1
|
Cui G, Rahman KS, Infield DT, Kuang C, Prince CZ, McCarty NA. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR. ACTA ACUST UNITED AC 2014; 144:159-79. [PMID: 25024266 PMCID: PMC4113900 DOI: 10.1085/jgp.201311122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Disease-associated mutation of charged amino acids in extracellular loop 1 of CFTR may reduce chloride flow by damaging the outer pore architecture. The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) bears six extracellular loops (ECL1–6); ECL1 is the site of several mutations associated with CF. Mutation R117H has been reported to reduce current amplitude, whereas D110H, E116K, and R117C/L/P may impair channel stability. We hypothesized that these amino acids might not be directly involved in ion conduction and permeation but may contribute to stabilizing the outer vestibule architecture in CFTR. We used cRNA injected oocytes combined with electrophysiological techniques to test this hypothesis. Mutants bearing cysteine at these sites were not functionally modified by extracellular MTS reagents and were blocked by GlyH-101 similarly to WT-CFTR. These results suggest that these three residues do not contribute directly to permeation in CFTR. In contrast, mutants D110R-, E116R-, and R117A-CFTR exhibited instability of the open state and significantly shortened burst duration compared with WT-CFTR and failed to be locked into the open state by AMP-PNP (adenosine 5′-(β,γ-imido) triphosphate); charge-retaining mutants showed mainly the full open state with comparably longer open burst duration. These interactions suggest that these ECL1 residues might be involved in maintaining the outer pore architecture of CFTR. A CFTR homology model suggested that E116 interacts with R104 in both the closed and open states, D110 interacts with K892 in the fully closed state, and R117 interacts with E1126 in the open state. These interactions were confirmed experimentally. The results suggest that D110, E116, and R117 may contribute to stabilizing the architecture of the outer pore of CFTR by interactions with other charged residues.
Collapse
Affiliation(s)
- Guiying Cui
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis and Airways Disease Research, Emory+Children's Pediatric Research Center, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Kazi S Rahman
- Parker H. Petit Institute for Bioengineering and Bioscience and School of Biology, Georgia Institute of Technology, Atlanta, GA 30332 Parker H. Petit Institute for Bioengineering and Bioscience and School of Biology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Daniel T Infield
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis and Airways Disease Research, Emory+Children's Pediatric Research Center, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Christopher Kuang
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis and Airways Disease Research, Emory+Children's Pediatric Research Center, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Chengyu Z Prince
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis and Airways Disease Research, Emory+Children's Pediatric Research Center, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Nael A McCarty
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis and Airways Disease Research, Emory+Children's Pediatric Research Center, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322 Parker H. Petit Institute for Bioengineering and Bioscience and School of Biology, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
2
|
Moran AR, Norimatsu Y, Dawson DC, MacDonald KD. Aqueous cigarette smoke extract induces a voltage-dependent inhibition of CFTR expressed in Xenopus oocytes. Am J Physiol Lung Cell Mol Physiol 2014; 306:L284-91. [PMID: 24318115 PMCID: PMC3920202 DOI: 10.1152/ajplung.00163.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/30/2013] [Indexed: 11/22/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel inhabits the apical membrane of airway epithelia, where its function is essential for mucus hydration, mucociliary clearance, and airway defense. Chronic obstructive pulmonary disease (COPD), most often a consequence of cigarette smoke (CS) exposure, affects 15 million persons in the US. Clinically, COPD is characterized by many of the salient features of cystic fibrosis lung disease, where CFTR is either absent or reduced in function. CS is an acidic aerosol (pH 5.3 to 6.3) reported to contain over 4,000 constituents. Acute CS exposure has been reported to decrease airway transepithelial voltage in vivo and short-circuit current in vitro; however, the mechanistic basis of these effects is uncertain. The goal of the studies described here was to develop a bioassay to characterize the effects of aqueous CS preparations on the channel function of CFTR. We studied aqueous CS extract (CSE) prepared in our laboratory, as well as commercial cigarette smoke condensate (CSC) in Xenopus oocytes expressing human CFTR. Application of CSE at pH 5.3 produced a reversible, voltage-dependent inhibition of CFTR conductance. CSE neutralized to pH 7.3 produced less inhibition of CFTR conductance. Serial dilution of CSE revealed a dose-dependent effect at acidic and neutral pH. In contrast, CSC did not inhibit CFTR conductance in oocytes. We conclude that one or more components of CSE inhibits CFTR in a manner similar to diphenylamine-2-carboxylate, a negatively charged, open-channel blocker.
