properties of the cation-selective branch of the family that includes acetylcholine and serotonin receptors. Here we present the X-ray structure of GLIC at 3.1 A resolution. The structure reveals a conformation of the channel that is distinct from ELIC and that probably resembles the open state. In combination, both structures suggest a novel gating mechanism for pentameric ligand-gated ion channels where channel opening proceeds by a change in the tilt of the pore-forming helices.
Collapse
|
11
|
Crawford DK, Perkins DI, Trudell JR, Bertaccini EJ, Davies DL, Alkana RL. Roles for loop 2 residues of alpha1 glycine receptors in agonist activation. J Biol Chem 2008; 283:27698-27706. [PMID: 18658152 PMCID: PMC2562068 DOI: 10.1074/jbc.m802384200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/20/2008] [Indexed: 11/06/2022] Open
Abstract
The present study tested the hypothesis that several residues in Loop 2 of alpha1 glycine receptors (GlyRs) play important roles in mediating the transduction of agonist activation to channel gating. This was accomplished by investigating the effect of cysteine point mutations at positions 50-60 on glycine responses in alpha1GlyRs using two-electrode voltage clamp of Xenopus oocytes. Cysteine substitutions produced position-specific changes in glycine sensitivity that were consistent with a beta-turn structure of Loop 2, with odd-numbered residues in the beta-turn interacting with other agonist-activation elements at the interface between extracellular and transmembrane domains. We also tested the hypothesis that the charge at position 53 is important for agonist activation by measuring the glycine response of wild type (WT) and E53C GlyRs exposed to methanethiosulfonate reagents. As earlier, E53C GlyRs have a significantly higher EC(50) than WT GlyRs. Exposing E53C GlyRs to the negatively charged 2-sulfonatoethyl methanethiosulfonate, but not neutral 2-hydroxyethyl methanethiosulfonate, positively charged 2-aminoethyl methanethiosulfonate, or 2-trimethylammonioethyl methanethiosulfonate, decreased the glycine EC(50) to resemble WT GlyR responses. Exposure to these reagents did not significantly alter the glycine EC(50) for WT GlyRs. The latter findings suggest that the negative charge at position 53 is important for activation of GlyRs through its interaction with positive charge(s) in other neighboring agonist activation elements. Collectively, the findings provide the basis for a refined molecular model of alpha1GlyRs based on the recent x-ray structure of a prokaryotic pentameric ligand-gated ion channel and offer insight into the structure-function relationships in GlyRs and possibly other ligand-gated ion channels.
Collapse
Affiliation(s)
- Daniel K Crawford
- Alcohol and Brain Research Laboratory, Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089; Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089
| | - Daya I Perkins
- Alcohol and Brain Research Laboratory, Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - James R Trudell
- Department of Anesthesia and Beckman Program for Molecular and Genetic Medicine, Stanford School of Medicine, Stanford, California 94305
| | - Edward J Bertaccini
- Department of Anesthesia and Beckman Program for Molecular and Genetic Medicine, Stanford School of Medicine, Stanford, California 94305; Department of Anesthesia, Palo Alto Veterans Affairs Health Care System, Palo Alto, California 94304
| | - Daryl L Davies
- Alcohol and Brain Research Laboratory, Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089.
| | - Ronald L Alkana
- Alcohol and Brain Research Laboratory, Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089; Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
12
|
Carvacho I, Gonzalez W, Torres YP, Brauchi S, Alvarez O, Gonzalez-Nilo FD, Latorre R. Intrinsic electrostatic potential in the BK channel pore: role in determining single channel conductance and block. ACTA ACUST UNITED AC 2008; 131:147-61. [PMID: 18227273 PMCID: PMC2213566 DOI: 10.1085/jgp.200709862] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The internal vestibule of large-conductance Ca2+ voltage-activated K+ (BK) channels contains a ring of eight negative charges not present in K+ channels of lower conductance (Glu386 and Glu389 in hSlo) that modulates channel conductance through an electrostatic mechanism (Brelidze, T.I., X. Niu, and K.L. Magleby. 2003. Proc. Natl. Acad. Sci. USA. 100:9017–9022). In BK channels there are also two acidic amino acid residues in an extracellular loop (Asp326 and Glu329 in hSlo). To determine the electrostatic influence of these charges on channel conductance, we expressed wild-type BK channels and mutants E386N/E389N, D326N, E329Q, and D326N/E329Q channels on Xenopus laevis oocytes, and measured the expressed currents under patch clamp. Contribution of E329 to the conductance is negligible and single channel conductance of D326N/E329Q channels measured at 0 mV in symmetrical 110 mM K+ was 18% lower than the control. Current–voltage curves displayed weak outward rectification for D326N and the double mutant. The conductance differences between the mutants and wild-type BK were caused by an electrostatic effect since they were enhanced at low K+ (30 mM) and vanished at high K+ (1 M K+). We determine the electrostatic potential change, Δφ, caused by the charge neutralization using TEA+ block for the extracellular charges and Ba2+ for intracellular charges. We measured 13 ± 2 mV for Δφ at the TEA+ site when turning off the extracellular charges, and 17 ± 2 mV for the Δφ at the Ba2+ site when the intracellular charges were turned off. To understand the electrostatic effect of charge neutralizations, we determined Δφ using a BK channel molecular model embedded in a lipid bilayer and solving the Poisson-Boltzmann equation. The model explains the experimental results adequately and, in particular, gives an economical explanation to the differential effect on the conductance of the neutralization of charges D326 and E329.
Collapse
|
13
|
Beck EJ, Yang Y, Yaemsiri S, Raghuram V. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating. J Biol Chem 2007; 283:4957-66. [PMID: 18056267 DOI: 10.1074/jbc.m702235200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), the protein dysfunctional in cystic fibrosis, is unique among ATP-binding cassette transporters in that it functions as an ion channel. In CFTR, ATP binding opens the channel, and its subsequent hydrolysis causes channel closure. We studied the conformational changes in the pore-lining sixth transmembrane segment upon ATP binding by measuring state-dependent changes in accessibility of substituted cysteines to methanethiosulfonate reagents. Modification rates of three residues (resides 331, 333, and 335) near the extracellular side were 10-1000-fold slower in the open state than in the closed state. Introduction of a charged residue by chemical modification at two of these positions (resides 331 and 333) affected CFTR single-channel gating. In contrast, modifications of pore-lining residues 334 and 338 were not state-dependent. Our results suggest that ATP binding induces a modest conformational change in the sixth transmembrane segment, and this conformational change is coupled to the gating mechanism that regulates ion conduction. These results may establish a structural basis of gating involving the dynamic rearrangement of transmembrane domains necessary for vectorial transport of substrates in ATP-binding cassette transporters.
