1
|
de Lima Conceição MR, Teixeira-Fonseca JL, Marques LP, Souza DS, Roman-Campos D. Interaction of the antiarrhythmic drug Amiodarone with the sodium channel Na v1.5 depends on the extracellular pH. Eur J Pharmacol 2023; 960:176127. [PMID: 37858835 DOI: 10.1016/j.ejphar.2023.176127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Amiodarone (AMD) is a clinically used drug to treat arrhythmias with significant effect upon the cardiac sodium channel Nav1.5. AMD has a pKa of 6.56, and changes in extracellular pH (pHe) may alter its pharmacological properties. Here we explored how changes in pHe impacts the pharmacological properties of AMD upon human-Nav1.5-sodium-current (INa) and in ex vivo rat hearts. METHODS Embryonic-human-kidney-cells (HEK293) were used to transiently express the human alpha-subunit of NaV1.5 channels and the isolated heart of Wistar rats were used. Patch-Clamp technique was deployed to study INa and for electrocardiogram (ECG) evaluation the ex vivo heart preparation in the Langendorff system was applied. RESULTS The potency of AMD upon peak INa was ∼25x higher in pHe 7.0 when compared to pHe 7.4. Voltage dependence for activation did not differ among all groups. AMD shifted the steady-state inactivation curve to more hyperpolarized potentials, with similar magnitudes for both pHes. The recovery from INa inactivation was delayed in the presence of AMD with similar profile in both pHes. Interestingly, the use-dependent properties of AMD was distinct at pHe 7.0 and 7.4. Finally, AMD was able to change the ex vivo ECG profile, however at pHe 7.0+AMD a larger increase in the RR and QRS duration and in the QT interval when compared to pHe 7.4 was found. CONCLUSIONS The pharmacological properties of AMD upon NaV1.5 and isolated heart preparation depends on the pHe and its use in vivo during extracellular acidosis may cause a distinct biological response in the heart tissue.
Collapse
Affiliation(s)
| | - Jorge Lucas Teixeira-Fonseca
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Brazil
| | - Leisiane Pereira Marques
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Brazil
| | - Diego Santos Souza
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Danilo Roman-Campos
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Brazil.
| |
Collapse
|
2
|
Zhang Z, Brugada P, Weiss JN, Qu Z. Phase 2 Re-Entry Without I to: Role of Sodium Channel Kinetics in Brugada Syndrome Arrhythmias. JACC Clin Electrophysiol 2023; 9:2459-2474. [PMID: 37831035 PMCID: PMC11348283 DOI: 10.1016/j.jacep.2023.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND In Brugada syndrome (BrS), phase 2 re-excitation/re-entry (P2R) induced by the transient outward potassium current (Ito) is a proposed arrhythmia mechanism; yet, the most common genetic defects are loss-of-function sodium channel mutations. OBJECTIVES The authors used computer simulations to investigate how sodium channel dysfunction affects P2R-mediated arrhythmogenesis in the presence and absence of Ito. METHODS Computer simulations were carried out in 1-dimensional cables and 2-dimensional tissue using guinea pig and human ventricular action potential models. RESULTS In the presence of Ito sufficient to generate robust P2R, reducing sodium current (INa) peak amplitude alone only slightly potentiated P2R. When INa inactivation kinetics were also altered to simulate reported effects of BrS mutations and sodium channel blockers, however, P2R occurred even in the absence of Ito. These effects could be potentiated by delaying L-type calcium channel activation or increasing ATP-sensitive potassium current, consistent with experimental and clinical findings. INa-mediated P2R also accounted for sex-related, day and night-related, and fever-related differences in arrhythmia risk in BrS patients. CONCLUSIONS Altered INa kinetics synergize powerfully with reduced INa amplitude to promote P2R-induced arrhythmias in BrS in the absence of Ito, establishing a robust mechanistic link between altered INa kinetics and the P2R-mediated arrhythmia mechanism.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, China; Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - James N Weiss
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Zhilin Qu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
3
|
Docken SS, Clancy CE, Lewis TJ. Rate-dependent effects of state-specific sodium channel blockers in cardiac tissue: Insights from idealized models. J Theor Biol 2023; 573:111595. [PMID: 37562674 DOI: 10.1016/j.jtbi.2023.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/08/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
A common side effect of pharmaceutical drugs is an increased propensity for cardiac arrhythmias. Many drugs bind to cardiac ion-channels in a state-specific manner, which alters the ionic conductances in complicated ways, making it difficult to identify the mechanisms underlying pro-arrhythmic drug effects. To better understand the fundamental mechanisms underlying the diverse effects of state-dependent sodium (Na+) channel blockers on cellular excitability, we consider two canonical motifs of drug-ion-channel interactions and compare the effects of Na+ channel blockers on the rate-dependence of peak upstroke velocity, conduction velocity, and vulnerable window size. In the literature, both motifs are referred to as "guarded receptor," but here we distinguish between state-specific binding that does not alter channel gating (referred to here as "guarded receptor") and state-specific binding that blocks certain gating transitions ("gate immobilization"). For each drug binding motif, we consider drugs that bind to the inactivated state and drugs that bind to the non-inactivated state of the Na+ channel. Exploiting the idealized nature of the canonical binding motifs, we identify the fundamental mechanisms underlying the effects on excitability of the various binding interactions. Specifically, we derive the voltage-dependence of the drug binding time constants and the equilibrium fractions of channels bound to drug, and we then derive a formula that incorporates these time constants and equilibrium fractions to elucidate the fundamental mechanisms. In the case of charged drug, we find that drugs that bind to inactivated channels exhibit greater rate-dependence than drugs that bind to non-inactivated channels. For neutral drugs, the effects of guarded receptor interactions are rate-independent, and we describe a novel mechanism for reverse rate-dependence resulting from neutral drug binding to non-inactivated channels via the gate immobilization motif.
Collapse
Affiliation(s)
- Steffen S Docken
- Department of Mathematics, University of California Davis, Davis, CA, USA; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Timothy J Lewis
- Department of Mathematics, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
Zheng Y, Deschênes I. Protein 14-3-3 Influences the Response of the Cardiac Sodium Channel Na v1.5 to Antiarrhythmic Drugs. J Pharmacol Exp Ther 2023; 384:417-428. [PMID: 36460339 PMCID: PMC9976794 DOI: 10.1124/jpet.122.001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The cardiac sodium channel Nav1.5 is a key contributor to the cardiac action potential, and dysregulations in Nav1.5 can lead to cardiac arrhythmias. Nav1.5 is a target of numerous antiarrhythmic drugs (AADs). Previous studies identified the protein 14-3-3 as a regulator of Nav1.5 biophysical coupling. Inhibition of 14-3-3 can remove the Nav1.5 functional coupling and has been shown to inhibit the dominant-negative effect of Brugada syndrome mutations. However, it is unknown whether the coupling regulation is involved with AADs' modulation of Nav1.5. Indeed, AADs could reveal important structural and functional information about Nav1.5 coupling. Here, we investigated the modulation of Nav1.5 by four classic AADs, quinidine, lidocaine, mexiletine, and flecainide, in the presence of 14-3-3 inhibition. The experiments were carried out by high-throughput patch-clamp experiments in an HEK293 Nav1.5 stable cell line. We found that 14-3-3 inhibition can enhance acute block by quinidine, whereas the block by other drugs was not affected. We also saw changes in the use- and dose-dependency of quinidine, lidocaine, and mexiletine when inhibiting 14-3-3. Inhibiting 14-3-3 also shifted the channel activation toward hyperpolarized voltages in the presence of the four drugs studied and slowed the recovery of inactivation in the presence of quinidine. Our results demonstrated that the protein 14-3-3 and Nav1.5 coupling could impact the effects of AADs. Therefore, 14-3-3 and Nav1.5 coupling are new mechanisms to consider in the development of drugs targeting Nav1.5. SIGNIFICANCE STATEMENT: The cardiac sodium channel Nav1.5 is a target of commonly used antiarrhythmic drugs, and Nav1.5 function is regulated by the protein 14-3-3. The present study demonstrated that the regulation of Nav1.5 by 14-3-3 influences Nav1.5's response to antiarrhythmic drugs. This study provides detailed information about how 14-3-3 differentially regulated Nav1.5 functions under the influence of different drug subtypes. These findings will guide future molecular studies investigating Nav1.5 and antiarrhythmic drugs outcomes.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio (Y.Z., I.D.) and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Y.Z.)
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio (Y.Z., I.D.) and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Y.Z.)
| |
Collapse
|
5
|
Tukker AM, Vrolijk MF, van Kleef RGDM, Sijm DTHM, Westerink RHS. Mixture effects of tetrodotoxin (TTX) and drugs targeting voltage-gated sodium channels on spontaneous neuronal activity in vitro. Toxicol Lett 2023; 373:53-61. [PMID: 36375636 DOI: 10.1016/j.toxlet.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Tetrodotoxin (TTX) potently inhibits TTX-sensitive voltage-gated sodium (NaV) channels in nerve and muscle cells, potentially resulting in depressed neurotransmission, paralysis and death from respiratory failure. Since a wide range of pharmaceutical drugs is known to also act on NaV channels, the use of medicines could predispose individuals to a higher susceptibility towards TTX toxicity. We therefore first assessed the inhibitory effect of selected medicines that act on TTX-sensitive (Riluzole, Chloroquine, Fluoxetine, Valproic acid, Lamotrigine, Lidocaine) and TTX-resistant (Carbamazepine, Mexiletine, Flecainide) NaV channels on spontaneous neuronal activity of rat primary cortical cultures grown on microelectrode arrays (MEA). After establishing concentration-effect curves, binary mixtures of the medicines with TTX at calculated NOEC, IC20 and IC50 values were used to determine if pharmacodynamic interactions occur between TTX and these drugs on spontaneous neuronal activity. At IC20 and IC50 values, all medicines significantly increased the inhibitory effect of TTX on spontaneous neuronal activity of rat cortical cells in vitro. Subsequent experiments using human iPSC-derived neuronal co-cultures grown on MEAs confirmed the ability of selected medicines (Carbamazepine, Flecainide, Riluzole, Lidocaine) to inhibit spontaneous neuronal activity. Despite the need for additional experiments using human iPSC-derived neuronal co-cultures, our combined data already highlight the importance of identifying and including vulnerable risk groups in the risk assessment of TTX.
