1
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Sztretye M, Singlár Z, Ganbat N, Al-Gaadi D, Szabó K, Köhler ZM, Dux L, Keller-Pintér A, Csernoch L, Szentesi P. Unravelling the Effects of Syndecan-4 Knockdown on Skeletal Muscle Functions. Int J Mol Sci 2023; 24:ijms24086933. [PMID: 37108098 PMCID: PMC10138797 DOI: 10.3390/ijms24086933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The remodelling of the extracellular matrix plays an important role in skeletal muscle development and regeneration. Syndecan-4 is a cell surface proteoglycan crucial for muscle differentiation. Syndecan-4-/- mice have been reported to be unable to regenerate following muscle damage. To investigate the consequences of the decreased expression of Syndecan-4, we have studied the in vivo and in vitro muscle performance and the excitation-contraction coupling machinery in young and aged Syndecan-4+/- (SDC4) mice. In vivo grip force was decreased significantly as well as the average and maximal speed of voluntary running in SDC4 mice, regardless of their age. The maximal in vitro twitch force was reduced in both EDL and soleus muscles from young and aged SDC4 mice. Ca2+ release from the sarcoplasmic reticulum decreased significantly in the FDB fibres of young SDC4 mice, while its voltage dependence was unchanged regardless of age. These findings were present in muscles from young and aged mice as well. On C2C12 murine skeletal muscle cells, we have also found altered calcium homeostasis upon Syndecan-4 silencing. The decreased expression of Syndecan-4 leads to reduced skeletal muscle performance in mice and altered motility in C2C12 myoblasts via altered calcium homeostasis. The altered muscle force performance develops at an early age and is maintained throughout the life course of the animal until old age.
Collapse
Affiliation(s)
- Mónika Sztretye
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, 4032 Debrecen, Hungary
| | - Zoltán Singlár
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Nyamkhuu Ganbat
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dána Al-Gaadi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Kitti Szabó
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Zoltán Márton Köhler
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - László Dux
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Anikó Keller-Pintér
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, 4032 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Singlár Z, Ganbat N, Szentesi P, Osgonsandag N, Szabó L, Telek A, Fodor J, Dienes B, Gönczi M, Csernoch L, Sztretye M. Genetic Manipulation of CB1 Cannabinoid Receptors Reveals a Role in Maintaining Proper Skeletal Muscle Morphology and Function in Mice. Int J Mol Sci 2022; 23:ijms232415653. [PMID: 36555292 PMCID: PMC9779148 DOI: 10.3390/ijms232415653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system (ECS) refers to a widespread signaling system and its alteration is implicated in a growing number of human diseases. Cannabinoid receptors (CBRs) are highly expressed in the central nervous system and many peripheral tissues. Evidence suggests that CB1Rs are expressed in human and murine skeletal muscle mainly in the cell membrane, but a subpopulation is present also in the mitochondria. However, very little is known about the latter population. To date, the connection between the function of CB1Rs and the regulation of intracellular Ca2+ signaling has not been investigated yet. Tamoxifen-inducible skeletal muscle-specific conditional CB1 knock-down (skmCB1-KD, hereafter referred to as Cre+/-) mice were used in this study for functional and morphological analysis. After confirming CB1R down-regulation on the mRNA and protein level, we performed in vitro muscle force measurements and found that peak twitch, tetanus, and fatigue were decreased significantly in Cre+/- mice. Resting intracellular calcium concentration, voltage dependence of the calcium transients as well as the activity dependent mitochondrial calcium uptake were essentially unaltered by Cnr1 gene manipulation. Nevertheless, we found striking differences in the ultrastructural architecture of the mitochondrial network of muscle tissue from the Cre+/- mice. Our results suggest a role of CB1Rs in maintaining physiological muscle function and morphology. Targeting ECS could be a potential tool in certain diseases, including muscular dystrophies where increased endocannabinoid levels have already been described.
Collapse
Affiliation(s)
- Zoltán Singlár
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Nyamkhuu Ganbat
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Nomin Osgonsandag
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - László Szabó
- Doctoral School of Molecular Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Cell Physiology Research Group, Eötvös Loránd Research Network (ELKH), 4012 Debrecen, Hungary
| | - Andrea Telek
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Cell Physiology Research Group, Eötvös Loránd Research Network (ELKH), 4012 Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Cell Physiology Research Group, Eötvös Loránd Research Network (ELKH), 4012 Debrecen, Hungary
| | - Mónika Sztretye
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Cell Physiology Research Group, Eötvös Loránd Research Network (ELKH), 4012 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
4
|
The distal C terminus of the dihydropyridine receptor β 1a subunit is essential for tetrad formation in skeletal muscle. Proc Natl Acad Sci U S A 2022; 119:e2201136119. [PMID: 35507876 PMCID: PMC9171810 DOI: 10.1073/pnas.2201136119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceVertebrate skeletal muscle excitation-contraction coupling (ECC) is based on Ca2+-influx-independent interchannel cross-talk between DHPR and RyR1. The skeletal muscle DHPR complex consists of the main, voltage-sensing, and pore-forming α1S subunit, the auxiliary β1a, α2δ-1, γ1 subunits, and Stac3. The DHPRβ1a subunit plays an essential role in full triad targeting of DHPRα1S, voltage sensing, and tetrad formation (grouping of four DHPRs)-the three prerequisites for skeletal muscle ECC. Hence, a lack of DHPRβ1a results in a lethal phenotype in both β1-null mice and zebrafish. Here, we identified the nonconserved, distal C terminus of DHPRβ1a as playing a pivotal role in the formation of DHPR tetrads, and thus allosteric DHPR-RyR1 coupling, essential for proper skeletal muscle ECC.