Collapse
Affiliation(s)
- Edward J Beck
- Laboratory of Kidney and Electrolyte Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
14
|
Zhang XD, Li Y, Yu WP, Chen TY. Roles of K149, G352, and H401 in the channel functions of ClC-0: testing the predictions from theoretical calculations. ACTA ACUST UNITED AC 2006; 127:435-47. [PMID: 16567465 PMCID: PMC2151512 DOI: 10.1085/jgp.200509460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ClC family of Cl− channels and transporters comprises membrane proteins ubiquitously present in species ranging from prokaryotes to mammals. The recently solved structures of the bacterial ClC proteins have provided a good model to guide the functional experiments for the eukaryotic Cl− channels. Theoretical calculations based on the bacterial ClC structures have identified several residues critical for the Cl− binding energy in the Cl− transport pathway. It was speculated that the corresponding residues in eukaryotic Cl− channels might play similar roles for the channel functions. In this study, we made a series of mutations in three such residues in eukaryotic ClC Cl− channels (K149, G352, and H401 in ClC-0) and studied the functional consequences on the channel properties. A cysteine modification approach was also employed to evaluate the electrostatic effects of the charge placed at these three positions. The experimental results revealed that among the three residues tested, K149 plays the most important role in controlling both the gating and the permeation functions of ClC-0. On the other hand, mutations of H401 alter the channel conductance but not the gating properties, while mutations of G352 result in very little functional consequence. The mutation of K149 into a neutral residue leucine (K149L) shifts the activation curve and leads to flickery channel openings. The anion permeability ratios derived from bi-ionic experiments are also significantly altered in that the selectivity of Cl− over other anions is decreased. Furthermore, removing the positive charge at this position reduces and increases, respectively, the accessibility of the negatively and positively charged methane thiosulfonate reagents to the pore. The control of the accessibility to charged MTS reagents and the regulation of the anion permeation support the idea that K149 exerts an electrostatic effect on the channel function, confirming the prediction from computational studies.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Center for Neuroscience and Department of Neurology, University of California, Davis, 95616, USA
| | | | | | | |
Collapse
|
15
|
Musset B, Meuth SG, Liu GX, Derst C, Wegner S, Pape HC, Budde T, Preisig-Müller R, Daut J. Effects of divalent cations and spermine on the K+ channel TASK-3 and on the outward current in thalamic neurons. J Physiol 2006; 572:639-57. [PMID: 16513667 PMCID: PMC1780017 DOI: 10.1113/jphysiol.2006.106898] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The potassium channels TASK-1 and TASK-3 show high sequence homology but differ in their sensitivity to extracellular divalent cations. Heterologous expression in HEK293 cells showed that the single-channel conductance of TASK-3 increased approximately four-fold after removal of external divalent cations, whereas the conductance of TASK-1 was unaffected. Replacing the glutamate at position 70 of TASK-3 by a lysine or arginine residue abolished the sensitivity to divalent cations. The reverse mutation in TASK-1 (K70E) induced sensitivity to divalent cations. The organic polycations spermine and ruthenium red modulated the conductance of TASK-3 in a similar way as Ca2+ or Mg2+. Our data suggest that these effects were mediated by shielding of the negative charges in the extracellular loops of TASK-3. Whole-cell currents carried by TASK-3 channels were inhibited by spermine and ruthenium red even in the presence of external divalent cations. These data suggest that, in addition to their effect on single-channel conductance, spermine and ruthenium red decreased the open probability of TASK-3 channels, probably by binding to residue E70. The standing outward current in thalamocortical relay neurons, which is largely carried by TASK channels, was also inhibited by divalent cations and spermine. Using the differential sensitivity of TASK-1 and TASK-3 to divalent cations and spermine we found that about 20% of the standing outward current in thalamocortical relay neurons flows through TASK-3 channels. We conclude from our results that inhibition of TASK-3 channels may contribute to the neuromodulatory effect of spermine released from neurons during repetitive activity or during hypoxia.
Collapse
Affiliation(s)
- Boris Musset
- Institut für Physiologie, Universität Marburg, Deutschhausstrasse 2, 35037 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Qu Z, Chien LT, Cui Y, Hartzell HC. The anion-selective pore of the bestrophins, a family of chloride channels associated with retinal degeneration. J Neurosci 2006; 26:5411-9. [PMID: 16707793 PMCID: PMC6675304 DOI: 10.1523/jneurosci.5500-05.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in human bestrophin-1 (VMD2) are genetically linked to a juvenile form of macular degeneration and autosomal dominant vitreoretinochoroidopathy. Recently, it has been proposed that bestrophins are Cl- channels and that the putative second transmembrane domain participates in forming the bestrophin pore. However, the structural determinants of Cl- ion permeation through the channel pore are not known. Here we systematically replaced every amino acid in mouse bestrophin-2 (mBest2) between positions 69 and 104 with cysteine. We then measured the effects on the relative permeability and conductance of the channel to Cl- and SCN- (thiocyanate) and determined the accessibility of the cysteine-substituted amino acids to extracellularly applied, membrane-impermeant sulfhydryl reagents. Unlike K+ channels, the amino acids forming the mBest2 selectivity filter are not discretely localized but are distributed over approximately 20 amino acids within the transmembrane domain. Cysteine-substituted amino acids in the selectivity filter are easily accessible to extracellularly applied sulfhydryl reagents and select for anionic sulfhydryl reagents over cationic ones. Understanding the structure of the anion conduction pathway of bestrophins provides insights into how mutations produce channel dysfunction and may provide important information for development of therapeutic strategies for treating macular degeneration.
Collapse
|
17
|
Sunesen M, de Carvalho LP, Dufresne V, Grailhe R, Savatier-Duclert N, Gibor G, Peretz A, Attali B, Changeux JP, Paas Y. Mechanism of Cl- selection by a glutamate-gated chloride (GluCl) receptor revealed through mutations in the selectivity filter. J Biol Chem 2006; 281:14875-81. [PMID: 16527818 DOI: 10.1074/jbc.m511657200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To learn about the mechanism of ion charge selectivity by invertebrate glutamate-gated chloride (GluCl) channels, we swapped segments between the GluClbeta receptor of Caenorhabditis elegans and the vertebrate cationic alpha7-acetylcholine receptor and monitored anionic/cationic permeability ratios. Complete conversion of the ion charge selectivity in a set of receptor microchimeras indicates that the selectivity filter of the GluClbeta receptor is created by a sequence connecting the first with the second transmembrane segments. A single substitution of a negatively charged residue within this sequence converted the selectivity of the GluClbeta receptor's pore from anionic to cationic. Unexpectedly, elimination of the charge of each basic residue of the selectivity filter, one at a time or concomitantly, moderately reduced the P(Cl)/P(Na) ratios, but the GluClbeta receptor's mutants retained high capacity to select Cl(-) over Na(+). These results indicate that, unlike the proposed case of anionic Gly- and gamma-aminobutyric acid-gated ion channels, positively charged residues do not play the key role in the selection of ionic charge by the GluClbeta receptor. Taken together with measurements of the effective open pore diameter and with structural modeling, the study presented here collectively indicates that in the most constricted part of the open GluClbeta receptor's channel, Cl(-) interacts with backbone amides, where it undergoes partial dehydration necessary for traversing the pore.
Collapse
Affiliation(s)
- Morten Sunesen
- Unit of Receptors and Cognition, URA 2182 CNRS, Pasteur Institute, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Amiri S, Tai K, Beckstein O, Biggin PC, Sansom MSP. The alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics. Mol Membr Biol 2005; 22:151-62. [PMID: 16096259 DOI: 10.1080/09687860500063340] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The structure of a homopentameric alpha7 nicotinic acetylcholine receptor is modelled by combining structural information from two sources: the X-ray structure of a water soluble acetylcholine binding protein from Lymnea stagnalis, and the electron microscopy derived structure of the transmembrane domain of the Torpedo nicotinic receptor. The alpha7 nicotinic receptor model is generated by simultaneously optimising: (i) chain connectivity, (ii) avoidance of stereochemically unfavourable contacts, and (iii) contact between the beta1-beta2 and M2-M3 loops that have been suggested to be involved in transmission of conformational change between the extracellular and transmembrane domains. A Gaussian network model was used to predict patterns of residue mobility in the alpha7 model. The results of these calculations suggested a flexibility gradient along the transmembrane domain, with the extracellular end of the domain more flexible that the intracellular end. Poisson-Boltzmann (PB) energy calculations and atomistic (molecular dynamics) simulations were used to estimate the free energy profile of a Na+ ion as a function of position along the axis of the pore-lining M2 helix bundle of the transmembrane domain. Both types of calculation suggested a significant energy barrier to exist in the centre of the (closed) pore, consistent with a "hydrophobic gating" model. Estimations of the PB energy profile as a function of ionic strength suggest a role of the extracellular domain in determining the cation selectivity of the alpha7 nicotinic receptor. These studies illustrate how molecular models of members of the nicotinic receptor superfamily of channels may be used to study structure-function relationships.
