1
|
Zupin L, Gianoncelli A, Celsi F, Bonanni V, Kourousias G, Parisse P, Salomé M, Crovella S, Barbi E, Ricci G, Pascolo L. The effect of near-infrared Photobiomodulation therapy on the ion content of 50B11 sensory neurons measured through XRF analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113019. [PMID: 39217730 DOI: 10.1016/j.jphotobiol.2024.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation therapy (PBMT) is a form of treatment commonly used for routine clinical applications, such as wound healing of the skin and reduction of inflammation. Additionally, PBMT has been explored for its potential in pain relief. In this work, we investigated the effect of PBMT on ion content within the 50B11 sensory neurons cell line in vitro using X-Ray fluorescence (XRF) and atomic force microscope (AFM) analysis. Two irradiation protocols were selected utilizing near-infrared laser lights at 800 and 970 nm, with cell fixation immediately following irradiation. Results showed a decrease in Calcium content after irradiation with both protocols, and with lidocaine, used as an analgesic control. Furthermore, a reduction in Potassium content was observed, particularly evident when normalized to cellular volume. These findings provide valuable insights into the molecular impact of PBMT within 50B11 sensory neurons under normal conditions. Such understanding may contribute to the wider adoption of PBMT as a therapeutic approach.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy.
| | | | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy.
| | | | | | - Pietro Parisse
- Elettra Sincrotrone Trieste, Basovizza, 34149, Trieste, Italy; CNR-IOM, Basovizza, 34149 Trieste, Italy
| | - Murielle Salomé
- ESRF, European Synchrotron Radiation Facility, Cedex 9, F-38043 Grenoble, France
| | - Sergio Crovella
- Laboratory of Animal Research (LARC), Qatar University, 2713, Doha, Qatar
| | - Egidio Barbi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; Department of Medical, Surgical and Health Science, University of Trieste, 34100, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; Department of Medical, Surgical and Health Science, University of Trieste, 34100, Trieste, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
2
|
Palmisano VF, Anguita-Ortiz N, Faraji S, Nogueira JJ. Voltage-Gated Ion Channels: Structure, Pharmacology and Photopharmacology. Chemphyschem 2024; 25:e202400162. [PMID: 38649320 DOI: 10.1002/cphc.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Voltage-gated ion channels are transmembrane proteins responsible for the generation and propagation of action potentials in excitable cells. Over the last decade, advancements have enabled the elucidation of crystal structures of ion channels. This progress in structural understanding, particularly in identifying the binding sites of local anesthetics, opens avenues for the design of novel compounds capable of modulating ion conduction. However, many traditional drugs lack selectivity and come with adverse side effects. The emergence of photopharmacology has provided an orthogonal way of controlling the activity of compounds, enabling the regulation of ion conduction with light. In this review, we explore the central pore region of voltage-gated sodium and potassium channels, providing insights from both structural and pharmacological perspectives. We discuss the different binding modes of synthetic compounds that can physically occlude the pore and, therefore, block ion conduction. Moreover, we examine recent advances in the photopharmacology of voltage-gated ion channels, introducing molecular approaches aimed at controlling their activity by using photosensitive drugs.
Collapse
Affiliation(s)
- Vito F Palmisano
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Nuria Anguita-Ortiz
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Shirin Faraji
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IADCHEM, Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
3
|
Moreira-Junior L, Leal-Cardoso JH, Cassola AC, Carvalho-de-Souza JL. Eugenol and lidocaine inhibit voltage-gated Na + channels from dorsal root ganglion neurons with different mechanisms. Front Pharmacol 2024; 15:1354737. [PMID: 38989141 PMCID: PMC11234063 DOI: 10.3389/fphar.2024.1354737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/08/2024] [Indexed: 07/12/2024] Open
Abstract
Eugenol (EUG) is a bioactive monoterpenoid used as an analgesic, preservative, and flavoring agent. Our new data show EUG as a voltage-gated Na+ channel (VGSC) inhibitor, comparable but not identical to lidocaine (LID). EUG inhibits both total and only TTX-R voltage-activated Na+ currents (INa) recorded from VGSCs naturally expressed on dorsal root ganglion sensory neurons in rats. Inhibition is quick, fully reversible, and dose-dependent. Our biophysical and pharmacological analyses showed that EUG and LID inhibit VGSCs with different mechanisms. EUG inhibits VGSCs with a dose-response relationship characterized by a Hill coefficient of 2, while this parameter for the inhibition by LID is 1. Furthermore, in a different way from LID, EUG modified the voltage dependence of both the VGSC activation and inactivation processes and the recovery from fast inactivated states and the entry to slow inactivated states. In addition, we suggest that EUG, but not LID, interacts with VGSC pre-open-closed states, according to our data.
Collapse
Affiliation(s)
- Luiz Moreira-Junior
- Department of Anesthesiology, University of Arizona, Tucson, AZ, United States
| | | | - Antonio Carlos Cassola
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil
| | - Joao Luis Carvalho-de-Souza
- Department of Anesthesiology, University of Arizona, Tucson, AZ, United States
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Birngruber T, Vought K, Schwingenschuh S, Reisenegger P, Maibach H, Lissin D. Topical Delivery Systems Effectively Transport Analgesics to Areas of Localized Pain via Direct Diffusion. Pharmaceutics 2023; 15:2563. [PMID: 38004542 PMCID: PMC10674869 DOI: 10.3390/pharmaceutics15112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Topical delivery systems (TDSs) enable the direct transport of analgesics into areas of localized pain and thus minimize the side effects of administration routes that rely on systemic drug distribution. For musculoskeletal pain, clinicians frequently prescribe topical products containing lidocaine or diclofenac. This study assessed whether drug delivery from a TDS into muscle tissue occurs mainly via direct diffusion or systemic transport. An investigational TDS containing 108 mg lidocaine (SP-103, 5.4% lidocaine), a commercially available TDS containing 36 mg lidocaine (ZTlido®, 1.8% lidocaine), and a topical pain relief gel (Pennsaid®, 2% diclofenac) were tested. Using open flow microperfusion (OFM), interstitial fluid from the dermis, subcutaneous adipose tissue (SAT), and muscle was continuously sampled to assess drug penetration in all tissue layers. Ex vivo and in vivo experiments showed a higher diffusive transport of lidocaine compared to diclofenac. The data showed a clear contribution of diffusive transport to lidocaine concentration, with SP-103 5.4% resulting in a significantly higher lidocaine concentration in muscle tissue than commercially available ZTlido® (p = 0.008). These results indicate that SP-103 5.4% is highly effective in delivering lidocaine into muscle tissue in areas of localized pain for the treatment of musculoskeletal pain disorders (e.g., lower back pain).
Collapse
Affiliation(s)
- Thomas Birngruber
- HEALTH—Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (P.R.)
| | - Kip Vought
- Scilex Holding Company, Palo Alto, CA 94303, USA;
| | - Simon Schwingenschuh
- HEALTH—Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (P.R.)
| | - Peter Reisenegger
- HEALTH—Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (P.R.)
| | - Howard Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94143, USA;
| | | |
Collapse
|
5
|
Zhorov BS. Molecular Modeling of Cardiac Sodium Channel with Mexiletine. MEMBRANES 2022; 12:1252. [PMID: 36557159 PMCID: PMC9786191 DOI: 10.3390/membranes12121252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 05/15/2023]
Abstract
A sodium channel blocker mexiletine (MEX) is used to treat chronic pain, myotonia and some arrhythmias. Mutations in the pore domain (PD) of voltage-gated sodium channels differently affect tonic block (TB) and use-dependent block (UDB) by MEX. Previous studies identified several MEX-sensing residues in the hNav1.5 channel and demonstrated that the channel block by MEX increases with activation of the voltage-sensing domain III (VSDIII), whereas MEX stabilizes the activated state of VSDIII. Structural rationales for these observations are unclear. Here, Monte Carlo (MC) energy minimizations were used to dock MEX and its more potent analog, Thio-Me2, into the hNav1.5 cryo-EM structure with activated VSDs and presumably inactivated PD. Computations yielded two ensembles of ligand binding poses in close contacts with known MEX-sensing residues in helices S6III, S6IV and P1IV. In both ensembles, the ligand NH3 group approached the cation-attractive site between backbone carbonyls at the outer-pore bottom, while the aromatic ring protruded ether into the inner pore (putative UDB pose) or into the III/IV fenestration (putative TB pose). In silico deactivation of VSDIII shifted helices S4-S5III, S5III, S6III and S6IV and tightened the TB site. In a model with activated VSDIII and three resting VSDs, MC-minimized energy profile of MEX pulled from the TB site towards lipids shows a deep local minimum due to interactions with 11 residues in S5III, P1III, S6III and S6IV. The minimum may correspond to an interim binding site for MEX in the hydrophobic path to the TB site along the lipid-exposed sides of repeats III and IV where 15 polar and aromatic residues would attract cationic blockers. The study explains numerous experimental data and suggests the mechanism of allosteric modification of the MEX binding site by VSDIII.
