1
|
Gou T, Matulis CA, Clark DA. Adaptation to visual sparsity enhances responses to isolated stimuli. Curr Biol 2024; 34:5697-5713.e8. [PMID: 39577424 PMCID: PMC11834764 DOI: 10.1016/j.cub.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
Sensory systems adapt their response properties to the statistics of their inputs. For instance, visual systems adapt to low-order statistics like mean and variance to encode stimuli efficiently or to facilitate specific downstream computations. However, it remains unclear how other statistical features affect sensory adaptation. Here, we explore how Drosophila's visual motion circuits adapt to stimulus sparsity, a measure of the signal's intermittency not captured by low-order statistics alone. Early visual neurons in both ON and OFF pathways alter their responses dramatically with stimulus sparsity, responding positively to both light and dark sparse stimuli but linearly to dense stimuli. These changes extend to downstream ON and OFF direction-selective neurons, which are activated by sparse stimuli of both polarities but respond with opposite signs to light and dark regions of dense stimuli. Thus, sparse stimuli activate both ON and OFF pathways, recruiting a larger fraction of the circuit and potentially enhancing the salience of isolated stimuli. Overall, our results reveal visual response properties that increase the fraction of the circuit responding to sparse, isolated stimuli.
Collapse
Affiliation(s)
- Tong Gou
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Damon A Clark
- Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
Verma DK, Malhotra H, Woellert T, Calvert PD. Hydrophobic interaction between the TM1 and H8 is essential for rhodopsin trafficking to vertebrate photoreceptor outer segments. J Biol Chem 2023; 299:105412. [PMID: 37918805 PMCID: PMC10687059 DOI: 10.1016/j.jbc.2023.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
A major unsolved question in vertebrate photoreceptor biology is the mechanism of rhodopsin transport to the outer segment. In rhodopsin-like class A G protein-coupled receptors, hydrophobic interactions between C-terminal α-helix 8 (H8), and transmembrane α-helix-1 (TM1) have been shown to be important for transport to the plasma membrane, however whether this interaction is important for rhodopsin transport to ciliary rod outer segments is not known. We examined the crystal structures of vertebrate rhodopsins and class A G protein-coupled receptors and found a conserved network of predicted hydrophobic interactions. In Xenopus rhodopsin (xRho), this interaction corresponds to F313, L317, and L321 in H8 and M57, V61, and L68 in TM1. To evaluate the role of H8-TM1 hydrophobic interactions in rhodopsin transport, we expressed xRho-EGFP where hydrophobic residues were mutated in Xenopus rods and evaluated the efficiency of outer segment enrichment. We found that substituting L317 and M57 with hydrophilic residues had the strongest impact on xRho mislocalization. Substituting hydrophilic amino acids at positions L68, F313, and L321 also had a significant impact. Replacing L317 with M resulted in significant mislocalization, indicating that the hydrophobic interaction between residues 317 and 57 is exquisitely sensitive. The corresponding experiment in bovine rhodopsin expressed in HEK293 cells had a similar effect, showing that the H8-TM1 hydrophobic network is essential for rhodopsin transport in mammalian species. Thus, for the first time, we show that a hydrophobic interaction between H8 and TM1 is critical for efficient rhodopsin transport to the vertebrate photoreceptor ciliary outer segment.
Collapse
Affiliation(s)
- Dipesh Kumar Verma
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Himanshu Malhotra
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Torsten Woellert
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Peter D Calvert
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
3
|
Ketkar MD, Shao S, Gjorgjieva J, Silies M. Multifaceted luminance gain control beyond photoreceptors in Drosophila. Curr Biol 2023:S0960-9822(23)00619-X. [PMID: 37285845 DOI: 10.1016/j.cub.2023.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023]
Abstract
Animals navigating in natural environments must handle vast changes in their sensory input. Visual systems, for example, handle changes in luminance at many timescales, from slow changes across the day to rapid changes during active behavior. To maintain luminance-invariant perception, visual systems must adapt their sensitivity to changing luminance at different timescales. We demonstrate that luminance gain control in photoreceptors alone is insufficient to explain luminance invariance at both fast and slow timescales and reveal the algorithms that adjust gain past photoreceptors in the fly eye. We combined imaging and behavioral experiments with computational modeling to show that downstream of photoreceptors, circuitry taking input from the single luminance-sensitive neuron type L3 implements gain control at fast and slow timescales. This computation is bidirectional in that it prevents the underestimation of contrasts in low luminance and overestimation in high luminance. An algorithmic model disentangles these multifaceted contributions and shows that the bidirectional gain control occurs at both timescales. The model implements a nonlinear interaction of luminance and contrast to achieve gain correction at fast timescales and a dark-sensitive channel to improve the detection of dim stimuli at slow timescales. Together, our work demonstrates how a single neuronal channel performs diverse computations to implement gain control at multiple timescales that are together important for navigation in natural environments.
Collapse
Affiliation(s)
- Madhura D Ketkar
- Institute of Developmental and Neurobiology, Johannes-Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Shuai Shao
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; Department of Neurophysiology, Radboud University, Heyendaalseweg 135, 6525 EN Nijmegen, the Netherlands
| | - Julijana Gjorgjieva
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany.
| | - Marion Silies
- Institute of Developmental and Neurobiology, Johannes-Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany.
| |
Collapse
|
4
|
Caruso G, Klaus C, Hamm HE, Gurevich VV, Bisegna P, Andreucci D, DiBenedetto E, Makino CL. Pepperberg plot: Modeling flash response saturation in retinal rods of mouse. Front Mol Neurosci 2023; 15:1054449. [PMID: 36710929 PMCID: PMC9880052 DOI: 10.3389/fnmol.2022.1054449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2023] Open
Abstract
Retinal rods evolved to be able to detect single photons. Despite their exquisite sensitivity, rods operate over many log units of light intensity. Several processes inside photoreceptor cells make this incredible light adaptation possible. Here, we added to our previously developed, fully space resolved biophysical model of rod phototransduction, some of the mechanisms that play significant roles in shaping the rod response under high illumination levels: the function of RGS9 in shutting off G protein transducin, and calcium dependences of the phosphorylation rates of activated rhodopsin, of the binding of cGMP to the light-regulated ion channel, and of two membrane guanylate cyclase activities. A well stirred version of this model captured the responses to bright, saturating flashes in WT and mutant mouse rods and was used to explain "Pepperberg plots," that graph the time during which the response is saturated against the natural logarithm of flash strength for bright flashes. At the lower end of the range, saturation time increases linearly with the natural logarithm of flash strength. The slope of the relation (τD) is dictated by the time constant of the rate-limiting (slowest) step in the shutoff of the phototransduction cascade, which is the hydrolysis of GTP by transducin. We characterized mathematically the X-intercept ( Φ o ) which is the number of photoisomerizations that just saturates the rod response. It has been observed that for flash strengths exceeding a few thousand photoisomerizations, the curves depart from linearity. Modeling showed that the "upward bend" for very bright flash intensities could be explained by the dynamics of RGS9 complex and further predicted that there would be a plateau at flash strengths giving rise to more than ~107 photoisomerizations due to activation of all available PDE. The model accurately described alterations in saturation behavior of mutant murine rods resulting from transgenic perturbations of the cascade targeting membrane guanylate cyclase activity, and expression levels of GRK, RGS9, and PDE. Experimental results from rods expressing a mutant light-regulated channel purported to lack calmodulin regulation deviated from model predictions, suggesting that there were other factors at play.
Collapse
Affiliation(s)
- Giovanni Caruso
- Italian National Research Council, Istituto di Scienze del Patrimonio Culturale, Rome, Italy
| | - Colin Klaus
- The College of Public Health Division of Biostatistics and The Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Andreucci
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | | | - Clint L. Makino
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States,*Correspondence: Clint L. Makino,
| |
Collapse
|
5
|
Nikolaeva DA, Nekrasova MA, Rotov AY, Astakhova LA. Adaptation memory in photoreceptors: different mechanisms in rods and cones. Front Mol Neurosci 2023; 16:1135088. [PMID: 37168678 PMCID: PMC10165083 DOI: 10.3389/fnmol.2023.1135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Vertebrate rods and cones operate over a wide range of ambient illumination, which is provided by light adaptation mechanisms regulating the sensitivity and speed of the phototransduction cascade. Three calcium-sensitive feedback loops are well established in both rods and cones: acceleration of the quenching of a light-activated visual pigment and cGMP synthesis by guanylate cyclase, and increased affinity of ion channels for cGMP. Accumulating evidence suggests that the molecular mechanisms of light adaptation are more complex. While investigating these putative mechanisms, we discovered a novel phenomenon, observing that the recovery of light sensitivity in rods after turning off non-saturating adaptive light can take tens of seconds. Moreover, after a formal return of the membrane current to the dark level, cell sensitivity to the stimuli remains decreased for a further 1-2 min. We termed this phenomenon of prolonged photoreceptor desensitization 'adaptation memory' (of previous illumination) and the current study is focused on its detailed investigation in rods and an attempt to find the same phenomenon in cones. In rods, we have explored the dependencies of this phenomenon on adapting conditions, specifically, the intensity and duration of adapting illumination. Additionally, we report that fish and frog red-sensitive cones possess similar features of adaptation memory, such as a drop in sensitivity just after the steps of bright light and slow sensitivity recovery. However, we have found that the rate of this process and its nature are not the same as in rods. Our results indicate that the nature of the temporary drop in the sensitivity in rods and cones after adapting steps of light is different. In the rods, adaptation memory could be attributed to the existence of long-lasting modifications of the components of the phototransduction cascade after adapting illumination. In cones, the observed form of the adaptation memory seems to be due to the sensitivity drop caused by a decrease in the availability of the visual pigment, that is, by bleaching.