Collapse
Affiliation(s)
- Shiva Amiri
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
19
|
Corry B. An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics. Biophys J 2005; 90:799-810. [PMID: 16284265 PMCID: PMC1367105 DOI: 10.1529/biophysj.105.067868] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acetylcholine receptors mediate electrical signaling between nerve and muscle by opening and closing a transmembrane ion conductive pore. Molecular and Brownian dynamics simulations are used to shed light on the location and mechanism of the channel gate. Four separate 5 ns molecular dynamics simulations are carried out on the imaged structure of the channel, a hypothetical open structure with a slightly wider pore and a mutant structure in which a central ring of hydrophobic residues is replaced by polar groups. Water is found to partially evacuate the pore during molecular simulations of the imaged structure, whereas ions face a large energy barrier and do not conduct through the channel in Brownian dynamics simulations. The pore appears to be in a closed configuration despite containing an unobstructed pathway across the membrane as a series of hydrophobic residues in the center of the channel provide an unfavorable home to water and ions. When the channel is widened slightly, water floods into the channel and ions conduct at a rate comparable to the currents measured experimentally in open channels. The pore remains permeable to ions provided the extracellular end of the pore-lining helix is restrained near the putative open configuration to mimic the presence of the ligand binding domain. Replacing some of the hydrophobic residues with polar ones decreases the barrier for ion permeation but does not result in significant currents. The channel is posited to utilize an energy efficient gating mechanism in which only minor conformational changes of the hydrophobic region of the pore are required to create macroscopic changes in conductance.
Collapse
Affiliation(s)
- Ben Corry
- Chemistry, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
20
|
Yeh BI, Kim YK, Jabbar W, Huang CL. Conformational changes of pore helix coupled to gating of TRPV5 by protons. EMBO J 2005; 24:3224-34. [PMID: 16121193 PMCID: PMC1224685 DOI: 10.1038/sj.emboj.7600795] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 08/02/2005] [Indexed: 11/08/2022] Open
Abstract
The transient receptor potential channel TRPV5 constitutes the apical entry pathway for transepithelial Ca2+ transport. We showed that TRPV5 was inhibited by both physiological intra- and extracellular acid pH. Inhibition of TRPV5 by internal protons was enhanced by extracellular acidification. Similarly, inhibition by external protons was enhanced by intracellular acidification. Mutation of either an extra- or an intracellular pH sensor blunted the cross-inhibition by internal and external protons. Both internal and external protons regulated the selectivity filter gate. Using the substituted cysteine accessibility method, we found that intracellular acidification of TRPV5 caused a conformational change of the pore helix consistent with clockwise rotation along its long axis. Thus, rotation of pore helix caused by internal protons facilitates closing of TRPV5 by external protons. This regulation by protons likely contributes to pathogenesis of disturbances of Ca2+ transport in many diseased states. Rotation of pore helix may be a common mechanism for cross-regulation of ion channels by extra- and intracellular signals.
Collapse
Affiliation(s)
- Byung-Il Yeh
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Charles & Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yung Kyu Kim
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wasey Jabbar
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chou-Long Huang
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Charles & Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Medicine, University of Texas Southwestern Medical Center, Room J5-104A, MC-8856, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA. Tel.: +1 214 648 8627; Fax: +1 214 648 2071; E-mail:
| |
Collapse
|
21
|
Merzlyak PG, Capistrano MFP, Valeva A, Kasianowicz JJ, Krasilnikov OV. Conductance and ion selectivity of a mesoscopic protein nanopore probed with cysteine scanning mutagenesis. Biophys J 2005; 89:3059-70. [PMID: 16085767 PMCID: PMC1366803 DOI: 10.1529/biophysj.105.066472] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanometer-scale proteinaceous pores are the basis of ion and macromolecular transport in cells and organelles. Recent studies suggest that ion channels and synthetic nanopores may prove useful in biotechnological applications. To better understand the structure-function relationship of nanopores, we are studying the ion-conducting properties of channels formed by wild-type and genetically engineered versions of Staphylococcus aureus alpha-hemolysin (alphaHL) reconstituted into planar lipid bilayer membranes. Specifically, we measured the ion selectivities and current-voltage relationships of channels formed with 24 different alphaHL point cysteine mutants before and after derivatizing the cysteines with positively and negatively charged sulfhydryl-specific reagents. Novel negative charges convert the selectivity of the channel from weakly anionic to strongly cationic, and new positive charges increase the anionic selectivity. However, the extent of these changes depends on the channel radius at the position of the novel charge (predominantly affects ion selectivity) or on the location of these charges along the longitudinal axis of the channel (mainly alters the conductance-voltage curve). The results suggest that the net charge of the pore wall is responsible for cation-anion selectivity of the alphaHL channel and that the charge at the pore entrances is the main factor that determines the shape of the conductance-voltage curves.
Collapse
Affiliation(s)
- Petr G Merzlyak
- Laboratory of Membrane Biophysics, Department of Biophysics and Radiobiology, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | | |
Collapse
|
22
|
Abstract
The CLC family comprises a group of integral membrane proteins whose major action is to translocate chloride (Cl-) ions across the cell membranes. Recently, the structures of CLC orthologues from two bacterial species, Salmonella typhimurium and Escherichia coli, were solved, providing the first framework for understanding the operating mechanisms of these molecules. However, most of the previous mechanistic understanding of CLC channels came from electrophysiological studies of a branch of the channel family, the muscle-type CLC channels in vertebrate species. These vertebrate CLC channels were predicted to contain two identical but independent pores, and this hypothesis was confirmed by the solved bacterial CLC structures. The opening and closing of the vertebrate CLC channels are also known to couple to the permeant ions via their binding sites in the ion-permeation pathway. The bacterial CLC structures can probably serve as a structural model to explain the gating-permeation coupling mechanism. However, the CLC-ec1 protein in E. coli was most recently shown to be a Cl- -H+ antiporter, but not an ion channel. The molecular basis to explain the difference between vertebrate and bacterial CLCs, especially the distinction between an ion channel and a transporter, remains a challenge in the structure/function studies for the CLC family.
Collapse
Affiliation(s)
- Tsung-Yu Chen
- Center for Neuroscience and Department of Neurology, University of California, Davis, California 95616, USA.
| |
Collapse
|
23
|
Liu X, Zhang ZR, Fuller MD, Billingsley J, McCarty NA, Dawson DC. CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore. Biophys J 2004; 87:3826-41. [PMID: 15361410 PMCID: PMC1304894 DOI: 10.1529/biophysj.104.050534] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 09/03/2004] [Indexed: 11/18/2022] Open
Abstract
We investigated the accessibility to protons and thiol-directed reagents of a cysteine substituted at position 338 in transmembrane segment 6 (TM6) of CFTR to test the hypothesis that T338 resides in the pore. Xenopus oocytes expressing T338C CFTR exhibited pH-dependent changes in gCl and I-V shape that were specific to the substituted cysteine. The apparent pKa of T338C CFTR was more acidic than that expected for a cysteine or similar simple thiols in aqueous solution. The pKa was shifted toward alkaline values when a nearby positive charge (R334) was substituted with neutral or negatively charged residues, consistent with the predicted influence of the positive charge of R334, and perhaps other residues, on the titration of a cysteine at 338. The relative rates of chemical modification of T338C CFTR by MTSET+ and MTSES- were also altered by the charge at 334. These observations support a model for CFTR that places T338 within the anion conduction path. The apparent pKa of a cysteine substituted at 338 and the relative rates of reaction of charged thiol-directed reagents provide a crude measure of a positive electrostatic potential that may be due to R334 and other residues near this position in the pore.