Collapse
Affiliation(s)
- A R Moran
- Oregon Health & Science Univ., Dept. of Pediatrics, 3181 SW Sam Jackson Park Rd., CDRCP, Portland, OR 97239.
| | | | | | | |
Collapse
|
3
|
Norimatsu Y, Ivetac A, Alexander C, O'Donnell N, Frye L, Sansom MSP, Dawson DC. Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator. Mol Pharmacol 2012; 82:1042-55. [PMID: 22923500 DOI: 10.1124/mol.112.080267] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
High-throughput screening has led to the identification of small-molecule blockers of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, but the structural basis of blocker binding remains to be defined. We developed molecular models of the CFTR channel on the basis of homology to the bacterial transporter Sav1866, which could permit blocker binding to be analyzed in silico. The models accurately predicted the existence of a narrow region in the pore that is a likely candidate for the binding site of an open-channel pore blocker such as N-(2-naphthalenyl)-[(3,5-dibromo-2,4-dihydroxyphenyl)methylene]glycine hydrazide (GlyH-101), which is thought to act by entering the channel from the extracellular side. As a more-stringent test of predictions of the CFTR pore model, we applied induced-fit, virtual, ligand-docking techniques to identify potential binding sites for GlyH-101 within the CFTR pore. The highest-scoring docked position was near two pore-lining residues, Phe337 and Thr338, and the rates of reactions of anionic, thiol-directed reagents with cysteines substituted at these positions were slowed in the presence of the blocker, consistent with the predicted repulsive effect of the net negative charge on GlyH-101. When a bulky phenylalanine that forms part of the predicted binding pocket (Phe342) was replaced with alanine, the apparent affinity of the blocker was increased ∼200-fold. A molecular mechanics-generalized Born/surface area analysis of GlyH-101 binding predicted that substitution of Phe342 with alanine would substantially increase blocker affinity, primarily because of decreased intramolecular strain within the blocker-protein complex. This study suggests that GlyH-101 blocks the CFTR channel by binding within the pore bottleneck.
Collapse
Affiliation(s)
- Yohei Norimatsu
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Norimatsu Y, Ivetac A, Alexander C, Kirkham J, O’Donnell N, Dawson DC, Sansom MS. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore. Biochemistry 2012; 51:2199-212. [PMID: 22352759 PMCID: PMC3316148 DOI: 10.1021/bi201888a] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We developed molecular models for the cystic fibrosis transmembrane conductance regulator chloride channel based on the prokaryotic ABC transporter, Sav1866. Here we analyze predicted pore geometry and side-chain orientations for TM3, TM6, TM9, and TM12, with particular attention being paid to the location of the rate-limiting barrier for anion conduction. Side-chain orientations assayed by cysteine scanning were found to be from 77 to 90% in accord with model predictions. The predicted geometry of the anion conduction path was defined by a space-filling model of the pore and confirmed by visualizing the distribution of water molecules from a molecular dynamics simulation. The pore shape is that of an asymmetric hourglass, comprising a shallow outward-facing vestibule that tapers rapidly toward a narrow "bottleneck" linking the outer vestibule to a large inner cavity extending toward the cytoplasmic extent of the lipid bilayer. The junction between the outer vestibule and the bottleneck features an outward-facing rim marked by T338 in TM6 and I1131 in TM12, consistent with the observation that cysteines at both of these locations reacted with both channel-permeant and channel-impermeant, thiol-directed reagents. Conversely, cysteines substituted for S341 in TM6 or T1134 in TM12, predicted by the model to lie below the rim of the bottleneck, were found to react exclusively with channel-permeant reagents applied from the extracellular side. The predicted dimensions of the bottleneck are consistent with the demonstrated permeation of Cl(-), pseudohalide anions, water, and urea.