Collapse
Affiliation(s)
- Darya A. Nikolaeva
- Laboratory of Evolution of the Sense Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | - Maria A. Nekrasova
- Laboratory of Evolution of the Sense Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | - Alexander Yu. Rotov
- Laboratory of Evolution of the Sense Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
- Laboratory of Toxinology and Molecular Systematics, L.A. Orbeli Institute of Physiology NAS RA, Yerevan, Armenia
| | - Luba A. Astakhova
- Laboratory of Evolution of the Sense Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
- *Correspondence: Luba A. Astakhova,
| |
Collapse
|
6
|
Kawamura S, Tachibanaki S. Molecular basis of rod and cone differences. Prog Retin Eye Res 2021; 90:101040. [PMID: 34974196 DOI: 10.1016/j.preteyeres.2021.101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In the vertebrate retina, rods and cones both detect light, but they are different in functional aspects such as light sensitivity and time resolution, for example, and in some of cell biological aspects. For functional aspects, both photoreceptors are known to share a common mechanism, phototransduction cascade, consisting of a series of enzyme reactions to convert a photon-capture signal to an electrical signal. To understand the mechanisms of the functional differences between rods and cones at the molecular level, we compared biochemically each of the reactions in the phototransduction cascade between rods and cones using the cells isolated and purified from carp retina. Although proteins in the cascade are functionally similar between rods and cones, their activities together with their expression levels are mostly different between these photoreceptors. In general, reactions to generate a response are slightly less effective, as a total, in cones than in rods, but each of the reactions for termination and recovery of a response are much more effective in cones. These findings explain lower light sensitivity and briefer light responses in cones than in rods. In addition, our considerations suggest that a Ca2+-binding protein, S-modulin or recoverin, has a currently unnoticed role in shaping light responses. With comparison of the expression levels of proteins and/or mRNAs using purified cells, several proteins were found to be specifically or predominantly expressed in cones. These proteins would be of interest for future studies on the difference between rods and cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Photoreceptor Phosphodiesterase (PDE6): Structure, Regulatory Mechanisms, and Implications for Treatment of Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:33-59. [PMID: 34170501 DOI: 10.1007/5584_2021_649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
Abstract
The photoreceptor phosphodiesterase (PDE6) is a member of large family of Class I phosphodiesterases responsible for hydrolyzing the second messengers cAMP and cGMP. PDE6 consists of two catalytic subunits and two inhibitory subunits that form a tetrameric protein. PDE6 is a peripheral membrane protein that is localized to the signal-transducing compartment of rod and cone photoreceptors. As the central effector enzyme of the G-protein coupled visual transduction pathway, activation of PDE6 catalysis causes a rapid decrease in cGMP levels that results in closure of cGMP-gated ion channels in the photoreceptor plasma membrane. Because of its importance in the phototransduction pathway, mutations in PDE6 genes result in various retinal diseases that currently lack therapeutic treatment strategies due to inadequate knowledge of the structure, function, and regulation of this enzyme. This review focuses on recent progress in understanding the structure of the regulatory and catalytic domains of the PDE6 holoenzyme, the central role of the multi-functional inhibitory γ-subunit, the mechanism of activation by the heterotrimeric G protein, transducin, and future directions for pharmacological interventions to treat retinal degenerative diseases arising from mutations in the PDE6 genes.
Collapse
|
8
|
Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones. Pflugers Arch 2021; 473:1377-1391. [PMID: 33860373 DOI: 10.1007/s00424-021-02562-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/16/2023]
Abstract
Rod and cone photoreceptors of the vertebrate retina utilize cGMP as the primary intracellular messenger for the visual signaling pathway that converts a light stimulus into an electrical response. cGMP metabolism in the signal-transducing photoreceptor outer segment reflects the balance of cGMP synthesis (catalyzed by guanylyl cyclase) and degradation (catalyzed by the photoreceptor phosphodiesterase, PDE6). Upon light stimulation, rapid activation of PDE6 by the heterotrimeric G-protein (transducin) triggers a dramatic drop in cGMP levels that lead to cell hyperpolarization. Following cessation of the light stimulus, the lifetime of activated PDE6 is also precisely regulated by additional processes. This review summarizes recent advances in the structural characterization of the rod and cone PDE6 catalytic and regulatory subunits in the context of previous biochemical studies of the enzymological properties and allosteric regulation of PDE6. Emphasis is given to recent advances in understanding the structural and conformational changes underlying the mechanism by which the activated transducin α-subunit binds to-and relieves inhibition of-PDE6 catalysis that is controlled by its intrinsically disordered, inhibitory γ-subunit. The role of the regulator of G-protein signaling 9-1 (RGS9-1) in regulating the lifetime of the transducin-PDE6 is also briefly covered. The therapeutic potential of pharmacological compounds acting as inhibitors or activators targeting PDE6 is discussed in the context of inherited retinal diseases resulting from mutations in rod and cone PDE6 genes as well as other inherited defects that arise from excessive cGMP accumulation in retinal photoreceptor cells.
Collapse
|
9
|
Kim TH, Wang B, Lu Y, Son T, Yao X. Functional optical coherence tomography enables in vivo optoretinography of photoreceptor dysfunction due to retinal degeneration. BIOMEDICAL OPTICS EXPRESS 2020; 11:5306-5320. [PMID: 33014616 PMCID: PMC7510876 DOI: 10.1364/boe.399334] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/04/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 05/16/2023]
Abstract
Stimulus-evoked intrinsic optical signal (IOS), which occurs almost immediately after the onset of retinal stimulus has been observed in retinal photoreceptors, promises to be a unique biomarker for objective optoretinography (ORG) of photoreceptor function. We report here the first-time in vivo ORG detection of photoreceptor dysfunction due to retinal degeneration. A custom-designed optical coherence tomography (OCT) was employed for longitudinal ORG monitoring of photoreceptor-IOS distortions in retinal degeneration mice. Depth-resolved OCT analysis confirmed the outer segment (OS) as the physical source of the photoreceptor-IOS. Comparative ERG measurement verified the phototransduction activation as the physiological correlator of the photoreceptor-IOS. Histological examination revealed disorganized OS discs, i.e. the pathological origin of the photoreceptor-IOS distortion.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Ketkar MD, Sporar K, Gür B, Ramos-Traslosheros G, Seifert M, Silies M. Luminance Information Is Required for the Accurate Estimation of Contrast in Rapidly Changing Visual Contexts. Curr Biol 2020; 30:657-669.e4. [PMID: 32008904 DOI: 10.1016/j.cub.2019.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2019] [Revised: 11/01/2019] [Accepted: 12/11/2019] [Indexed: 11/28/2022]
Abstract
Visual perception scales with changes in the visual stimulus, or contrast, irrespective of background illumination. However, visual perception is challenged when adaptation is not fast enough to deal with sudden declines in overall illumination, for example, when gaze follows a moving object from bright sunlight into a shaded area. Here, we show that the visual system of the fly employs a solution by propagating a corrective luminance-sensitive signal. We use in vivo 2-photon imaging and behavioral analyses to demonstrate that distinct OFF-pathway inputs encode contrast and luminance. Predictions of contrast-sensitive neuronal responses show that contrast information alone cannot explain behavioral responses in sudden dim light. The luminance-sensitive pathway via the L3 neuron is required for visual processing in such rapidly changing light conditions, ensuring contrast constancy when pure contrast sensitivity underestimates a stimulus. Thus, retaining a peripheral feature, luminance, in visual processing is required for robust behavioral responses.