Collapse
|
5
|
Quantification of the calcium signaling deficit in muscles devoid of triadin. PLoS One 2022; 17:e0264146. [PMID: 35213584 PMCID: PMC8880904 DOI: 10.1371/journal.pone.0264146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Triadin, a protein of the sarcoplasmic reticulum (SR) of striated muscles, anchors the calcium-storing protein calsequestrin to calcium release RyR channels at the junction with t-tubules, and modulates these channels by conformational effects. Triadin ablation induces structural SR changes and alters the expression of other proteins. Here we quantify alterations of calcium signaling in single skeletal myofibers of constitutive triadin-null mice. We find higher resting cytosolic and lower SR-luminal [Ca2+], 40% lower calsequestrin expression, and more CaV1.1, RyR1 and SERCA1. Despite the increased CaV1.1, the mobile intramembrane charge was reduced by ~20% in Triadin-null fibers. The initial peak of calcium release flux by pulse depolarization was minimally altered in the null fibers (revealing an increase in peak calcium permeability). The “hump” phase that followed, attributable to calcium detaching from calsequestrin, was 25% lower, a smaller change than expected from the reduced calsequestrin content and calcium saturation. The exponential decay rate of calcium transients was 25% higher, consistent with the higher SERCA1 content. Recovery of calcium flux after a depleting depolarization was faster in triadin-null myofibers, consistent with the increased uptake rate and lower SR calsequestrin content. In sum, the triadin knockout determines an increased RyR1 channel openness, which depletes the SR, a substantial loss of calsequestrin and gains in other couplon proteins. Powerful functional compensations ensue: activation of SOCE that increases [Ca2+]cyto; increased SERCA1 activity, which limits the decrease in [Ca2+]SR and a restoration of SR calcium storage of unknown substrate. Together, they effectively limit the functional loss in skeletal muscles.
Collapse
|
6
|
SOCE Is Important for Maintaining Sarcoplasmic Calcium Content and Release in Skeletal Muscle Fibers. Biophys J 2018; 113:2496-2507. [PMID: 29212003 DOI: 10.1016/j.bpj.2017.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a Ca2+-entry process activated by the depletion of intracellular stores and has an important role in many cell types. In skeletal muscle, however, its role during physiological muscle activation has been controversial. To address this question, sarcoplasmic reticulum (SR) calcium release in a mouse strain with a naturally occurring mutation in the myostatin gene (Compact (Cmpt)) leading to a hypermuscular yet reduced muscle-force phenotype was compared to that in wild-type mice. To elicit Ca2+ release from the SR of flexor digitorum brevis (FDB) fibers, either a ryanodine receptor agonist (4-chloro-meta-cresol) or depolarizing pulses were used. In muscles from Cmpt mice, endogenous protein levels of STIM1 and Orai1 were reduced, and consequently, SOCE after 4-chloro-meta-cresol-induced store depletion was suppressed. Although the voltage dependence of SR calcium release was not statistically different between wild-type and Cmpt fibers, the amount of releasable calcium was significantly reduced in the latter, indicating a smaller SR content. To assess the immediate role of SOCE in replenishing the SR calcium store, the evolution of intracellular calcium concentration during a train of long-lasting depolarizations to a maximally activating voltage was monitored. Cmpt mice exhibited a faster decline in calcium release, suggesting a compromised ability to refill the SR. A simple model that incorporates a reduced SOCE as an important partner in regulating immediate calcium influx through the surface membrane readily accounts for the steady-state reduction in SR calcium content and its more pronounced decline after calcium release.