Collapse
Affiliation(s)
- Yohei Norimatsu
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - Anthony Ivetac
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Christopher Alexander
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - John Kirkham
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - Nicolette O’Donnell
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - David C. Dawson
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| |
Collapse
|
5
|
Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, Sansom M, Dawson DC. Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Biochemistry 2009; 48:10078-88. [PMID: 19754156 PMCID: PMC2765204 DOI: 10.1021/bi901314c] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The sixth transmembrane segment (TM6) of the CFTR chloride channel has been intensively investigated. The effects of amino acid substitutions and chemical modification of engineered cysteines (cysteine scanning) on channel properties strongly suggest that TM6 is a key component of the anion-conducting pore, but previous cysteine-scanning studies of TM6 have produced conflicting results. Our aim was to resolve these conflicts by combining a screening strategy based on multiple, thiol-directed probes with molecular modeling of the pore. CFTR constructs were screened for reactivity toward both channel-permeant and channel-impermeant thiol-directed reagents, and patterns of reactivity in TM6 were mapped onto two new, molecular models of the CFTR pore: one based on homology modeling using Sav1866 as the template and a second derived from the first by molecular dynamics simulation. Comparison of the pattern of cysteine reactivity with model predictions suggests that nonreactive sites are those where the TM6 side chains are occluded by other TMs. Reactive sites, in contrast, are generally situated such that the respective amino acid side chains either project into the predicted pore or lie within a predicted extracellular loop. Sites where engineered cysteines react with both channel-permeant and channel-impermeant probes occupy the outermost extent of TM6 or the predicted TM5-6 loop. Sites where cysteine reactivity is limited to channel-permeant probes occupy more cytoplasmic locations. The results provide an initial validation of two, new molecular models for CFTR and suggest that molecular dynamics simulation will be a useful tool for unraveling the structural basis of anion conduction by CFTR.
Collapse
Affiliation(s)
- Christopher Alexander
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lewarchik CM, Peters KW, Qi J, Frizzell RA. Regulation of CFTR trafficking by its R domain. J Biol Chem 2008; 283:28401-12. [PMID: 18694937 DOI: 10.1074/jbc.m800516200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of the R domain is required for cystic fibrosis transmembrane conductance regulator (CFTR) channel gating, and cAMP/protein kinase A (PKA) simulation can also elicit insertion of CFTR into the plasma membrane from intracellular compartments (Bertrand, C. A., and Frizzell, R. A. (2003) Am. J. Physiol. 285, C1-C18). We evaluated the structural basis of regulated CFTR trafficking by determining agonist-evoked increases in plasma membrane capacitance (Cm) of Xenopus oocytes expressing CFTR deletion mutants. Expression of CFTR as a split construct that omitted the R domain (Deltaamino acids 635-834) produced a channel with elevated basal current (Im) and no DeltaIm or trafficking response (DeltaCm) upon cAMP/PKA stimulation, indicating that the structure(s) required for regulated CFTR trafficking are contained within the R domain. Additional deletions showed that removal of amino acids 817-838, a 22-amino acid conserved helical region having a net charge of -9, termed NEG2 (Xie, J., Adams, L. M., Zhao, J., Gerken, T. A., Davis, P. B., and Ma, J. (2002) J. Biol. Chem. 277, 23019-23027), produced a channel with regulated gating that lacked the agonist-induced increase in CFTR trafficking. Injection of NEG2 peptides into oocytes expressing split DeltaNEG2 CFTR prior to stimulation restored the agonist-evoked DeltaCm, consistent with the concept that this sequence mediates the regulated trafficking event. In support of this idea, DeltaNEG2 CFTR escaped from the inhibition of wild type CFTR trafficking produced by overexpression of syntaxin 1A. These observations suggest that the NEG2 region at the C terminus of the R domain allows stabilization of CFTR in a regulated intracellular compartment from which it traffics to the plasma membrane in response to cAMP/PKA stimulation.