Collapse
Affiliation(s)
- Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| |
Collapse
|
6
|
Körner J, Albani S, Sudha Bhagavath Eswaran V, Roehl AB, Rossetti G, Lampert A. Sodium Channels and Local Anesthetics-Old Friends With New Perspectives. Front Pharmacol 2022; 13:837088. [PMID: 35418860 PMCID: PMC8996304 DOI: 10.3389/fphar.2022.837088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
The long history of local anesthetics (LAs) starts out in the late 19th century when the content of coca plant leaves was discovered to alleviate pain. Soon after, cocaine was established and headed off to an infamous career as a substance causing addiction. Today, LAs and related substances-in modified form-are indispensable in our clinical everyday life for pain relief during and after minor and major surgery, and dental practices. In this review, we elucidate on the interaction of modern LAs with their main target, the voltage-gated sodium channel (Navs), in the light of the recently published channel structures. Knowledge of the 3D interaction sites of the drug with the protein will allow to mechanistically substantiate the comprehensive data available on LA gating modification. In the 1970s it was suggested that LAs can enter the channel pore from the lipid phase, which was quite prospective at that time. Today we know from cryo-electron microscopy structures and mutagenesis experiments, that indeed Navs have side fenestrations facing the membrane, which are likely the entrance for LAs to induce tonic block. In this review, we will focus on the effects of LA binding on fast inactivation and use-dependent inhibition in the light of the proposed new allosteric mechanism of fast inactivation. We will elaborate on subtype and species specificity and provide insights into modelling approaches that will help identify the exact molecular binding orientation, access pathways and pharmacokinetics. With this comprehensive overview, we will provide new perspectives in the use of the drug, both clinically and as a tool for basic ion channel research.
Collapse
Affiliation(s)
- Jannis Körner
- Institute of Physiology, Aachen, Germany.,Clinic of Anesthesiology, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| | - Simone Albani
- Institute for Neuroscience and Medicine (INM-9/IAS-5), Forschungszentrum Jülich, Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, Germany
| | | | - Anna B Roehl
- Clinic of Anesthesiology, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine (INM-9/IAS-5), Forschungszentrum Jülich, Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, Aachen, Germany.,Department of Neurology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
7
|
Falcón-González JM, Cantú-Cárdenas LG, García-González A, Carrillo-Tripp M. Differences in the local anaesthesia effect by lidocaine and bupivacaine based on free energy analysis. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2053118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- José Marcos Falcón-González
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Silao de la Victoria, Guanajuato, México
| | - Lucía Guadalupe Cantú-Cárdenas
- Facultad de Ciencias Químicas, Laboratorio de Fisicoquímica de Interfases, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Alcione García-González
- Facultad de Ciencias Químicas, Laboratorio de Fisicoquímica de Interfases, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, México
| |
Collapse
|
8
|
Characterisation of methylphenidate-induced excitation in midbrain dopamine neurons, an electrophysiological study in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110406. [PMID: 34339759 DOI: 10.1016/j.pnpbp.2021.110406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/12/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
Methylphenidate (MPH) is a drug routinely used for patients with attention deficit and hyperactivity disorder (ADHD). Concerns arise about psychostimulant use, with dramatic increases in prescriptions. Besides, antipsychotic drugs are often administered in combination with MPH. In this study, we examine the consequences of MPH exposure in combination with dopamine D2 receptor antagonism (eticlopride) on midbrain dopaminergic neurons in anaesthetised rodents, using in vivo extracellular single-cell electrophysiology. As expected, we show that methylphenidate (2 mg/kg, i.v.) decreases the firing and bursting activities of ventral tegmental area (VTA) dopamine neurons, an effect that is reversed with eticlopride (0.2 mg/kg, i.v.). However, using such a paradigm, we observed higher firing and bursting activities than under baseline conditions. Furthermore, we demonstrate that such an effect is dependent on dual alpha-1 and dopamine D1 receptors, as well as glutamatergic transmission, through glutamate N-Methyl-D-aspartate (NMDA) receptor activation. Chronic MPH treatment during adolescence greatly dampens MPH-induced excitatory effects measured at adulthood. To conclude, we demonstrated here that a combination of methylphenidate and a dopamine D2 receptor antagonist produced long-lasting consequences on midbrain dopamine neurons, via glutamatergic-dependent mechanisms.
Collapse
|
9
|
Angsutararux P, Kang PW, Zhu W, Silva JR. Conformations of voltage-sensing domain III differentially define NaV channel closed- and open-state inactivation. J Gen Physiol 2021; 153:212533. [PMID: 34347027 PMCID: PMC8348240 DOI: 10.1085/jgp.202112891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated Na+ (NaV) channels underlie the initiation and propagation of action potentials (APs). Rapid inactivation after NaV channel opening, known as open-state inactivation, plays a critical role in limiting the AP duration. However, NaV channel inactivation can also occur before opening, namely closed-state inactivation, to tune the cellular excitability. The voltage-sensing domain (VSD) within repeat IV (VSD-IV) of the pseudotetrameric NaV channel α-subunit is known to be a critical regulator of NaV channel inactivation. Yet, the two processes of open- and closed-state inactivation predominate at different voltage ranges and feature distinct kinetics. How inactivation occurs over these different ranges to give rise to the complexity of NaV channel dynamics is unclear. Past functional studies and recent cryo-electron microscopy structures, however, reveal significant inactivation regulation from other NaV channel components. In this Hypothesis paper, we propose that the VSD of NaV repeat III (VSD-III), together with VSD-IV, orchestrates the inactivation-state occupancy of NaV channels by modulating the affinity of the intracellular binding site of the IFMT motif on the III-IV linker. We review and outline substantial evidence that VSD-III activates in two distinct steps, with the intermediate and fully activated conformation regulating closed- and open-state inactivation state occupancy by altering the formation and affinity of the IFMT crevice. A role of VSD-III in determining inactivation-state occupancy and recovery from inactivation suggests a regulatory mechanism for the state-dependent block by small-molecule anti-arrhythmic and anesthetic therapies.
Collapse
Affiliation(s)
- Paweorn Angsutararux
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Po Wei Kang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Wandi Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
10
|
牛 望, 李 茜, 蒋 若. [Progress on the roles of glia in postoperative cognitive dysfunction]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:708-713. [PMID: 32840089 PMCID: PMC10319530 DOI: 10.7507/1001-5515.202001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 02/05/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is one of the most common complications after surgery under general anesthesia and usually manifests as newly presented cognitive impairment. However, the mechanism of POCD is still unclear. In addition to neurons, glial cells including microglia, astrocytes and oligodendrocytes, represent a large cell population in the nervous system. The bi-directional communication between neurons and glia provides basis for neural circuit function. Recent studies suggest that glial dysfunctions may contribute to the occurrence and progress of POCD. In this paper, we review the relevant work on POCD, which may provide new insights into the mechanism and therapeutic strategy for POCD.
Collapse
Affiliation(s)
- 望 牛
- 四川大学华西医院 麻醉与危重急救研究室(成都 610041)Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 麻醉科(成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 中国医学科学院 华西研究基地(2018RU012)(成都 610041)The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610041, P.R.China
| | - 茜 李
- 四川大学华西医院 麻醉与危重急救研究室(成都 610041)Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 麻醉科(成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 中国医学科学院 华西研究基地(2018RU012)(成都 610041)The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610041, P.R.China
| | - 若天 蒋
- 四川大学华西医院 麻醉与危重急救研究室(成都 610041)Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 麻醉科(成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 中国医学科学院 华西研究基地(2018RU012)(成都 610041)The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610041, P.R.China
| |
Collapse
|
11
|
Gudin J, Nalamachu S. Utility of lidocaine as a topical analgesic and improvements in patch delivery systems. Postgrad Med 2020; 132:28-36. [DOI: 10.1080/00325481.2019.1702296] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jeff Gudin
- Department of Anesthesiology and Pain Management, Englewood Hospital and Medical Center, Englewood, NJ, USA
- Department of Anesthesiology, Rutgers New Jersey School of Medicine, Newark, NJ, USA
| | - Sri Nalamachu
- Mid America PolyClinic, Overland Park, KS, USA
- Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
12
|
Sirenko O, Parham F, Dea S, Sodhi N, Biesmans S, Mora-Castilla S, Ryan K, Behl M, Chandy G, Crittenden C, Vargas-Hurlston S, Guicherit O, Gordon R, Zanella F, Carromeu C. Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures. Toxicol Sci 2019; 167:58-76. [PMID: 30169818 DOI: 10.1093/toxsci/kfy218] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurological disorders affect millions of people worldwide and appear to be on the rise. Whereas the reason for this increase remains unknown, environmental factors are a suspected contributor. Hence, there is an urgent need to develop more complex, biologically relevant, and predictive in vitro assays to screen larger sets of compounds with the potential for neurotoxicity. Here, we employed a human induced pluripotent stem cell (iPSC)-based 3D neural platform composed of mature cortical neurons and astrocytes as a model for this purpose. The iPSC-derived human 3D cortical neuron/astrocyte co-cultures (3D neural cultures) present spontaneous synchronized, readily detectable calcium oscillations. This advanced neural platform was optimized for high-throughput screening in 384-well plates and displays highly consistent, functional performance across different wells and plates. Characterization of oscillation profiles in 3D neural cultures was performed through multi-parametric analysis that included the calcium oscillation rate and peak width, amplitude, and waveform irregularities. Cellular and mitochondrial toxicity were assessed by high-content imaging. For assay characterization, we used a set of neuromodulators with known mechanisms of action. We then explored the neurotoxic profile of a library of 87 compounds that included pharmaceutical drugs, pesticides, flame retardants, and other chemicals. Our results demonstrated that 57% of the tested compounds exhibited effects in the assay. The compounds were then ranked according to their effective concentrations based on in vitro activity. Our results show that a human iPSC-derived 3D neural culture assay platform is a promising biologically relevant tool to assess the neurotoxic potential of drugs and environmental toxicants.