Collapse
Affiliation(s)
- Xuehong Liu
- Department of Physiology/Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The glycine receptor chloride channel (GlyR) is a member of the nicotinic acetylcholine receptor family of ligand-gated ion channels. Functional receptors of this family comprise five subunits and are important targets for neuroactive drugs. The GlyR is best known for mediating inhibitory neurotransmission in the spinal cord and brain stem, although recent evidence suggests it may also have other physiological roles, including excitatory neurotransmission in embryonic neurons. To date, four alpha-subunits (alpha1 to alpha4) and one beta-subunit have been identified. The differential expression of subunits underlies a diversity in GlyR pharmacology. A developmental switch from alpha2 to alpha1beta is completed by around postnatal day 20 in the rat. The beta-subunit is responsible for anchoring GlyRs to the subsynaptic cytoskeleton via the cytoplasmic protein gephyrin. The last few years have seen a surge in interest in these receptors. Consequently, a wealth of information has recently emerged concerning GlyR molecular structure and function. Most of the information has been obtained from homomeric alpha1 GlyRs, with the roles of the other subunits receiving relatively little attention. Heritable mutations to human GlyR genes give rise to a rare neurological disorder, hyperekplexia (or startle disease). Similar syndromes also occur in other species. A rapidly growing list of compounds has been shown to exert potent modulatory effects on this receptor. Since GlyRs are involved in motor reflex circuits of the spinal cord and provide inhibitory synapses onto pain sensory neurons, these agents may provide lead compounds for the development of muscle relaxant and peripheral analgesic drugs.
Collapse
Affiliation(s)
- Joseph W Lynch
- School of Biomedical Sciences, Univ. of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
25
|
Sobolevsky AI, Yelshansky MV, Wollmuth LP. State-dependent changes in the electrostatic potential in the pore of a GluR channel. Biophys J 2004; 88:235-42. [PMID: 15516523 PMCID: PMC1305001 DOI: 10.1529/biophysj.104.049411] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The M2 loop and the M3 segment are the major pore-lining domains in the GluR channel. These domains determine ion permeation and channel block processes and are extensively involved in gating. To study the distribution of the membrane electric potential across the GluR channel pore, we recorded from alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptors containing M2 and M3 cysteine substitutions in the GluR-A subunit and measured the voltage dependence of the modification rate of these substituted cysteines by methanethiosulfonate reagents either in the presence or absence of glutamate. In the presence of glutamate, the voltage dependence became gradually stronger for positions located deeper in the pore suggesting that the electrostatic potential drops fairly uniformly across the pore in the open state. In contrast, in the absence of glutamate, the voltage dependence was biphasic. The difference in the electrostatic potential in the presence and absence of glutamate had an apparent maximum in the middle of the extracellular vestibule. We suggest that these state-dependent changes in the membrane electric potential reflect a reorientation of the dipoles of the M2 loop alpha-helices toward and away from the center of the channel pore during gating.
Collapse
Affiliation(s)
- Alexander I Sobolevsky
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794-5230, USA.
| | | | | |
Collapse
|
26
|
Keramidas A, Moorhouse AJ, Schofield PR, Barry PH. Ligand-gated ion channels: mechanisms underlying ion selectivity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 86:161-204. [PMID: 15288758 DOI: 10.1016/j.pbiomolbio.2003.09.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anion/cation selectivity is a critical property of ion channels and underpins their physiological function. Recently, there have been numerous mutagenesis studies, which have mapped sites within the ion channel-forming segments of ligand-gated ion channels that are determinants of the ion selectivity. Site-directed mutations to specific amino acids within or flanking the M2 transmembrane segments of the anion-selective glycine, GABA(A) and GABA(C) receptors and the cation-selective nicotinic acetylcholine and serotonin (type 3) receptors have revealed discrete, equivalent regions within the ion channel that form the principal selectivity filter, leading to plausible molecular mechanisms and mathematical models to describe how ions preferentially permeate these channels. In particular, the dominant factor determining anion/cation selectivity seems to be the sign and exposure of charged amino acids lining the selectivity filter region of the open channel. In addition, the minimum pore diameter, which can be influenced by the presence of a local proline residue, also makes a contribution to such ion selectivity in LGICs with smaller diameters increasing anion/cation selectivity and larger ones decreasing it.
Collapse
Affiliation(s)
- Angelo Keramidas
- Department of Physiology and Pharmacology, School of Medical Sciences, The University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
27
|
Sonner JM, Antognini JF, Dutton RC, Flood P, Gray AT, Harris RA, Homanics GE, Kendig J, Orser B, Raines DE, Trudell J, Vissel B, Eger EI. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg 2003; 97:718-740. [PMID: 12933393 DOI: 10.1213/01.ane.0000081063.76651.33] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies using molecular modeling, genetic engineering, neurophysiology/pharmacology, and whole animals have advanced our understanding of where and how inhaled anesthetics act to produce immobility (minimum alveolar anesthetic concentration; MAC) by actions on the spinal cord. Numerous ligand- and voltage-gated channels might plausibly mediate MAC, and specific amino acid sites in certain receptors present likely candidates for mediation. However, in vivo studies to date suggest that several channels or receptors may not be mediators (e.g., gamma-aminobutyric acid A, acetylcholine, potassium, 5-hydroxytryptamine-3, opioids, and alpha(2)-adrenergic), whereas other receptors/channels (e.g., glycine, N-methyl-D-aspartate, and sodium) remain credible candidates.
Collapse
Affiliation(s)
- James M Sonner
- *Department of Anesthesia and Perioperative Care, University of California, San Francisco, California; †Department of Anesthesiology, University of California, Davis, California; ‡Columbia University, New York, New York; §University of Texas, Austin, Texas; ∥University of Pittsburgh, Pittsburgh, Pennsylvania; ¶Stanford University, Palo Alto, California; #University of Toronto, Toronto, Canada; **Department of Anaesthesia, Harvard Medical School, Cambridge, Massachusetts; and ††Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thompson AJ, Lummis SCR. A single ring of charged amino acids at one end of the pore can control ion selectivity in the 5-HT3 receptor. Br J Pharmacol 2003; 140:359-65. [PMID: 12970096 PMCID: PMC1574024 DOI: 10.1038/sj.bjp.0705424] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 05/29/2003] [Accepted: 06/18/2003] [Indexed: 11/09/2022] Open
Abstract
1. To determine the mechanisms by which cation- or anion-specific channels select between these ions, we have examined the role of electrostatic factors in a typical ligand-gated ion channel, the 5-hydroxytryptamine3 (5-HT3) receptor, by removal and/or insertion of rings of conserved charged residues at either end of the pore. 2. Neutralization of the negatively charged ring at the intracellular end of the channel (E-1'A) results in a nonselective channel (PNa/PCl=0.89). 3. Insertion of positively charged residues at the extracellular end of the pore either results in a nonfunctional receptor (A24'K) or one that remains cation-selective (PNa/PCl=110; S19'R). 4. Combining the removal of a negatively charged ring (E-1'A) with the insertion of a positively charged ring (S19'R), however, results in a channel that is predominantly anion-selective (PNa/PCl=0.37). 5. The data suggest that for the cation-selective 5-HT3 receptor, the control of selectivity exerted by charged rings at either end of the pore is dominated by the ring of negatively charged residues at the intracellular side of the channel. As changing the charge at this position has also been shown to change ionic selectivity in anion-selective receptors, these data suggest that electrostatic factors can control selectivity in the whole Cys-loop family.