Collapse
Affiliation(s)
- Madhura D Ketkar
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany; European Neuroscience Institute Göttingen, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstr. 5, Göttingen 37077, Germany; International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Katja Sporar
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany; European Neuroscience Institute Göttingen, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstr. 5, Göttingen 37077, Germany; International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany; European Neuroscience Institute Göttingen, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstr. 5, Göttingen 37077, Germany; International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Giordano Ramos-Traslosheros
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany; European Neuroscience Institute Göttingen, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstr. 5, Göttingen 37077, Germany; International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Marvin Seifert
- European Neuroscience Institute Göttingen, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstr. 5, Göttingen 37077, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany; European Neuroscience Institute Göttingen, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstr. 5, Göttingen 37077, Germany.
| |
Collapse
|
11
|
Rod Photoresponse Kinetics Limit Temporal Contrast Sensitivity in Mesopic Vision. J Neurosci 2019; 39:3041-3056. [PMID: 30737308 DOI: 10.1523/jneurosci.1404-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
The mammalian visual system operates over an extended range of ambient light levels by switching between rod and cone photoreceptors. Rod-driven vision is sluggish, highly sensitive, and operates in dim or scotopic lights, whereas cone-driven vision is brisk, less sensitive, and operates in bright or photopic lights. At intermediate or mesopic lights, vision transitions seamlessly from rod-driven to cone-driven, despite the profound differences in rod and cone response dynamics. The neural mechanisms underlying such a smooth handoff are not understood. Using an operant behavior assay, electrophysiological recordings, and mathematical modeling we examined the neural underpinnings of the mesopic visual transition in mice of either sex. We found that rods, but not cones, drive visual sensitivity to temporal light variations over much of the mesopic range. Surprisingly, speeding up rod photoresponse recovery kinetics in transgenic mice improved visual sensitivity to slow temporal variations, in the range where perceptual sensitivity is governed by Weber's law of sensation. In contrast, physiological processes acting downstream from phototransduction limit sensitivity to high frequencies and temporal resolution. We traced the paradoxical control of visual temporal sensitivity to rod photoresponses themselves. A scenario emerges where perceptual sensitivity is limited by: (1) the kinetics of neural processes acting downstream from phototransduction in scotopic lights, (2) rod response kinetics in mesopic lights, and (3) cone response kinetics as light levels rise into the photopic range.SIGNIFICANCE STATEMENT Our ability to detect flickering lights is constrained by the dynamics of the slowest step in the visual pathway. Cone photoresponse kinetics limit visual temporal sensitivity in bright (photopic) lights, whereas mechanisms in the inner retina limit sensitivity in dim (scotopic) lights. The neural mechanisms underlying the transition between scotopic and photopic vision in mesopic lights, when both rods are cones are active, are unknown. This study provides a missing link in this mechanism by establishing that rod photoresponse kinetics limit temporal sensitivity during the mesopic transition. Surprisingly, this range is where Weber's Law of Sensation governs temporal contrast sensitivity in mouse. Our results will help guide future studies of complex and dynamic interactions between rod-cone signals in the mesopic retina.
Collapse
|
12
|
Computation predicts rapidly adapting mechanotransduction currents cannot account for tactile encoding in Merkel cell-neurite complexes. PLoS Comput Biol 2018; 14:e1006264. [PMID: 29958280 PMCID: PMC6042796 DOI: 10.1371/journal.pcbi.1006264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2017] [Revised: 07/12/2018] [Accepted: 05/30/2018] [Indexed: 01/09/2023] Open
Abstract
Distinct firing properties among touch receptors are influenced by multiple, interworking anatomical structures. Our understanding of the functions and crosstalk of Merkel cells and their associated neurites—the end organs of slowly adapting type I (SAI) afferents—remains incomplete. Piezo2 mechanically activated channels are required both in Merkel cells and in sensory neurons for canonical SAI responses in rodents; however, a central unanswered question is how rapidly inactivating currents give rise to sustained action potential volleys in SAI afferents. The computational model herein synthesizes mechanotransduction currents originating from Merkel cells and neurites, in context of skin mechanics and neural dynamics. Its goal is to mimic distinct spike firing patterns from wildtype animals, as well as Atoh1 knockout animals that completely lack Merkel cells. The developed generator function includes a Merkel cell mechanism that represents its mechanotransduction currents and downstream voltage-activated conductances (slower decay of current) and a neurite mechanism that represents its mechanotransduction currents (faster decay of current). To mimic sustained firing in wildtype animals, a longer time constant was needed than the 200 ms observed for mechanically activated membrane depolarizations in rodent Merkel cells. One mechanism that suffices is to introduce an ultra-slowly inactivating current, with a time constant on the order of 1.7 s. This mechanism may drive the slow adaptation of the sustained response, for which the skin’s viscoelastic relaxation cannot account. Positioned within the sensory neuron, this source of current reconciles the physiology and anatomical characteristics of Atoh1 knockout animals. Slowly-adapting type I (SAI) cutaneous afferents help us discriminate fine spatial details. Their physiology and anatomy are distinguished by their slow adaptation in firing to held stimuli and innervation of Merkel cells, respectively. How mechanotransduction currents in Merkel cells and sensory neurons combine to give rise to neural spike firing is unknown. In considering wildtype animals, as well as Atoh1 conditional knockout animals that lack Merkel cells, this effort employs a computational modeling approach constrained by biological measurements. For the developed generator function to recapitulate firing responses across genotype, a previously unsuspected current source is required. Thus, the model makes specific predictions for future experimental studies.
Collapse
|
13
|
Morshedian A, Woodruff ML, Fain GL. Role of recoverin in rod photoreceptor light adaptation. J Physiol 2018; 596:1513-1526. [PMID: 29435986 DOI: 10.1113/jp275779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2017] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that can modulate the rate of rhodopsin phosphorylation. We describe two additional and perhaps more important functions during photoreceptor light adaptation. Recoverin influences the rate of change of adaptation. In wild-type rods, sensitivity and response integration time adapt with similar time constants of 150-200 ms. In Rv-/- rods lacking recoverin, sensitivity declines faster and integration time is already shorter and not significantly altered. During steady light exposure, rod circulating current slowly increases during a time course of tens of seconds, gradually extending the operating range of the rod. In Rv-/- rods, this mechanism is deleted, steady-state currents are already larger and rods saturate at brighter intensities. We propose that recoverin modulates spontaneous and light-activated phophodiesterase-6, the phototransduction effector enzyme, to increase sensitivity in dim light but improve responsiveness to change in brighter illumination. ABSTRACT Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that binds to G-protein receptor kinase 1 and can alter the rate of rhodopsin phosphorylation. A change in phosphorylation should change the lifetime of light-activated rhodopsin and the gain of phototransduction, but deletion of recoverin has little effect on the sensitivity of rods either in the dark or in dim-to-moderate background light. We describe two additional functions perhaps of greater physiological significance. (i) When the ambient intensity increases, sensitivity and integration time decrease in wild-type (WT) rods with similar time constants of 150-200 ms. Recoverin is part of the mechanism controlling this process because, in Rv-/- rods lacking recoverin, sensitivity declines more rapidly and integration time is already shorter and not further altered. (ii) During steady light exposure, WT rod circulating current slowly increases during a time course of tens of seconds, gradually extending the operating range of the rod. In Rv-/- rods, this mechanism is also deleted, steady-state currents are already larger and rods saturate at brighter intensities. We argue that neither (i) nor (ii) can be caused by modulation of rhodopsin phosphorylation but may instead be produced by direct modulation of phophodiesterase-6 (PDE6), the phototransduction effector enzyme. We propose that recoverin in dark-adapted rods keeps the integration time long and the spontaneous PDE6 rate relatively high to improve sensitivity. In background light, the integration time is decreased to facilitate detection of change and motion and the spontaneous PDE6 rate decreases to augment the rod working range.
Collapse
Affiliation(s)
- Ala Morshedian
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.,Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA
| | - Michael L Woodruff
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.,Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
14
|
Morshedian A, Fain GL. Light adaptation and the evolution of vertebrate photoreceptors. J Physiol 2017; 595:4947-4960. [PMID: 28488783 DOI: 10.1113/jp274211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Lamprey are cyclostomes, a group of vertebrates that diverged from lines leading to jawed vertebrates (including mammals) in the late Cambrian, 500 million years ago. It may therefore be possible to infer properties of photoreceptors in early vertebrate progenitors by comparing lamprey to other vertebrates. We show that lamprey rods and cones respond to light much like rods and cones in amphibians and mammals. They operate over a similar range of light intensities and adapt to backgrounds and bleaches nearly identically. These correspondences are pervasive and detailed; they argue for the presence of rods and cones very early in the evolution of vertebrates with properties much like those of rods and cones in existing vertebrate species. ABSTRACT The earliest vertebrates were agnathans - fish-like organisms without jaws, which first appeared near the end of the Cambrian radiation. One group of agnathans became cyclostomes, which include lamprey and hagfish. Other agnathans gave rise to jawed vertebrates or gnathostomes, the group including all other existing vertebrate species. Because cyclostomes diverged from other vertebrates 500 million years ago, it may be possible to infer some of the properties of the retina of early vertebrate progenitors by comparing lamprey to other vertebrates. We have previously shown that rods and cones in lamprey respond to light much like photoreceptors in other vertebrates and have a similar sensitivity. We now show that these affinities are even closer. Both rods and cones adapt to background light and to bleaches in a manner almost identical to other vertebrate photoreceptors. The operating range in darkness is nearly the same in lamprey and in amphibian or mammalian rods and cones; moreover background light shifts response-intensity curves downward and to the right over a similar range of ambient intensities. Rods show increment saturation at about the same intensity as mammalian rods, and cones never saturate. Bleaches decrease sensitivity in part by loss of quantum catch and in part by opsin activation of transduction. These correspondences are so numerous and pervasive that they are unlikely to result from convergent evolution but argue instead that early vertebrate progenitors of both cyclostomes and mammals had photoreceptors much like our own.