Collapse
Affiliation(s)
- Christopher M Lewarchik
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
7
|
Beck EJ, Yang Y, Yaemsiri S, Raghuram V. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating. J Biol Chem 2007; 283:4957-66. [PMID: 18056267 DOI: 10.1074/jbc.m702235200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), the protein dysfunctional in cystic fibrosis, is unique among ATP-binding cassette transporters in that it functions as an ion channel. In CFTR, ATP binding opens the channel, and its subsequent hydrolysis causes channel closure. We studied the conformational changes in the pore-lining sixth transmembrane segment upon ATP binding by measuring state-dependent changes in accessibility of substituted cysteines to methanethiosulfonate reagents. Modification rates of three residues (resides 331, 333, and 335) near the extracellular side were 10-1000-fold slower in the open state than in the closed state. Introduction of a charged residue by chemical modification at two of these positions (resides 331 and 333) affected CFTR single-channel gating. In contrast, modifications of pore-lining residues 334 and 338 were not state-dependent. Our results suggest that ATP binding induces a modest conformational change in the sixth transmembrane segment, and this conformational change is coupled to the gating mechanism that regulates ion conduction. These results may establish a structural basis of gating involving the dynamic rearrangement of transmembrane domains necessary for vectorial transport of substrates in ATP-binding cassette transporters.
Collapse
Affiliation(s)
- Edward J Beck
- Laboratory of Kidney and Electrolyte Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
8
|
Yang CL, Liu X, Paliege A, Zhu X, Bachmann S, Dawson DC, Ellison DH. WNK1 and WNK4 modulate CFTR activity. Biochem Biophys Res Commun 2006; 353:535-40. [PMID: 17194447 DOI: 10.1016/j.bbrc.2006.11.151] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 11/26/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated chloride channel. WNK kinases are widely expressed modulators of ion transport. WNK1 and WNK4, two WNK kinases that are mutated in familial hyperkalemic hypertension (FHHt), are co-expressed with CFTR in several organs, raising the possibility that WNK kinases might alter CFTR activity in vivo or that CFTR could be involved in the pathogenesis of FHHt. Here, we report that WNK1 co-localizes with CFTR protein in pulmonary epithelial cells. Co-expression of WNK1 or WNK4 with CFTR in Xenopus laevis oocytes suppresses chloride channel activity. The effect of WNK4 is dose dependent and occurs, at least in part, by reducing CFTR protein abundance at the plasma membrane. This effect is independent of WNK4 kinase activity. In contrast, the effect of WNK1 on CFTR activity requires intact WNK1 kinase activity. Moreover WNK1 and WNK4 exhibit additive CFTR inhibition. Previous reports suggest that patients with FHHt exhibit mild changes in nasal potential difference that resemble the more severe changes that occur in cystic fibrosis. We report that the FHHt-causing mutant WNK4 Q562E is a more potent inhibitor of CFTR activity than is the wild-type WNK4. Taken together, these results suggest that WNK1 and WNK4 may modulate CFTR activity; they further suggest that WNK kinases may be potential therapeutic targets for cystic fibrosis.