Collapse
Affiliation(s)
- Andrew J Thompson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 IGA
| | - Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Cambridge CB2 IGA
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 2QH
| |
Collapse
|
29
|
Lin CW, Chen TY. Probing the pore of ClC-0 by substituted cysteine accessibility method using methane thiosulfonate reagents. J Gen Physiol 2003; 122:147-59. [PMID: 12885876 PMCID: PMC2229544 DOI: 10.1085/jgp.200308845] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Accepted: 07/07/2003] [Indexed: 11/20/2022] Open
Abstract
ClC channels are a family of protein molecules containing two ion-permeation pores. Although these transmembrane proteins are important for a variety of physiological functions, their molecular operations are only superficially understood. High-resolution X-ray crystallography techniques have recently revealed the structures of two bacterial ClC channels, but whether vertebrate ClC channel pores are similar to those of bacterial homologues is not clear. To study the pore architecture of the Torpedo ClC-0 channel, we employed the substituted-cysteine-accessibility method (SCAM) and used charged methane thiosulfonate (MTS) compounds to modify the introduced cysteine. Several conclusions were derived from this approach. First, the MTS modification pattern from Y512C to E526C in ClC-0, which corresponds to residues forming helix R in bacterial ClC channels, is indeed consistent with the suggested helical structure. Second, the ClC-0 pore is more accessible to the negatively charged than to the positively charged MTS compound, a pore property that is regulated by the intrinsic electrostatic potential in the pore. Finally, attempts to modify the introduced cysteine at positions intracellular to the selectivity filter did not result in larger MTS modification rates for the open-state channel, suggesting that the fast gate of ClC-0 cannot be located at a position intracellular to the Cl- selectivity filter. Thus, the proposal that the glutamate side chain is the fast gate of the channel is applicable to ClC-0, revealing a structural and functional conservation of ClC channels between bacterial and vertebrate species.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Center for Neuroscience, University of California-Davis, CA 95616, USA
| | | |
Collapse
|
30
|
Hui K, McIntyre D, French RJ. Conotoxins as sensors of local pH and electrostatic potential in the outer vestibule of the sodium channel. J Gen Physiol 2003; 122:63-79. [PMID: 12835471 PMCID: PMC2234468 DOI: 10.1085/jgp.200308842] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the block of voltage-dependent rat skeletal muscle sodium channels by derivatives of mu-conotoxin GIIIA (muCTX) having either histidine, glutamate, or alanine residues substituted for arginine-13. Toxin binding and dissociation were observed as current fluctuations from single, batrachotoxin-treated sodium channels in planar lipid bilayers. R13X derivatives of muCTX only partially block the single-channel current, enabling us to directly monitor properties of both muCTX-bound and -unbound states under different conditions. The fractional residual current through the bound channel changes with pH according to a single-site titration curve for toxin derivatives R13E and R13H, reflecting the effect of changing the charge on residue 13, in the bound state. Experiments with R13A provided a control reflecting the effects of titration of all residues on toxin and channel other than toxin residue 13. The apparent pKs for the titration of residual conductance are shifted 2-3 pH units positive from the nominal pK values for histidine and glutamate, respectively, and from the values for these specific residues, determined in the toxin molecule in free solution by NMR measurements. Toxin affinity also changes dramatically as a function of pH, almost entirely due to changes in the association rate constant, kon. Interpreted electrostatically, our results suggest that, even in the presence of the bound cationic toxin, the channel vestibule strongly favors cation entry with an equivalent local electrostatic potential more negative than -100 mV at the level of the "outer charged ring" formed by channel residues E403, E758, D1241, and D1532. Association rates are apparently limited at a transition state where the pK of toxin residue 13 is closer to the solution value than in the bound state. The action of these unique peptides can thus be used to sense the local environment in the ligand--receptor complex during individual molecular transitions and defined conformational states.
Collapse
Affiliation(s)
- Kwokyin Hui
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
31
|
Howorka S, Bayley H. Probing distance and electrical potential within a protein pore with tethered DNA. Biophys J 2002; 83:3202-10. [PMID: 12496089 PMCID: PMC1302397 DOI: 10.1016/s0006-3495(02)75322-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
DNA molecules tethered inside a protein pore can be used as a tool to probe distance and electrical potential. The approach and its limitations were tested with alpha-hemolysin, a pore of known structure. A single oligonucleotide was attached to an engineered cysteine to allow the binding of complementary DNA strands inside the wide internal cavity of the extramembranous domain of the pore. The reversible binding of individual oligonucleotides produced transient current blockades in single channel current recordings. To probe the internal structure of the pore, oligonucleotides with 5' overhangs of deoxyadenosines and deoxythymidines up to nine bases in length were used. The characteristics of the blockades produced by the oligonucleotides indicated that single-stranded overhangs of increasing length first approach and then thread into the transmembrane beta-barrel. The distance from the point at which the DNA was attached and the internal entrance to the barrel is 43 A, consistent with the lengths of the DNA probes and the signals produced by them. In addition, the tethered DNAs were used to probe the electrical potential within the protein pore. Binding events of oligonucleotides with an overhang of five bases or more, which threaded into the beta-barrel, exhibited shorter residence times at higher applied potentials. This finding is consistent with the idea that the main potential drop is across the alpha-hemolysin transmembrane beta-barrel, rather than the entire length of the lumen of the pore. It therefore explains why the kinetics and thermodynamics of formation of short duplexes within the extramembranous cavity of the pore are similar to those measured in solution, and bolsters the idea that a "DNA nanopore" provides a useful means for examining duplex formation at the single molecule level.
Collapse
Affiliation(s)
- Stefan Howorka
- Department of Medical Biochemistry and Genetics, The Texas A&M University System Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | |
Collapse
|
32
|
Abstract
Voltage sensing is due mainly to the movement of positively charged S4 segments through the membrane electric field during changes of membrane potential. The roles of other transmembrane segments are under study. The S3 segment of domain 4 (D4/S3) in the sodium channel Na(v)1.4 carries two negatively charged residues and has been implicated in voltage-dependent gating. We substituted cysteines into nine putative "high impact" sites along the complete length of D4/S3 and evaluated their accessibilities to extracellular sulfhydryl reagents. Only the four outermost substituted cysteines (L1433C, L1431C, G1430C, and S1427C) are accessible to extracellular sulfhydryl reagents. We measured the voltage-dependent modification rates of the two cysteines situated at the extreme ends of this accessible region, L1433C and S1427C. Independent of the charge on the sulfhydryl reagents, depolarization increases the reactivity of both of these residues. Thus, the direction of the voltage dependence is opposite to that expected for a negatively charged voltage sensor, namely an inward translational movement in response to depolarization. Intrinsic electrostatic potentials were probed by charged sulfhydryl reagents and were either negative or positive, respectively, near L1433C and S1427C. The magnitude of the electrostatic potential near S1427C decreases with depolarization, suggesting that the extracellular crevice next to it widens during depolarization. S1427C experiences 44% of the electric field, as probed by charged cysteine reagents. To further explore movements around D4/S3, we labeled cysteines with the photoactivatable cross-linking reagent benzophenone-4-carboxamidocysteine methanethiosulfonate and examined the effects of UV irradiation on channel gating. After labeling with this reagent, all accessible cysteine mutants show altered gating upon brief UV irradiation. In each case, the apparent insertion efficiency of the photoactivated benzophenone increases with depolarization, indicating voltage-dependent movement near the extracellular end of D4/S3.