Collapse
Affiliation(s)
- Ala Morshedian
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095-7239, USA
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095-7239, USA.,Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, 90095-7000, USA
| |
Collapse
|
15
|
Regulation of Neuronal Oxygen Responses in C. elegans Is Mediated through Interactions between Globin 5 and the H-NOX Domains of Soluble Guanylate Cyclases. J Neurosci 2016; 36:963-78. [PMID: 26791224 DOI: 10.1523/jneurosci.3170-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023] Open
Abstract
Soluble guanylate cyclases (sGCs) are gas-binding proteins that control diverse physiological processes such as vasodilation, platelet aggregation, and synaptic plasticity. In the nematode Caenorhabditis elegans, a complex of sGCs, GCY-35 and GCY-36, functions in oxygen (O2) sensing. Previous studies suggested that the neuroglobin GLB-5 genetically interacts with GCY-35, and that the inhibitory effect of GLB-5 on GCY-35 function is necessary for fast recovery from prolonged hypoxia. In this study, we identified mutations in gcy-35 and gcy-36 that impact fast recovery and other phenotypes associated with GLB-5, without undermining sGC activity. These mutations, heb1 and heb3, change conserved amino acid residues in the regulatory H-NOX domains of GCY-35 and GCY-36, respectively, and appear to suppress GLB-5 activity by different mechanisms. Moreover, we observed that short exposure to 35% O2 desensitized the neurons responsible for ambient O2 sensing and that this phenomenon does not occur in heb1 animals. These observations may implicate sGCs in neuronal desensitization mechanisms far beyond the specific case of O2 sensing in nematodes. The conservation of functionally important regions of sGCs is supported by examining site-directed mutants of GCY-35, which suggested that similar regions in the H-NOX domains of O2 and NO-sensing sGCs are important for heme/gas interactions. Overall, our studies provide novel insights into sGC activity and regulation, and implicate similar structural determinants in the control of both O2 and NO sensors. Significance statement: Soluble guanylate cyclases (sGCs) control essential and diverse physiological processes, including memory processing. We used Caenorhabditis elegans to explore how a neuroglobin inhibits a complex of oxygen-sensing sGCs, identifying sGC mutants that resist inhibition. Resistance appears to arise by two different mechanisms: increased basal sGC activity or disruption of an interaction with neuroglobin. Our findings demonstrate that the inhibition of sGCs by neuroglobin is essential for rapid adaptation to either low or high oxygen levels, and that similar structural regions are key for regulating both oxygen and nitric oxide sensors. Based on our structural and functional analyses, we present the hypothesis that neuroglobin-sGC interactions may be generally important for adaptation processes, including those in organisms with more complex neurological functions.
Collapse
|
16
|
McIntosh LT, Maheswaranathan N, Nayebi A, Ganguli S, Baccus SA. Deep Learning Models of the Retinal Response to Natural Scenes. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2016; 29:1369-1377. [PMID: 28729779 PMCID: PMC5515384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Abstract
A central challenge in sensory neuroscience is to understand neural computations and circuit mechanisms that underlie the encoding of ethologically relevant, natural stimuli. In multilayered neural circuits, nonlinear processes such as synaptic transmission and spiking dynamics present a significant obstacle to the creation of accurate computational models of responses to natural stimuli. Here we demonstrate that deep convolutional neural networks (CNNs) capture retinal responses to natural scenes nearly to within the variability of a cell's response, and are markedly more accurate than linear-nonlinear (LN) models and Generalized Linear Models (GLMs). Moreover, we find two additional surprising properties of CNNs: they are less susceptible to overfitting than their LN counterparts when trained on small amounts of data, and generalize better when tested on stimuli drawn from a different distribution (e.g. between natural scenes and white noise). An examination of the learned CNNs reveals several properties. First, a richer set of feature maps is necessary for predicting the responses to natural scenes compared to white noise. Second, temporally precise responses to slowly varying inputs originate from feedforward inhibition, similar to known retinal mechanisms. Third, the injection of latent noise sources in intermediate layers enables our model to capture the sub-Poisson spiking variability observed in retinal ganglion cells. Fourth, augmenting our CNNs with recurrent lateral connections enables them to capture contrast adaptation as an emergent property of accurately describing retinal responses to natural scenes. These methods can be readily generalized to other sensory modalities and stimulus ensembles. Overall, this work demonstrates that CNNs not only accurately capture sensory circuit responses to natural scenes, but also can yield information about the circuit's internal structure and function.
Collapse
Affiliation(s)
| | | | - Aran Nayebi
- Neurosciences PhD Program, Stanford University
| | - Surya Ganguli
- Department of Applied Physics, Stanford University
- Neurobiology Department, Stanford University
| | | |
Collapse
|
17
|
Arshavsky VY, Wensel TG. Timing is everything: GTPase regulation in phototransduction. Invest Ophthalmol Vis Sci 2013; 54:7725-33. [PMID: 24265205 DOI: 10.1167/iovs.13-13281] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023] Open
Abstract
As the molecular mechanisms of vertebrate phototransduction became increasingly clear in the 1980s, a persistent problem was the discrepancy between the slow GTP hydrolysis catalyzed by the phototransduction G protein, transducin, and the much more rapid physiological recovery of photoreceptor cells from light stimuli. Beginning with a report published in 1989, a series of studies revealed that transducin GTPase activity could approach the rate needed to explain physiological recovery kinetics in the presence of one or more factors present in rod outer segment membranes. One by one, these factors were identified, beginning with PDEγ, the inhibitory subunit of the cGMP phosphodiesterase activated by transducin. There followed the discovery of the crucial role played by the regulator of G protein signaling, RGS9, a member of a ubiquitous family of GTPase-accelerating proteins, or GAPs, for heterotrimeric G proteins. Soon after, the G protein β isoform Gβ5 was identified as an obligate partner subunit, followed by the discovery or R9AP, a transmembrane protein that anchors the RGS9 GAP complex to the disk membrane, and is essential for the localization, stability, and activity of this complex in vivo. The physiological importance of all of the members of this complex was made clear first by knockout mouse models, and then by the discovery of a human visual defect, bradyopsia, caused by an inherited deficiency in one of the GAP components. Further insights have been gained by high-resolution crystal structures of subcomplexes, and by extensive mechanistic studies both in vitro and in animal models.
Collapse
Affiliation(s)
- Vadim Y Arshavsky
- Albert Eye Research Institute, Duke University, Durham, North Carolina
| | | |
Collapse
|
18
|
Light-induced translocation of RGS9-1 and Gβ5L in mouse rod photoreceptors. PLoS One 2013; 8:e58832. [PMID: 23555598 PMCID: PMC3610756 DOI: 10.1371/journal.pone.0058832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2013] [Accepted: 02/07/2013] [Indexed: 01/09/2023] Open
Abstract
The transducin GTPase-accelerating protein complex, which determines the photoresponse duration of photoreceptors, is composed of RGS9-1, Gβ5L and R9AP. Here we report that RGS9-1 and Gβ5L change their distribution in rods during light/dark adaptation. Upon prolonged dark adaptation, RGS9-1 and Gβ5L are primarily located in rod inner segments. But very dim-light exposure quickly translocates them to the outer segments. In contrast, their anchor protein R9AP remains in the outer segment at all times. In the dark, Gβ5L's interaction with R9AP decreases significantly and RGS9-1 is phosphorylated at S(475) to a significant degree. Dim light exposure leads to quick de-phosphorylation of RGS9-1. Furthermore, after prolonged dark adaptation, RGS9-1 and transducin Gα are located in different cellular compartments. These results suggest a previously unappreciated mechanism by which prolonged dark adaptation leads to increased light sensitivity in rods by dissociating RGS9-1 from R9AP and redistributing it to rod inner segments.
Collapse
|
19
|
|
20
|
Arshavsky VY, Burns ME. Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 2011; 287:1620-6. [PMID: 22074925 DOI: 10.1074/jbc.r111.305243] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
For decades, photoreceptors have been an outstanding model system for elucidating basic principles in sensory transduction and biochemistry and for understanding many facets of neuronal cell biology. In recent years, new knowledge of the kinetics of signaling and the large-scale movements of proteins underlying signaling has led to a deeper appreciation of the photoreceptor's unique challenge in mediating the first steps in vision over a wide range of light intensities.
Collapse
Affiliation(s)
- Vadim Y Arshavsky
- Departments of Ophthalmology and Pharmacology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
21
|
Fain GL. Adaptation of mammalian photoreceptors to background light: putative role for direct modulation of phosphodiesterase. Mol Neurobiol 2011; 44:374-82. [PMID: 21922272 DOI: 10.1007/s12035-011-8205-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2011] [Accepted: 09/04/2011] [Indexed: 11/26/2022]
Abstract
All sensory receptors adapt. As the mean level of light or sound or odor is altered, the sensitivity of the receptor is adjusted to permit the cell to function over as wide a range of ambient stimulation as possible. In a rod photoreceptor, adaptation to maintained background light produces a decrease (or "sag") in the response to the prolonged illumination, as well as an acceleration in response decay time and a Weber-Fechner-like decrease in sensitivity. Earlier work on salamander indicated that adaptation is controlled by the intracellular concentration of Ca(2+). Three Ca(2+)-dependent mechanisms were subsequently identified, namely, regulation of guanylyl cyclase, modulation of activated rhodopsin lifetime, and alteration of channel opening probability, with the contribution of the cyclase thought to be the most important. Later experiments on mouse that exploit the powerful techniques of molecular genetics have shown that cyclase does indeed play a significant role in mammalian rods, but that much of adaptation remains even when regulation of cyclase and both of the other proposed pathways have been genetically deleted. The identity of the missing mechanism or mechanisms is unclear, but recent speculation has focused on direct modulation of spontaneous and light-activated phosphodiesterase.