Collapse
|
7
|
Ferreira Gregorio J, Pequera G, Manno C, Ríos E, Brum G. The voltage sensor of excitation-contraction coupling in mammals: Inactivation and interaction with Ca 2. J Gen Physiol 2017; 149:1041-1058. [PMID: 29021148 PMCID: PMC5677103 DOI: 10.1085/jgp.201611725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/03/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
In excitation–contraction coupling, voltage-sensing modules (VSMs) of CaV1.1 Ca2+ channels simultaneously gate the associated pore and Ca2+ release channels in the sarcoplasmic reticulum. Ferreira Gregorio et al. find that VSMs adopt two inactivated states, and the degree of inactivation is dependent on external Ca2+ and the mouse strain used. In skeletal muscle, the four-helix voltage-sensing modules (VSMs) of CaV1.1 calcium channels simultaneously gate two Ca2+ pathways: the CaV1.1 pore itself and the RyR1 calcium release channel in the sarcoplasmic reticulum. Here, to gain insight into the mechanism by which VSMs gate RyR1, we quantify intramembrane charge movement associated with VSM activation (sensing current) and gated Ca2+ release flux in single muscle cells of mice and rats. As found for most four-helix VSMs, upon sustained depolarization, rodent VSMs lose the ability to activate Ca2+ release channels opening; their properties change from a functionally capable mode, in which the mobile sensor charge is called charge 1, to an inactivated mode, charge 2, with a voltage dependence shifted toward more negative voltages. We find that charge 2 is promoted and Ca2+ release inactivated when resting, well-polarized muscle cells are exposed to low extracellular [Ca2+] and that the opposite occurs in high [Ca2+]. It follows that murine VSMs are partly inactivated at rest, which establishes the reduced availability of voltage sensing as a pathogenic mechanism in disorders of calcemia. We additionally find that the degree of resting inactivation is significantly different in two mouse strains, which underscores the variability of voltage sensor properties and their vulnerability to environmental conditions. Our studies reveal that the resting and activated states of VSMs are equally favored by extracellular Ca2+. Promotion by an extracellular species of two states of the VSM that differ in the conformation of the activation gate requires the existence of a second gate, inactivation, topologically extracellular and therefore accessible from outside regardless of the activation state.
Collapse
Affiliation(s)
| | - Germán Pequera
- Departamento de Biofísica, Facultad de Medicina, Montevideo, Uruguay
| | - Carlo Manno
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL
| | - Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL
| | - Gustavo Brum
- Departamento de Biofísica, Facultad de Medicina, Montevideo, Uruguay
| |
Collapse
|
8
|
Flucher BE, Tuluc P. How and why are calcium currents curtailed in the skeletal muscle voltage-gated calcium channels? J Physiol 2017; 595:1451-1463. [PMID: 27896815 PMCID: PMC5330888 DOI: 10.1113/jp273423] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/24/2016] [Indexed: 01/09/2023] Open
Abstract
Voltage‐gated calcium channels represent the sole mechanism converting electrical signals of excitable cells into cellular functions such as contraction, secretion and gene regulation. Specific voltage‐sensing domains detect changes in membrane potential and control channel gating. Calcium ions entering through the channel function as second messengers regulating cell functions, with the exception of skeletal muscle, where CaV1.1 essentially does not function as a channel but activates calcium release from intracellular stores. It has long been known that calcium currents are dispensable for skeletal muscle contraction. However, the questions as to how and why the channel function of CaV1.1 is curtailed remained obscure until the recent discovery of a developmental CaV1.1 splice variant with normal channel functions. This discovery provided new means to study the molecular mechanisms regulating the channel gating and led to the understanding that in skeletal muscle, calcium currents need to be restricted to allow proper regulation of fibre type specification and to prevent mitochondrial damage.
![]()
Collapse
Affiliation(s)
- Bernhard E Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, Austria
| | - Petronel Tuluc
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Austria
| |
Collapse
|
9
|
Optogenetic approach for targeted activation of global calcium transients in differentiated C2C12 myotubes. Sci Rep 2017; 7:11108. [PMID: 28894267 PMCID: PMC5593883 DOI: 10.1038/s41598-017-11551-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
Excitation-contraction coupling in muscle cells is initiated by a restricted membrane depolarization delimited within the neuromuscular junction. This targeted depolarization triggers an action potential that propagates and induces a global cellular calcium response and a consequent contraction. To date, numerous studies have investigated this excitation-calcium response coupling by using different techniques to depolarize muscle cells. However, none of these techniques mimic the temporal and spatial resolution of membrane depolarization observed in the neuromuscular junction. By using optogenetics in C2C12 muscle cells, we developed a technique to study the calcium response following membrane depolarization induced by photostimulations of membrane surface similar or narrower than the neuromuscular junction area. These stimulations coupled to confocal calcium imaging generate a global cellular calcium response that is the consequence of a membrane depolarization propagation. In this context, this technique provides an interesting, contactless and relatively easy way of investigation of calcium increase/release as well as calcium decrease/re-uptake triggered by a propagated membrane depolarization.