Collapse
Affiliation(s)
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven Dea
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | - Neha Sodhi
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | | | | | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhu W, Mazzanti A, Voelker TL, Hou P, Moreno JD, Angsutararux P, Naegle KM, Priori SG, Silva JR. Predicting Patient Response to the Antiarrhythmic Mexiletine Based on Genetic Variation. Circ Res 2019; 124:539-552. [PMID: 30566038 DOI: 10.1161/circresaha.118.314050] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Mutations in the SCN5A gene, encoding the α subunit of the Nav1.5 channel, cause a life-threatening form of cardiac arrhythmia, long QT syndrome type 3 (LQT3). Mexiletine, which is structurally related to the Na+ channel-blocking anesthetic lidocaine, is used to treat LQT3 patients. However, the patient response is variable, depending on the genetic mutation in SCN5A. OBJECTIVE The goal of this study is to understand the molecular basis of patients' variable responses and build a predictive statistical model that can be used to personalize mexiletine treatment based on patient's genetic variant. METHODS AND RESULTS We monitored the cardiac Na+ channel voltage-sensing domain (VSD) conformational dynamics simultaneously with other gating properties for the LQT3 variants. To systematically identify the relationship between mexiletine block and channel biophysical properties, we used a system-based statistical modeling approach to connect the multivariate properties to patient phenotype. We found that mexiletine altered the conformation of the Domain III VSD, which is the same VSD that many tested LQT3 mutations affect. Analysis of 15 LQT3 variants showed a strong correlation between the activation of the Domain III-VSD and the strength of the inhibition of the channel by mexiletine. Based on this improved molecular-level understanding, we generated a systems-based model based on a dataset of 32 LQT3 patients, which then successfully predicted the response of 7 out of 8 patients to mexiletine in a blinded, retrospective trial. CONCLUSIONS Our results imply that the modulated receptor theory of local anesthetic action, which confines local anesthetic binding effects to the channel pore, should be revised to include drug interaction with the Domain III-VSD. Using an algorithm that incorporates this mode of action, we can predict patient-specific responses to mexiletine, improving therapeutic decision making.
Collapse
Affiliation(s)
- Wandi Zhu
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| | - Andrea Mazzanti
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy (A.M., S.G.P.)
| | - Taylor L Voelker
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| | - Panpan Hou
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| | - Jonathan D Moreno
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO.,Division of Cardiology, Department of Medicine (J.D.M.), Washington University in St Louis, MO
| | - Paweorn Angsutararux
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| | - Kristen M Naegle
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| | - Silvia G Priori
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy (A.M., S.G.P.).,Department of Molecular Medicine, University of Pavia, Italy (S.G.P.)
| | - Jonathan R Silva
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| |
Collapse
|
14
|
Faltine-Gonzalez DZ, Layden MJ. Characterization of nAChRs in Nematostella vectensis supports neuronal and non-neuronal roles in the cnidarian-bilaterian common ancestor. EvoDevo 2019; 10:27. [PMID: 31700598 PMCID: PMC6825365 DOI: 10.1186/s13227-019-0136-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/06/2019] [Indexed: 02/01/2023] Open
Abstract
Background Nicotinic and muscarinic acetylcholine receptors likely evolved in the cnidarian–bilaterian common ancestor. Both receptor families are best known for their role at chemical synapses in bilaterian animals, but they also have described roles as non-neuronal signaling receptors within the bilaterians. It is not clear when either of the functions for nicotinic or muscarinic receptors evolved. Previous studies in cnidarians suggest that acetylcholine’s neuronal role existed prior to the cnidarian–bilaterian divergence, but did not address potential non-neuronal functions. To determine the origins of neuronal and non-neuronal functions of nicotinic acetylcholine receptors, we investigated the phylogenetic position of cnidarian acetylcholine receptors, characterized the spatiotemporal expression patterns of nicotinic receptors in N. vectensis, and compared pharmacological studies in N. vectensis to the previous work in other cnidarians. Results Consistent with described activity in other cnidarians, treatment with acetylcholine-induced tentacular contractions in the cnidarian sea anemone N. vectensis. Phylogenetic analysis suggests that the N. vectensis genome encodes 26 nicotinic (nAChRs) and no muscarinic (mAChRs) acetylcholine receptors and that nAChRs independently radiated in cnidarian and bilaterian linages. The namesake nAChR agonist, nicotine, induced tentacular contractions similar to those observed with acetylcholine, and the nAChR antagonist mecamylamine suppressed tentacular contractions induced by both acetylcholine and nicotine. This indicated that tentacle contractions are in fact mediated by nAChRs. Nicotine also induced the contraction of radial muscles, which contract as part of the peristaltic waves that propagate along the oral–aboral axis of the trunk. Radial contractions and peristaltic waves were suppressed by mecamylamine. The ability of nicotine to mimic acetylcholine responses, and of mecamylamine to suppress acetylcholine and nicotine-induced contractions, supports a neuronal function for acetylcholine in cnidarians. Examination of the spatiotemporal expression of N. vectensis nAChRs (NvnAChRs) during development and in juvenile polyps identified that NvnAChRs are expressed in neurons, muscles, gonads, and large domains known to be consistent with a role in developmental patterning. These patterns are consistent with nAChRs functioning in both a neuronal and non-neuronal capacity in N. vectensis. Conclusion Our data suggest that nAChR receptors functioned at chemical synapses in N. vectensis to regulate tentacle contraction. Similar responses to acetylcholine are well documented in cnidarians, suggesting that the neuronal function represents an ancestral role for nAChRs. Expression patterns of nAChRs are consistent with both neuronal and non-neuronal roles for acetylcholine in cnidarians. Together, these observations suggest that both neuronal and non-neuronal functions for the ancestral nAChRs were present in the cnidarian–bilaterian common ancestor. Thus, both roles described in bilaterian species likely arose at or near the base of nAChR evolution.
Collapse
Affiliation(s)
| | - Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
15
|
Park JS, Grijalva SI, Jung D, Li S, Junek GV, Chi T, Cho HC, Wang H. Intracellular cardiomyocytes potential recording by planar electrode array and fibroblasts co-culturing on multi-modal CMOS chip. Biosens Bioelectron 2019; 144:111626. [DOI: 10.1016/j.bios.2019.111626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/11/2019] [Accepted: 08/21/2019] [Indexed: 01/19/2023]
|
16
|
Moreno JD, Zhu W, Mangold K, Chung W, Silva JR. A Molecularly Detailed Na V1.5 Model Reveals a New Class I Antiarrhythmic Target. JACC Basic Transl Sci 2019; 4:736-751. [PMID: 31709321 PMCID: PMC6834944 DOI: 10.1016/j.jacbts.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
Abstract
Antiarrhythmic therapies remain suboptimal due to our inability to predict how drug interactions with ion channels will affect the ability of the tissue to initiate and sustain an arrhythmia. We built a computational framework that allows for in silico design of precision-targeted therapeutic agents that simultaneously assesses antiarrhythmic markers of success and failure at multiple spatial and time scales. Using this framework, a novel in silico mexiletine “booster” was designed that may dramatically improve the efficacy of mexiletine in suppression of arrhythmia triggers. These results provide a roadmap for the design of novel molecular-based therapy to treat myriad arrhythmia syndromes, including ventricular tachycardia, heart failure arrhythmias, and inherited arrhythmia syndromes. In summary, computational modeling approaches to drug discovery represent a novel tool to design and test precision-targeted therapeutic agents. By exploiting nontraditional ion channel drug targets, an entirely new dimension can be added to the wide parameter space of traditional antiarrhythmic drugs to develop more precision-targeted and potent Class I therapeutic agents.
Antiarrhythmic treatment strategies remain suboptimal due to our inability to predict how drug interactions with ion channels will affect the ability of the tissues to initiate and sustain an arrhythmia. We built a multiscale molecular model of the Na+ channel domain III (domain III voltage-sensing domain) to highlight the molecular underpinnings responsible for mexiletine drug efficacy. This model predicts that a hyperpolarizing shift in the domain III voltage-sensing domain is critical for drug efficacy and may be leveraged to design more potent Class I molecules. The model was therefore used to design, in silico, a theoretical mexiletine booster that can dramatically rescue a mutant resistant to the potent antiarrhythmic effects of mexiletine. Our framework provides a strategy for in silico design of precision-targeted therapeutic agents that simultaneously assesses antiarrhythmic markers of success and failure at multiple spatial and time scales. This approach provides a roadmap for the design of novel molecular-based therapy to treat myriad arrhythmia syndromes, including ventricular tachycardia, heart failure arrhythmias, and inherited arrhythmia syndromes.