Collapse
Affiliation(s)
- Thao P Nguyen
- Department of Physiology, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | |
Collapse
|
33
|
Khan A, Romantseva L, Lam A, Lipkind G, Fozzard HA. Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block. J Physiol 2002; 543:71-84. [PMID: 12181282 PMCID: PMC2290475 DOI: 10.1113/jphysiol.2002.021014] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Voltage-gated Na+ current is reduced by acid solution. Protons reduce peak Na+ conductance by lowering single channel conductance and shift the voltage range of gating by neutralizing surface charges. Structure-function studies identify six carboxyls and a lysine in the channel's outer vestibule. We examined the roles of the superficial ring of carboxyls in acid block of Na(v)1.4 (the rat skeletal muscle Na+ channel isoform) by measuring the effects of their neutralization or their substitution by lysine on sensitivity to acid solutions, using the two-micropipette voltage clamp in Xenopus oocytes. Alteration of the outer ring of carboxylates had little effect on the voltage for half-activation of Na+ current, as if they are distant from the channels' voltage sensors. The mutations did not abolish proton block; rather, they all shifted the pK(a) (-log of the dissociation constant) in the acid direction. Effects of neutralization on pK(a) were not identical for different mutations, with E758Q > D1241A > D1532N > E403Q. E758K showed double the effect of E758Q, and the other lysine mutations all produced larger effects than the neutralizing mutations. Calculation of the electrostatic potential produced by these carboxylates using a pore model showed that the pK(a) values of carboxylates of Glu-403, Glu-758, and Asp-1532 are shifted to values similar to the experimentally measured pK(a). Calculations also predict the experimentally observed changes in pK(a) that result from mutational neutralization or introduction of a positive charge. We propose that proton block results from partial protonation of these outer ring carboxylates and that all of the carboxylates contribute to a composite Na+ site.
Collapse
Affiliation(s)
- A Khan
- The Cardiac Electrophysiology Laboratories, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
34
|
Trudell JR, Bertaccini E. Molecular modelling of specific and non-specific anaesthetic interactions. Br J Anaesth 2002; 89:32-40. [PMID: 12173239 DOI: 10.1093/bja/aef157] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There has been rapid progress in molecular modelling in recent years. The convergence of improved software for molecular mechanics and dynamics, techniques for chimeric substitution and site-directed mutations, and the first x-ray structures of transmembrane ion channels have made it possible to build and test models of anaesthetic binding sites. These models have served as guides for site-directed mutagenesis and as starting points for understanding the molecular dynamics of anaesthetic-site interactions. Ligand-gated ion channels are targets for inhaled anaesthetics and alcohols in the central nervous system. The inhibitory strychnine-sensitive glycine and gamma-aminobutyric acid type A receptors are positively modulated by anaesthetics and alcohols; site-directed mutagenesis techniques have identified amino acid residues important for the action of volatile anaesthetics and alcohols in these receptors. Key questions are whether these amino acid mutations form part of alcohol- or anaesthetic-binding sites or if they alter protein stability in a way that allows anaesthetic molecules to act remotely by non-specific mechanisms. It is likely that molecular modelling will play a major role in answering these questions.
Collapse
Affiliation(s)
- J R Trudell
- Department of Anaesthesia, Beckman Program for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305-5117, USA
| | | |
Collapse
|
35
|
Bertaccini E, Trudell JR. Predicting the transmembrane secondary structure of ligand-gated ion channels. Protein Eng Des Sel 2002; 15:443-54. [PMID: 12082162 DOI: 10.1093/protein/15.6.443] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent mutational analyses of ligand-gated ion channels (LGICs) have demonstrated a plausible site of anesthetic action within their transmembrane domains. Although there is a consensus that the transmembrane domain is formed from four membrane-spanning segments, the secondary structure of these segments is not known. We utilized 10 state-of-the-art bioinformatics techniques to predict the transmembrane topology of the tetrameric regions within six members of the LGIC family that are relevant to anesthetic action. They are the human forms of the GABA alpha 1 receptor, the glycine alpha 1 receptor, the 5HT3 serotonin receptor, the nicotinic AChR alpha 4 and alpha 7 receptors and the Torpedo nAChR alpha 1 receptor. The algorithms utilized were HMMTOP, TMHMM, TMPred, PHDhtm, DAS, TMFinder, SOSUI, TMAP, MEMSAT and TOPPred2. The resulting predictions were superimposed on to a multiple sequence alignment of the six amino acid sequences created using the CLUSTAL W algorithm. There was a clear statistical consensus for the presence of four alpha helices in those regions experimentally thought to span the membrane. The consensus of 10 topology prediction techniques supports the hypothesis that the transmembrane subunits of the LGICs are tetrameric bundles of alpha helices.
Collapse
Affiliation(s)
- E Bertaccini
- Palo Alto VA Health Care System, Department of Anesthesia and Department of Anesthesia, Beckman Program for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117, USA
| | | |
Collapse
|
36
|
Keramidas A, Moorhouse AJ, Pierce KD, Schofield PR, Barry PH. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity. J Gen Physiol 2002; 119:393-410. [PMID: 11981020 PMCID: PMC2233820 DOI: 10.1085/jgp.20028552] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2001] [Revised: 03/22/2002] [Accepted: 03/22/2002] [Indexed: 11/20/2022] Open
Abstract
Ligand-gated ion channel receptors mediate neuronal inhibition or excitation depending on their ion charge selectivity. An investigation into the determinants of ion charge selectivity of the anion-selective alpha1 homomeric glycine receptor (alpha1 glycine receptor [GlyR]) was undertaken using point mutations to residues lining the extra- and intracellular ends of the ion channel. Five mutant GlyRs were studied. A single substitution at the intracellular mouth of the channel (A-1'E GlyR) was sufficient to convert the channels to select cations over anions with P(Cl)/P(Na) = 0.34. This result delimits the selectivity filter and provides evidence that electrostatic interactions between permeating ions and pore residues are a critical factor in ion charge selectivity. The P-2'Delta mutant GlyR retained its anion selectivity (P(Cl)/P(Na) = 3.81), but it was much reduced compared with the wild-type (WT) GlyR (P(Cl)/P(Na) = 27.9). When the A-1'E and the P-2'Delta mutations were combined (selectivity double mutant [SDM] GlyR), the relative cation permeability was enhanced (P(Cl)/P(Na) = 0.13). The SDM GlyR was also Ca(2+) permeable (P(Ca)/P(Na) = 0.29). Neutralizing the extracellular mouth of the SDM GlyR ion channel (SDM+R19'A GlyR) produced a more Ca(2+)-permeable channel (P(Ca)/P(Na) = 0.73), without drastically altering monovalent charge selectivity (P(Cl)/P(Na) = 0.23). The SDM+R19'E GlyR, which introduces a negatively charged ring at the extracellular mouth of the channel, further enhanced Ca(2+) permeability (P(Ca)/P(Na) = 0.92), with little effect on monovalent selectivity (P(Cl)/P(Na) = 0.19). Estimates of the minimum pore diameter of the A-1'E, SDM, SDM+R19'A, and SDM+R19'E GlyRs revealed that these pores are larger than the alpha1 GlyR, with the SDM-based GlyRs being comparable in diameter to the cation-selective nicotinic acetylcholine receptors. This result provides evidence that the diameter of the ion channel is also an important factor in ion charge selectivity.