Collapse
Affiliation(s)
- Anke M Tukker
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands
| | - Misha F Vrolijk
- Faculty of Health, Medicine and Life Sciences, Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands
| | - Dick T H M Sijm
- Faculty of Health, Medicine and Life Sciences, Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, the Netherlands; Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, the Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands.
| |
Collapse
|
6
|
Stable expression of human Nav1.5 for high-throughput cardiac safety assessment. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Takahashi F, Matsuda K, Nakazawa T, Mori S, Yoshida M, Shimizu R, Tatsumi H, Jin J. Synthesis and characterization of molecularly imprinted polymers for detection of the local anesthetic lidocaine in urine. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Fumiki Takahashi
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Kazusane Matsuda
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Tomoyuki Nakazawa
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Shuki Mori
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Masachika Yoshida
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Ryo Shimizu
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Hirosuke Tatsumi
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Jiye Jin
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| |
Collapse
|
8
|
Abstract
Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.
Collapse
Affiliation(s)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - James A. Fraser
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
9
|
Rapedius M, Obergrussberger A, Humphries ESA, Scholz S, Rinke-Weiss I, Goetze TA, Brinkwirth N, Rotordam MG, Strassmaier T, Randolph A, Friis S, Liutkute A, Seibertz F, Voigt N, Fertig N. There is no F in APC: Using physiological fluoride-free solutions for high throughput automated patch clamp experiments. Front Mol Neurosci 2022; 15:982316. [PMID: 36072300 PMCID: PMC9443850 DOI: 10.3389/fnmol.2022.982316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fluoride has been used in the internal recording solution for manual and automated patch clamp experiments for decades because it helps to improve the seal resistance and promotes longer lasting recordings. In manual patch clamp, fluoride has been used to record voltage-gated Na (NaV) channels where seal resistance and access resistance are critical for good voltage control. In automated patch clamp, suction is applied from underneath the patch clamp chip to attract a cell to the hole and obtain a good seal. Since the patch clamp aperture cannot be moved to improve the seal like the patch clamp pipette in manual patch clamp, automated patch clamp manufacturers use internal fluoride to improve the success rate for obtaining GΩ seals. However, internal fluoride can affect voltage-dependence of activation and inactivation, as well as affecting internal second messenger systems and therefore, it is desirable to have the option to perform experiments using physiological, fluoride-free internal solution. We have developed an approach for high throughput fluoride-free recordings on a 384-well based automated patch clamp system with success rates >40% for GΩ seals. We demonstrate this method using hERG expressed in HEK cells, as well as NaV1.5, NaV1.7, and KCa3.1 expressed in CHO cells. We describe the advantages and disadvantages of using fluoride and provide examples of where fluoride can be used, where caution should be exerted and where fluoride-free solutions provide an advantage over fluoride-containing solutions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Aiste Liutkute
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen, Germany
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
10
|
Mazola Y, Márquez Montesinos JCE, Ramírez D, Zúñiga L, Decher N, Ravens U, Yarov-Yarovoy V, González W. Common Structural Pattern for Flecainide Binding in Atrial-Selective K v1.5 and Na v1.5 Channels: A Computational Approach. Pharmaceutics 2022; 14:1356. [PMID: 35890252 PMCID: PMC9318806 DOI: 10.3390/pharmaceutics14071356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Its treatment includes antiarrhythmic drugs (AADs) to modulate the function of cardiac ion channels. However, AADs have been limited by proarrhythmic effects, non-cardiovascular toxicities as well as often modest antiarrhythmic efficacy. Theoretical models showed that a combined blockade of Nav1.5 (and its current, INa) and Kv1.5 (and its current, IKur) ion channels yield a synergistic anti-arrhythmic effect without alterations in ventricles. We focused on Kv1.5 and Nav1.5 to search for structural similarities in their binding site (BS) for flecainide (a common blocker and widely prescribed AAD) as a first step for prospective rational multi-target directed ligand (MTDL) design strategies. We present a computational workflow for a flecainide BS comparison in a flecainide-Kv1.5 docking model and a solved structure of the flecainide-Nav1.5 complex. The workflow includes docking, molecular dynamics, BS characterization and pattern matching. We identified a common structural pattern in flecainide BS for these channels. The latter belongs to the central cavity and consists of a hydrophobic patch and a polar region, involving residues from the S6 helix and P-loop. Since the rational MTDL design for AF is still incipient, our findings could advance multi-target atrial-selective strategies for AF treatment.
Collapse
Affiliation(s)
- Yuliet Mazola
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
| | - José C. E. Márquez Montesinos
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Leandro Zúñiga
- Escuela de Medicina, Centro de Investigaciones Médicas, Universidad de Talca, Talca 3460000, Chile;
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 35043 Marburg, Germany;
| | - Ursula Ravens
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts-Herzzentrum Freiburg Bad Krotzingen, 79110 Freiburg im Breisgau, Germany;
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA;
| | - Wendy González
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Talca 3530000, Chile
| |
Collapse
|
11
|
Jiang D, Zhang J, Xia Z. Structural Advances in Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:908867. [PMID: 35721169 PMCID: PMC9204039 DOI: 10.3389/fphar.2022.908867] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are responsible for the rapid rising-phase of action potentials in excitable cells. Over 1,000 mutations in NaV channels are associated with human diseases including epilepsy, periodic paralysis, arrhythmias and pain disorders. Natural toxins and clinically-used small-molecule drugs bind to NaV channels and modulate their functions. Recent advances from cryo-electron microscopy (cryo-EM) structures of NaV channels reveal invaluable insights into the architecture, activation, fast inactivation, electromechanical coupling, ligand modulation and pharmacology of eukaryotic NaV channels. These structural analyses not only demonstrate molecular mechanisms for NaV channel structure and function, but also provide atomic level templates for rational development of potential subtype-selective therapeutics. In this review, we summarize recent structural advances of eukaryotic NaV channels, highlighting the structural features of eukaryotic NaV channels as well as distinct modulation mechanisms by a wide range of modulators from natural toxins to synthetic small-molecules.
Collapse
Affiliation(s)
- Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daohua Jiang,
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Bannister ML, MacLeod KT, George CH. Moving in the right direction: elucidating the mechanisms of interaction between flecainide and the cardiac ryanodine receptor. Br J Pharmacol 2022; 179:2558-2563. [PMID: 34698387 DOI: 10.1111/bph.15718] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022] Open
Abstract
Flecainide is used to treat catecholaminergic polymorphic ventricular tachycardia (CPVT), an arrhythmia caused by disrupted cellular Ca2+ handling following β-adrenergic stimulation. The clinical efficacy of flecainide in this context involves complex effects on multiple ion channels that may be influenced by the disease state. A compelling narrative has been constructed around flecainide's nonselective block of sarcoplasmic reticulum (SR) lumen-to-cytoplasm Ca2+ release through intracellular calcium release channels (RyR2). However, ion fluxes across the SR membrane during heart contraction are bidirectional, and here, we review experimental evidence that flecainide's principal action on RyR2 involves the partial block of ion flow in the cytoplasm-to-lumen direction (i.e., flecainide inhibits RyR2-mediated SR 'countercurrent'). Experimental approaches that could advance new knowledge on the mechanism of RyR2 block by flecainide are proposed. Some impediments to progress in this area, that must be overcome to enable the development of superior drugs to treat CPVT, are also considered.
Collapse
Affiliation(s)
- Mark L Bannister
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Kenneth T MacLeod
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, UK
| | | |
Collapse
|
13
|
Zhu W, Wang W, Angsutararux P, Mellor RL, Isom LL, Nerbonne JM, Silva JR. Modulation of the effects of class Ib antiarrhythmics on cardiac NaV1.5-encoded channels by accessory NaVβ subunits. JCI Insight 2021; 6:e143092. [PMID: 34156986 PMCID: PMC8410097 DOI: 10.1172/jci.insight.143092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/17/2021] [Indexed: 01/28/2023] Open
Abstract
Native myocardial voltage-gated sodium (NaV) channels function in macromolecular complexes comprising a pore-forming (α) subunit and multiple accessory proteins. Here, we investigated the impact of accessory NaVβ1 and NaVβ3 subunits on the functional effects of 2 well-known class Ib antiarrhythmics, lidocaine and ranolazine, on the predominant NaV channel α subunit, NaV1.5, expressed in the mammalian heart. We showed that both drugs stabilized the activated conformation of the voltage sensor of domain-III (DIII-VSD) in NaV1.5. In the presence of NaVβ1, the effect of lidocaine on the DIII-VSD was enhanced, whereas the effect of ranolazine was abolished. Mutating the main class Ib drug-binding site, F1760, affected but did not abolish the modulation of drug block by NaVβ1/β3. Recordings from adult mouse ventricular myocytes demonstrated that loss of Scn1b (NaVβ1) differentially affected the potencies of lidocaine and ranolazine. In vivo experiments revealed distinct ECG responses to i.p. injection of ranolazine or lidocaine in WT and Scn1b-null animals, suggesting that NaVβ1 modulated drug responses at the whole-heart level. In the human heart, we found that SCN1B transcript expression was 3 times higher in the atria than ventricles, differences that could, in combination with inherited or acquired cardiovascular disease, dramatically affect patient response to class Ib antiarrhythmic therapies.