Collapse
Affiliation(s)
- Gordon L Fain
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA.
| |
Collapse
|
22
|
Osawa S, Jo R, Xiong Y, Reidel B, Tserentsoodol N, Arshavsky VY, Iuvone PM, Weiss ER. Phosphorylation of G protein-coupled receptor kinase 1 (GRK1) is regulated by light but independent of phototransduction in rod photoreceptors. J Biol Chem 2011; 286:20923-9. [PMID: 21504899 PMCID: PMC3121460 DOI: 10.1074/jbc.m111.230904] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2011] [Revised: 04/13/2011] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of rhodopsin by G protein-coupled receptor kinase 1 (GRK1, or rhodopsin kinase) is critical for the deactivation of the phototransduction cascade in vertebrate photoreceptors. Based on our previous studies in vitro, we predicted that Ser(21) in GRK1 would be phosphorylated by cAMP-dependent protein kinase (PKA) in vivo. Here, we report that dark-adapted, wild-type mice demonstrate significantly elevated levels of phosphorylated GRK1 compared with light-adapted animals. Based on comparatively slow half-times for phosphorylation and dephosphorylation, phosphorylation of GRK1 by PKA is likely to be involved in light and dark adaptation. In mice missing the gene for adenylyl cyclase type 1, levels of phosphorylated GRK1 were low in retinas from both dark- and light-adapted animals. These data are consistent with reports that cAMP levels are high in the dark and low in the light and also indicate that cAMP generated by adenylyl cyclase type 1 is required for phosphorylation of GRK1 on Ser(21). Surprisingly, dephosphorylation was induced by light in mice missing the rod transducin α-subunit. This result indicates that phototransduction does not play a direct role in the light-dependent dephosphorylation of GRK1.
Collapse
Affiliation(s)
- Shoji Osawa
- From the Department of Cell and Developmental Biology and
| | - Rebecca Jo
- From the Department of Cell and Developmental Biology and
| | - Yubin Xiong
- From the Department of Cell and Developmental Biology and
| | - Boris Reidel
- the Albert Eye Research Institute, Duke University, Durham, North Carolina 27710, and
| | | | - Vadim Y. Arshavsky
- the Albert Eye Research Institute, Duke University, Durham, North Carolina 27710, and
| | - P. Michael Iuvone
- the Departments of Pharmacology and Ophthalmology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Ellen R. Weiss
- From the Department of Cell and Developmental Biology and
- the Lineberger Comprehensive Cancer Center, the University of North Carolina, Chapel Hill, North Carolina 27599-7090
| |
Collapse
|
23
|
Abstract
Vertebrate photoreceptors are thought to adapt to light by a change in Ca(2+), which is postulated to mediate modulation of (1) excited rhodopsin (Rh*) by Ca(2+)-dependent binding of recoverin, (2) guanylyl cyclase activity via Ca(2+)-dependent GCAP proteins, and (3) cyclic nucleotide-gated channels by binding of Ca(2+)-calmodulin. Previous experiments genetically deleted recoverin and the GCAPs and showed that significant regulation of sensitivity survives removal of (1) and (2). We genetically deleted the channel Ca(2+)-calmodulin binding site in the mouse Mus musculus and found that removal of (3) alters response waveform, but removal of (3) or of (2) and (3) together still leaves much of adaptation intact. These experiments demonstrate that an important additional mechanism is required, which other experiments indicate may be regulation of phosphodiesterase 6 (PDE6). We therefore constructed a kinetic model in which light produces a Ca(2+)-mediated decrease in PDE6 decay rate, with the novel feature that both spontaneously activated and light-activated PDE6 are modulated. This model, together with Ca(2+)-dependent acceleration of guanylyl cyclase, can successfully account for changes in sensitivity and response waveform in background light.
Collapse
|
24
|
Heikkinen H, Nymark S, Donner K, Koskelainen A. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods. Vision Res 2009; 49:1717-28. [PMID: 19348836 DOI: 10.1016/j.visres.2009.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 11/29/2022]
Abstract
Flash responses of L-cones and rods were recorded as ERG mass potentials in the frog retina at different temperatures (2-25 degrees C). The purpose was to elucidate factors that make cones faster and less sensitive than rods, particularly the possible role of thermal activation of L-cone visual pigment in maintaining a "light-adapted" state even in darkness. Up to ca. 15 degrees C, cones and rods were desensitized roughly equally by warming (Q(10) approximately 2.2-2.7), retaining a 5-fold sensitivity difference. In this range, the cone/rod difference must depend on factors other than thermal activation of the visual pigment. Above 15 degrees C, cones showed an additional component of desensitization compared with rods, coupled to accelerated response shut-off. This behavior is consistent with light-adaptation from temperature-dependent intrinsic activity (dark light). The apparent dark light as measured by the minimum background intensities needed to affect sensitivity and/or kinetics increased by ca. 10-fold between 15 and 25 degrees C, whereas reported increases in visual-pigment activation rates over this range are less than 5-fold. We conclude that the dark state of frog L-cones above 15 degrees C may be largely set by thermal activation of the phototransduction machinery, but only part of the experimentally determined dark light can be ascribed to the visual pigment.
Collapse
Affiliation(s)
- H Heikkinen
- Department of Biomedical Engineering and Computational Science, Helsinki University of Technology, FI-02015 HUT, Finland.
| | | | | | | |
Collapse
|
25
|
Abstract
The time course of the light-induced activity of phototrandsuction effector enzyme cGMP-phosphodiesterase (PDE) is shaped by kinetics of rhodopsin and transducin shut-offs. The two processes are among the key factors that set the speed and sensitivity of the photoresponse and whose regulation contributes to light adaptation. The aim of this study was to determine time courses of flash-induced PDE activity in frog rods that were dark adapted or subjected to nonsaturating steady background illumination. PDE activity was computed from the responses recorded from solitary rods with the suction pipette technique in Ca2+-clamping solution. A flash applied in the dark-adapted state elicits a wave of PDE activity whose rising and decaying phases have characteristic times near 0.5 and 2 seconds, respectively. Nonsaturating steady background shortens both phases roughly to the same extent. The acceleration may exceed fivefold at the backgrounds that suppress ≈70% of the dark current. The time constant of the process that controls the recovery from super-saturating flashes (so-called dominant time constant) is adaptation independent and, hence, cannot be attributed to either of the processes that shape the main part of the PDE wave. We hypothesize that the dominant time constant in frog rods characterizes arrestin binding to rhodopsin partially inactivated by phosphorylation. A mathematical model of the cascade that considers two-stage rhodopsin quenching and transducin inactivation can mimic experimental PDE activity quite well. The effect of light adaptation on the PDE kinetics can be reproduced in the model by concomitant acceleration on both rhodopsin phosphorylation and transducin turn-off, but not by accelerated arrestin binding. This suggests that not only rhodopsin but also transducin shut-off is under adaptation control.
Collapse
Affiliation(s)
- Luba A Astakhova
- Sechenov Institute for Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
26
|
Abstract
The responses of individual salamander L-cones to light steps of moderate intensity (bleaching 0.3-3% of the total photopigment) and duration (between 5 and 90 s) were recorded using suction electrodes. Light initially suppressed the circulating current, which partially recovered or "sagged" over several seconds. The sensitivity of the cone to dim flashes decreased rapidly after light onset and approached a minimum within 500 ms. Background light did not affect the rising phase of the dim flash response, a measure of the initial gain of phototransduction. When the light was extinguished, the circulating current transiently exceeded or "overshot" its level in darkness. During the overshoot, the sensitivity of the cone required several seconds to recover. The sag and overshoot remained in voltage-clamped cones. Comparison with theory suggests that three mechanisms cause the sag, overshoot, and slow recovery of sensitivity after the light step: a gradual increase in the rate of inactivation of the phototransduction cascade during the light step, residual activity of the transduction cascade after the step is extinguished, and an increase in guanylate cyclase activity during the light step that persists after the light is extinguished.
Collapse
|
27
|
Krispel CM, Sokolov M, Chen YM, Song H, Herrmann R, Arshavsky VY, Burns ME. Phosducin regulates the expression of transducin betagamma subunits in rod photoreceptors and does not contribute to phototransduction adaptation. ACTA ACUST UNITED AC 2007; 130:303-12. [PMID: 17724163 PMCID: PMC2151643 DOI: 10.1085/jgp.200709812] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
For over a decade, phosducin's interaction with the betagamma subunits of the G protein, transducin, has been thought to contribute to light adaptation by dynamically controlling the amount of transducin heterotrimer available for activation by photoexcited rhodopsin. In this study we directly tested this hypothesis by characterizing the dark- and light-adapted response properties of phosducin knockout (Pd- / -) rods. Pd- / - rods were notably less sensitive to light than wild-type (WT) rods. The gain of transduction, as measured by the amplification constant using the Lamb-Pugh model of activation, was 32% lower in Pd- / - rods than in WT rods. This reduced amplification correlated with a 36% reduction in the level of transducin betagamma-subunit expression, and thus available heterotrimer in Pd- / - rods. However, commonly studied forms of light adaptation were normal in the absence of phosducin. Thus, phosducin does not appear to contribute to adaptation mechanisms of the outer segment by dynamically controlling heterotrimer availability, but rather is necessary for maintaining normal transducin expression and therefore normal flash sensitivity in rods.