Collapse
Key Words
- APD, action potential duration
- BCL2000, basic cycle length of 2,000 ms
- DIII-VSD, domain III voltage-sensing domain
- EAD, early afterdepolarization
- IC50, half-maximal inhibitory voltage
- LQT3, long QT syndrome type 3
- RFI, recovery from inactivation
- SSA, steady-state availability
- UDB, use-dependent block
- V1/2, half-maximal voltage
- VSD, voltage-sensing domain
- arrhythmias
- computational biology
- ion channels
- pharmacology
- translational studies
Collapse
Affiliation(s)
- Jonathan D Moreno
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Kathryn Mangold
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Woenho Chung
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
17
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
18
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Su C, Ying W, Xiangming L, Xinxin P. Inhibitive effect of loureirin B plus capsaicin on tetrodotoxin-resistant sodium channel. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30983-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Yang E, Granata D, Eckenhoff RG, Carnevale V, Covarrubias M. Propofol inhibits prokaryotic voltage-gated Na + channels by promoting activation-coupled inactivation. J Gen Physiol 2018; 150:1299-1316. [PMID: 30018038 PMCID: PMC6122921 DOI: 10.1085/jgp.201711924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Propofol is widely used in the clinic for the induction and maintenance of general anesthesia. As with most general anesthetics, however, our understanding of its mechanism of action remains incomplete. Local and general anesthetics largely inhibit voltage-gated Na+ channels (Navs) by inducing an apparent stabilization of the inactivated state, associated in some instances with pore block. To determine the biophysical and molecular basis of propofol action in Navs, we investigated NaChBac and NavMs, two prokaryotic Navs with distinct voltage dependencies and gating kinetics, by whole-cell patch clamp electrophysiology in the absence and presence of propofol at clinically relevant concentrations (2-10 µM). In both Navs, propofol induced a hyperpolarizing shift of the pre-pulse inactivation curve without any significant effects on recovery from inactivation at strongly hyperpolarized voltages, demonstrating that propofol does not stabilize the inactivated state. Moreover, there was no evidence of fast or slow pore block by propofol in a non-inactivating NaChBac mutant (T220A). Propofol also induced hyperpolarizing shifts of the conductance-voltage relationships with negligible effects on the time constants of deactivation at hyperpolarized voltages, indicating that propofol does not stabilize the open state. Instead, propofol decreases the time constants of macroscopic activation and inactivation. Adopting a kinetic scheme of Nav gating that assumes preferential closed-state recovery from inactivation, a 1.7-fold acceleration of the rate constant of activation and a 1.4-fold acceleration of the rate constant of inactivation were sufficient to reproduce experimental observations with computer simulations. In addition, molecular dynamics simulations and molecular docking suggest that propofol binding involves interactions with gating machinery in the S4-S5 linker and external pore regions. Our findings show that propofol is primarily a positive gating modulator of prokaryotic Navs, which ultimately inhibits the channels by promoting activation-coupled inactivation.
Collapse
Affiliation(s)
- Elaine Yang
- Vickie and Jack Farber Institute for Neuroscience and Department of Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Daniele Granata
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Manuel Covarrubias
- Vickie and Jack Farber Institute for Neuroscience and Department of Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
21
|
Rousseau V, Morelle M, Arriuberge C, Darnis S, Chabaud S, Launay V, Thouvenin S, Roumenoff-Turcant F, Metzger S, Tourniaire B, Marec-Berard P. Efficacy and Tolerance of Lidocaine 5% Patches in Neuropathic Pain and Pain Related to Vaso-occlusive Sickle Cell Crises in Children: A Prospective Multicenter Clinical Study. Pain Pract 2018; 18:788-797. [DOI: 10.1111/papr.12674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Vanessa Rousseau
- Emergency Department and Pediatric Resuscitation; Civil Hospitals of Lyon; Mother-Child Hospital; Bron France
- Léon Bérard Center; Institute of Hematology and Pediatric Oncology; Lyon France
| | - Magali Morelle
- Léon Bérard Center; Department of Clinical Research and Innovation; Lyon France
- GATE (Analysis and Economic Theory Group); UMR5824; Lyon University; Lyon France
| | - Céline Arriuberge
- Pediatric Analgesia Unit; Trousseau University Hospital Center; Paris France
| | - Sophie Darnis
- Léon Bérard Center; Department of Clinical Research and Innovation; Lyon France
| | - Sylvie Chabaud
- Léon Bérard Center; Department of Clinical Research and Innovation; Lyon France
| | - Valérie Launay
- Emergency Department and Pediatric Resuscitation; Civil Hospitals of Lyon; Mother-Child Hospital; Bron France
| | - Sandrine Thouvenin
- Department of Hematology and Pediatric Oncology; University Hospital Center; Saint-Etienne France
| | | | - Séverine Metzger
- Léon Bérard Center; Department of Clinical Research and Innovation; Lyon France
| | - Barbara Tourniaire
- Pediatric Analgesia Unit; Trousseau University Hospital Center; Paris France
| | | |
Collapse
|
22
|
Safavynia SA, Goldstein PA. The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving From Hypothesis to Treatment. Front Psychiatry 2018; 9:752. [PMID: 30705643 PMCID: PMC6345198 DOI: 10.3389/fpsyt.2018.00752] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication of the surgical experience and is common in the elderly and patients with preexisting neurocognitive disorders. Animal and human studies suggest that neuroinflammation from either surgery or anesthesia is a major contributor to the development of POCD. Moreover, a large and growing body of literature has focused on identifying potential risk factors for the development of POCD, as well as identifying candidate treatments based on the neuroinflammatory hypothesis. However, variability in animal models and clinical cohorts makes it difficult to interpret the results of such studies, and represents a barrier for the development of treatment options for POCD. Here, we present a broad topical review of the literature supporting the role of neuroinflammation in POCD. We provide an overview of the cellular and molecular mechanisms underlying the pathogenesis of POCD from pre-clinical and human studies. We offer a brief discussion of the ongoing debate on the root cause of POCD. We conclude with a list of current and hypothesized treatments for POCD, with a focus on recent and current human randomized clinical trials.
Collapse
Affiliation(s)
- Seyed A Safavynia
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States.,Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Neuroscience Graduate Program, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
23
|
Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, Marriott A, Moore EM, Morris G, Page RS, Gray L. Post-Operative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev 2017; 84:116-133. [PMID: 29180259 DOI: 10.1016/j.neubiorev.2017.11.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Post-Operative Cognitive Dysfunction (POCD) is a highly prevalent condition with significant clinical, social and financial impacts for patients and their communities. The underlying pathophysiology is becoming increasingly understood, with the role of neuroinflammation and oxidative stress secondary to surgery and anaesthesia strongly implicated. This review aims to describe the putative mechanisms by which surgery-induced inflammation produces cognitive sequelae, with a focus on identifying potential novel therapies based upon their ability to modify these pathways.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia.
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Seetal Dodd
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Eileen M Moore
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | | | - Richard S Page
- Deakin University, School of Medicine, Geelong, Australia; Department of Orthopaedics, Barwon Health, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
24
|
Pickering G, Martin E, Tiberghien F, Delorme C, Mick G. Localized neuropathic pain: an expert consensus on local treatments. Drug Des Devel Ther 2017; 11:2709-2718. [PMID: 29066862 PMCID: PMC5604568 DOI: 10.2147/dddt.s142630] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pain localization is one of the hallmarks for the choice of first-line treatment in neuropathic pain. This literature review has been conducted to provide an overview of the current knowledge regarding the etiology and pathophysiology of localized neuropathic pain (LNP), its assessment and the existing topical pharmacological treatments. MATERIALS AND METHODS Literature review was performed using Medline from 2010 to December 2016, and all studies involving LNP and treatments were examined. A multidisciplinary expert panel of five pain specialists in this article reports a consensus on topical approaches that may be recommended to alleviate LNP and on their advantages in clinical practice. RESULTS Successive international recommendations have included topical 5% lidocaine and 8% capsaicin for LNP treatment. The expert panel considers that these compounds can be a first-line treatment for LNP, especially in elderly patients and patients with comorbidities and polypharmacy. Regulatory LNP indications should cover the whole range of LNP and not be restricted to specific etiologies or sites. Precautions for the use of plasters must be followed cautiously. CONCLUSION Although there is a real need for more randomized controlled trials for both drugs, publications clearly demonstrate excellent risk/benefit ratios, safety, tolerance and continued efficacy throughout long-term treatment. A major advantage of both plasters is that they have proven efficacy and may reduce the risk of adverse events such as cognitive impairment, confusion, somnolence, dizziness and constipation that are often associated with systemic neuropathic pain treatment and reduce the quality of life. Topical modalities also may be used in combination with other drugs and analgesics with limited drug-drug interactions.
Collapse
Affiliation(s)
- Gisèle Pickering
- Centre de Pharmacologie Clinique, CHU Clermont-Ferrand
- Inserm, CIC 1405, Neurodol 1107
- Laboratoire de Pharmacologie, Faculté de Médecine, Clermont Université, Clermont-Ferrand
| | - Elodie Martin
- Centre de Pharmacologie Clinique, CHU Clermont-Ferrand
- Laboratoire de Pharmacologie, Faculté de Médecine, Clermont Université, Clermont-Ferrand
| | - Florence Tiberghien
- Centre d’Evaluation et de Traitement de la Douleur, CHU Jean Minjoz, Besançon
| | | | - Gérard Mick
- Unité d’Evaluation et Traitement de la Douleur, Voiron
- Laboratoire AGEIS, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
25
|
Peters CH, Yu A, Zhu W, Silva JR, Ruben PC. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation. PLoS One 2017; 12:e0184605. [PMID: 28898267 PMCID: PMC5595308 DOI: 10.1371/journal.pone.0184605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation.