Collapse
Affiliation(s)
- Chao-Ling Yang
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu X, Alexander C, Serrano J, Borg E, Dawson DC. Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol. J Biol Chem 2006; 281:8275-85. [PMID: 16436375 DOI: 10.1074/jbc.m512458200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous study of T338C CFTR (cystic fibrosis transmembrane conductance regulator) we found that protons and thiol-directed reagents modified channel properties in a manner consistent with the hypothesis that this residue lies within the conduction path, but the observed reactivity was not consistent with the presence of a single thiolate species in the pore. Here we report results consistent with the notion that the thiol moiety can exist in at least three chemical states, the simple thiol, and two altered states. One of the altered states displays reactivity toward thiols like dithiothreitol and 2-mercaptoethanol as well as reagents: mixed disulfides (methanethiosulfonate reagents: MTSET+, MTSES-) and an alkylating agent (iodoacetamide). The other altered state is unreactive. The phenotype associated with the reactive, altered state could be replicated by exposing oocytes expressing T338C CFTR to CuCl2, but not by glutathionylation or nitrosylation of the thiol or by oxidation with hydrogen peroxide. The results are consistent with the hypothesis that substituting a cysteine at 338 can create an adventitious metal binding site. Metal liganding alters thiol reactivity and may, in some cases, catalyze oxidation of the thiol to an unreactive form such as a sulfinic or sulfonic acid.
Collapse
Affiliation(s)
- Xuehong Liu
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
10
|
Liu X, Zhang ZR, Fuller MD, Billingsley J, McCarty NA, Dawson DC. CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore. Biophys J 2004; 87:3826-41. [PMID: 15361410 PMCID: PMC1304894 DOI: 10.1529/biophysj.104.050534] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 09/03/2004] [Indexed: 11/18/2022] Open
Abstract
We investigated the accessibility to protons and thiol-directed reagents of a cysteine substituted at position 338 in transmembrane segment 6 (TM6) of CFTR to test the hypothesis that T338 resides in the pore. Xenopus oocytes expressing T338C CFTR exhibited pH-dependent changes in gCl and I-V shape that were specific to the substituted cysteine. The apparent pKa of T338C CFTR was more acidic than that expected for a cysteine or similar simple thiols in aqueous solution. The pKa was shifted toward alkaline values when a nearby positive charge (R334) was substituted with neutral or negatively charged residues, consistent with the predicted influence of the positive charge of R334, and perhaps other residues, on the titration of a cysteine at 338. The relative rates of chemical modification of T338C CFTR by MTSET+ and MTSES- were also altered by the charge at 334. These observations support a model for CFTR that places T338 within the anion conduction path. The apparent pKa of a cysteine substituted at 338 and the relative rates of reaction of charged thiol-directed reagents provide a crude measure of a positive electrostatic potential that may be due to R334 and other residues near this position in the pore.
Collapse
Affiliation(s)
- Xuehong Liu
- Department of Physiology/Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
11
|
Chen Y, Altenberg GA, Reuss L. Mechanism of activation ofXenopusCFTR by stimulation of PKC. Am J Physiol Cell Physiol 2004; 287:C1256-63. [PMID: 15229107 DOI: 10.1152/ajpcell.00229.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PKA-mediated phosphorylation of the regulatory (R) domain plays a major role in the activation of the human cystic fibrosis transmembrane conductance regulator (hCFTR). In contrast, the effect of PKC-mediated phosphorylation is controversial, smaller than that of PKA, and dependent on the cell type. In the present study, we expressed Xenopus CFTR ( XCFTR) and hCFTR in Xenopus oocytes and examined their responses (i.e., macroscopic membrane conductance) to maximal stimulation by PKC and PKA agonists. With XCFTR, the average response to PKC was approximately sixfold that of PKA stimulation. In contrast, with hCFTR, the response to PKC was ∼90% of the response to PKA stimulation. The reason for these differences was the small response of XCFTR to PKA stimulation. Using the substituted cysteine accessibility method, we found no evidence for insertion of functional CFTR channels in the plasma membrane in response to PKC stimulation. The increase in macroscopic conductance in response to PKC stimulation of XCFTR was due to an approximately fivefold increase in single-channel open probability, with a minor (∼30%) increase in single-channel conductance. The responses of XCFTR to PKC stimulation and of hCFTR to PKA stimulation were mediated by similar increases in Po. In both instances, there were no changes in the number of channels in the membrane. We speculate that in animals other than humans, PKC stimulation may be the dominant mechanism for activation of CFTR.