Collapse
Affiliation(s)
- Wandi Zhu
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Wei Wang
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Paweorn Angsutararux
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rebecca L Mellor
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeanne M Nerbonne
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Docken SS, Clancy CE, Lewis TJ. Rate-dependent effects of lidocaine on cardiac dynamics: Development and analysis of a low-dimensional drug-channel interaction model. PLoS Comput Biol 2021; 17:e1009145. [PMID: 34185778 PMCID: PMC8274935 DOI: 10.1371/journal.pcbi.1009145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/12/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022] Open
Abstract
State-dependent sodium channel blockers are often prescribed to treat cardiac arrhythmias, but many sodium channel blockers are known to have pro-arrhythmic side effects. While the anti and proarrhythmic potential of a sodium channel blocker is thought to depend on the characteristics of its rate-dependent block, the mechanisms linking these two attributes are unclear. Furthermore, how specific properties of rate-dependent block arise from the binding kinetics of a particular drug is poorly understood. Here, we examine the rate-dependent effects of the sodium channel blocker lidocaine by constructing and analyzing a novel drug-channel interaction model. First, we identify the predominant mode of lidocaine binding in a 24 variable Markov model for lidocaine-sodium channel interaction by Moreno et al. Specifically, we find that (1) the vast majority of lidocaine bound to sodium channels is in the neutral form, i.e., the binding of charged lidocaine to sodium channels is negligible, and (2) neutral lidocaine binds almost exclusively to inactivated channels and, upon binding, immobilizes channels in the inactivated state. We then develop a novel 3-variable lidocaine-sodium channel interaction model that incorporates only the predominant mode of drug binding. Our low-dimensional model replicates an extensive amount of the voltage-clamp data used to parameterize the Moreno et al. model. Furthermore, the effects of lidocaine on action potential upstroke velocity and conduction velocity in our model are similar to those predicted by the Moreno et al. model. By exploiting the low-dimensionality of our model, we derive an algebraic expression for level of rate-dependent block as a function of pacing frequency, restitution properties, diastolic and plateau potentials, and drug binding rate constants. Our model predicts that the level of rate-dependent block is sensitive to alterations in restitution properties and increases in diastolic potential, but it is insensitive to variations in the shape of the action potential waveform and lidocaine binding rates. Cardiac arrhythmias are often treated with drugs that block and alter the kinetics of membrane sodium channels. However, different drugs interact with sodium channels in different ways, and the complexity of the drug-channel interactions makes it difficult to predict whether a particular sodium channel blocker will reduce or increase the probability of cardiac arrhythmias. Here, we characterize the binding kinetics and effects on electrical signal propagation of the antiarrhythmic drug lidocaine, which is an archetypical example of a safe sodium channel blocker. Through analysis of a high-dimensional biophysically-detailed model of lidocaine-sodium channel interaction, we identify the predominant lidocaine binding pathway. We then incorporate only the key features of the predominant binding pathway into a novel low-dimensional model of lidocaine-sodium channel interaction. Our analysis of the low-dimensional model characterizes how the key binding properties of lidocaine affect electrical signal generation and propagation in the heart, and therefore our results are a step towards understanding the features that differentiate pro- and antiarrhythmic sodium channel blockers.
Collapse
Affiliation(s)
- Steffen S. Docken
- Department of Mathematics, University of California Davis, Davis, California, United States of America
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Timothy J. Lewis
- Department of Mathematics, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Li Z, Jin X, Wu T, Huang G, Wu K, Lei J, Pan X, Yan N. Structural Basis for Pore Blockade of the Human Cardiac Sodium Channel Na v 1.5 by the Antiarrhythmic Drug Quinidine*. Angew Chem Int Ed Engl 2021; 60:11474-11480. [PMID: 33684260 DOI: 10.1002/anie.202102196] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 12/19/2022]
Abstract
Nav 1.5, the primary voltage-gated Na+ (Nav ) channel in heart, is a major target for class I antiarrhythmic agents. Here we present the cryo-EM structure of full-length human Nav 1.5 bound to quinidine, a class Ia antiarrhythmic drug, at 3.3 Å resolution. Quinidine is positioned right beneath the selectivity filter in the pore domain and coordinated by residues from repeats I, III, and IV. Pore blockade by quinidine is achieved through both direct obstruction of the ion permeation path and induced rotation of an invariant Tyr residue that tightens the intracellular gate. Structural comparison with a truncated rat Nav 1.5 in the presence of flecainide, a class Ic agent, reveals distinct binding poses for the two antiarrhythmics within the pore domain. Our work reported here, along with previous studies, reveals the molecular basis for the mechanism of action of class I antiarrhythmic drugs.
Collapse
Affiliation(s)
- Zhangqiang Li
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueqin Jin
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tong Wu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Kun Wu
- Medical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaojing Pan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
16
|
Li Z, Jin X, Wu T, Huang G, Wu K, Lei J, Pan X, Yan N. Structural Basis for Pore Blockade of the Human Cardiac Sodium Channel Na
v
1.5 by the Antiarrhythmic Drug Quinidine**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhangqiang Li
- State Key Laboratory of Membrane Biology Beijing Advanced Innovation Center for Structural Biology Tsinghua-Peking Joint Center for Life Science School of Life Sciences Tsinghua University Beijing 100084 China
| | - Xueqin Jin
- State Key Laboratory of Membrane Biology Beijing Advanced Innovation Center for Structural Biology Tsinghua-Peking Joint Center for Life Science School of Life Sciences Tsinghua University Beijing 100084 China
| | - Tong Wu
- State Key Laboratory of Membrane Biology Beijing Advanced Innovation Center for Structural Biology Tsinghua-Peking Joint Center for Life Science School of Life Sciences Tsinghua University Beijing 100084 China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province Institute of Biology, Westlake Institute for Advanced Study School of Life Sciences Westlake University Hangzhou 310024 Zhejiang Province China
| | - Kun Wu
- Medical Research Center Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation Beijing Chao-Yang Hospital Capital Medical University Beijing 100020 China
| | - Jianlin Lei
- Technology Center for Protein Sciences Ministry of Education Key Laboratory of Protein Sciences School of Life Sciences Tsinghua University Beijing 100084 China
| | - Xiaojing Pan
- State Key Laboratory of Membrane Biology Beijing Advanced Innovation Center for Structural Biology Tsinghua-Peking Joint Center for Life Science School of Life Sciences Tsinghua University Beijing 100084 China
| | - Nieng Yan
- Department of Molecular Biology Princeton University Princeton NJ 08544 USA
| |
Collapse
|
17
|
Kryshtal DO, Blackwell DJ, Egly CL, Smith AN, Batiste SM, Johnston JN, Laver DR, Knollmann BC. RYR2 Channel Inhibition Is the Principal Mechanism of Flecainide Action in CPVT. Circ Res 2021; 128:321-331. [PMID: 33297863 PMCID: PMC7864884 DOI: 10.1161/circresaha.120.316819] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE The class Ic antiarrhythmic drug flecainide prevents ventricular tachyarrhythmia in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease caused by hyperactive RyR2 (cardiac ryanodine receptor) mediated calcium (Ca) release. Although flecainide inhibits single RyR2 channels in vitro, reports have claimed that RyR2 inhibition by flecainide is not relevant for its mechanism of antiarrhythmic action and concluded that sodium channel block alone is responsible for flecainide's efficacy in CPVT. OBJECTIVE To determine whether RyR2 block independently contributes to flecainide's efficacy for suppressing spontaneous sarcoplasmic reticulum Ca release and for preventing ventricular tachycardia in vivo. METHODS AND RESULTS We synthesized N-methylated flecainide analogues (QX-flecainide and N-methyl flecainide) and showed that N-methylation reduces flecainide's inhibitory potency on RyR2 channels incorporated into artificial lipid bilayers. N-methylation did not alter flecainide's inhibitory activity on human cardiac sodium channels expressed in HEK293T cells. Antiarrhythmic efficacy was tested utilizing a Casq2 (cardiac calsequestrin) knockout (Casq2-/-) CPVT mouse model. In membrane-permeabilized Casq2-/- cardiomyocytes-lacking intact sarcolemma and devoid of sodium channel contribution-flecainide, but not its analogues, suppressed RyR2-mediated Ca release at clinically relevant concentrations. In voltage-clamped, intact Casq2-/- cardiomyocytes pretreated with tetrodotoxin to inhibit sodium channels and isolate the effect of flecainide on RyR2, flecainide significantly reduced the frequency of spontaneous sarcoplasmic reticulum Ca release, while QX-flecainide and N-methyl flecainide did not. In vivo, flecainide effectively suppressed catecholamine-induced ventricular tachyarrhythmias in Casq2-/- mice, whereas N-methyl flecainide had no significant effect on arrhythmia burden, despite comparable sodium channel block. CONCLUSIONS Flecainide remains an effective inhibitor of RyR2-mediated arrhythmogenic Ca release even when cardiac sodium channels are blocked. In mice with CPVT, sodium channel block alone did not prevent ventricular tachycardia. Hence, RyR2 channel inhibition likely constitutes the principal mechanism of antiarrhythmic action of flecainide in CPVT.
Collapse
Affiliation(s)
- Dmytro O Kryshtal
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (D.O.K., D.J.B., C.L.E., B.C.K.)
| | - Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (D.O.K., D.J.B., C.L.E., B.C.K.)
| | - Christian L Egly
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (D.O.K., D.J.B., C.L.E., B.C.K.)
| | - Abigail N Smith
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN (A.N.S., S.M.B., J.N.J.)
| | - Suzanne M Batiste
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN (A.N.S., S.M.B., J.N.J.)
| | - Jeffrey N Johnston
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN (A.N.S., S.M.B., J.N.J.)
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia (D.R.L.)
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (D.O.K., D.J.B., C.L.E., B.C.K.)
| |
Collapse
|
18
|
Földi MC, Pesti K, Zboray K, Toth AV, Hegedűs T, Málnási-Csizmadia A, Lukacs P, Mike A. The mechanism of non-blocking inhibition of sodium channels revealed by conformation-selective photolabeling. Br J Pharmacol 2021; 178:1200-1217. [PMID: 33450052 DOI: 10.1111/bph.15365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sodium channel inhibitors can be used to treat hyperexcitability-related diseases, including epilepsies, pain syndromes, neuromuscular disorders and cardiac arrhythmias. The applicability of these drugs is limited by their nonspecific effect on physiological function. They act mainly by sodium channel block and in addition by modulation of channel kinetics. While channel block inhibits healthy and pathological tissue equally, modulation can preferentially inhibit pathological activity. An ideal drug designed to target the sodium channels of pathological tissue would act predominantly by modulation. Thus far, no such drug has been described. EXPERIMENTAL APPROACH Patch-clamp experiments with ultra-fast solution exchange and photolabeling-coupled electrophysiology were applied to describe the unique mechanism of riluzole on Nav1.4 sodium channels. In silico docking experiments were used to study the molecular details of binding. KEY RESULTS We present evidence that riluzole acts predominantly by non-blocking modulation. We propose that, being a relatively small molecule, riluzole is able to stay bound to the binding site, but nonetheless stay off the conduction pathway, by residing in one of the fenestrations. We demonstrate how this mechanism can be recognized. CONCLUSIONS AND IMPLICATIONS Our results identify riluzole as the prototype of this new class of sodium channel inhibitors. Drugs of this class are expected to selectively prevent hyperexcitability, while having minimal effect on cells firing at a normal rate from a normal resting potential.