Collapse
Affiliation(s)
- Colin H. Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alec Yu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
26
|
Tang C, Zhou X, Nguyen PT, Zhang Y, Hu Z, Zhang C, Yarov-Yarovoy V, DeCaen PG, Liang S, Liu Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel. FASEB J 2017; 31:3167-3178. [PMID: 28400471 DOI: 10.1096/fj.201600882r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/27/2017] [Indexed: 01/18/2023]
Abstract
Voltage-gated sodium channels (NaVs) are activated by transiting the voltage sensor from the deactivated to the activated state. The crystal structures of several bacterial NaVs have captured the voltage sensor module (VSM) in an activated state, but structure of the deactivated voltage sensor remains elusive. In this study, we sought to identify peptide toxins stabilizing the deactivated VSM of bacterial NaVs. We screened fractions from several venoms and characterized a cystine knot toxin called JZTx-27 from the venom of tarantula Chilobrachys jingzhao as a high-affinity antagonist of the prokaryotic NaVs NsVBa (nonselective voltage-gated Bacillus alcalophilus) and NaChBac (bacterial sodium channel from Bacillus halodurans) (IC50 = 112 nM and 30 nM, respectively). JZTx-27 was more efficacious at weaker depolarizing voltages and significantly slowed the activation but accelerated the deactivation of NsVBa, whereas the local anesthetic drug lidocaine was shown to antagonize NsVBa without affecting channel gating. Mutation analysis confirmed that JZTx-27 bound to S3-4 linker of NsVBa, with F98 being the critical residue in determining toxin affinity. All electrophysiological data and in silico analysis suggested that JZTx-27 trapped VSM of NsVBa in one of the deactivated states. In mammalian NaVs, JZTx-27 preferably inhibited the inactivation of NaV1.5 by targeting the fourth transmembrane domain. To our knowledge, this is the first report of peptide antagonist for prokaryotic NaVs. More important, we proposed that JZTx-27 stabilized the NsVBa VSM in the deactivated state and may be used as a probe to determine the structure of the deactivated VSM of NaVs.-Tang, C., Zhou, X., Nguyen, P. T., Zhang, Y., Hu, Z., Zhang, C., Yarov-Yarovoy, V., DeCaen, P. G., Liang, S., Liu, Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel.
Collapse
Affiliation(s)
- Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Phuong Tran Nguyen
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA
| | - Yunxiao Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhaotun Hu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Changxin Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China;
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China;
| |
Collapse
|
27
|
Hsu EJ, Zhu W, Schubert AR, Voelker T, Varga Z, Silva JR. Regulation of Na + channel inactivation by the DIII and DIV voltage-sensing domains. J Gen Physiol 2017; 149:389-403. [PMID: 28232510 PMCID: PMC5339511 DOI: 10.1085/jgp.201611678] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/02/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Functional eukaryotic voltage-gated Na+ (NaV) channels comprise four domains (DI-DIV), each containing six membrane-spanning segments (S1-S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1-S4), which together form a voltage-sensing domain (VSD). A critical NaV channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair NaV channel inactivation. These locations include the DIII-DIV linker, the DIII S4-S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII-DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery.
Collapse
Affiliation(s)
- Eric J Hsu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Angela R Schubert
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Taylor Voelker
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Zoltan Varga
- MTA-DE-NAP B Ion Channel Structure-Function Research Group, Research Center for Molecular Medicine (RCMM), University of Debrecen, Debrecen H-4032, Hungary
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
28
|
Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, Kass RS. Molecular Pathophysiology of Congenital Long QT Syndrome. Physiol Rev 2017; 97:89-134. [PMID: 27807201 PMCID: PMC5539372 DOI: 10.1152/physrev.00008.2016] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ion channels represent the molecular entities that give rise to the cardiac action potential, the fundamental cellular electrical event in the heart. The concerted function of these channels leads to normal cyclical excitation and resultant contraction of cardiac muscle. Research into cardiac ion channel regulation and mutations that underlie disease pathogenesis has greatly enhanced our knowledge of the causes and clinical management of cardiac arrhythmia. Here we review the molecular determinants, pathogenesis, and pharmacology of congenital Long QT Syndrome. We examine mechanisms of dysfunction associated with three critical cardiac currents that comprise the majority of congenital Long QT Syndrome cases: 1) IKs, the slow delayed rectifier current; 2) IKr, the rapid delayed rectifier current; and 3) INa, the voltage-dependent sodium current. Less common subtypes of congenital Long QT Syndrome affect other cardiac ionic currents that contribute to the dynamic nature of cardiac electrophysiology. Through the study of mutations that cause congenital Long QT Syndrome, the scientific community has advanced understanding of ion channel structure-function relationships, physiology, and pharmacological response to clinically employed and experimental pharmacological agents. Our understanding of congenital Long QT Syndrome continues to evolve rapidly and with great benefits: genotype-driven clinical management of the disease has improved patient care as precision medicine becomes even more a reality.
Collapse
Affiliation(s)
- M S Bohnen
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - G Peng
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - S H Robey
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - C Terrenoire
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - V Iyer
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - K J Sampson
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - R S Kass
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| |
Collapse
|
29
|
Ahern CA, Payandeh J, Bosmans F, Chanda B. The hitchhiker's guide to the voltage-gated sodium channel galaxy. ACTA ACUST UNITED AC 2016; 147:1-24. [PMID: 26712848 PMCID: PMC4692491 DOI: 10.1085/jgp.201511492] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.
Collapse
Affiliation(s)
- Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| | - Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Baron Chanda
- Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
30
|
Sheets MF, Fozzard HA, Hanck DA. Important Role of Asparagines in Coupling the Pore and Votage-Sensor Domain in Voltage-Gated Sodium Channels. Biophys J 2016; 109:2277-86. [PMID: 26636939 DOI: 10.1016/j.bpj.2015.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 11/26/2022] Open
Abstract
Voltage-gated sodium (NaV) channels contain an α-subunit incorporating the channel's pore and gating machinery composed of four homologous domains (DI-DIV), with a pore domain formed by the S5 and S6 segments and a voltage-sensor domain formed by the S1-S4 segments. During a membrane depolarization movement, the S4s in the voltage-sensor domains exert downstream effects on the S6 segments to control ionic conductance through the pore domain. We used lidocaine, a local anesthetic and antiarrhythmic drug, to probe the role of conserved Asn residues in the S6s of DIII and DIV in NaV1.5 and NaV1.4. Previous studies have shown that lidocaine binding to the pore domain causes a decrease in the maximum gating (Qmax) charge of ∼38%, and three-fourths of this decrease results from the complete stabilization of DIII-S4 (contributing a 30% reduction in Qmax) and one-fourth is due to partial stabilization of DIV-S4 (a reduction of 8-10%). Even though substitutions for the Asn in DIV-S6 in NaV1.5, N1764A and N1764C, produce little ionic current in transfected mammalian cells, they both express robust gating currents. Anthopleurin-A toxin, which inhibits movement of DIV-S4, still reduced Qmax by nearly 30%, a value similar to that observed in wild-type channels, in both N1764A and N1764C. By applying lidocaine and measuring the gating currents, we demonstrated that Asn residues in the S6s of DIII and DIV are important for coupling their pore domains to their voltage-sensor domains, and that Ala and Cys substitutions for Asn in both S6s result in uncoupling of the pore domains from their voltage-sensor domains. Similar observations were made for NaV1.4, although substitutions for Asn in DIII-S6 showed somewhat less uncoupling.
Collapse
Affiliation(s)
- Michael F Sheets
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, Salt Lake City, Utah.
| | | | | |
Collapse
|
31
|
Peters C, Rosch RE, Hughes E, Ruben PC. Temperature-dependent changes in neuronal dynamics in a patient with an SCN1A mutation and hyperthermia induced seizures. Sci Rep 2016; 6:31879. [PMID: 27582020 PMCID: PMC5007485 DOI: 10.1038/srep31879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/28/2016] [Indexed: 01/01/2023] Open
Abstract
Dravet syndrome is the prototype of SCN1A-mutation associated epilepsies. It is characterised by prolonged seizures, typically provoked by fever. We describe the evaluation of an SCN1A mutation in a child with early-onset temperature-sensitive seizures. The patient carries a heterozygous missense variant (c3818C > T; pAla1273Val) in the NaV1.1 brain sodium channel. We compared the functional effects of the variant vs. wild type NaV1.1 using patch clamp recordings from channels expressed in Chinese Hamster Ovary Cells at different temperatures (32, 37, and 40 °C). The variant channels produced a temperature-dependent destabilization of activation and fast inactivation. Implementing these empirical abnormalities in a computational model predicts a higher threshold for depolarization block in the variant, particularly at 40 °C, suggesting a failure to autoregulate at high-input states. These results reveal direct effects of abnormalities in NaV1.1 biophysical properties on neuronal dynamics. They illustrate the value of combining cellular measurements with computational models to integrate different observational scales (gene/channel to patient).