Collapse
|
10
|
The Ca 2+ influx through the mammalian skeletal muscle dihydropyridine receptor is irrelevant for muscle performance. Nat Commun 2017; 8:475. [PMID: 28883413 PMCID: PMC5589907 DOI: 10.1038/s41467-017-00629-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/14/2017] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle excitation-contraction (EC) coupling is initiated by sarcolemmal depolarization, which is translated into a conformational change of the dihydropyridine receptor (DHPR), which in turn activates sarcoplasmic reticulum (SR) Ca2+ release to trigger muscle contraction. During EC coupling, the mammalian DHPR embraces functional duality, as voltage sensor and L-type Ca2+ channel. Although its unique role as voltage sensor for conformational EC coupling is firmly established, the conventional function as Ca2+ channel is still enigmatic. Here we show that Ca2+ influx via DHPR is not necessary for muscle performance by generating a knock-in mouse where DHPR-mediated Ca2+ influx is eliminated. Homozygous knock-in mice display SR Ca2+ release, locomotor activity, motor coordination, muscle strength and susceptibility to fatigue comparable to wild-type controls, without any compensatory regulation of multiple key proteins of the EC coupling machinery and Ca2+ homeostasis. These findings support the hypothesis that the DHPR-mediated Ca2+ influx in mammalian skeletal muscle is an evolutionary remnant.In mammalian skeletal muscle, the DHPR functions as a voltage sensor to trigger muscle contraction and as a Ca2+ channel. Here the authors show that mice where Ca2+ influx through the DHPR is eliminated display no difference in skeletal muscle function, suggesting that the Ca2+ influx through this channel is vestigial.
Collapse
|
11
|
Petrovič P, Valent I, Cocherová E, Pavelková J, Zahradníková A. Ryanodine receptor gating controls generation of diastolic calcium waves in cardiac myocytes. ACTA ACUST UNITED AC 2016; 145:489-511. [PMID: 26009544 PMCID: PMC4442793 DOI: 10.1085/jgp.201411281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Calcium waves can form and propagate at low frequencies of spontaneous calcium sparks if the calcium dependence of spark frequency is sufficiently steep, or the number of open RyRs is sufficiently large. The role of cardiac ryanodine receptor (RyR) gating in the initiation and propagation of calcium waves was investigated using a mathematical model comprising a stochastic description of RyR gating and a deterministic description of calcium diffusion and sequestration. We used a one-dimensional array of equidistantly spaced RyR clusters, representing the confocal scanning line, to simulate the formation of calcium sparks. Our model provided an excellent description of the calcium dependence of the frequency of diastolic calcium sparks and of the increased tendency for the production of calcium waves after a decrease in cytosolic calcium buffering. We developed a hypothesis relating changes in the propensity to form calcium waves to changes of RyR gating and tested it by simulation. With a realistic RyR gating model, increased ability of RyR to be activated by Ca2+ strongly increased the propensity for generation of calcium waves at low (0.05–0.1-µM) calcium concentrations but only slightly at high (0.2–0.4-µM) calcium concentrations. Changes in RyR gating altered calcium wave formation by changing the calcium sensitivity of spontaneous calcium spark activation and/or the average number of open RyRs in spontaneous calcium sparks. Gating changes that did not affect RyR activation by Ca2+ had only a weak effect on the propensity to form calcium waves, even if they strongly increased calcium spark frequency. Calcium waves induced by modulating the properties of the RyR activation site could be suppressed by inhibiting the spontaneous opening of the RyR. These data can explain the increased tendency for production of calcium waves under conditions when RyR gating is altered in cardiac diseases.
Collapse
Affiliation(s)
- Pavol Petrovič
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovak Republic
| | - Ivan Valent
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovak Republic Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, 833 34 Bratislava, Slovak Republic
| | - Elena Cocherová
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, 833 34 Bratislava, Slovak Republic Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 812 19 Bratislava, Slovak Republic
| | - Jana Pavelková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, 833 34 Bratislava, Slovak Republic
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, 833 34 Bratislava, Slovak Republic
| |
Collapse
|
12
|
Braubach P, Orynbayev M, Andronache Z, Hering T, Landwehrmeyer GB, Lindenberg KS, Melzer W. Altered Ca(2+) signaling in skeletal muscle fibers of the R6/2 mouse, a model of Huntington's disease. ACTA ACUST UNITED AC 2015; 144:393-413. [PMID: 25348412 PMCID: PMC4210430 DOI: 10.1085/jgp.201411255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat within the gene encoding the protein huntingtin. The resulting elongated glutamine (poly-Q) sequence of mutant huntingtin (mhtt) affects both central neurons and skeletal muscle. Recent reports suggest that ryanodine receptor-based Ca(2+) signaling, which is crucial for skeletal muscle excitation-contraction coupling (ECC), is changed by mhtt in HD neurons. Consequently, we searched for alterations of ECC in muscle fibers of the R6/2 mouse, a mouse model of HD. We performed fluorometric recordings of action potentials (APs) and cellular Ca(2+) transients on intact isolated toe muscle fibers (musculi interossei), and measured L-type Ca(2+) inward currents on internally dialyzed fibers under voltage-clamp conditions. Both APs and AP-triggered Ca(2+) transients showed slower kinetics in R6/2 fibers than in fibers from wild-type mice. Ca(2+) removal from the myoplasm and Ca(2+) release flux from the sarcoplasmic reticulum were characterized using a Ca(2+) binding and transport model, which indicated a significant reduction in slow Ca(2+) removal activity and Ca(2+) release flux both after APs and under voltage-clamp conditions. In addition, the voltage-clamp experiments showed a highly significant decrease in L-type Ca(2+) channel conductance. These results indicate profound changes of Ca(2+) turnover in skeletal muscle of R6/2 mice and suggest that these changes may be associated with muscle pathology in HD.