Collapse
Affiliation(s)
- Claudia M Krispel
- Center for Neuroscience and Department of Ophthamology and Vision Science, University of California, Davis, CA 95618, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Geffen MN, de Vries SEJ, Meister M. Retinal ganglion cells can rapidly change polarity from Off to On. PLoS Biol 2007; 5:e65. [PMID: 17341132 PMCID: PMC1808116 DOI: 10.1371/journal.pbio.0050065] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2006] [Accepted: 12/28/2006] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells are commonly classified as On-center or Off-center depending on whether they are excited predominantly by brightening or dimming within the receptive field. Here we report that many ganglion cells in the salamander retina can switch from one response type to the other, depending on stimulus events far from the receptive field. Specifically, a shift of the peripheral image—as produced by a rapid eye movement—causes a brief transition in visual sensitivity from Off-type to On-type for approximately 100 ms. We show that these ganglion cells receive inputs from both On and Off bipolar cells, and the Off inputs are normally dominant. The peripheral shift strongly modulates the strength of these two inputs in opposite directions, facilitating the On pathway and suppressing the Off pathway. Furthermore, we identify certain wide-field amacrine cells that contribute to this modulation. Depolarizing such an amacrine cell affects nearby ganglion cells in the same way as the peripheral image shift, facilitating the On inputs and suppressing the Off inputs. This study illustrates how inhibitory interneurons can rapidly gate the flow of information within a circuit, dramatically altering the behavior of the principal neurons in the course of a computation. The eye communicates to the brain all the information needed for vision in the form of electrical pulses, or spikes, on optic nerve fibers. These spikes are produced by retinal ganglion cells, the output neurons of the retina. In a popular view of retinal function, each ganglion cell responds to a small region of interest in the visual image, known as its receptive field, and is specialized for certain image features within that window. When a cell encounters that image feature, the neuron responds by firing one or more spikes. Different neurons are tuned to different features. For example, some ganglion cells fire when light dims, others when it brightens. Here we show that a rapid shift in the image on the retina can cause a dramatic change in a neuron's preferred feature: For example, a dimming-detector can briefly turn into a brightening-detector. We explore the mechanisms that implement such a switch of feature tuning, and the consequences it might have for visual processing. A peripheral image shift produces a transient switch in retinal ganglion cell responses from Off-dominated to On-dominated. This modulation is exerted at least in part presynaptically, presumably at the bipolar cell synaptic terminal.
Collapse
Affiliation(s)
- Maria Neimark Geffen
- Program in Biophysics, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Saskia E. J de Vries
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- Program in Neuroscience, Harvard University, Cambridge, Massachusetts, United States of America
| | - Markus Meister
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Program in Neuroscience, Harvard University, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Baker B, Richardson J. The effect of artificial light on male breeding-season behaviour in green frogs, Rana clamitans melanota. CAN J ZOOL 2006. [DOI: 10.1139/z06-142] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Artificial night lighting (or ecological light pollution) is only now gaining attention as a source of long-term effects on the ecology of both diurnal and nocturnal animals. The limited data available clearly indicate that artificial light can affect physiology and behaviour of animals, leading to ecological consequences at the population, community, and ecosystem levels. Aquatic ecosystems may be particularly vulnerable to such effects, and nocturnally breeding animals such as frogs may be especially affected. To address this potential, we quantify the effects of artificial light on calling and movement behaviour in a rural population of male green frogs ( Rana clamitans melanota (Rafinesque, 1820)) during the breeding season. When exposed to artificial light, frogs produced fewer advertisement calls and moved more frequently than under ambient light conditions. Results clearly demonstrate that male green frog behaviour is affected by the presence of artificial light in a manner that has the potential to reduce recruitment rates and thus affect population dynamics.
Collapse
Affiliation(s)
- B.J. Baker
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - J.M.L. Richardson
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
30
|
Bui BV, Fortune B. Origin of electroretinogram amplitude growth during light adaptation in pigmented rats. Vis Neurosci 2006; 23:155-67. [PMID: 16638169 DOI: 10.1017/s0952523806232024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2004] [Accepted: 02/06/2006] [Indexed: 11/06/2022]
Abstract
We assessed the growth of the rat photopic electroretinogram (ERG) during light adaptation and the mechanisms underlying this process. Full field ERG responses were recorded from anesthetized adult Brown-Norway rats at each minute for 20 min of light adaptation (backgrounds: 1.8, 2.1, 2.4 log scotopic cd m(-2)). The rat photopic b-wave amplitude increased with duration of light adaptation and its width at 33% maximal amplitude narrowed (by approximately 40 ms). These effects peaked 12-15 min after background onset. The narrowing of the b-wave reflected steepening of the b-wave recovery phase, with little change in the rising phase. OP amplitudes grew in proportion to the b-wave. Inhibition of inner retinal responses using TTX resulted in a greater relative growth of b-wave and OP amplitude compared with fellow control eyes, and delayed the change in recovery phase by approximately 5 min. Inhibition of all ionotropic glutamate receptors with CNQX/D-AP7 delayed both rising and recovery phases equally (approximately 12 ms) without altering b-wave width or the time course of adaptation changes. These outcomes suggest that inner retinal light responses are not directly responsible for b-wave amplitude growth, but may contribute to the change in its recovery phase during adaptation. A TTX-sensitive mechanism may help to hasten this process. The cone a-wave was isolated using PDA/L-AP4 or CNQX/L-AP4. A-wave amplitude (35 ms after stimulus onset) also increased with time during light adaptation and reached a maximum (130 +/- 29% above baseline) 12-15 min after background onset. B-wave amplitude growth in fellow control eyes closely followed the course and relative magnitude of cone a-wave amplitude growth. Hence, the increase of the cone response during light adaptation is sufficient to explain b-wave amplitude growth.
Collapse
Affiliation(s)
- Bang V Bui
- Discoveries in Sight, Devers Eye Institute, Legacy Health System, Portland, Oregon 97232, USA
| | | |
Collapse
|
31
|
Pentia DC, Hosier S, Cote RH. The glutamic acid-rich protein-2 (GARP2) is a high affinity rod photoreceptor phosphodiesterase (PDE6)-binding protein that modulates its catalytic properties. J Biol Chem 2006; 281:5500-5. [PMID: 16407240 PMCID: PMC2825572 DOI: 10.1074/jbc.m507488200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The glutamic acid-rich protein-2 (GARP2) is a splice variant of the beta-subunit of the cGMP-gated ion channel of rod photoreceptors. GARP2 is believed to interact with several membrane-associated phototransduction proteins in rod photoreceptors. In this study, we demonstrated that GARP2 is a high affinity PDE6-binding protein and that PDE6 co-purifies with GARP2 during several stages of chromatographic purification. We found that hydrophobic interaction chromatography succeeds in quantitatively separating GARP2 from the PDE6 holoenzyme. Furthermore, the 17-kDa prenyl-binding protein, abundant in retinal cells, selectively released PDE6 (but not GARP2) from rod outer segment membranes, demonstrating the specificity of the interaction between GARP2 and PDE6. Purified GARP2 was able to suppress 80% of the basal activity of the nonactivated, membrane-bound PDE6 holoenzyme at concentrations equivalent to its endogenous concentration in rod outer segment membranes. However, GARP2 was unable to reverse the transducin activation of PDE6 (in contrast to a previous study) nor did it significantly alter catalysis of the fully activated PDE6 catalytic dimer. The high binding affinity of GARP2 for PDE6 and its ability to regulate PDE6 activity in its dark-adapted state suggest a novel role for GARP2 as a regulator of spontaneous activation of rod PDE6, thereby serving to lower rod photoreceptor "dark noise" and allowing these sensory cells to operate at the single photon detection limit.
Collapse
Affiliation(s)
- Dana C. Pentia
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824-2617
| | - Suzanne Hosier
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824-2617
| | - Rick H. Cote
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824-2617
| |
Collapse
|
32
|
Abstract
For over 30 years, photoreceptors have been an outstanding model system for elucidating basic principles in sensory transduction and G protein signaling. Recently, photoreceptors have become an equally attractive model for studying many facets of neuronal cell biology. The primary goal of this review is to illustrate this rapidly growing trend. We will highlight the areas of active research in photoreceptor biology that reveal how different specialized compartments of the cell cooperate in fulfilling its overall function: converting photon absorption into changes in neurotransmitter release. The same trend brings us closer to understanding how defects in photoreceptor signaling can lead to cell death and retinal degeneration.