Collapse
Affiliation(s)
- C Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - R E Rosch
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK.,Centre for Developmental Cognitive Neuroscience, Institute of Child Health, University College, London, UK
| | - E Hughes
- Department of Paediatric Neurology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - P C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
32
|
Dalooei JR, Sahraei H, Meftahi GH, Khosravi M, Bahari Z, Hatef B, Mohammadi A, Nicaeili F, Eftekhari F, Ghamari F, Hadipour M, Kaka G. Temporary amygdala inhibition reduces stress effects in female mice. J Adv Res 2016; 7:643-9. [PMID: 27489731 PMCID: PMC4950119 DOI: 10.1016/j.jare.2016.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 06/26/2016] [Indexed: 12/28/2022] Open
Abstract
The current study investigated the effect of temporary inhibition of amygdala in response to metabolic changes caused by stress in female mice. Unilateral and bilateral amygdala cannulation was carried out, and after a week of recovery, 2% lidocaine hydrochloride was injected into the mice amygdalae five minutes before the induction of stress. A communication box was employed to induce stress for four consecutive days and plasma corticosterone, food and water intake, weight changes, and anorexia were measured as stress-induced metabolic changes. Results demonstrated that stress, increases stress, increased plasma corticosterone concentrations, weight, food, and water intake. Temporary inhibition of the amygdala slightly decreased plasma corticosterone concentrations, but did not fully reduce the effect of stress. The bilateral injection of lidocaine hydrochloride to the amygdala reduced the effect of stress and reduced water intake and weight. Unilateral injection of lidocaine hydrochloride into the left and right amygdala reduced food intake. In conclusion, the present study demonstrated that the left side and right side of amygdala nuclei play a different role in metabolic responses in stress.
Collapse
Affiliation(s)
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Maryam Khosravi
- Department of Biology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology and Biophysics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Boshra Hatef
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fateme Nicaeili
- Department of Biology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Fateme Eftekhari
- Department of Biology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Fateme Ghamari
- Department of Biology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohamadmehdi Hadipour
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholamreza Kaka
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Di Meo F, Fabre G, Berka K, Ossman T, Chantemargue B, Paloncýová M, Marquet P, Otyepka M, Trouillas P. In silico pharmacology: Drug membrane partitioning and crossing. Pharmacol Res 2016; 111:471-486. [PMID: 27378566 DOI: 10.1016/j.phrs.2016.06.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Over the past decade, molecular dynamics (MD) simulations have become particularly powerful to rationalize drug insertion and partitioning in lipid bilayers. MD simulations efficiently support experimental evidences, with a comprehensive understanding of molecular interactions driving insertion and crossing. Prediction of drug partitioning is discussed with respect to drug families (anesthetics; β-blockers; non-steroidal anti-inflammatory drugs; antioxidants; antiviral drugs; antimicrobial peptides). To accurately evaluate passive permeation coefficients turned out to be a complex theoretical challenge; however the recent methodological developments based on biased MD simulations are particularly promising. Particular attention is paid to membrane composition (e.g., presence of cholesterol), which influences drug partitioning and permeation. Recent studies concerning in silico models of membrane proteins involved in drug transport (influx and efflux) are also reported here. These studies have allowed gaining insight in drug efflux by, e.g., ABC transporters at an atomic resolution, explicitly accounting for the mandatory forces induced by the surrounded lipid bilayer. Large-scale conformational changes were thoroughly analyzed.
Collapse
Affiliation(s)
- Florent Di Meo
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Gabin Fabre
- LCSN, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Karel Berka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Tahani Ossman
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Benjamin Chantemargue
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Markéta Paloncýová
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Pierre Marquet
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Michal Otyepka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic.
| |
Collapse
|
34
|
Gingrich KJ, Wagner LE. Fast-onset lidocaine block of rat Na V1.4 channels suggests involvement of a second high-affinity open state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1175-88. [DOI: 10.1016/j.bbamem.2016.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/04/2016] [Accepted: 02/24/2016] [Indexed: 11/25/2022]
|
35
|
Chen YW, Chiu CC, Wang JN, Hung CH, Wang JJ. Ifenprodil for prolonged spinal blockades of motor function and nociception in rats. Pharmacol Rep 2016; 68:357-62. [PMID: 26922539 DOI: 10.1016/j.pharep.2015.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/03/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of the study was to compare the proposed spinal anesthetic effect of ifenprodil, an a1 adrenergic receptor antagonist, with that of the long-acting local anesthetic bupivacaine. METHODS After intrathecally injecting the rats with five different doses of each drug, the dose-response curves of ifenprodil and bupivacaine were constructed to obtain the 50% effective dose (ED50). The spinal blockades of motor function and nociception of ifenprodil were compared with that of bupivacaine. RESULTS We showed that either ifenprodil or bupivacaine produced spinal blockades of motor function and nociception dose-dependently. On the ED50 basis, the potency of ifenprodil (0.42(0.38-0.46) μmol; 0.40(0.36-0.44) μmol) was equal (p>0.05) to that of bupivacaine (0.38(0.36-0.40) μmol; 0.35(0.32-0.38) μmol) in motor function and nociception, respectively. At the equianesthetic doses (ED25, ED50, and ED75), duration produced by ifenprodil was greater than that produced by bupivacaine in motor function and nociception (p<0.05 for the differences). Furthermore, both ifenprodil and bupivacaine showed longer duration of sensory blockade than that of motor blockade (p<0.05 for the differences). CONCLUSIONS The resulting data demonstrated that ifenprodil produces a dose-dependent local anesthetic effect in spinal anesthesia. Ifenprodil shows a more sensory-selective duration of action over motor block, whereas the duration of anesthesia is significantly longer with ifenprodil than with bupivacaine.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Department of Physical Therapy, College of Health Care, China Medical University, Taichung, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chong-Chi Chiu
- Department of General Surgery, Chi Mei Medical Center, Tainan and Liouying, Taiwan; Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Jieh-Neng Wang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Jhi-Joung Wang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
36
|
Modeling interactions between blocking and permeant cations in the NavMs channel. Eur J Pharmacol 2016; 780:188-93. [PMID: 27020546 DOI: 10.1016/j.ejphar.2016.03.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 02/01/2023]
Abstract
Mechanisms of sodium channel block by local anesthetics (LAs) are still a matter of intensive studies. In the absence of high-resolution structures of eukaryotic channels, atomic details of LA-channel interactions are analyzed using homology modeling. LAs are predicted to access the closed channel through a sidewalk (fenestration) between the channel repeats, bind in a horizontal orientation, and leave its aromatic moiety in the interface. Recent X-ray structure of a bacterial sodium channel NavMs with a cationic molecule Pl1, which is structurally similar to LAs, has confirmed this theoretical prediction and demonstrated a reduced selectivity filter occupancy by the permeant ions in the Pl1-bound channel. However, the nature of the antagonism between LAs and permeant ions is still unclear. Here we used the NavMs structure and Monte Carlo energy minimizations to model Pl1 binding. Our computations predict that Pl1 can displace permeant ion(s) from the selectivity filter by both steric and electrostatic mechanisms. We hypothesize that the electrostatic mechanism is more general, because it is applicable to many LAs and related drugs, which lack a moiety capable to enter the selectivity filter and sterically displace the permeant ion. The electrostatic mechanism is also consistent with the data that various cationic blockers of potassium channels bind in the inner pore without entering the selectivity filter.
Collapse
|
37
|
Wang HG, Zhu W, Kanter RJ, Silva JR, Honeywell C, Gow RM, Pitt GS. A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias. J Mol Cell Cardiol 2016; 92:52-62. [PMID: 26801742 PMCID: PMC4789166 DOI: 10.1016/j.yjmcc.2016.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inherited autosomal dominant mutations in cardiac sodium channels (NaV1.5) cause various arrhythmias, such as long QT syndrome and Brugada syndrome. Although dozens of mutations throughout the protein have been reported, there are few reported mutations within a voltage sensor S4 transmembrane segment and few that are homozygous. Here we report analysis of a novel lidocaine-sensitive recessive mutation, p.R1309H, in the NaV1.5 DIII/S4 voltage sensor in a patient with a complex arrhythmia syndrome. METHODS AND RESULTS We expressed the wild type or mutant NaV1.5 heterologously for analysis with the patch-clamp and voltage clamp fluorometry (VCF) techniques. p.R1309H depolarized the voltage-dependence of activation, hyperpolarized the voltage-dependence of inactivation, and slowed recovery from inactivation, thereby reducing the channel availability at physiologic membrane potentials. Additionally, p.R1309H increased the "late" Na(+) current. The location of the mutation in DIIIS4 prompted testing for a gating pore current. We observed an inward current at hyperpolarizing voltages that likely exacerbates the loss-of-function defects at resting membrane potentials. Lidocaine reduced the gating pore current. CONCLUSIONS The p.R1309H homozygous NaV1.5 mutation conferred both gain-of-function and loss-of-function effects on NaV1.5 channel activity. Reduction of a mutation-induced gating pore current by lidocaine suggested a therapeutic mechanism.
Collapse
Affiliation(s)
- Hong-Gang Wang
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States; Ion Channel Research Unit, Duke University Medical Center, Durham, NC, United States
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Ronald J Kanter
- Division of Cardiology, Nicklaus Children's Hospital, Miami, FL, United States
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Christina Honeywell
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Robert M Gow
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Geoffrey S Pitt
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States; Ion Channel Research Unit, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
38
|
Zapata-Morin PA, Sierra-Valdez FJ, Ruiz-Suárez JC. The interaction of local anesthetics with lipid membranes. J Mol Graph Model 2014; 53:200-205. [PMID: 25181454 DOI: 10.1016/j.jmgm.2014.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 11/28/2022]
Abstract
Molecular Dynamic Simulations are performed to evaluate the interaction of lidocaine, procaine and tetracaine with a lipid membrane. The main interest is to evaluate the structural changes produced by these local anesthetics in the bilayers. Penetration trajectories, interaction energies, entropy changes and an order parameter are calculated to quantify the destabilization of the lipid configurations. We show that such structural parameters give important information to understand how anesthetic agents influence the structure of plasma membranes. Graphic processing units (GPUs) are used in our simulations.