Collapse
Affiliation(s)
- Peter Braubach
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| | - Murat Orynbayev
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| | - Zoita Andronache
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| | - Tanja Hering
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| | | | - Katrin S Lindenberg
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| | - Werner Melzer
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| |
Collapse
|
13
|
Manno C, Figueroa L, Royer L, Pouvreau S, Lee CS, Volpe P, Nori A, Zhou J, Meissner G, Hamilton SL, Ríos E. Altered Ca2+ concentration, permeability and buffering in the myofibre Ca2+ store of a mouse model of malignant hyperthermia. J Physiol 2013; 591:4439-57. [PMID: 23798496 DOI: 10.1113/jphysiol.2013.259572] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Malignant hyperthermia (MH) is linked to mutations in the type 1 ryanodine receptor, RyR1, the Ca2+ channel of the sarcoplasmic reticulum (SR) of skeletal muscle. The Y522S MH mutation was studied for its complex presentation, which includes structurally and functionally altered cell 'cores'. Imaging cytosolic and intra-SR [Ca2+] in muscle cells of heterozygous YS mice we determined Ca2+ release flux activated by clamp depolarization, permeability (P) of the SR membrane (ratio of flux and [Ca2+] gradient) and SR Ca2+ buffering power (B). In YS cells resting [Ca2+]SR was 45% of the value in normal littermates (WT). P was more than doubled, so that initial flux was normal. Measuring [Ca2+]SR(t) revealed dynamic changes in B(t). The alterations were similar to those caused by cytosolic BAPTA, which promotes release by hampering Ca2+-dependent inactivation (CDI). The [Ca2+] transients showed abnormal 'breaks', decaying phases after an initial rise, traced to a collapse in flux and P. Similar breaks occurred in WT myofibres with calsequestrin reduced by siRNA; calsequestrin content, however, was normal in YS muscle. Thus, the Y522S mutation causes greater openness of the RyR1, lowers resting [Ca2+]SR and alters SR Ca2+ buffering in a way that copies the functional instability observed upon reduction of calsequestrin content. The similarities with the effects of BAPTA suggest that the mutation, occurring near the cytosolic vestibule of the channel, reduces CDI as one of its primary effects. The unstable SR buffering, mimicked by silencing of calsequestrin, may help precipitate the loss of Ca2+ control that defines a fulminant MH event.
Collapse
Affiliation(s)
- Carlo Manno
- S. L. Hamilton: ; E. Ríos: Rush University School of Medicine, Department of Molecular Biophysics and Physiology, 1750 West Harrison St., Suite 1279JS, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Manno C, Sztretye M, Figueroa L, Allen PD, Ríos E. Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle. J Physiol 2013; 591:423-42. [PMID: 23148320 PMCID: PMC3577525 DOI: 10.1113/jphysiol.2012.243444] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/06/2012] [Indexed: 12/25/2022] Open
Abstract
The buffering power, B, of the sarcoplasmic reticulum (SR), ratio of the changes in total and free [Ca(2+)], was determined in fast-twitch mouse muscle cells subjected to depleting membrane depolarization. Changes in total SR [Ca(2+)] were measured integrating Ca(2+) release flux, determined with a cytosolic [Ca(2+)] monitor. Free [Ca(2+)](SR) was measured using the cameleon D4cpv-Casq1. In 34 wild-type (WT) cells average B during the depolarization (ON phase) was 157 (SEM 26), implying that of 157 ions released, 156 were bound inside the SR. B was significantly greater when BAPTA, which increases release flux, was present in the cytosol. B was greater early in the pulse - when flux was greatest - than at its end, and greater in the ON than in the OFF. In 29 Casq1-null cells, B was 40 (3.6). The difference suggests that 75% of the releasable calcium is normally bound to calsequestrin. In the nulls the difference in B between ON and OFF was less than in the WT but still significant. This difference and the associated decay in B during the ON were not artifacts of a slow SR monitor, as they were also found in the WT when [Ca(2+)](SR) was tracked with the fast dye fluo-5N. The calcium buffering power, binding capacity and non-linear binding properties of the SR measured here could be accounted for by calsequestrin at the concentration present in mammalian muscle, provided that its properties were substantially different from those found in solution. Its affinity should be higher, or K(D) lower than the conventionally accepted 1 mm; its cooperativity (n in a Hill fit) should be higher and the stoichiometry of binding should be at the higher end of the values derived in solution. The reduction in B during release might reflect changes in calsequestrin conformation upon calcium loss.