Collapse
Affiliation(s)
- Yongyue Chen
- Sealy Center for Structural Biology and Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-0437, USA
| | | | | |
Collapse
|
12
|
Zhang ZR, Cui G, Liu X, Song B, Dawson DC, McCarty NA. Determination of the functional unit of the cystic fibrosis transmembrane conductance regulator chloride channel. One polypeptide forms one pore. J Biol Chem 2004; 280:458-68. [PMID: 15504728 DOI: 10.1074/jbc.m409626200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The magnitudes and distributions of subconductance states were studied in chloride channels formed by the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) and in CFTRs bearing amino acid substitutions in transmembrane segment 6. Within an open burst, it was possible to distinguish three distinct conductance states referred to as the full conductance, subconductance 1, and subconductance 2 states. Amino acid substitutions in transmembrane segment 6 altered the duration and probability of occurrence of these subconductance states but did not greatly alter their relative amplitudes. Results from real time measurements indicated that covalent modification of single R334C-CFTR channels by [2-(trimethylammonium)ethyl]methanethiosulfonate resulted in the simultaneous modification of all three conductance levels in what appeared to be a single step, without changing the proportion of time spent in each state. This behavior suggests that at least a portion of the conduction path is common to all three conducting states. The time course for the modification of R334C-CFTR, measured in outside-out macropatches using a rapid perfusion system, was also consistent with a single modification step as if each pore contained only a single copy of the cysteine at position 334. These results are consistent with a model for the CFTR conduction pathway in which a single anion-conducting pore is formed by a single CFTR polypeptide.
Collapse
Affiliation(s)
- Zhi-Ren Zhang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | | | | | | | | | |
Collapse
|
13
|
Chen Y, Button B, Altenberg GA, Reuss L. Potentiation of effect of PKA stimulation of Xenopus CFTR by activation of PKC: role of NBD2. Am J Physiol Cell Physiol 2004; 287:C1436-44. [PMID: 15282191 DOI: 10.1152/ajpcell.00045.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activity of the human (h) cystic fibrosis transmembrane conductance regulator (CFTR) channel is predominantly regulated by PKA-mediated phosphorylation. In contrast, Xenopus (X)CFTR is more responsive to PKC than PKA stimulation. We investigated the interaction between the two kinases in XCFTR. We expressed XCFTR in Xenopus oocytes and maximally stimulated it with PKA agonists. The magnitude of activation after PKC stimulation was about eightfold that without pretreatment with PKC agonist. hCFTR, expressed in the same system, lacked this response. We name this phenomenon XCFTR-specific PKC potentiation effect. To ascertain its biophysical mechanism, we first tested for XCFTR channel insertion into the plasma membrane by a substituted-cysteine-accessibility method. No insertion was detected during kinase stimulation. Next, we studied single-channel properties and found that the single-channel open probability (Po) with PKA stimulation subsequent to PKC stimulation was 2.8-fold that observed in the absence of PKC preactivation and that single-channel conductance (gamma) was increased by approximately 22%. To ascertain which XCFTR regions are responsible for the potentiation, we constructed several XCFTR-hCFTR chimeras, expressed them in Xenopus oocytes, and tested them electrophysiologically. Two chimeras [hCFTR NH2-terminal region or regulatory (R) domain in XCFTR] showed a significant decrease in potentiation. In the chimera in which XCFTR nucleotide-binding domain (NBD)2 was replaced with the hCFTR sequence there was no potentiation whatsoever. The converse chimera (hCFTR with Xenopus NBD2) did not exhibit potentiation. These results indicate that potentiation by PKC involves a large increase in Po (with a small change in gamma) without CFTR channel insertion into the plasma membrane, that XCFTR NBD2 is necessary but not sufficient for the effect, and that the potentiation effect is likely to involve other CFTR domains.