Collapse
|
39
|
Local anesthetic and antiepileptic drug access and binding to a bacterial voltage-gated sodium channel. Proc Natl Acad Sci U S A 2014; 111:13057-62. [PMID: 25136136 DOI: 10.1073/pnas.1408710111] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Voltage-gated sodium (Nav) channels are important targets in the treatment of a range of pathologies. Bacterial channels, for which crystal structures have been solved, exhibit modulation by local anesthetic and anti-epileptic agents, allowing molecular-level investigations into sodium channel-drug interactions. These structures reveal no basis for the "hinged lid"-based fast inactivation, seen in eukaryotic Nav channels. Thus, they enable examination of potential mechanisms of use- or state-dependent drug action based on activation gating, or slower pore-based inactivation processes. Multimicrosecond simulations of NavAb reveal high-affinity binding of benzocaine to F203 that is a surrogate for FS6, conserved in helix S6 of Domain IV of mammalian sodium channels, as well as low-affinity sites suggested to stabilize different states of the channel. Phenytoin exhibits a different binding distribution owing to preferential interactions at the membrane and water-protein interfaces. Two drug-access pathways into the pore are observed: via lateral fenestrations connecting to the membrane lipid phase, as well as via an aqueous pathway through the intracellular activation gate, despite being closed. These observations provide insight into drug modulation that will guide further developments of Nav inhibitors.
Collapse
|
40
|
David JM, Duarte Vogel S, Longo K, Sanchez D, Lawson G. The use of eutectic mixture of lidocaine and prilocaine in mice (Mus musculus) for tail vein injections. Vet Anaesth Analg 2014; 41:654-9. [PMID: 24890386 DOI: 10.1111/vaa.12177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/24/2012] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate a topical local anesthesia technique as a means to prevent and/or diminish pain in mice in a laboratory setting associated with tail vein injections performed by personnel in training. STUDY DESIGN Prospective, randomized experimental trial. ANIMALS Thirty six adult female, 23-28 g CD-1 mice from an in-house training colony. They were acclimated to routine training and handling classes. METHODS Eutectic mixture of local anesthetics (EMLA) cream (2.5% lidocaine/2.5% prilocaine) or a bland ointment control (n = 18) was applied on the tail prior to intravenous injection. The injections were performed by novices, who had never attempted the procedure, and experienced personnel. All participants were blinded to treatment groups. Three injection attempts were allowed per animal. The mice were observed and scored by blinded evaluators for behavioral and physiological changes, including respiratory rate, vocalization, tail flick, and escape behaviors, during and after the injection. RESULTS This study demonstrates that aversive behaviors induced by lateral tail vein injection were not changed by the preemptive application of EMLA cream. The aversive behaviors associated with lateral tail vein injection were significantly affected by the number of injection attempts and the individual's experience level. CONCLUSIONS AND CLINICAL RELEVANCE Topical EMLA cream did not reduce signs of aversive reaction to tail vein injection and thus we did not find support for its use in mouse training programs for tail vein injections.
Collapse
Affiliation(s)
- John M David
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
41
|
Hoshi M, Du XX, Shinlapawittayatorn K, Liu H, Chai S, Wan X, Ficker E, Deschênes I. Brugada syndrome disease phenotype explained in apparently benign sodium channel mutations. ACTA ACUST UNITED AC 2014; 7:123-31. [PMID: 24573164 DOI: 10.1161/circgenetics.113.000292] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is an arrhythmogenic disorder that has been linked to mutations in SCN5A, the gene encoding for the pore-forming α-subunit of the cardiac sodium channel. Typically, BrS mutations in SCN5A result in a reduction of sodium current with some mutations even exhibiting a dominant-negative effect on wild-type (WT) channels, thus leading to an even more prominent decrease in current amplitudes. However, there is also a category of apparently benign (atypical) BrS SCN5A mutations that in vitro demonstrates only minor biophysical defects. It is therefore not clear how these mutations produce a BrS phenotype. We hypothesized that similar to dominant-negative mutations, atypical mutations could lead to a reduction in sodium currents when coexpressed with WT to mimic the heterozygous patient genotype. METHODS AND RESULTS WT and atypical BrS mutations were coexpressed in Human Embryonic Kidney-293 cells, showing a reduction in sodium current densities similar to typical BrS mutations. Importantly, this reduction in sodium current was also seen when the atypical mutations were expressed in rat or human cardiomyocytes. This decrease in current density was the result of reduced surface expression of both mutant and WT channels. CONCLUSIONS Taken together, we have shown how apparently benign SCN5A BrS mutations can lead to the ECG abnormalities seen in patients with BrS through an induced defect that is only present when the mutations are coexpressed with WT channels. Our work has implications for risk management and stratification for some SCN5A-implicated BrS patients.
Collapse
Affiliation(s)
- Malcolm Hoshi
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus and Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH; and Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Xiong Q, Cao L, Hu J, Marian AJ, Hong K. A rare loss-of-function SCN5A variant is associated with lidocaine-induced ventricular fibrillation. THE PHARMACOGENOMICS JOURNAL 2014; 14:372-5. [PMID: 24445991 PMCID: PMC4105333 DOI: 10.1038/tpj.2013.50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/03/2013] [Accepted: 12/09/2013] [Indexed: 01/29/2023]
Abstract
The human genome contains over 4 million variant sites, as compared to the reference genome, including rare sequence variants, which have the potential to exert large phenotypic effects, such as susceptibility to drug toxicity. We report identification and functional characterization of a rare non-synonymous (p.A1427S) variant in the SCN5A gene that was associated with incessant and lethal ventricular tachycardia and fibrillation after administration of lidocaine to a patient with acute myocardial infarction. The variant, located in a highly conserved domain distinct from the predicted lidocaine binding site, decreased peak current density of the sodium channel. With the increasing availability of the whole exome and whole genome sequencing data, it would be possible to identify and characterize rare variants in SCN5A that might predispose to lethal ventricular arrhythmias.
Collapse
Affiliation(s)
- Q Xiong
- Cardiovascular Department, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - L Cao
- Cardiovascular Department, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - J Hu
- Cardiovascular Department, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - A J Marian
- 1] Center for Cardiovascular Genetics at The University of Texas Health Science Center-Houston and, Houston, TX, USA [2] Texas Heart Institute, Houston, TX, USA
| | - K Hong
- 1] Cardiovascular Department, The Second Affiliated Hospital of Nanchang University, Nanchang, China [2] The Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
43
|
Goldschen-Ohm MP, Chanda B. Probing gating mechanisms of sodium channels using pore blockers. Handb Exp Pharmacol 2014; 221:183-201. [PMID: 24737237 DOI: 10.1007/978-3-642-41588-3_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several classes of small molecules and peptides bind at the central pore of voltage-gated sodium channels either from the extracellular or intracellular side of the membrane and block ion conduction through the pore. Biophysical studies that shed light on the chemical nature, accessibility, and kinetics of binding of these naturally occurring and synthetic compounds reveal a wealth of information about how these channels gate. Here, we discuss insights into the structural underpinnings of gating of the channel pore and its coupling to the voltage sensors obtained from pore blockers including site 1 neurotoxins and local anesthetics.
Collapse
|
44
|
Altered sodium channel gating as molecular basis for pain: contribution of activation, inactivation, and resurgent currents. Handb Exp Pharmacol 2014; 221:91-110. [PMID: 24737233 DOI: 10.1007/978-3-642-41588-3_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mutations in voltage-gated sodium channels, especially Nav1.7, can cause the genetic pain syndromes inherited erythromelalgia, small fiber neuropathy, paroxysmal extreme pain disorder, and chronic insensitivity to pain. Functional analysis of these mutations offers the possibility of understanding the potential pathomechanisms of these disease patterns and also may help to explicate the molecular mechanisms underlying pain in normal conditions. The mutations are distributed over the whole channel protein, but nevertheless induce similar changes for each pain syndrome. In this review we focus on their impact on sodium channel gating, which may be conferred via modulation of (1) conformation (affecting all gating characteristics); (2) the amount of voltage-sensing charges (affecting mainly activation); (3) interaction within the protein (e.g., binding of the inactivation linker); and (4) interaction with other proteins (e.g., for generation of resurgent currents). Understanding the molecular basis for each gating mode and its impact on cellular excitability and nociception in each disease type may provide a basis for development of more specific and effective therapeutic tools.