Collapse
Affiliation(s)
- Mátyás C Földi
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Krisztina Pesti
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Katalin Zboray
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Adam V Toth
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - András Málnási-Csizmadia
- Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Peter Lukacs
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Arpad Mike
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
19
|
Cano J, Zorio E, Mazzanti A, Arnau MÁ, Trenor B, Priori SG, Saiz J, Romero L. Ranolazine as an Alternative Therapy to Flecainide for SCN5A V411M Long QT Syndrome Type 3 Patients. Front Pharmacol 2020; 11:580481. [PMID: 33519442 PMCID: PMC7845660 DOI: 10.3389/fphar.2020.580481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
The prolongation of the QT interval represents the main feature of the long QT syndrome (LQTS), a life-threatening genetic disease. The heterozygous SCN5A V411M mutation of the human sodium channel leads to a LQTS type 3 with severe proarrhythmic effects due to an increase in the late component of the sodium current (INaL). The two sodium blockers flecainide and ranolazine are equally recommended by the current 2015 ESC guidelines to treat patients with LQTS type 3 and persistently prolonged QT intervals. However, awareness of pro-arrhythmic effects of flecainide in LQTS type 3 patients arose upon the study of the SCN5A E1784K mutation. Regarding SCN5A V411M individuals, flecainide showed good results albeit in a reduced number of patients and no evidence supporting the use of ranolazine has ever been released. Therefore, we ought to compare the effect of ranolazine and flecainide in a SCN5A V411M model using an in-silico modeling and simulation approach. We collected clinical data of four patients. Then, we fitted four Markovian models of the human sodium current (INa) to experimental and clinical data. Two of them correspond to the wild type and the heterozygous SCN5A V411M scenarios, and the other two mimic the effects of flecainide and ranolazine on INa. Next, we inserted them into three isolated cell action potential (AP) models for endocardial, midmyocardial and epicardial cells and in a one-dimensional tissue model. The SCN5A V411M mutation produced a 15.9% APD90 prolongation in the isolated endocardial cell model, which corresponded to a 14.3% of the QT interval prolongation in a one-dimensional strand model, in keeping with clinical observations. Although with different underlying mechanisms, flecainide and ranolazine partially countered this prolongation at the isolated endocardial model by reducing the APD90 by 8.7 and 4.3%, and the QT interval by 7.2 and 3.2%, respectively. While flecainide specifically targeted the mutation-induced increase in peak INaL, ranolazine reduced it during the entire AP. Our simulations also suggest that ranolazine could prevent early afterdepolarizations triggered by the SCN5A V411M mutation during bradycardia, as flecainide. We conclude that ranolazine could be used to treat SCN5A V411M patients, specifically when flecainide is contraindicated.
Collapse
Affiliation(s)
- Jordi Cano
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València, Valencia, España
| | - Esther Zorio
- Unidad de Cardiopatías Familiares y Muerte Súbita, Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, España.,Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Andrea Mazzanti
- Molecular Cardiology, IRCCS, Istituti Clinici Scientifici Maugeri, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Miguel Ángel Arnau
- Unidad de Cardiopatías Familiares y Muerte Súbita, Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València, Valencia, España
| | - Silvia G Priori
- Molecular Cardiology, IRCCS, Istituti Clinici Scientifici Maugeri, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València, Valencia, España
| | - Lucia Romero
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València, Valencia, España
| |
Collapse
|
20
|
Nadel J, Kumarasinghe G, Subbiah R. The Unpaceable Heart. JACC Case Rep 2020; 2:595-597. [PMID: 34317301 PMCID: PMC8298662 DOI: 10.1016/j.jaccas.2020.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 11/18/2022]
Abstract
This is a case of flecainide toxicity in a patient with a permanent pacemaker. This case not only highlights the effects of flecainide toxicity on surface electrocardiography but how toxicity effects pacemaker function and its ability to transvenously pace the heart. The report provides some discussion of the management options for flecainide toxicity. (Level of Difficulty: Beginner.).
Collapse
Affiliation(s)
- James Nadel
- St. Vincent’s Hospital, Sydney, New South Wales, Australia
- Address for correspondence: Dr. James Nadel, St. Vincent’s Hospital, Victoria Street, Darlinghurst 2010, Sydney, Australia.
| | | | - Rajesh Subbiah
- St. Vincent’s Hospital, Sydney, New South Wales, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Echt DS, Ruskin JN. Use of Flecainide for the Treatment of Atrial Fibrillation. Am J Cardiol 2020; 125:1123-1133. [PMID: 32044037 DOI: 10.1016/j.amjcard.2019.12.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/26/2023]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with substantial morbidity and impairment of quality of life. Restoration and maintenance of normal sinus rhythm is a desirable goal for many patients with AF; however, this strategy is limited by the relatively small number of antiarrhythmic drugs (AADs) available for AF rhythm control. Although it is recommended in current medical guidelines as first-line therapy for patients without structural heart disease, the use of flecainide has been curtailed since the completion of the Cardiac Arrhythmia Suppression Trial. In clinical trials and real-world use, flecainide has proven to be more effective than other AADs for the acute termination of recent onset AF. Flecainide is also moderately effective and, with the exception of amiodarone, equivalent to other AADs for the chronic suppression of paroxysmal and persistent AF. In patients without structural heart disease, flecainide has been demonstrated to be safe and well tolerated relative to other AADs. Despite this favorable profile, flecainide is underutilized, likely due to a perceived risk of ventricular proarrhythmia, a concern that has not been borne out in patients without underlying structural heart disease. Guidelines for administration and use of flecainide are summarized in this review.
Collapse
Affiliation(s)
| | - Jeremy N Ruskin
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
22
|
Haffajee C, Tandon K. The Unpaceable Heart: Flecainide Toxicity? JACC Case Rep 2020; 2:598-599. [PMID: 34317302 PMCID: PMC8298776 DOI: 10.1016/j.jaccas.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Charles Haffajee
- Beth Israel Deaconess Medical Center, Cardiovascular Division/Cardiovascular Institute, Boston, Massachusetts
| | - Kunal Tandon
- Beth Israel Deaconess Medical Center, Cardiovascular Division/Cardiovascular Institute, Boston, Massachusetts
| |
Collapse
|
23
|
Zakir HM, Masuda Y, Kitagawa J. A novel approach for detection of functional expression of TRPV1 channels on regenerated neurons following nerve injury. J Oral Sci 2020; 62:136-139. [PMID: 32074545 DOI: 10.2334/josnusd.19-0356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a polymodal receptor channel, which plays an important role in pain transduction. It is important to understand the functional expression of this channel under neuropathic pain (NP) conditions. A novel method was used to investigate the dynamics of functional expression of this channel on regenerated neurons under NP conditions following trigeminal nerve injury using a combination of a permanently charged sodium channel blocker (QX-314) and a TRPV1 agonist (capsaicin; QX-CAP). The combination was originally introduced as a local anesthetic. Synchronization between the local anesthetic effect of QX-CAP and TRPV1 expression on regenerated neurons was observed following the nerve injury. QX-CAP had no local anesthetic effect under NP conditions 2 weeks after the injury when TRPV1 expression on regenerated neurons was low. However, this combination was effective under NP conditions 3 and 4 weeks following injury when TRPV1 expression in regenerated neurons was moderate to high. The current review, discusses the potential of QX-314 as a local anesthetic and a novel approach of using QX-CAP to reveal the dynamics of functional expression of TRPV1 on regenerated neurons following trigeminal nerve injury.
Collapse
Affiliation(s)
- Hossain M Zakir
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University
| | - Yuji Masuda
- Institute for Oral Science, Matsumoto Dental University
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University
| |
Collapse
|
24
|
Jiang D, Shi H, Tonggu L, Gamal El-Din TM, Lenaeus MJ, Zhao Y, Yoshioka C, Zheng N, Catterall WA. Structure of the Cardiac Sodium Channel. Cell 2019; 180:122-134.e10. [PMID: 31866066 DOI: 10.1016/j.cell.2019.11.041] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVβ subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.
Collapse
Affiliation(s)
- Daohua Jiang
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Hui Shi
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yan Zhao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Craig Yoshioka
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel. Proc Natl Acad Sci U S A 2019; 116:2945-2954. [PMID: 30728299 PMCID: PMC6386684 DOI: 10.1073/pnas.1817446116] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels play a central role in cellular excitability and are key targets for drug development. Recent breakthroughs in high-resolution cryo-electron microscopy protein structure determination, Rosetta computational protein structure modeling, and multimicrosecond molecular dynamics simulations are empowering advances in structural biology to study the atomistic details of channel−drug interactions. We used Rosetta structural computational modeling and molecular dynamics simulations to study the interactions of antiarrhythmic and local anesthetic drugs with cardiac sodium channel. Our results provide crucial atomic-scale mechanistic insights into the channel–drug interactions, necessary for the rational design of novel modulators of the human cardiac sodium channel to be used for the treatment of cardiac arrhythmias. The human voltage-gated sodium channel, hNaV1.5, is responsible for the rapid upstroke of the cardiac action potential and is target for antiarrhythmic therapy. Despite the clinical relevance of hNaV1.5-targeting drugs, structure-based molecular mechanisms of promising or problematic drugs have not been investigated at atomic scale to inform drug design. Here, we used Rosetta structural modeling and docking as well as molecular dynamics simulations to study the interactions of antiarrhythmic and local anesthetic drugs with hNaV1.5. These calculations revealed several key drug binding sites formed within the pore lumen that can simultaneously accommodate up to two drug molecules. Molecular dynamics simulations identified a hydrophilic access pathway through the intracellular gate and a hydrophobic access pathway through a fenestration between DIII and DIV. Our results advance the understanding of molecular mechanisms of antiarrhythmic and local anesthetic drug interactions with hNaV1.5 and will be useful for rational design of novel therapeutics.