Collapse
Affiliation(s)
- Marie E Burns
- Center for Neuroscience and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California 95616, USA.
| | | |
Collapse
|
33
|
Nymark S, Heikkinen H, Haldin C, Donner K, Koskelainen A. Light responses and light adaptation in rat retinal rods at different temperatures. J Physiol 2005; 567:923-38. [PMID: 16037091 PMCID: PMC1474229 DOI: 10.1113/jphysiol.2005.090662] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022] Open
Abstract
Rod responses to brief pulses of light were recorded as electroretinogram (ERG) mass potentials across isolated, aspartate-superfused rat retinas at different temperatures and intensities of steady background light. The objective was to clarify to what extent differences in sensitivity, response kinetics and light adaptation between mammalian and amphibian rods can be explained by temperature and outer-segment size without assuming functional differences in the phototransduction molecules. Corresponding information for amphibian rods from the literature was supplemented by new recordings from toad retina. All light intensities were expressed as photoisomerizations per rod (Rh*). In the rat retina, an estimated 34% of incident photons at the wavelength of peak sensitivity caused isomerizations in rods, as the (hexagonally packed) outer segments measured 1.7 microm x 22 microm and had specific absorbance of 0.016 microm(-1) on average. Fractional sensitivity (S) in darkness increased with cooling in a similar manner in rat and toad rods, but the rat function as a whole was displaced to a ca 0.7 log unit higher sensitivity level. This difference can be fully explained by the smaller dimensions of rat rod outer segments, since the same rate of phosphodiesterase (PDE) activation by activated rhodopsin will produce a faster drop in cGMP concentration, hence a larger response in rat than in toad. In the range 15-25 degrees C, the waveform and absolute time scale of dark-adapted dim-flash photoresponses at any given temperature were similar in rat and toad, although the overall temperature dependence of the time to peak (t(p)) was somewhat steeper in rat (Q(10) approximately 4 versus 2-3). Light adaptation was similar in rat and amphibian rods when measured at the same temperature. The mean background intensity that depressed S by 1 log unit at 12 degrees C was in the range 20-50 Rh* s(-1) in both, compared with ca 4500 Rh* s(-1) in rat rods at 36 degrees C. We conclude that it is not necessary to assume major differences in the functional properties of the phototransduction molecules to account for the differences in response properties of mammalian and amphibian rods.
Collapse
Affiliation(s)
- S Nymark
- Laboratory of Biomedical Engineering, Helsinki University of Technology, Finland.
| | | | | | | | | |
Collapse
|
34
|
Solessio E, Mani SS, Cuenca N, Engbretson GA, Barlow RB, Knox BE. Developmental regulation of calcium-dependent feedback in Xenopus rods. ACTA ACUST UNITED AC 2005; 124:569-85. [PMID: 15504902 PMCID: PMC2234010 DOI: 10.1085/jgp.200409162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
The kinetics of activation and inactivation in the phototransduction pathway of developing Xenopus rods were studied. The gain of the activation steps in transduction (amplification) increased and photoresponses became more rapid as the rods matured from the larval to the adult stage. The time to peak was significantly shorter in adults (1.3 s) than tadpoles (2 s). Moreover, adult rods recovered twice as fast from saturating flashes than did larval rods without changes of the dominant time constant (2.5 s). Guanylate cyclase (GC) activity, determined using IBMX steps, increased in adult rods from ∼1.1 s−1 to 3.7 s−1 5 s after a saturating flash delivering 6,000 photoisomerizations. In larval rods, it increased from 1.8 s−1 to 4.0 s−1 9 s after an equivalent flash. However, the ratio of amplification to the measured dark phosphodiesterase activity was constant. Guanylate cyclase–activating protein (GCAP1) levels and normalized Na+/Ca2+, K+ exchanger currents were increased in adults compared with tadpoles. Together, these results are consistent with the acceleration of the recovery phase in adult rods via developmental regulation of calcium homeostasis. Despite these large changes, the single photon response amplitude was ∼0.6 pA throughout development. Reduction of calcium feedback with BAPTA increased adult single photon response amplitudes threefold and reduced its cutoff frequency to that observed with tadpole rods. Linear mathematical modeling suggests that calcium-dependent feedback can account for the observed differences in the power spectra of larval and adult rods. We conclude that larval Xenopus maximize sensitivity at the expense of slower response kinetics while adults maximize response kinetics at the expense of sensitivity.
Collapse
Affiliation(s)
- Eduardo Solessio
- Center for Vision Research, Weiskotten Hall, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Kennedy MJ, Dunn FA, Hurley JB. Visual pigment phosphorylation but not transducin translocation can contribute to light adaptation in zebrafish cones. Neuron 2004; 41:915-28. [PMID: 15046724 DOI: 10.1016/s0896-6273(04)00086-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2003] [Revised: 12/22/2003] [Accepted: 02/03/2004] [Indexed: 11/20/2022]
Abstract
The ability of cone photoreceptors to adapt to light is extraordinary. In this study we evaluated two biochemical processes, visual pigment phosphorylation and transducin translocation, for their ability to contribute to light adaptation in zebrafish cones. Since cytoplasmic Ca2+ regulates light adaptation, the sensitivities of these processes to both light and Ca2+ were examined. Cytoplasmic Ca2+ regulates the sites of light-stimulated phosphorylation. Unexpectedly, we found that Ca2+ also regulates the extent of phosphorylation of unbleached cone pigments. Immunocytochemical analyses revealed that neither light nor cytoplasmic Ca2+ influences the localization of transducin in zebrafish cones.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
36
|
Barabás P, Antal K, Kardos J. Light-adaptation attenuates the effects of phosphodiesterase blockade by Zaprinast in the isolated rat retina. Neurosci Lett 2004; 357:195-8. [PMID: 15003283 DOI: 10.1016/j.neulet.2003.12.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2003] [Revised: 12/08/2003] [Accepted: 12/15/2003] [Indexed: 11/25/2022]
Abstract
The effect of the type V/VI-selective phosphodiesterase inhibitor, Zaprinast, (200 microM) on the light-evoked extracellular field potential (EFP) in the isolated rat retina was tested under dark- and light-adapted conditions at two different temperatures. Peak enhancement EFP in dark- (344 +/- 70%; mean +/- SEM) and light-adapted (182 +/- 31%) retina at 37 degrees C was reached within 3 min of treatment with Zaprinast (200 microM) followed by a slower decrease to a level of 85 +/- 14 and 26 +/- 7% in dark- and light-adapted retina, respectively. The effect of Zaprinast (20 microM) on the pharmacologically-isolated photoreceptor component of the EFP was lost with increasing levels of background light. This may suggest that there is a slow time scale (minutes) shift in the steady state level of cGMP during light-adaptation.
Collapse
Affiliation(s)
- Péter Barabás
- Department of Neurochemistry, Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H 1025 Budapest, Hungary.
| | | | | |
Collapse
|
37
|
Abstract
"Bleaching desensitization" in rod photoreceptors refers to the prolonged depression of phototransduction sensitivity exhibited by rods after their exposure to bright light, i.e., after photolysis (bleaching) of a substantial fraction of rhodopsin in the outer segments. Rod recovery from bleaching desensitization depends critically on operation of the retinoid visual cycle: in particular, on the removal of all-trans retinal bleaching product from opsin and on the delivery of 11-cis retinal to opsin's chromophore binding site. The present paper summarizes representative findings that address the mechanism of bleaching desensitization.
Collapse
Affiliation(s)
- David R Pepperberg
- Department of Ophthalmology and Visual Sciences, Lions of Illinois Eye Research Institute, University of Illinois at Chicago, College of Medicine, 1855 W. Taylor Street, Chicago, IL 60612, USA.
| |
Collapse
|
38
|
Silva GA, Pepperberg DR. Step response of mouse rod photoreceptors modeled in terms of elemental photic signals. IEEE Trans Biomed Eng 2004; 51:3-12. [PMID: 14723488 DOI: 10.1109/tbme.2003.820354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Abstract
The process of light adaptation in rod photoreceptors enables these sensory cells of the retina to remain responsive to photic stimuli over a broad range of light intensity. Recent studies have employed the technique of paired-flash electroretinography to determine properties of phototransduction, and of light and dark adaptation, in rod photoreceptors in the living eye. Building on these studies, we have developed a theoretical model aimed at explaining the rod electrical response to a step of light based on known physiology. The central feature of the model is its description of the macroscopic (i.e., measured) response in terms of a time-evolving, weighted sum of elemental responses determined under dark-adapted and near fully light-adapted conditions. The model yields a time-dependent function that describes the course of desensitization and putatively represents the cumulative dynamics of underlying biochemical processes involved in light adaptation of the rod.