Collapse
Affiliation(s)
- Carlo Manno
- Section of Cellular Signaling Department of Molecular Biophysics and Physiology, Rush University School of Medicine, 1750 W. Harrison St, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
15
|
Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Allen P, Brum G, Ríos E. Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle. ACTA ACUST UNITED AC 2012; 138:231-47. [PMID: 21788611 PMCID: PMC3149434 DOI: 10.1085/jgp.201010592] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanisms that terminate Ca2+ release from the sarcoplasmic reticulum are not fully understood. D4cpv-Casq1 (Sztretye et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010591) was used in mouse skeletal muscle cells under voltage clamp to measure free Ca2+ concentration inside the sarcoplasmic reticulum (SR), [Ca2+]SR, simultaneously with that in the cytosol, [Ca2+]c, during the response to long-lasting depolarization of the plasma membrane. The ratio of Ca2+ release flux (derived from [Ca2+]c(t)) over the gradient that drives it (essentially equal to [Ca2+]SR) provided directly, for the first time, a dynamic measure of the permeability to Ca2+ of the releasing SR membrane. During maximal depolarization, flux rapidly rises to a peak and then decays. Before 0.5 s, [Ca2+]SR stabilized at ∼35% of its resting level; depletion was therefore incomplete. By 0.4 s of depolarization, the measured permeability decayed to ∼10% of maximum, indicating ryanodine receptor channel closure. Inactivation of the t tubule voltage sensor was immeasurably small by this time and thus not a significant factor in channel closure. In cells of mice null for Casq1, permeability did not decrease in the same way, indicating that calsequestrin (Casq) is essential in the mechanism of channel closure and termination of Ca2+ release. The absence of this mechanism explains why the total amount of calcium releasable by depolarization is not greatly reduced in Casq-null muscle (Royer et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010454). When the fast buffer BAPTA was introduced in the cytosol, release flux became more intense, and the SR emptied earlier. The consequent reduction in permeability accelerated as well, reaching comparable decay at earlier times but comparable levels of depletion. This observation indicates that [Ca2+]SR, sensed by Casq and transmitted to the channels presumably via connecting proteins, is determinant to cause the closure that terminates Ca2+ release.
Collapse
Affiliation(s)
- Monika Sztretye
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Combined computational and experimental approaches to understanding the Ca(2+) regulatory network in neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:569-601. [PMID: 22453961 DOI: 10.1007/978-94-007-2888-2_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ca(2+) is a ubiquitous signaling ion that regulates a variety of neuronal functions by binding to and altering the state of effector proteins. Spatial relationships and temporal dynamics of Ca(2+) elevations determine many cellular responses of neurons to chemical and electrical stimulation. There is a wealth of information regarding the properties and distribution of Ca(2+) channels, pumps, exchangers, and buffers that participate in Ca(2+) regulation. At the same time, new imaging techniques permit characterization of evoked Ca(2+) signals with increasing spatial and temporal resolution. However, understanding the mechanistic link between functional properties of Ca(2+) handling proteins and the stimulus-evoked Ca(2+) signals they orchestrate requires consideration of the way Ca(2+) handling mechanisms operate together as a system in native cells. A wide array of biophysical modeling approaches is available for studying this problem and can be used in a variety of ways. Models can be useful to explain the behavior of complex systems, to evaluate the role of individual Ca(2+) handling mechanisms, to extract valuable parameters, and to generate predictions that can be validated experimentally. In this review, we discuss recent advances in understanding the underlying mechanisms of Ca(2+) signaling in neurons via mathematical modeling. We emphasize the value of developing realistic models based on experimentally validated descriptions of Ca(2+) transport and buffering that can be tested and refined through new experiments to develop increasingly accurate biophysical descriptions of Ca(2+) signaling in neurons.