Collapse
|
26
|
Fenestrations control resting-state block of a voltage-gated sodium channel. Proc Natl Acad Sci U S A 2018; 115:13111-13116. [PMID: 30518562 DOI: 10.1073/pnas.1814928115] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potency of drug action is usually determined by binding to a specific receptor site on target proteins. In contrast to this conventional paradigm, we show here that potency of local anesthetics (LAs) and antiarrhythmic drugs (AADs) that block sodium channels is controlled by fenestrations that allow drug access to the receptor site directly from the membrane phase. Voltage-gated sodium channels initiate action potentials in nerve and cardiac muscle, where their hyperactivity causes pain and cardiac arrhythmia, respectively. LAs and AADs selectively block sodium channels in rapidly firing nerve and muscle cells to relieve these conditions. The structure of the ancestral bacterial sodium channel NaVAb, which is also blocked by LAs and AADs, revealed fenestrations connecting the lipid phase of the membrane to the central cavity of the pore. We cocrystallized lidocaine and flecainide with NavAb, which revealed strong drug-dependent electron density in the central cavity of the pore. Mutation of the contact residue T206 greatly reduced drug potency, confirming this site as the receptor for LAs and AADs. Strikingly, mutations of the fenestration cap residue F203 changed fenestration size and had graded effects on resting-state block by flecainide, lidocaine, and benzocaine, the potencies of which were altered from 51- to 2.6-fold in order of their molecular size. These results show that conserved fenestrations in the pores of sodium channels are crucial pharmacologically and determine the level of resting-state block by widely used drugs. Fine-tuning drug access through fenestrations provides an unexpected avenue for structure-based design of ion-channel-blocking drugs.
Collapse
|
27
|
Salvage SC, Chandrasekharan KH, Jeevaratnam K, Dulhunty AF, Thompson AJ, Jackson AP, Huang CL. Multiple targets for flecainide action: implications for cardiac arrhythmogenesis. Br J Pharmacol 2018; 175:1260-1278. [PMID: 28369767 PMCID: PMC5866987 DOI: 10.1111/bph.13807] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/19/2022] Open
Abstract
Flecainide suppresses cardiac tachyarrhythmias including paroxysmal atrial fibrillation, supraventricular tachycardia and arrhythmic long QT syndromes (LQTS), as well as the Ca2+ -mediated, catecholaminergic polymorphic ventricular tachycardia (CPVT). However, flecainide can also exert pro-arrhythmic effects most notably following myocardial infarction and when used to diagnose Brugada syndrome (BrS). These divergent actions result from its physiological and pharmacological actions at multiple, interacting levels of cellular organization. These were studied in murine genetic models with modified Nav channel or intracellular ryanodine receptor (RyR2)-Ca2+ channel function. Flecainide accesses its transmembrane Nav 1.5 channel binding site during activated, open, states producing a use-dependent antagonism. Closing either activation or inactivation gates traps flecainide within the pore. An early peak INa related to activation of Nav channels followed by rapid de-activation, drives action potential (AP) upstrokes and their propagation. This is diminished in pro-arrhythmic conditions reflecting loss of function of Nav 1.5 channels, such as BrS, accordingly exacerbated by flecainide challenge. Contrastingly, pro-arrhythmic effects attributed to prolonged AP recovery by abnormal late INaL following gain-of-function modifications of Nav 1.5 channels in LQTS3 are reduced by flecainide. Anti-arrhythmic effects of flecainide that reduce triggering in CPVT models mediated by sarcoplasmic reticular Ca2+ release could arise from its primary actions on Nav channels indirectly decreasing [Ca2+ ]i through a reduced [Na+ ]i and/or direct open-state RyR2-Ca2+ channel antagonism. The consequent [Ca2+ ]i alterations could also modify AP propagation velocity and therefore arrhythmic substrate through its actions on Nav 1.5 channel function. This is consistent with the paradoxical differences between flecainide actions upon Na+ currents, AP conduction and arrhythmogenesis under circumstances of normal and increased RyR2 function. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Samantha C Salvage
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Physiological LaboratoryUniversity of CambridgeCambridgeUK
| | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- School of MedicinePerdana University – Royal College of Surgeons IrelandSerdangSelangor Darul EhsanMalaysia
| | - Angela F Dulhunty
- Muscle Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical ResearchAustralian National UniversityActonAustralia
| | | | | | - Christopher L‐H Huang
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Physiological LaboratoryUniversity of CambridgeCambridgeUK
| |
Collapse
|
28
|
Bhuiyan A, Waters L. Permeation of pharmaceutical compounds through silicone membrane in the presence of surfactants. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Bannister ML, Alvarez-Laviada A, Thomas NL, Mason SA, Coleman S, du Plessis CL, Moran AT, Neill-Hall D, Osman H, Bagley MC, MacLeod KT, George CH, Williams AJ. Effect of flecainide derivatives on sarcoplasmic reticulum calcium release suggests a lack of direct action on the cardiac ryanodine receptor. Br J Pharmacol 2016; 173:2446-59. [PMID: 27237957 PMCID: PMC4945764 DOI: 10.1111/bph.13521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Flecainide is a use-dependent blocker of cardiac Na(+) channels. Mechanistic analysis of this block showed that the cationic form of flecainide enters the cytosolic vestibule of the open Na(+) channel. Flecainide is also effective in the treatment of catecholaminergic polymorphic ventricular tachycardia but, in this condition, its mechanism of action is contentious. We investigated how flecainide derivatives influence Ca(2) (+) -release from the sarcoplasmic reticulum through the ryanodine receptor channel (RyR2) and whether this correlates with their effectiveness as blockers of Na(+) and/or RyR2 channels. EXPERIMENTAL APPROACH We compared the ability of fully charged (QX-FL) and neutral (NU-FL) derivatives of flecainide to block individual recombinant human RyR2 channels incorporated into planar phospholipid bilayers, and their effects on the properties of Ca(2) (+) sparks in intact adult rat cardiac myocytes. KEY RESULTS Both QX-FL and NU-FL were partial blockers of the non-physiological cytosolic to luminal flux of cations through RyR2 channels but were significantly less effective than flecainide. None of the compounds influenced the physiologically relevant luminal to cytosol cation flux through RyR2 channels. Intracellular flecainide or QX-FL, but not NU-FL, reduced Ca(2) (+) spark frequency. CONCLUSIONS AND IMPLICATIONS Given its inability to block physiologically relevant cation flux through RyR2 channels, and its lack of efficacy in blocking the cytosolic-to-luminal current, the effect of QX-FL on Ca(2) (+) sparks is likely, by analogy with flecainide, to result from Na(+) channel block. Our data reveal important differences in the interaction of flecainide with sites in the cytosolic vestibules of Na(+) and RyR2 channels.
Collapse
Affiliation(s)
- Mark L Bannister
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Anita Alvarez-Laviada
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - N Lowri Thomas
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Sammy A Mason
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Sharon Coleman
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Christo L du Plessis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK
| | - Abbygail T Moran
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK
| | - David Neill-Hall
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK
| | - Hasnah Osman
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Mark C Bagley
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK
| | - Kenneth T MacLeod
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Christopher H George
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Alan J Williams
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
30
|
Potet F, Vanoye CG, George AL. Use-Dependent Block of Human Cardiac Sodium Channels by GS967. Mol Pharmacol 2016; 90:52-60. [PMID: 27136942 DOI: 10.1124/mol.116.103358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/29/2016] [Indexed: 01/22/2023] Open
Abstract
GS-458967, 6-(4-(Trifluoromethoxy)phenyl)-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine (GS967) is a recently described, novel, sodium channel inhibitor exhibiting potent antiarrhythmic effects in various in vitro and in vivo models. The antiarrhythmic mechanism has been attributed to preferential suppression of late sodium current. However, there has been no reported systematic investigation of the effects of this compound on isolated sodium channels. Here, we examined the effects of GS967 on peak (INaP) and late (INaL) sodium current recorded from cells that heterologously expressed human cardiac voltage-gated sodium channel, the principle cardiac sodium channel. As previously described, we observed that GS967 exerted tonic block of INaL (63%) to a significantly greater extent than INaP (19%). However, GS967 also caused a reduction of INaP in a frequency-dependent manner, consistent with use-dependent block (UDB). GS967 evoked more potent UDB of INaP (IC50 = 0.07 µM) than ranolazine (16 µM) and lidocaine (17 µM). Use-dependent block was best explained by a significant slowing of recovery from fast and slow inactivation with a significant enhancement of slow inactivation in the presence of GS967. Furthermore, GS967 was found to exert these same effects on a prototypical long QT syndrome mutation (delKPQ). An engineered mutation at an interaction site for local anesthetic agents (F1760A) partially attenuated the effect of GS967 on UDB, but had no effect on tonic INaL block. We conclude that GS967 is a preferential inhibitor of INaL, but it also exerts previously unreported strong effects on slow inactivation and recovery from inactivation, resulting in substantial UDB that is not entirely dependent on a known interaction site for local anesthetic agents.
Collapse
Affiliation(s)
- Franck Potet
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Alfred L George
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
31
|
Moreno JD, Lewis TJ, Clancy CE. Parameterization for In-Silico Modeling of Ion Channel Interactions with Drugs. PLoS One 2016; 11:e0150761. [PMID: 26963710 PMCID: PMC4786197 DOI: 10.1371/journal.pone.0150761] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Since the first Hodgkin and Huxley ion channel model was described in the 1950s, there has been an explosion in mathematical models to describe ion channel function. As experimental data has become richer, models have concomitantly been improved to better represent ion channel kinetic processes, although these improvements have generally resulted in more model complexity and an increase in the number of parameters necessary to populate the models. Models have also been developed to explicitly model drug interactions with ion channels. Recent models of drug-channel interactions account for the discrete kinetics of drug interaction with distinct ion channel state conformations, as it has become clear that such interactions underlie complex emergent kinetics such as use-dependent block. Here, we describe an approach for developing a model for ion channel drug interactions. The method describes the process of extracting rate constants from experimental electrophysiological function data to use as initial conditions for the model parameters. We then describe implementation of a parameter optimization method to refine the model rate constants describing ion channel drug kinetics. The algorithm takes advantage of readily available parallel computing tools to speed up the optimization. Finally, we describe some potential applications of the platform including the potential for gaining fundamental mechanistic insights into ion channel function and applications to in silico drug screening and development.