Collapse
Affiliation(s)
- Angelo Keramidas
- Department of Physiology and Pharmacology, University of New South Wales, Sydney 2052, Australia
| | | | | | | | | |
Collapse
|
37
|
Mongan NP, Jones AK, Smith GR, Sansom MSP, Sattelle DB. Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci 2002; 11:1162-71. [PMID: 11967372 PMCID: PMC2373549 DOI: 10.1110/ps.3040102] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
We have used reverse-transcription-polymerase chain reaction (RT-PCR) and DNA sequencing techniques to confirm the transcription of seven (six alpha and one non-alpha) novel candidate nicotinic acetylcholine receptor (nAChR) subunit-encoding genes identified in the genome sequence of the nematode Caenorhabditis elegans. Compared to vertebrate nAChR subunits, they most closely resemble the homomer-forming, neuronal alpha7 subunit. Comparison of the predicted amino acid sequences of the new nAChR subunits with those described previously in C. elegans reveals five subunits (four alpha and one non-alpha) which resemble the DEG-3-like group of subunits. To date, this highly divergent nAChR subunit group is unique to C. elegans. ACR-22 is the first non-alpha member of the DEG-3-like group of subunits to be identified. Two new members of the related ACR-16-like nAChR group of subunits have also been shown to be transcribed, making the ACR-16-like subunit group the largest in C. elegans. Residues in the alpha subunit second transmembrane region (M2) which contribute to the channel lining show variations with implications for channel function. For example, in ACR-22, the highly conserved 0' lysine of M2 is replaced by histidine. Restrained molecular dynamics simulations have been used to generate molecular models of homo-pentameric M2 helix bundles for the novel subunits, enabling identification and display of pore-lining and protein interface residues. The number and diversity of genes encoding C. elegans nAChR subunits with similarities to the homomer-forming vertebrate alpha7 subunits and the identification of related non-alpha subunits, only found in C. elegans to date, suggest that at least some of these subunits may contribute to heteromers in vivo.
Collapse
Affiliation(s)
- Nigel P Mongan
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | |
Collapse
|
38
|
Abstract
The conversion of acetylcholine binding into ion conduction across the membrane is becoming more clearly understood in terms of the structure of the receptor and its transitions. A high-resolution structure of a protein that is homologous to the extracellular domain of the receptor has revealed the binding sites and subunit interfaces in great detail. Although the structures of the membrane and cytoplasmic domains are less well determined, the channel lining and the determinants of selectivity have been mapped. The location and structure of the gates, and the coupling between binding sites and gates, remain to be established.
Collapse
Affiliation(s)
- Arthur Karlin
- Center for Molecular Recognition, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
39
|
Elinder F, Männikkö R, Larsson HP. S4 charges move close to residues in the pore domain during activation in a K channel. J Gen Physiol 2001; 118:1-10. [PMID: 11429439 PMCID: PMC2233763 DOI: 10.1085/jgp.118.1.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated ion channels respond to changes in the transmembrane voltage by opening or closing their ion conducting pore. The positively charged fourth transmembrane segment (S4) has been identified as the main voltage sensor, but the mechanisms of coupling between the voltage sensor and the gates are still unknown. Obtaining information about the location and the exact motion of S4 is an important step toward an understanding of these coupling mechanisms. In previous studies we have shown that the extracellular end of S4 is located close to segment 5 (S5). The purpose of the present study is to estimate the location of S4 charges in both resting and activated states. We measured the modification rates by differently charged methanethiosulfonate regents of two residues in the extracellular end of S5 in the Shaker K channel (418C and 419C). When S4 moves to its activated state, the modification rate by the negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) increases significantly more than the modification rate by the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate, bromide (MTSET(+)). This indicates that the positive S4 charges are moving close to 418C and 419C in S5 during activation. Neutralization of the most external charge of S4 (R362), shows that R362 in its activated state electrostatically affects the environment at 418C by 19 mV. In contrast, R362 in its resting state has no effect on 418C. This suggests that, during activation of the channel, R362 moves from a position far away (>20 A) to a position close (8 A) to 418C. Despite its close approach to E418, a residue shown to be important in slow inactivation, R362 has no effect on slow inactivation or the recovery from slow inactivation. This refutes previous models for slow inactivation with an electrostatic S4-to-gate coupling. Instead, we propose a model with an allosteric mechanism for the S4-to-gate coupling.
Collapse
Affiliation(s)
- Fredrik Elinder
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roope Männikkö
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - H. Peter Larsson
- Neurological Sciences Institute, Oregon Health Sciences University, Portland, OR 97006
| |
Collapse
|
40
|
Elinder F, Männikkö R, Larsson HP. S4 Charges Move Close to Residues in the Pore Domain during Activation in a K Channel. J Gen Physiol 2001. [DOI: 10.1085/jgp.118.1.1-a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated ion channels respond to changes in the transmembrane voltage by opening or closing their ion conducting pore. The positively charged fourth transmembrane segment (S4) has been identified as the main voltage sensor, but the mechanisms of coupling between the voltage sensor and the gates are still unknown. Obtaining information about the location and the exact motion of S4 is an important step toward an understanding of these coupling mechanisms. In previous studies we have shown that the extracellular end of S4 is located close to segment 5 (S5). The purpose of the present study is to estimate the location of S4 charges in both resting and activated states. We measured the modification rates by differently charged methanethiosulfonate regents of two residues in the extracellular end of S5 in the Shaker K channel (418C and 419C). When S4 moves to its activated state, the modification rate by the negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES−) increases significantly more than the modification rate by the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate, bromide (MTSET+). This indicates that the positive S4 charges are moving close to 418C and 419C in S5 during activation. Neutralization of the most external charge of S4 (R362), shows that R362 in its activated state electrostatically affects the environment at 418C by 19 mV. In contrast, R362 in its resting state has no effect on 418C. This suggests that, during activation of the channel, R362 moves from a position far away (>20 Å) to a position close (8 Å) to 418C. Despite its close approach to E418, a residue shown to be important in slow inactivation, R362 has no effect on slow inactivation or the recovery from slow inactivation. This refutes previous models for slow inactivation with an electrostatic S4-to-gate coupling. Instead, we propose a model with an allosteric mechanism for the S4-to-gate coupling.
Collapse
Affiliation(s)
- Fredrik Elinder
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roope Männikkö
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - H. Peter Larsson
- Neurological Sciences Institute, Oregon Health Sciences University, Portland, OR 97006
| |
Collapse
|
41
|
Affiliation(s)
- A Karlin
- Center for Molecular Recognition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
42
|
Wilson G, Karlin A. Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc Natl Acad Sci U S A 2001; 98:1241-8. [PMID: 11158624 PMCID: PMC14739 DOI: 10.1073/pnas.98.3.1241] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nicotinic acetylcholine (ACh) receptors cycle among classes of nonconducting resting states, conducting open states, and nonconducting desensitized states. We previously probed the structure of the mouse-muscle ACh receptor channel in the resting state obtained in the absence of agonist and in the open states obtained after brief exposure to ACh. We now have probed the structure in the stable desensitized state obtained after many minutes of exposure to ACh. Muscle-type receptor has the subunit composition alpha(2)betagammadelta. Each subunit has four membrane-spanning segments, M1-M4. The channel lumen in the membrane domain is lined largely by M2 and to a lesser extent by M1 from each of the subunits. We determined the rates of reaction of a small, sulfhydryl-specific, charged reagent, 2-aminoethyl methanethiosulfonate with cysteines substituted for residues in alphaM2 and the alphaM1-M2 loop in the desensitized state and compared these rates to rates previously obtained in the resting and open states. The reaction rates of the substituted cysteines are different in the three functional states of the receptor, indicating significant structural differences. By comparing the rates of reaction of extracellularly and intracellularly added 2-aminoethyl methanethiosulfonate, we previously located the closed gate in the resting state between alphaG240 and alphaT244, in the predicted M1-M2 loop at the intracellular end of M2. Now, we have located the closed gate in the stable desensitized state between alphaG240 and alphaL251. The gate in the desensitized state includes the resting state gate and an extension further into M2.