Collapse
|
45
|
Sheets MF, Chen T, Hanck DA. Outward stabilization of the voltage sensor in domain II but not domain I speeds inactivation of voltage-gated sodium channels. Am J Physiol Heart Circ Physiol 2013; 305:H1213-21. [DOI: 10.1152/ajpheart.00225.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the roles of the individual S4 segments in domains I and II to activation and inactivation kinetics of sodium current ( INa) in NaV1.5, we used a tethered biotin and avidin approach after a site-directed cysteine substitution was made in the second outermost Arg in each S4 (DI-R2C and DII-R2C). We first determined the fraction of gating charge contributed by the individual S4's to maximal gating current (Qmax), and found that the outermost Arg residue in each S4 contributed ∼19% to Qmax with minimal contributions by other arginines. Stabilization of the S4's in DI-R2C and DII-R2C was confirmed by measuring the expected reduction in Qmax. In DI-R2C, stabilization resulted in a decrease in peak INa of ∼45%, while its peak current-voltage ( I-V) and voltage-dependent Na channel availability (SSI) curves were nearly unchanged from wild type (WT). In contrast, stabilization of the DII-R2C enhanced activation with a negative shift in the peak I-V relationship by −7 mV and a larger −17 mV shift in the voltage-dependent SSI curve. Furthermore, its INa decay time constants and time-to-peak INa became more rapid than WT. An explanation for these results is that the depolarized conformation of DII-S4, but not DI-S4, affects the receptor for the inactivation particle formed by the interdomain linker between DIII and IV. In addition, the leftward shifts of both activation and inactivation and the decrease in Gmax after stabilization of the DII-S4 support previous studies that showed β-scorpion toxins trap the voltage sensor of DII in an activated conformation.
Collapse
Affiliation(s)
- Michael F. Sheets
- The Nora Eccles Harrison Cardiovascular Research and Training Institute and the Department of Internal Medicine, University of Utah, Salt Lake City, Utah; and
| | - Tiehua Chen
- The Nora Eccles Harrison Cardiovascular Research and Training Institute and the Department of Internal Medicine, University of Utah, Salt Lake City, Utah; and
| | - Dorothy A. Hanck
- The Department of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
46
|
Bourdin CM, Moignot B, Wang L, Murillo L, Juchaux M, Quinchard S, Lapied B, Guérineau NC, Dong K, Legros C. Intron retention in mRNA encoding ancillary subunit of insect voltage-gated sodium channel modulates channel expression, gating regulation and drug sensitivity. PLoS One 2013; 8:e67290. [PMID: 23967047 PMCID: PMC3744522 DOI: 10.1371/journal.pone.0067290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022] Open
Abstract
Insect voltage-gated sodium (Nav) channels are formed by a well-known pore-forming α-subunit encoded by para-like gene and ancillary subunits related to TipE from the mutation “temperature-induced-paralysis locus E.” The role of these ancillary subunits in the modulation of biophysical and pharmacological properties of Na+ currents are not enough documented. The unique neuronal ancillary subunit TipE-homologous protein 1 of Drosophila melanogaster (DmTEH1) strongly enhances the expression of insect Nav channels when heterologously expressed in Xenopus oocytes. Here we report the cloning and functional expression of two neuronal DmTEH1-homologs of the cockroach, Periplaneta americana, PaTEH1A and PaTEH1B, encoded by a single bicistronic gene. In PaTEH1B, the second exon encoding the last 11-amino-acid residues of PaTEH1A is shifted to 3′UTR by the retention of a 96-bp intron-containing coding-message, thus generating a new C-terminal end. We investigated the gating and pharmacological properties of the Drosophila Nav channel variant (DmNav1-1) co-expressed with DmTEH1, PaTEH1A, PaTEH1B or a truncated mutant PaTEH1Δ(270-280) in Xenopus oocytes. PaTEH1B caused a 2.2-fold current density decrease, concomitant with an equivalent α-subunit incorporation decrease in the plasma membrane, compared to PaTEH1A and PaTEH1Δ(270-280). PaTEH1B positively shifted the voltage-dependences of activation and slow inactivation of DmNav1-1 channels to more positive potentials compared to PaTEH1A, suggesting that the C-terminal end of both proteins may influence the function of the voltage-sensor and the pore of Nav channel. Interestingly, our findings showed that the sensitivity of DmNav1-1 channels to lidocaine and to the pyrazoline-type insecticide metabolite DCJW depends on associated TEH1-like subunits. In conclusion, our work demonstrates for the first time that density, gating and pharmacological properties of Nav channels expressed in Xenopus oocytes can be modulated by an intron retention process in the transcription of the neuronal TEH1-like ancillary subunits of P. americana.
Collapse
Affiliation(s)
- Céline M. Bourdin
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Bénédicte Moignot
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Lingxin Wang
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan, United States of America
| | - Laurence Murillo
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
- Laboratoire LIttoral ENvironnement et Sociétés (LIENSs), UMR 7266 CNRS, Institut du Littoral et de l'Environnement, Université de La Rochelle, La Rochelle, France
| | | | - Sophie Quinchard
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Bruno Lapied
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Nathalie C. Guérineau
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, UMR CNRS 6214, INSERM 1083, UFR de Sciences Médicales, Université d'Angers, Angers, France
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan, United States of America
| | - Christian Legros
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, UMR CNRS 6214, INSERM 1083, UFR de Sciences Médicales, Université d'Angers, Angers, France
- * E-mail:
| |
Collapse
|
47
|
Rasolofo J, Poncelet M, Rousseau V, Marec-Berard P. [Analgesic efficacy of topical lidocaine for vaso-occlusive crisis in children with sickle cell disease]. Arch Pediatr 2013; 20:762-7. [PMID: 23731603 DOI: 10.1016/j.arcped.2013.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/26/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022]
Abstract
Pain associated with vaso-occlusive crisis is the main cause of hospitalization in children with sickle cell disease. Recent studies have suggested that pain might have a neuropathic component. Lidocaine patches are commonly prescribed as a topical analgesic in adult neuropathic pain. This study reports the efficacy and safety of such treatment in 6 patients with sickle cell disease, aged 6-18 years, who had been hospitalized for vaso-occlusive crisis after failure of the standard analgesic treatment. These data have led to setting up a confirmatory phase II trial, which is currently underway.
Collapse
Affiliation(s)
- J Rasolofo
- Institut d'hématologie et d'oncologie pédiatrique (IHOP), CHU de Lyon, 28, rue Laennec, 69373 Lyon cedex 08, France
| | | | | | | |
Collapse
|
48
|
Antagonism of lidocaine inhibition by open-channel blockers that generate resurgent Na current. J Neurosci 2013; 33:4976-87. [PMID: 23486968 DOI: 10.1523/jneurosci.3026-12.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Na channels that generate resurgent current express an intracellular endogenous open-channel blocking protein, whose rapid binding upon depolarization and unbinding upon repolarization minimizes fast and slow inactivation. Na channels also bind exogenous compounds, such as lidocaine, which functionally stabilize inactivation. Like the endogenous blocking protein, these use-dependent inhibitors bind most effectively at depolarized potentials, raising the question of how lidocaine-like compounds affect neurons with resurgent Na current. We therefore recorded lidocaine inhibition of voltage-clamped, tetrodotoxin-sensitive Na currents in mouse Purkinje neurons, which express a native blocking protein, and in mouse hippocampal CA3 pyramidal neurons with and without a peptide from the cytoplasmic tail of NaVβ4 (the β4 peptide), which mimics endogenous open-channel block. To control channel states during drug exposure, lidocaine was applied with rapid-solution exchange techniques during steps to specific voltages. Inhibition of Na currents by lidocaine was diminished by either the β4 peptide or the native blocking protein. In peptide-free CA3 cells, prolonging channel opening with a site-3 toxin, anemone toxin II, reduced lidocaine inhibition; this effect was largely occluded by open-channel blockers, suggesting that lidocaine binding is favored by inactivation but prevented by open-channel block. In constant 100 μm lidocaine, current-clamped Purkinje cells continued to fire spontaneously. Similarly, the β4 peptide reduced lidocaine-dependent suppression of spiking in CA3 neurons in slices. Thus, the open-channel blocking protein responsible for resurgent current acts as a natural antagonist of lidocaine. Neurons with resurgent current may therefore be less susceptible to use-dependent Na channel inhibitors used as local anesthetic, antiarrhythmic, and anticonvulsant drugs.
Collapse
|
49
|
Yang Y, Dib-Hajj SD, Zhang J, Zhang Y, Tyrrell L, Estacion M, Waxman SG. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Na(V)1.7 mutant channel. Nat Commun 2013; 3:1186. [PMID: 23149731 DOI: 10.1038/ncomms2184] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/02/2012] [Indexed: 11/09/2022] Open
Abstract
Sodium channel Na(V)1.7 is critical for human pain signalling. Gain-of-function mutations produce pain syndromes including inherited erythromelalgia, which is usually resistant to pharmacotherapy, but carbamazepine normalizes activation of Na(V)1.7-V400M mutant channels from a family with carbamazepine-responsive inherited erythromelalgia. Here we show that structural modelling and thermodynamic analysis predict pharmacoresponsiveness of another mutant channel (S241T) that is located 159 amino acids distant from V400M. Structural modelling reveals that Na(v)1.7-S241T is ~2.4 Å apart from V400M in the folded channel, and thermodynamic analysis demonstrates energetic coupling of V400M and S241T during activation. Atomic proximity and energetic coupling are paralleled by pharmacological coupling, as carbamazepine (30 μM) depolarizes S214T activation, as previously reported for V400M. Pharmacoresponsiveness of S241T to carbamazepine was further evident at a cellular level, where carbamazepine normalized the hyperexcitability of dorsal root ganglion neurons expressing S241T. We suggest that this approach might identify variants that confer enhanced pharmacoresponsiveness on a variety of channels.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Yi Z, Nagao M, Bossev DP. Effect of charged lidocaine on static and dynamic properties of model bio-membranes. Biophys Chem 2012; 160:20-7. [DOI: 10.1016/j.bpc.2011.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/28/2011] [Accepted: 08/30/2011] [Indexed: 11/28/2022]
|