Collapse
Affiliation(s)
- Jonathan D. Moreno
- Division of Cardiology, Department of Medicine, Barnes-Jewish Hospital, Washington University in St. Louis, St. Louis, MO, United States of America
- * E-mail:
| | - Timothy J. Lewis
- Department of Mathematics, University of California Davis, Davis, CA, United States of America
| | - Colleen E. Clancy
- Department of Pharmacology, University of California Davis, Davis, CA, United States of America
| |
Collapse
|
32
|
Alberola-Die A, Fernández-Ballester G, González-Ros JM, Ivorra I, Morales A. Muscle-Type Nicotinic Receptor Blockade by Diethylamine, the Hydrophilic Moiety of Lidocaine. Front Mol Neurosci 2016; 9:12. [PMID: 26912995 PMCID: PMC4753328 DOI: 10.3389/fnmol.2016.00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/29/2016] [Indexed: 11/19/2022] Open
Abstract
Lidocaine bears in its structure both an aromatic ring and a terminal amine, which can be protonated at physiological pH, linked by an amide group. Since lidocaine causes multiple inhibitory actions on nicotinic acetylcholine receptors (nAChRs), this work was aimed to determine the inhibitory effects of diethylamine (DEA), a small molecule resembling the hydrophilic moiety of lidocaine, on Torpedo marmorata nAChRs microtransplanted to Xenopus oocytes. Similarly to lidocaine, DEA reversibly blocked acetylcholine-elicited currents (IACh) in a dose-dependent manner (IC50 close to 70 μM), but unlike lidocaine, DEA did not affect IACh desensitization. IACh inhibition by DEA was more pronounced at negative potentials, suggesting an open-channel blockade of nAChRs, although roughly 30% inhibition persisted at positive potentials, indicating additional binding sites outside the pore. DEA block of nAChRs in the resting state (closed channel) was confirmed by the enhanced IACh inhibition when pre-applying DEA before its co-application with ACh, as compared with solely DEA and ACh co-application. Virtual docking assays provide a plausible explanation to the experimental observations in terms of the involvement of different sets of drug binding sites. So, at the nAChR transmembrane (TM) domain, DEA and lidocaine shared binding sites within the channel pore, giving support to their open-channel blockade; besides, lidocaine, but not DEA, interacted with residues at cavities among the M1, M2, M3, and M4 segments of each subunit and also at intersubunit crevices. At the extracellular (EC) domain, DEA and lidocaine binding sites were broadly distributed, which aids to explain the closed channel blockade observed. Interestingly, some DEA clusters were located at the α-γ interphase of the EC domain, in a cavity near the orthosteric binding site pocket; by contrast, lidocaine contacted with all α-subunit loops conforming the ACh binding site, both in α-γ and α-δ and interphases, likely because of its larger size. Together, these results indicate that DEA mimics some, but not all, inhibitory actions of lidocaine on nAChRs and that even this small polar molecule acts by different mechanisms on this receptor. The presented results contribute to a better understanding of the structural determinants of nAChR modulation.
Collapse
Affiliation(s)
- Armando Alberola-Die
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | | | - José M González-Ros
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández Alicante, Spain
| | - Isabel Ivorra
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | - Andrés Morales
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| |
Collapse
|
33
|
Waters LJ, Bhuiyan AKMMH. Ionisation effects on the permeation of pharmaceutical compounds through silicone membrane. Colloids Surf B Biointerfaces 2016; 141:553-557. [PMID: 26896663 DOI: 10.1016/j.colsurfb.2016.01.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/17/2022]
Abstract
Silicone membrane is frequently used as an in vitro skin mimic whereby experiments incorporate a range of buffered media which may vary in pH. As a consequence of such variability in pH there is a corresponding variability in the degree of ionisation which in turn, could influence permeation through the mainly hydrophobic-rich membrane structure. This study reports the effect of pH on the permeation of five model compounds (benzoic acid, benzotriazole, ibuprofen, ketoprofen and lidocaine). For the five compounds analysed, each at three distinct percentages of ionisation, it was found that the greater extent of permeation was always for the more 'neutral', i.e. more greatly unionised, species rather than the anionic or cationic species. These findings fit with the theory that the hydrophobic membrane encourages permeation of 'lipid-like' structures, i.e. the more unionised form of compounds. However, results obtained with an Inverse Gas Chromatography Surface Energy Analyser (iGC SEA) indicate the membrane surface to be an electron dense environment. In the knowledge that unionised forms of compounds permeate (rather than the charged species) this negatively charged surface was not anticipated, i.e. the basic membrane surface did not appear to affect permeation.
Collapse
Affiliation(s)
- L J Waters
- Department of Pharmacy, School of Applied Science, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - A K M M H Bhuiyan
- Department of Pharmacy, School of Applied Science, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| |
Collapse
|
34
|
Yang PC, Moreno JD, Miyake CY, Vaughn-Behrens SB, Jeng MT, Grandi E, Wehrens XHT, Noskov SY, Clancy CE. In silico prediction of drug therapy in catecholaminergic polymorphic ventricular tachycardia. J Physiol 2015; 594:567-93. [PMID: 26515697 PMCID: PMC4784170 DOI: 10.1113/jp271282] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/22/2015] [Indexed: 01/31/2023] Open
Abstract
Key points The mechanism of therapeutic efficacy of flecainide for catecholaminergic polymorphic ventricular tachycardia (CPVT) is unclear. Model predictions suggest that Na+ channel effects are insufficient to explain flecainide efficacy in CPVT. This study represents a first step toward predicting therapeutic mechanisms of drug efficacy in the setting of CPVT and then using these mechanisms to guide modelling and simulation to predict alternative drug therapies.
Abstract Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by fatal ventricular arrhythmias in structurally normal hearts during β‐adrenergic stimulation. Current treatment strategies include β‐blockade, flecainide and ICD implementation – none of which is fully effective and each comes with associated risk. Recently, flecainide has gained considerable interest in CPVT treatment, but its mechanism of action for therapeutic efficacy is unclear. In this study, we performed in silico mutagenesis to construct a CPVT model and then used a computational modelling and simulation approach to make predictions of drug mechanisms and efficacy in the setting of CPVT. Experiments were carried out to validate model results. Our simulations revealed that Na+ channel effects are insufficient to explain flecainide efficacy in CPVT. The pure Na+ channel blocker lidocaine and the antianginal ranolazine were additionally tested and also found to be ineffective. When we tested lower dose combination therapy with flecainide, β‐blockade and CaMKII inhibition, our model predicted superior therapeutic efficacy than with flecainide monotherapy. Simulations indicate a polytherapeutic approach may mitigate side‐effects and proarrhythmic potential plaguing CPVT pharmacological management today. Importantly, our prediction of a novel polytherapy for CPVT was confirmed experimentally. Our simulations suggest that flecainide therapeutic efficacy in CPVT is unlikely to derive from primary interactions with the Na+ channel, and benefit may be gained from an alternative multi‐drug regimen. The mechanism of therapeutic efficacy of flecainide for catecholaminergic polymorphic ventricular tachycardia (CPVT) is unclear. Model predictions suggest that Na+ channel effects are insufficient to explain flecainide efficacy in CPVT. This study represents a first step toward predicting therapeutic mechanisms of drug efficacy in the setting of CPVT and then using these mechanisms to guide modelling and simulation to predict alternative drug therapies.
Collapse
Affiliation(s)
- Pei-Chi Yang
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Jonathan D Moreno
- Division of Cardiology, Department of Medicine, Barnes-Jewish Hospital, Washington University in St Louis, St Louis, MO, USA
| | - Christina Y Miyake
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Department of Medicine, Cardiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Mao-Tsuen Jeng
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Department of Medicine, Cardiology, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, and the Cardiovascular Research Institute, Houston, TX, USA
| | - Sergei Y Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Colleen E Clancy
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| |
Collapse
|
35
|
Lazar A, Lenkey N, Pesti K, Fodor L, Mike A. Different pH-sensitivity patterns of 30 sodium channel inhibitors suggest chemically different pools along the access pathway. Front Pharmacol 2015; 6:210. [PMID: 26441665 PMCID: PMC4585259 DOI: 10.3389/fphar.2015.00210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/08/2015] [Indexed: 11/28/2022] Open
Abstract
The major drug binding site of sodium channels is inaccessible from the extracellular side, drug molecules can only access it either from the membrane phase, or from the intracellular aqueous phase. For this reason, ligand-membrane interactions are as important determinants of inhibitor properties, as ligand-protein interactions. One-way to probe this is to modify the pH of the extracellular fluid, which alters the ratio of charged vs. uncharged forms of some compounds, thereby changing their interaction with the membrane. In this electrophysiology study we used three different pH values: 6.0, 7.3, and 8.6 to test the significance of the protonation-deprotonation equilibrium in drug access and affinity. We investigated drugs of several different indications: carbamazepine, lamotrigine, phenytoin, lidocaine, bupivacaine, mexiletine, flecainide, ranolazine, riluzole, memantine, ritanserin, tolperisone, silperisone, ambroxol, haloperidol, chlorpromazine, clozapine, fluoxetine, sertraline, paroxetine, amitriptyline, imipramine, desipramine, maprotiline, nisoxetine, mianserin, mirtazapine, venlafaxine, nefazodone, and trazodone. We recorded the pH-dependence of potency, reversibility, as well as onset/offset kinetics. As expected, we observed a strong correlation between the acidic dissociation constant (pKa) of drugs and the pH-dependence of their potency. Unexpectedly, however, the pH-dependence of reversibility or kinetics showed diverse patterns, not simple correlation. Our data are best explained by a model where drug molecules can be trapped in at least two chemically different environments: A hydrophilic trap (which may be the aqueous cavity within the inner vestibule), which favors polar and less lipophilic compounds, and a lipophilic trap (which may be the membrane phase itself, and/or lipophilic binding sites on the channel). Rescue from the hydrophilic and lipophilic traps can be promoted by alkalic and acidic extracellular pH, respectively.