Collapse
Affiliation(s)
- Yongyue Chen
- Sealy Center for Structural Biology and Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-0437, USA
| | | | | | | |
Collapse
|
14
|
Abstract
The focus of this review is the regulated trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) in distal compartments of the protein secretory pathway and the question of how changes in CFTR cellular distribution may impact on the functions of polarized epithelial cells. We summarize data concerning the cellular localization and activity of CFTR and attempt to synthesize often conflicting results from functional studies of regulated endocytosis and exocytosis in CFTR-expressing cells. In some instances, findings that are inconsistent with regulated CFTR trafficking may result from the use of overexpression systems or nonphysiological experimental conditions. Nevertheless, judging from data on other transporters, an appropriate cellular context is necessary to support regulated CFTR trafficking, even in epithelial cells. The discovery that disease mutations can influence CFTR trafficking in distal secretory and recycling compartments provides support for the concept that regulated CFTR recycling contributes to normal epithelial function, including the control of apical CFTR channel density and epithelial protein secretion. Finally, we propose molecular mechanisms for regulated CFTR endocytosis and exocytosis that are based on CFTR interactions with other proteins, particularly those whose primary function is membrane trafficking. These models provide testable hypotheses that may lead to elucidation of CFTR trafficking mechanisms and permit their experimental manipulation in polarized epithelial cells.
Collapse
Affiliation(s)
- Carol A Bertrand
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, S362 BST, 3500 Terrace St, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
15
|
Cormet-Boyaka E, Di A, Chang SY, Naren AP, Tousson A, Nelson DJ, Kirk KL. CFTR chloride channels are regulated by a SNAP-23/syntaxin 1A complex. Proc Natl Acad Sci U S A 2002; 99:12477-82. [PMID: 12209004 PMCID: PMC129470 DOI: 10.1073/pnas.192203899] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion reactions in eukaryotic cells by assembling into complexes that link vesicle-associated SNAREs with SNAREs on target membranes (t-SNAREs). Many SNARE complexes contain two t-SNAREs that form a heterodimer, a putative intermediate in SNARE assembly. Individual t-SNAREs (e.g., syntaxin 1A) also regulate synaptic calcium channels and cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial chloride channel that is defective in cystic fibrosis. Whether the regulation of ion channels by individual t-SNAREs is related to SNARE complex assembly and membrane fusion is unknown. Here we show that CFTR channels are coordinately regulated by two cognate t-SNAREs, SNAP-23 (synaptosome-associated protein of 23 kDa) and syntaxin 1A. SNAP-23 physically associates with CFTR by binding to its amino-terminal tail, a region that modulates channel gating. CFTR-mediated chloride currents are inhibited by introducing excess SNAP-23 into HT29-Cl.19A epithelial cells. Conversely, CFTR activity is stimulated by a SNAP-23 antibody that blocks the binding of this t-SNARE to the CFTR amino-terminal tail. The physical and functional interactions between SNAP-23 and CFTR depend on syntaxin 1A, which binds to both proteins. We conclude that CFTR channels are regulated by a t-SNARE complex that may tune CFTR activity to rates of membrane traffic in epithelial cells.