Collapse
Affiliation(s)
- G Wilson
- Center for Molecular Recognition, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
43
|
Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc Natl Acad Sci U S A 2001. [PMID: 11158624 PMCID: PMC14739 DOI: 10.1073/pnas.031567798] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nicotinic acetylcholine (ACh) receptors cycle among classes of nonconducting resting states, conducting open states, and nonconducting desensitized states. We previously probed the structure of the mouse-muscle ACh receptor channel in the resting state obtained in the absence of agonist and in the open states obtained after brief exposure to ACh. We now have probed the structure in the stable desensitized state obtained after many minutes of exposure to ACh. Muscle-type receptor has the subunit composition alpha(2)betagammadelta. Each subunit has four membrane-spanning segments, M1-M4. The channel lumen in the membrane domain is lined largely by M2 and to a lesser extent by M1 from each of the subunits. We determined the rates of reaction of a small, sulfhydryl-specific, charged reagent, 2-aminoethyl methanethiosulfonate with cysteines substituted for residues in alphaM2 and the alphaM1-M2 loop in the desensitized state and compared these rates to rates previously obtained in the resting and open states. The reaction rates of the substituted cysteines are different in the three functional states of the receptor, indicating significant structural differences. By comparing the rates of reaction of extracellularly and intracellularly added 2-aminoethyl methanethiosulfonate, we previously located the closed gate in the resting state between alphaG240 and alphaT244, in the predicted M1-M2 loop at the intracellular end of M2. Now, we have located the closed gate in the stable desensitized state between alphaG240 and alphaL251. The gate in the desensitized state includes the resting state gate and an extension further into M2.
Collapse
|
44
|
Liu J, Siegelbaum SA. Change of pore helix conformational state upon opening of cyclic nucleotide-gated channels. Neuron 2000; 28:899-909. [PMID: 11163275 DOI: 10.1016/s0896-6273(00)00162-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The structure of the pore region of the alpha subunit of the bovine rod cyclic nucleotide-gated channel was probed using cysteine-scanning mutagenesis and hydrophilic sulfhydryl-reactive methanethiosulfonate (MTS) reagents. A region homologous to the pore helix in the X-ray crystal structure of the KcsA K(+) channel showed a helical pattern of reactivity with externally applied MTS reagents. Surprisingly, three out of four of the reactive residues, all on one face of the pore helix, only reacted with MTS reagents in the closed state. A residue on the opposite face of the helix only reacted with MTS reagents in the open state. These results indicate that the pore helix (or its surroundings) undergoes a change in conformation, perhaps involving a rotation around its long axis, that opens a gate localized to the selectivity filter of the channel.
Collapse
Affiliation(s)
- J Liu
- Center for Neurobiology and Behavior, Department of Pharmacology, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
45
|
Trexler EB, Bukauskas FF, Kronengold J, Bargiello TA, Verselis VK. The first extracellular loop domain is a major determinant of charge selectivity in connexin46 channels. Biophys J 2000; 79:3036-51. [PMID: 11106610 PMCID: PMC1301181 DOI: 10.1016/s0006-3495(00)76539-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Intercellular channels formed of members of the gene family of connexins (Cxs) vary from being substantially cation selective to being anion selective. We took advantage of the ability of Cx46 to function as an unopposed hemichannel to examine the basis of Cx charge selectivity. Previously we showed Cx46 hemichannels to be large pores that predominantly conduct cations and inwardly rectify in symmetric salts, properties suggesting selectivity is influenced by fixed negative charges located toward the extracellular end of the pore. Here we demonstrate that high ionic strength solutions applied to the extracellular, but not the intracellular, side of Cx46 hemichannels substantially reduce the ratio of cation to anion permeability. Substitution of the first extracellular loop (E1) domain of Cx32, an anion-preferring Cx, reduces conductance, converts Cx46 from cation to anion preferring, and changes the I-V relation form inwardly to outwardly rectifying. These data suggest that fixed negative charges influencing selectivity in Cx46 are located in E1 and are substantially reduced and/or are replaced with positive charges from the Cx32 E1 sequence. Extending studies to Cx46 cell-cell channels, we show that they maintain a strong preference for cations, have a conductance nearly that expected by the series addition of hemichannels, but lack rectification in symmetric salts. These properties are consistent with preservation of the fixed charge region in E1 of hemichannels, which upon docking, become symmetrically placed near the center of the cell-cell channel pore. Furthermore, heterotypic cell-cell channels formed by pairing Cx46 with Cx32 or Cx43 rectify in symmetric salts in accordance with the differences in the charges we ascribed to E1. These data are consistent with charged residues in E1 facing the channel lumen and playing an important role in determining Cx channel conductance and selectivity.
Collapse
Affiliation(s)
- E B Trexler
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
46
|
Sansom MS, Weinstein H. Hinges, swivels and switches: the role of prolines in signalling via transmembrane alpha-helices. Trends Pharmacol Sci 2000; 21:445-51. [PMID: 11121576 DOI: 10.1016/s0165-6147(00)01553-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Extracellular signals are transduced across membranes via conformational changes in the transmembrane domains (TMs) of ion channels and G-protein-coupled receptors (GPCRs). Experimental and simulation studies indicate that such conformational switches in transmembrane (alpha-helices can be generated by proline-containing motifs that form molecular hinges. Computational approaches tested on model channel-forming peptides (e.g. alamethicin) reveal functional mechanisms in gap-junction proteins (such as connexin) and voltage-gated K+ channels. Similarly, functionally important roles for proline-based switches in TM6 and TM7 were identified in GPCRs. However, hinges in transmembrane helices are not confined to proline-containing sequence motifs, as evidenced by a non-proline hinge in the M2 helix of the nicotinic acetylcholine receptor. This helix lines the pore and plays a key role in the gating of this channel.
Collapse
Affiliation(s)
- M S Sansom
- Department of Biochemistry, University of Oxford, UK.
| | | |
Collapse
|
47
|
Keramidas A, Moorhouse AJ, French CR, Schofield PR, Barry PH. M2 pore mutations convert the glycine receptor channel from being anion- to cation-selective. Biophys J 2000; 79:247-59. [PMID: 10866951 PMCID: PMC1300929 DOI: 10.1016/s0006-3495(00)76287-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Three mutations in the M2 transmembrane domains of the chloride-conducting alpha1 homomeric glycine receptor (P250Delta, A251E, and T265V), which normally mediate fast inhibitory neurotransmission, produced a cation-selective channel with P(Cl)/P(Na), = 0.27 (wild-type P(Cl)/P(Na) = 25), a permeability sequence P(Cs) > P(K) > P(Na) > P(Li), an impermeability to Ca(2+), and a reduced glycine sensitivity. Outside-out patch measurements indicated reversed and accentuated rectification with extremely low mean single channel conductances of 3 pS (inward current) and 11 pS (outward current). The three inverse mutations, to those analyzed in this study, have previously been shown to make the alpha7 acetylcholine receptor channel anion-selective, indicating a common location for determinants of charge selectivity of inhibitory and excitatory ligand-gated ion channels.
Collapse
Affiliation(s)
- A Keramidas
- School of Physiology and Pharmacology, University of New South Wales, Sydney 2052, Australia
| | | | | | | | | |
Collapse
|