Collapse
Affiliation(s)
- Alexandra Lazar
- Intensive Care Unit, University of Medicine and Pharmacy Tirgu Mures, Romania
| | - Nora Lenkey
- Lendület Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Krisztina Pesti
- Opto-Neuropharmacology Group, MTA-ELTE NAP B Budapest, Hungary ; János Szentágothai Doctoral School of Neurosciences, Semmelweis University Budapest, Hungary
| | - Laszlo Fodor
- Pharmacology and Drug Safety Research, Gedeon Richter Plc. Budapest, Hungary
| | - Arpad Mike
- Opto-Neuropharmacology Group, MTA-ELTE NAP B Budapest, Hungary
| |
Collapse
|
36
|
Melgari D, Zhang Y, El Harchi A, Dempsey CE, Hancox JC. Molecular basis of hERG potassium channel blockade by the class Ic antiarrhythmic flecainide. J Mol Cell Cardiol 2015; 86:42-53. [PMID: 26159617 PMCID: PMC4564290 DOI: 10.1016/j.yjmcc.2015.06.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/19/2015] [Accepted: 06/30/2015] [Indexed: 11/02/2022]
Abstract
The class Ic antiarrhythmic drug flecainide inhibits KCNH2-encoded "hERG" potassium channels at clinically relevant concentrations. The aim of this study was to elucidate the underlying molecular basis of this action. Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. Wild-type (WT) IhERG was inhibited with an IC50 of 1.49μM and this was not significantly altered by reversing the direction of K(+) flux or raising external [K(+)]. The use of charged and uncharged flecainide analogues showed that the charged form of the drug accesses the channel from the cell interior to produce block. Promotion of WT IhERG inactivation slowed recovery from inhibition, whilst the N588K and S631A attenuated-inactivation mutants exhibited IC50 values 4-5 fold that of WT IhERG. The use of pore-helix/selectivity filter (T623A, S624A V625A) and S6 helix (G648A, Y652A, F656A) mutations showed <10-fold shifts in IC50 for all but V625A and F656A, which respectively exhibited IC50s 27-fold and 142-fold their WT controls. Docking simulations using a MthK-based homology model suggested an allosteric effect of V625A, since in low energy conformations flecainide lay too low in the pore to interact directly with that residue. On the other hand, the molecule could readily form π-π stacking interactions with aromatic residues and particularly with F656. We conclude that flecainide accesses the hERG channel from the cell interior on channel gating, binding low in the inner cavity, with the S6 F656 residue acting as a principal binding determinant.
Collapse
Affiliation(s)
- Dario Melgari
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Yihong Zhang
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Aziza El Harchi
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Christopher E Dempsey
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
37
|
Wang Y, Mi J, Lu K, Lu Y, Wang K. Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine. PLoS One 2015; 10:e0128653. [PMID: 26068619 PMCID: PMC4465899 DOI: 10.1371/journal.pone.0128653] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/29/2015] [Indexed: 12/19/2022] Open
Abstract
Mexiletine and lidocaine are widely used class IB anti-arrhythmic drugs that are considered to act by blocking voltage-gated open sodium currents for treatment of ventricular arrhythmias and relief of pain. To gain mechanistic insights into action of anti-arrhythmics, we characterized biophysical properties of Nav1.5 and Nav1.7 channels stably expressed in HEK293 cells and compared their use-dependent block in response to mexiletine and lidocaine using whole-cell patch clamp recordings. While the voltage-dependent activation of Nav1.5 or Nav1.7 was not affected by mexiletine and lidocaine, the steady-state fast and slow inactivation of Nav1.5 and Nav1.7 were significantly shifted to hyperpolarized direction by either mexiletine or lidocaine in dose-dependent manner. Both mexiletine and lidocaine enhanced the slow component of closed-state inactivation, with mexiletine exerting stronger inhibition on either Nav1.5 or Nav1.7. The recovery from inactivation of Nav1.5 or Nav1.7 was significantly prolonged by mexiletine compared to lidocaine. Furthermore, mexiletine displayed a pronounced and prominent use-dependent inhibition of Nav1.5 than lidocaine, but not Nav1.7 channels. Taken together, our findings demonstrate differential responses to blockade by mexiletine and lidocaine that preferentially affect the gating of Nav1.5, as compared to Nav1.7; and mexiletine exhibits stronger use-dependent block of Nav1.5. The differential gating properties of Nav1.5 and Nav1.7 in response to mexiletine and lidocaine may help explain the drug effectiveness and advance in new designs of safe and specific sodium channel blockers for treatment of cardiac arrhythmia or pain.
Collapse
Affiliation(s)
- Ying Wang
- Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jianxun Mi
- Key Laboratory of Computational Intelligence, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Ka Lu
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Yanxin Lu
- Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - KeWei Wang
- Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China
- * E-mail:
| |
Collapse
|
38
|
Alpha2-adrenoceptor-independent inhibition of acetylcholine receptor channel and sodium channel by dexmedetomidine in rat superior cervical ganglion neurons. Neuroscience 2015; 289:9-18. [DOI: 10.1016/j.neuroscience.2014.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 01/03/2023]
|
39
|
Bannister ML, Thomas NL, Sikkel MB, Mukherjee S, Maxwell C, MacLeod KT, George CH, Williams AJ. The mechanism of flecainide action in CPVT does not involve a direct effect on RyR2. Circ Res 2015; 116:1324-35. [PMID: 25648700 DOI: 10.1161/circresaha.116.305347] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/03/2015] [Indexed: 12/17/2022]
Abstract
RATIONALE Flecainide, a class 1c antiarrhythmic, has emerged as an effective therapy in preventing arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) refractory to β-adrenergic receptor blockade. It has been proposed that the clinical efficacy of flecainide in CPVT is because of the combined actions of direct blockade of ryanodine receptors (RyR2) and Na(+) channel inhibition. However, there is presently no direct evidence to support the notion that flecainide blocks RyR2 Ca(2+) flux in the physiologically relevant (luminal-to-cytoplasmic) direction. The mechanism of flecainide action remains controversial. OBJECTIVE To examine, in detail, the effect of flecainide on the human RyR2 channel and to establish whether the direct blockade of physiologically relevant RyR2 ion flow by the drug contributes to its therapeutic efficacy in the clinical management of CPVT. METHODS AND RESULTS Using single-channel analysis, we show that, even at supraphysiological concentrations, flecainide did not inhibit the physiologically relevant, luminal-to-cytosolic flux of cations through the channel. Moreover, flecainide did not alter RyR2 channel gating and had negligible effect on the mechanisms responsible for the sarcoplasmic reticulum charge-compensating counter current. Using permeabilized cardiac myocytes to eliminate any contribution of plasmalemmal Na(+) channels to the observed actions of the drug at the cellular level, flecainide did not inhibit RyR2-dependent sarcoplasmic reticulum Ca(2+) release. CONCLUSIONS The principal action of flecainide in CPVT is not via a direct interaction with RyR2. Our data support a model of flecainide action in which Na(+)-dependent modulation of intracellular Ca(2+) handling attenuates RyR2 dysfunction in CPVT.
Collapse
Affiliation(s)
- Mark L Bannister
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - N Lowri Thomas
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Markus B Sikkel
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Saptarshi Mukherjee
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Chloe Maxwell
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Kenneth T MacLeod
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Christopher H George
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Alan J Williams
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.).
| |
Collapse
|
40
|
Abstract
Hepatocytes express an array of plasma membrane and intracellular ion channels, yet their role during the hepatitis C virus (HCV) life cycle remains largely undefined. Here, we show that HCV increases intracellular hepatic chloride (Cl(-)) influx that can be inhibited by selective Cl(-) channel blockers. Through pharmacological and small interfering RNA (siRNA)-mediated silencing, we demonstrate that Cl(-) channel inhibition is detrimental to HCV replication. This represents the first observation of the involvement of Cl(-) channels during the HCV life cycle.
Collapse
|
41
|
Mehra D, Imtiaz MS, van Helden DF, Knollmann BC, Laver DR. Multiple modes of ryanodine receptor 2 inhibition by flecainide. Mol Pharmacol 2014; 86:696-706. [PMID: 25274603 DOI: 10.1124/mol.114.094623] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) causes sudden cardiac death due to mutations in cardiac ryanodine receptors (RyR2), calsequestrin, or calmodulin. Flecainide, a class I antiarrhythmic drug, inhibits Na(+) and RyR2 channels and prevents CPVT. The purpose of this study is to identify inhibitory mechanisms of flecainide on RyR2. RyR2 were isolated from sheep heart, incorporated into lipid bilayers, and investigated by single-channel recording under various activating conditions, including the presence of cytoplasmic ATP (2 mM) and a range of cytoplasmic [Ca(2+)], [Mg(2+)], pH, and [caffeine]. Flecainide applied to either the cytoplasmic or luminal sides of the membrane inhibited RyR2 by two distinct modes: 1) a fast block consisting of brief substate and closed events with a mean duration of ∼1 ms, and 2) a slow block consisting of closed events with a mean duration of ∼1 second. Both inhibition modes were alleviated by increasing cytoplasmic pH from 7.4 to 9.5 but were unaffected by luminal pH. The slow block was potentiated in RyR2 channels that had relatively low open probability, whereas the fast block was unaffected by RyR2 activation. These results show that these two modes are independent mechanisms for RyR2 inhibition, both having a cytoplasmic site of action. The slow mode is a closed-channel block, whereas the fast mode blocks RyR2 in the open state. At diastolic cytoplasmic [Ca(2+)] (100 nM), flecainide possesses an additional inhibitory mechanism that reduces RyR2 burst duration. Hence, multiple modes of action underlie RyR2 inhibition by flecainide.
Collapse
Affiliation(s)
- D Mehra
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (D.M., M.S.I., D.F.v.H., D.R.L.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (B.C.K.)
| | - M S Imtiaz
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (D.M., M.S.I., D.F.v.H., D.R.L.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (B.C.K.)
| | - D F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (D.M., M.S.I., D.F.v.H., D.R.L.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (B.C.K.)
| | - B C Knollmann
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (D.M., M.S.I., D.F.v.H., D.R.L.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (B.C.K.)
| | - D R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (D.M., M.S.I., D.F.v.H., D.R.L.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (B.C.K.)
| |
Collapse
|
42
|
Abstract
Abnormal functioning of cardiac ion channels can disrupt cardiac myocyte action potentials and thus cause potentially lethal cardiac arrhythmias. Ion channel dysfunction has been observed at all stages in channel ontogeny, from biogenesis to regulation, and arises from genetic or environmental factors, or both. Acquired arrhythmias - including those that are drug induced - are more common than solely inherited arrhythmias but, in some cases, also contain an identifiable genetic component. This interplay between the pharmacology and genetics - known as 'pharmacogenetics' - of cardiac ion channels and the systems that impact them presents both challenges and opportunities to academics, pharmaceutical companies and clinicians seeking to develop and utilize therapies for cardiac rhythm disorders. In this review, we discuss ion channel pharmacogenetics in the context of both causation and treatment of cardiac arrhythmias, focusing on the long QT syndromes.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Weill Medical College of Cornell University, Greenberg Division of Cardiology, Department of Medicine and Department of Pharmacology, 520 East 70th Street, New York, NY 10021, USA.
| | | |
Collapse
|
43
|
Abstract
Late I Na is an integral part of the sodium current, which persists long after the fast-inactivating component. The magnitude of the late I Na is relatively small in all species and in all types of cardiomyocytes as compared with the amplitude of the fast sodium current, but it contributes significantly to the shape and duration of the action potential. This late component had been shown to increase in several acquired or congenital conditions, including hypoxia, oxidative stress, and heart failure, or due to mutations in SCN5A, which encodes the α-subunit of the sodium channel, as well as in channel-interacting proteins, including multiple β subunits and anchoring proteins. Patients with enhanced late I Na exhibit the type-3 long QT syndrome (LQT3) characterized by high propensity for the life-threatening ventricular arrhythmias, such as Torsade de Pointes (TdP), as well as for atrial fibrillation. There are several distinct mechanisms of arrhythmogenesis due to abnormal late I Na, including abnormal automaticity, early and delayed after depolarization-induced triggered activity, and dramatic increase of ventricular dispersion of repolarization. Many local anesthetic and antiarrhythmic agents have a higher potency to block late I Na as compared with fast I Na. Several novel compounds, including ranolazine, GS-458967, and F15845, appear to be the most selective inhibitors of cardiac late I Na reported to date. Selective inhibition of late I Na is expected to be an effective strategy for correcting these acquired and congenital channelopathies.