Collapse
Affiliation(s)
- Estelle Cormet-Boyaka
- Department of Physiology and Biophysics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Smith SS, Liu X, Zhang ZR, Sun F, Kriewall TE, McCarty NA, Dawson DC. CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction. J Gen Physiol 2001; 118:407-31. [PMID: 11585852 PMCID: PMC2233702 DOI: 10.1085/jgp.118.4.407] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The goal of the experiments described here was to explore the possible role of fixed charges in determining the conduction properties of CFTR. We focused on transmembrane segment 6 (TM6) which contains four basic residues (R334, K335, R347, and R352) that would be predicted, on the basis of their positions in the primary structure, to span TM6 from near the extracellular (R334, K335) to near the intracellular (R347, R352) end. Cysteines substituted at positions 334 and 335 were readily accessible to thiol reagents, whereas those at positions 347 and 352 were either not accessible or lacked significant functional consequences when modified. The charge at positions 334 and 335 was an important determinant of CFTR channel function. Charge changes at position 334--brought about by covalent modification of engineered cysteine residues, pH titration of cysteine and histidine residues, and amino acid substitution--produced similar effects on macroscopic conductance and the shape of the I-V plot. The effect of charge changes at position 334 on conduction properties could be described by electrodiffusion or rate-theory models in which the charge on this residue lies in an external vestibule of the pore where it functions to increase the concentration of Cl adjacent to the rate-limiting portion of the conduction path. Covalent modification of R334C CFTR increased single-channel conductance determined in detached patches, but did not alter open probability. The results are consistent with the hypothesis that in wild-type CFTR, R334 occupies a position where its charge can influence the distribution of anions near the mouth of the pore.
Collapse
Affiliation(s)
- Stephen S. Smith
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, OR 97201
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Xuehong Liu
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, OR 97201
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Zhi-Ren Zhang
- Department of Physiology, Emory University, Atlanta, GA 30322
- Center for Cell and Molecular Signaling, Emory University, Atlanta, GA 30322
| | - Fang Sun
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109
| | | | - Nael A. McCarty
- Department of Physiology, Emory University, Atlanta, GA 30322
- Center for Cell and Molecular Signaling, Emory University, Atlanta, GA 30322
| | - David C. Dawson
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, OR 97201
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
17
|
Chen P, Hwang TC, Gillis KD. The relationship between cAMP, Ca(2)+, and transport of CFTR to the plasma membrane. J Gen Physiol 2001; 118:135-44. [PMID: 11479341 PMCID: PMC2233831 DOI: 10.1085/jgp.118.2.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism whereby cAMP stimulates Cl(-) flux through CFTR ion channels in secretory epithelia remains controversial. It is generally accepted that phosphorylation by cAMP-dependent protein kinase increases the open probability of the CFTR channel. A more controversial hypothesis is that cAMP triggers the translocation of CFTR from an intracellular pool to the cell surface. We have monitored membrane turnover in Calu-3 cells, a cell line derived from human airway submucosal glands that expresses high levels of CFTR using membrane capacitance and FM1-43 fluorescence measurements. Using a conventional capacitance measurement technique, we observe an apparent increase in membrane capacitance in most cells that exhibit an increase in Cl(-) current. However, after we carefully correct our recordings for changes in membrane conductance, the apparent changes in capacitance are eliminated. Measurements using the fluorescent membrane marker FM1-43 also indicate that no changes in membrane turnover accompany the activation of CFTR. Robust membrane insertion can be triggered with photorelease of caged Ca(2)+ in Calu-3 cells. However, no increase in Cl(-) current accompanies Ca(2)+-evoked membrane fusion. We conclude that neither increases in cAMP or Ca(2)+ lead to transport of CFTR to the plasma membrane in Calu-3 cells. In addition, we conclude that membrane capacitance measurements must be interpreted with caution when large changes in membrane conductance occur.
Collapse
Affiliation(s)
- Peng Chen
- Department of Electrical Engineering, University of Missouri-Columbia, Columbia, MO 65211
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211
| | - Tzyh-Chang Hwang
- Department of Physiology, University of Missouri-Columbia, Columbia, MO 65211
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211
| | - Kevin D. Gillis
- Department of Electrical Engineering, University of Missouri-Columbia, Columbia, MO 65211
- Department of Physiology, University of Missouri-Columbia, Columbia, MO 65211
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211
| |
Collapse
|