Collapse
|
17
|
Lamboley CRH, Pape PC. The concentration of free Ca(2+) in the sarcoplasmic reticulum of frog cut twitch skeletal muscle fibers estimated with tetramethylmurexide. Cell Calcium 2011; 50:530-47. [PMID: 22036161 DOI: 10.1016/j.ceca.2011.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 08/19/2011] [Accepted: 09/10/2011] [Indexed: 11/30/2022]
Abstract
One aim of this article was to determine the resting concentration of free Ca(2+) in the sarcoplasmic reticulum (SR) of frog cut skeletal muscle fibers ([Ca(2+)](SR,R)) using the calcium absorbance indicator dye tetramethylmurexide (TMX). Another was to determine the ratio of [Ca(2+)](SR,R) to TMX's apparent dissociation constant for Ca(2+) (K(app)) in order to establish the capability of monitoring [Ca(2+)](SR)(t) during SR Ca(2+) release - a signal needed to determine the Ca(2+) permeability of the SR. To reveal the properties of TMX in the SR, the surface membrane was rapidly permeabilized with saponin to rapidly dissipate myoplasmic TMX. Results indicated that the concentration of Ca-free TMX in the SR was 2.8-fold greater than that in the myoplasm apparently due to binding of TMX to sites in the SR. Taking into account that such binding might influence K(app) as well as a dependence of K(app) on TMX concentration, the results indicate an average [Ca(2+)](SR,R) ranging from 0.43 to 1.70mM. The ratio [Ca(2+)](SR,R)/K(app) averaged 0.256, a relatively low value which should not depend on factors influencing K(app). As a result, the time course of [Ca(2+)](SR)(t) in response to electrical stimulation is well determined by, and approximately linearly related to, the active TMX absorbance signal.
Collapse
Affiliation(s)
- Cédric R H Lamboley
- Département de physiologie et biophysique, Université de Sherbrooke, (Québec), Canada.
| | | |
Collapse
|
18
|
Yi J, Ma C, Li Y, Weisleder N, Ríos E, Ma J, Zhou J. Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling. J Biol Chem 2011; 286:32436-43. [PMID: 21795684 DOI: 10.1074/jbc.m110.217711] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defective coupling between sarcoplasmic reticulum and mitochondria during control of intracellular Ca(2+) signaling has been implicated in the progression of neuromuscular diseases. Our previous study showed that skeletal muscles derived from an amyotrophic lateral sclerosis (ALS) mouse model displayed segmental loss of mitochondrial function that was coupled with elevated and uncontrolled sarcoplasmic reticulum Ca(2+) release activity. The localized mitochondrial defect in the ALS muscle allows for examination of the mitochondrial contribution to Ca(2+) removal during excitation-contraction coupling by comparing Ca(2+) transients in regions with normal and defective mitochondria in the same muscle fiber. Here we show that Ca(2+) transients elicited by membrane depolarization in fiber segments with defective mitochondria display an ~10% increased amplitude. These regional differences in Ca(2+) transients were abolished by the application of 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, a fast Ca(2+) chelator that reduces mitochondrial Ca(2+) uptake. Using a mitochondria-targeted Ca(2+) biosensor (mt11-YC3.6) expressed in ALS muscle fibers, we monitored the dynamic change of mitochondrial Ca(2+) levels during voltage-induced Ca(2+) release and detected a reduced Ca(2+) uptake by mitochondria in the fiber segment with defective mitochondria, which mirrored the elevated Ca(2+) transients in the cytosol. Our study constitutes a direct demonstration of the importance of mitochondria in shaping the cytosolic Ca(2+) signaling in skeletal muscle during excitation-contraction coupling and establishes that malfunction of this mechanism may contribute to neuromuscular degeneration in ALS.
Collapse
Affiliation(s)
- Jianxun Yi
- Department of Molecular Biophysics and Physiology, Rush University School of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Yamaguchi N, Prosser BL, Ghassemi F, Xu L, Pasek DA, Eu JP, Hernández-Ochoa EO, Cannon BR, Wilder PT, Lovering RM, Weber D, Melzer W, Schneider MF, Meissner G. Modulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1. Am J Physiol Cell Physiol 2011; 300:C998-C1012. [PMID: 21289290 DOI: 10.1152/ajpcell.00370.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca(2+) concentrations, whereas at micromolar Ca(2+) concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1(D/D)) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1(D/D) mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1(D/D) mice had depressed Ca(2+) transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca(2+) transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1(D/D) mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1(D/D) fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca(2+) release flux, consistent with increased summation of the Ca(2+) transient and contractile force. Peak Ca(2+) release flux was suppressed at all voltages in voltage-clamped Ryr1(D/D) fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca(2+) release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.