Collapse
|
44
|
Aguado E, León I, Millán J, Cocinero EJ, Jaeqx S, Rijs AM, Lesarri A, Fernández JA. Unraveling the Benzocaine–Receptor Interaction at Molecular Level Using Mass-Resolved Spectroscopy. J Phys Chem B 2013; 117:13472-80. [DOI: 10.1021/jp4068944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edurne Aguado
- Departamento de Química
Física, Facultad de Ciencia
y Tecnología, Universidad del País Vasco (UPV/EHU), B°
Sarriena s/n, 48940 Leioa, Spain
| | - Iker León
- Departamento de Química
Física, Facultad de Ciencia
y Tecnología, Universidad del País Vasco (UPV/EHU), B°
Sarriena s/n, 48940 Leioa, Spain
| | - Judith Millán
- Departamento
de Química, Facultad de
Ciencias, Estudios Agroalimentarios
e Informática, Universidad de La Rioja, Madre de Dios,
51, 26006 Logroño, Spain
| | - Emilio J. Cocinero
- Departamento de Química
Física, Facultad de Ciencia
y Tecnología, Universidad del País Vasco (UPV/EHU), B°
Sarriena s/n, 48940 Leioa, Spain
| | - Sander Jaeqx
- Radboud
University Nijmegen, Institute for Molecules and Materials, FELIX Facility, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Anouk M. Rijs
- Radboud
University Nijmegen, Institute for Molecules and Materials, FELIX Facility, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Alberto Lesarri
- Departamento de Química Física y Química
Inorgánica, Facultad de
Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - José A. Fernández
- Departamento de Química
Física, Facultad de Ciencia
y Tecnología, Universidad del País Vasco (UPV/EHU), B°
Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
45
|
Moreno JD, Yang PC, Bankston JR, Grandi E, Bers DM, Kass RS, Clancy CE. Ranolazine for congenital and acquired late INa-linked arrhythmias: in silico pharmacological screening. Circ Res 2013; 113:e50-e61. [PMID: 23897695 DOI: 10.1161/circresaha.113.301971] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE The antianginal ranolazine blocks the human ether-a-go-go-related gene-based current IKr at therapeutic concentrations and causes QT interval prolongation. Thus, ranolazine is contraindicated for patients with preexisting long-QT and those with repolarization abnormalities. However, with its preferential targeting of late INa (INaL), patients with disease resulting from increased INaL from inherited defects (eg, long-QT syndrome type 3 or disease-induced electric remodeling (eg, ischemic heart failure) might be exactly the ones to benefit most from the presumed antiarrhythmic properties of ranolazine. OBJECTIVE We developed a computational model to predict if therapeutic effects of pharmacological targeting of INaL by ranolazine prevailed over the off-target block of IKr in the setting of inherited long-QT syndrome type 3 and heart failure. METHODS AND RESULTS We developed computational models describing the kinetics and the interaction of ranolazine with cardiac Na(+) channels in the setting of normal physiology, long-QT syndrome type 3-linked ΔKPQ mutation, and heart failure. We then simulated clinically relevant concentrations of ranolazine and predicted the combined effects of Na(+) channel and IKr blockade by both the parent compound ranolazine and its active metabolites, which have shown potent blocking effects in the therapeutically relevant range. Our simulations suggest that ranolazine is effective at normalizing arrhythmia triggers in bradycardia-dependent arrhythmias in long-QT syndrome type 3 as well tachyarrhythmogenic triggers arising from heart failure-induced remodeling. CONCLUSIONS Our model predictions suggest that acute targeting of INaL with ranolazine may be an effective therapeutic strategy in diverse arrhythmia-provoking situations that arise from a common pathway of increased pathological INaL.
Collapse
Affiliation(s)
- Jonathan D Moreno
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College/The Rockefeller University/Sloan-Kettering Cancer Institute, New York, New York, USA, 10021
| | - Pei-Chi Yang
- Department of Pharmacology, University of California, Davis, Genome Building Rm 3503, Davis, CA 95616-8636
| | - John R Bankston
- Department of Pharmacology Columbia University College of Physicians and Surgeons 630 W. 168th St. New York, NY 10032, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Genome Building Rm 3503, Davis, CA 95616-8636
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Genome Building Rm 3503, Davis, CA 95616-8636
| | - Robert S Kass
- Department of Pharmacology Columbia University College of Physicians and Surgeons 630 W. 168th St. New York, NY 10032, USA
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Genome Building Rm 3503, Davis, CA 95616-8636
| |
Collapse
|
46
|
Terrenoire C, Wang K, Tung KWC, Chung WK, Pass RH, Lu JT, Jean JC, Omari A, Sampson KJ, Kotton DN, Keller G, Kass RS. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. ACTA ACUST UNITED AC 2013; 141:61-72. [PMID: 23277474 PMCID: PMC3536519 DOI: 10.1085/jgp.201210899] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the basis for differential responses to drug therapies remains a challenge despite advances in genetics and genomics. Induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to investigate the pharmacology of disease processes in therapeutically and genetically relevant primary cell types in vitro and to interweave clinical and basic molecular data. We report here the derivation of iPSCs from a long QT syndrome patient with complex genetics. The proband was found to have a de novo SCN5A LQT-3 mutation (F1473C) and a polymorphism (K897T) in KCNH2, the gene for LQT-2. Analysis of the biophysics and molecular pharmacology of ion channels expressed in cardiomyocytes (CMs) differentiated from these iPSCs (iPSC-CMs) demonstrates a primary LQT-3 (Na+ channel) defect responsible for the arrhythmias not influenced by the KCNH2 polymorphism. The F1473C mutation occurs in the channel inactivation gate and enhances late Na+ channel current (INaL) that is carried by channels that fail to inactivate completely and conduct increased inward current during prolonged depolarization, resulting in delayed repolarization, a prolonged QT interval, and increased risk of fatal arrhythmia. We find a very pronounced rate dependence of INaL such that increasing the pacing rate markedly reduces INaL and, in addition, increases its inhibition by the Na+ channel blocker mexiletine. These rate-dependent properties and drug interactions, unique to the proband’s iPSC-CMs, correlate with improved management of arrhythmias in the patient and provide support for this approach in developing patient-specific clinical regimens.
Collapse
Affiliation(s)
- Cecile Terrenoire
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zuber S, Landfester K, Crespy D, Popa AM. Temperature responsive copolymers of N
-vinylcaprolactam and di(ethylene glycol) methyl ether methacrylate and their interactions with drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefanie Zuber
- Empa, Swiss Federal Laboratories for Materials Science and Technology; Laboratory for Protection and Physiology, Lerchenfeldstasse 5, 9014 St. Gallen Switzerland
| | | | - Daniel Crespy
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Ana-Maria Popa
- Empa, Swiss Federal Laboratories for Materials Science and Technology; Laboratory for Protection and Physiology, Lerchenfeldstasse 5, 9014 St. Gallen Switzerland
| |
Collapse
|
48
|
Sikkel MB, Collins TP, Rowlands C, Shah M, O'Gara P, Williams AJ, Harding SE, Lyon AR, MacLeod KT. Triple mode of action of flecainide in catecholaminergic polymorphic ventricular tachycardia: reply. Cardiovasc Res 2013; 98:327-8. [PMID: 23536607 DOI: 10.1093/cvr/cvt068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
49
|
Rivera-Acevedo RE, Pless SA, Schwarz SKW, Ahern CA. Extracellular quaternary ammonium blockade of transient receptor potential vanilloid subtype 1 channels expressed in Xenopus laevis oocytes. Mol Pharmacol 2012; 82:1129-35. [PMID: 22956771 DOI: 10.1124/mol.112.079277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) channels are essential nociceptive integrators in primary afferent neurons. These nonselective cation channels are inhibited by local anesthetic compounds through an undefined mechanism. Here, we show that lidocaine inhibits TRPV1 channels expressed in Xenopus laevis oocytes, whereas the neutral local anesthetic, benzocaine, does not, suggesting that a titratable amine is required for high-affinity inhibition. Consistent with this possibility, extracellular tetraethylammonium (TEA) and tetramethylammonium application produces potent, voltage-dependent pore block. Alanine substitutions at Phe649 and Glu648, residues in the putative TRPV1 pore region, significantly abrogated the concentration-dependent TEA inhibition. The results suggest that large cations, shown previously to enter cells through activated transient receptor potential channels, can also act as channel blockers.
Collapse
Affiliation(s)
- Ricardo E Rivera-Acevedo
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
50
|
Liu N, Napolitano C, Venetucci LA, Priori SG. Flecainide and antiarrhythmic effects in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Trends Cardiovasc Med 2012; 22:35-9. [PMID: 22867967 DOI: 10.1016/j.tcm.2012.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have shown that flecainide may be an effective therapy to prevent life-threatening arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. Several hypotheses have been advanced to explain the antiarrhythmic mechanism of flecainide, including Na(+) channel blockade and a direct inhibitory action on the ryanodine receptor. In this article, we review the current literature on the topic and summarize the elements of the existing debate.
Collapse
Affiliation(s)
- Nian Liu
- Cardiovascular Genetic Program, The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|