Collapse
Affiliation(s)
- Gabriel A Silva
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA.
| | | |
Collapse
|
39
|
He F, Mao M, Wensel TG. Enhancement of phototransduction g protein-effector interactions by phosphoinositides. J Biol Chem 2003; 279:8986-90. [PMID: 14699118 DOI: 10.1074/jbc.m311488200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Light responses in photoreceptor cells are mediated by the action of the G protein transducin (G(t)) on the effector enzyme cGMP phosphodiesterase (PDE6) at the surface of disk membranes. The enzymatic components needed for phosphoinositide-based signaling are known to be present in rod cells, but it has remained uncertain what role phosphoinositides play in vertebrate phototransduction. Reconstitution of PDE6 and activated G(alphat), on the surface of large unilamellar vesicles containing d-myo-phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), stimulated PDE activity nearly 4-fold above the level observed with membranes containing no phosphoinositides, whereas G protein-independent activation by trypsin was unaffected by the presence of phosphoinositides. PDE activity was similarly stimulated by d-myo-phosphatidylinositol-3,4-bisphosphate and d-myo-phosphatidylinositol-4-phosphate (PI(4)P), but much less by d-myo-phosphatidylinositol-5-phosphate (PI(5)P) or d-myo-phosphatidylinositol-3,5-bisphosphate. Incubation of rod outer segment membranes with phosphoinositide-specific phospholipase C decreased G protein-stimulated activation of endogenous PDE6, but not trypsin-stimulated PDE activity. Binding experiments using phosphoinositide-containing vesicles revealed patterns of PDE6 binding and PDE6-enhanced G(alphat)-GTPgammaS binding, consistent with the activation profile PI(4,5)P(2) > PI(4)P > PI(5)P approximately control vesicles. These results suggest that enhancement of effector-G protein interactions represents a possible mechanism for modulation of phototransduction gain by changes in phosphoinositide levels, perhaps occurring in response to longterm changes in illumination or other environmental cues.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
40
|
Abstract
Timely deactivation of G-protein signaling is essential for the proper function of many cells, particularly neurons. Termination of the light response of retinal rods requires GTP hydrolysis by the G-protein transducin, which is catalyzed by a protein complex that includes regulator of G-protein signaling RGS9-1 and the G-protein beta subunit Gbeta5-L. Disruption of the Gbeta5 gene in mice (Gbeta5-/-) abolishes the expression of Gbeta5-L in the retina and also greatly reduces the expression level of RGS9-1. We examined transduction in dark- and light-adapted rods from wild-type and Gbeta5-/- mice. Responses of Gbeta5-/- rods were indistinguishable in all respects from those of RGS9-/- rods. Loss of Gbeta5-L (and RGS9-1) had no effect on the activation of the G-protein cascade, but profoundly slowed its deactivation and interfered with the speeding of incremental dim flashes during light adaptation. Both RGS9-/- and Gbeta5-/- responses were consistent with another factor weakly regulating GTP hydrolysis by transducin in a manner proportional to the inward current. Our results indicate that a complex containing RGS9-1-Gbeta5-L is essential for normal G-protein deactivation and rod function. In addition, our light adaptation studies support the notion than an additional weak GTPase-accelerating factor in rods is regulated by intracellular calcium and/or cGMP.
Collapse
|
41
|
Krispel CM, Chen CK, Simon MI, Burns ME. Prolonged photoresponses and defective adaptation in rods of Gbeta5-/- mice. J Neurosci 2003; 23:6965-71. [PMID: 12904457 PMCID: PMC6740649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/04/2023] Open
Abstract
Timely deactivation of G-protein signaling is essential for the proper function of many cells, particularly neurons. Termination of the light response of retinal rods requires GTP hydrolysis by the G-protein transducin, which is catalyzed by a protein complex that includes regulator of G-protein signaling RGS9-1 and the G-protein beta subunit Gbeta5-L. Disruption of the Gbeta5 gene in mice (Gbeta5-/-) abolishes the expression of Gbeta5-L in the retina and also greatly reduces the expression level of RGS9-1. We examined transduction in dark- and light-adapted rods from wild-type and Gbeta5-/- mice. Responses of Gbeta5-/- rods were indistinguishable in all respects from those of RGS9-/- rods. Loss of Gbeta5-L (and RGS9-1) had no effect on the activation of the G-protein cascade, but profoundly slowed its deactivation and interfered with the speeding of incremental dim flashes during light adaptation. Both RGS9-/- and Gbeta5-/- responses were consistent with another factor weakly regulating GTP hydrolysis by transducin in a manner proportional to the inward current. Our results indicate that a complex containing RGS9-1-Gbeta5-L is essential for normal G-protein deactivation and rod function. In addition, our light adaptation studies support the notion than an additional weak GTPase-accelerating factor in rods is regulated by intracellular calcium and/or cGMP.
Collapse
Affiliation(s)
- Claudia M Krispel
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
42
|
Calvert PD, Makino CL. The time course of light adaptation in vertebrate retinal rods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:37-60. [PMID: 12596914 DOI: 10.1007/978-1-4615-0121-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
Abstract
The photoresponse of a rod wanes over time in steady illumination, as light loses its efficacy in generating the response. Such desensitization is adaptive because it extends the range of ambient light levels over which the rod signals changes in light intensity by several orders of magnitude. Adaptation begins to unfold rapidly after the onset of light with a time constant of approximately 1 s, causing the rod's sensitivity to steady light to decrease by nearly two log units. Thereafter, a much slower phase of adaptation evolves with a time constant of 9 s. During this phase the rod's sensitivity decreases by an additional log unit. Both phases are dependent upon the light-induced fall in intracellular Ca2+. The fast phase of light adaptation can be attributed to Ca2+ feedback processes regulating the lifetime ofphotoactivated rhodopsin, cGMP synthesis and sensitivity of the cGMP-gated channel to cGMP. Although the mechanism(s) of the slow phase is not yet known, it appears to include further regulation of the lifetime of photoactivated rhodopsin.
Collapse
Affiliation(s)
- Peter D Calvert
- Department of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| | | |
Collapse
|
43
|
Abstract
The GTPase-accelerating protein (GAP) complex RGS9-1.G beta(5) plays an important role in the kinetics of light responses by accelerating the GTP hydrolysis of G alpha(t) in vertebrate photoreceptors. Much, but not all, of this complex is tethered to disk membranes by the transmembrane protein R9AP. To determine the effect of the R9AP membrane complex on GAP activity, we purified recombinant R9AP and reconstituted it into lipid vesicles along with the photon receptor rhodopsin. Full-length RGS9-1.G beta(5) bound to R9AP-containing vesicles with high affinity (K(d) < 10 nm), but constructs lacking the DEP (dishevelled/EGL-10/pleckstrin) domain bound with much lower affinity, and binding of those lacking the entire N-terminal domain (i.e. the dishevelled/EGL-10/pleckstrin domain plus intervening domain) was not detectable. Formation of the membrane-bound complex with R9AP increased RGS9-1 GAP activity by a factor of 4. Vesicle titrations revealed that on the time scale of phototransduction, the entire reaction sequence from GTP uptake to GAP-catalyzed hydrolysis is a membrane-delimited process, and exchange of G alpha(t) between membrane surfaces is much slower than hydrolysis. Because in rod cells different pools exist of RGS9-1.G beta(5) that are either associated with R9AP or not, regulation of the association between R9AP and RGS9-1.G beta(5) represents a potential mechanism for the regulation of recovery kinetics.
Collapse
Affiliation(s)
- Guang Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
44
|
Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof. J Neurosci 2003. [PMID: 12533607 DOI: 10.1523/jneurosci.23-02-00470.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Transducins couple visual pigments to cGMP hydrolysis, the only recognized phototransduction pathway in vertebrate photoreceptors. Here we describe a zebrafish mutant, no optokinetic response f(w21) (nof), with a nonsense mutation in the gene encoding the alpha subunit of cone transducin. Retinal morphology and levels of phototransduction enzymes are normal in nof retinas, but cone transducin is undetectable. Dark current in nof cones is also normal, but it is insensitive to moderate intensity light. The nof cones do respond, however, to bright light. These responses are produced by a light-stimulated, but transducin-independent, release of Ca2+ into the cone cytoplasm. Thus, in addition to stimulating transducin, light also independently induces release of Ca2+ into the photoreceptor cytoplasm.
Collapse
|
45
|
Brockerhoff SE, Rieke F, Matthews HR, Taylor MR, Kennedy B, Ankoudinova I, Niemi GA, Tucker CL, Xiao M, Cilluffo MC, Fain GL, Hurley JB. Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof. J Neurosci 2003; 23:470-80. [PMID: 12533607 PMCID: PMC6741873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/28/2023] Open
Abstract
Transducins couple visual pigments to cGMP hydrolysis, the only recognized phototransduction pathway in vertebrate photoreceptors. Here we describe a zebrafish mutant, no optokinetic response f(w21) (nof), with a nonsense mutation in the gene encoding the alpha subunit of cone transducin. Retinal morphology and levels of phototransduction enzymes are normal in nof retinas, but cone transducin is undetectable. Dark current in nof cones is also normal, but it is insensitive to moderate intensity light. The nof cones do respond, however, to bright light. These responses are produced by a light-stimulated, but transducin-independent, release of Ca2+ into the cone cytoplasm. Thus, in addition to stimulating transducin, light also independently induces release of Ca2+ into the photoreceptor cytoplasm.
Collapse
Affiliation(s)
- Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In retinal rods, Ca(2+) exerts negative feedback control on cGMP synthesis by guanylate cyclase (GC). This feedback loop was disrupted in mouse rods lacking guanylate cyclase activating proteins GCAP1 and GCAP2 (GCAPs(-/-)). Comparison of the behavior of wild-type and GCAPs(-/-) rods allowed us to investigate the role of the feedback loop in normal rod function. We have found that regulation of GC is apparently the only Ca(2+) feedback loop operating during the single photon response. Analysis of the rods' light responses and cellular dark noise suggests that GC normally responds to light-driven changes in [Ca(2+)] rapidly and highly cooperatively. Rapid feedback to GC speeds the rod's temporal responsiveness and improves its signal-to-noise ratio by minimizing fluctuations in cGMP.
Collapse
Affiliation(s)
- Marie E Burns
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- James B Hurley
- Department of Biochemistry, University of Washington, Seattle, WA 91895, USA
| |
Collapse
|