Collapse
Affiliation(s)
- Naohiro Yamaguchi
- Dept. of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Loy RE, Orynbayev M, Xu L, Andronache Z, Apostol S, Zvaritch E, MacLennan DH, Meissner G, Melzer W, Dirksen RT. Muscle weakness in Ryr1I4895T/WT knock-in mice as a result of reduced ryanodine receptor Ca2+ ion permeation and release from the sarcoplasmic reticulum. ACTA ACUST UNITED AC 2010; 137:43-57. [PMID: 21149547 PMCID: PMC3010056 DOI: 10.1085/jgp.201010523] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The type 1 isoform of the ryanodine receptor (RYR1) is the Ca(2+) release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation-contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1(I4898T) mutation is one of the most common CCD mutations. To elucidate the mechanism by which RYR1 function is altered by this mutation, we characterized in vivo muscle strength, EC coupling, SR Ca(2+) content, and RYR1 Ca(2+) release channel function using adult heterozygous Ryr1(I4895T/+) knock-in mice (IT/+). Compared with age-matched wild-type (WT) mice, IT/+ mice exhibited significantly reduced upper body and grip strength. In spite of normal total SR Ca(2+) content, both electrically evoked and 4-chloro-m-cresol-induced Ca(2+) release were significantly reduced and slowed in single intact flexor digitorum brevis fibers isolated from 4-6-mo-old IT/+ mice. The sensitivity of the SR Ca(2+) release mechanism to activation was not enhanced in fibers of IT/+ mice. Single-channel measurements of purified recombinant channels incorporated in planar lipid bilayers revealed that Ca(2+) permeation was abolished for homotetrameric IT channels and significantly reduced for heterotetrameric WT:IT channels. Collectively, these findings indicate that in vivo muscle weakness observed in IT/+ knock-in mice arises from a reduction in the magnitude and rate of RYR1 Ca(2+) release during EC coupling that results from the mutation producing a dominant-negative suppression of RYR1 channel Ca(2+) ion permeation.
Collapse
Affiliation(s)
- Ryan E Loy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Royer L, Sztretye M, Manno C, Pouvreau S, Zhou J, Knollmann BC, Protasi F, Allen PD, Ríos E. Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle. J Gen Physiol 2010; 136:325-38. [PMID: 20713548 PMCID: PMC2931149 DOI: 10.1085/jgp.201010454] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/22/2010] [Indexed: 11/20/2022] Open
Abstract
Contractile activation in striated muscles requires a Ca(2+) reservoir of large capacity inside the sarcoplasmic reticulum (SR), presumably the protein calsequestrin. The buffering power of calsequestrin in vitro has a paradoxical dependence on [Ca(2+)] that should be valuable for function. Here, we demonstrate that this dependence is present in living cells. Ca(2+) signals elicited by membrane depolarization under voltage clamp were compared in single skeletal fibers of wild-type (WT) and double (d) Casq-null mice, which lack both calsequestrin isoforms. In nulls, Ca(2+) release started normally, but the store depleted much more rapidly than in the WT. This deficit was reflected in the evolution of SR evacuability, E, which is directly proportional to SR Ca(2+) permeability and inversely to its Ca(2+) buffering power, B. In WT mice E starts low and increases progressively as the SR is depleted. In dCasq-nulls, E started high and decreased upon Ca(2+) depletion. An elevated E in nulls is consistent with the decrease in B expected upon deletion of calsequestrin. The different value and time course of E in cells without calsequestrin indicate that the normal evolution of E reflects loss of B upon SR Ca(2+) depletion. Decrement of B upon SR depletion was supported further. When SR calcium was reduced by exposure to low extracellular [Ca(2+)], release kinetics in the WT became similar to that in the dCasq-null. E became much higher, similar to that of null cells. These results indicate that calsequestrin not only stores Ca(2+), but also varies its affinity in ways that progressively increase the ability of the store to deliver Ca(2+) as it becomes depleted, a novel feedback mechanism of potentially valuable functional implications. The study revealed a surprisingly modest loss of Ca(2+) storage capacity in null cells, which may reflect concurrent changes, rather than detract from the physiological importance of calsequestrin.
Collapse
Affiliation(s)
- Leandro Royer
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Monika Sztretye
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Carlo Manno
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Sandrine Pouvreau
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Jingsong Zhou
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Bjorn C. Knollmann
- Department of Medicine and Pharmacology, Vanderbilt University, Nashville, TN 37240
| | - Feliciano Protasi
- Centro Scienze dell’Invecchiamento, Università G. d’Annunzio, 66100 Chieti, Italy
| | - Paul D. Allen
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
22
|
Tuluc P, Molenda N, Schlick B, Obermair GJ, Flucher BE, Jurkat-Rott K. A CaV1.1 Ca2+ channel splice variant with high conductance and voltage-sensitivity alters EC coupling in developing skeletal muscle. Biophys J 2010; 96:35-44. [PMID: 19134469 DOI: 10.1016/j.bpj.2008.09.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/22/2008] [Indexed: 11/17/2022] Open
Abstract
The Ca(2+) channel alpha(1S) subunit (Ca(V)1.1) is the voltage sensor in skeletal muscle excitation-contraction (EC) coupling. Upon membrane depolarization, this sensor rapidly triggers Ca(2+) release from internal stores and conducts a slowly activating Ca(2+) current. However, this Ca(2+) current is not essential for skeletal muscle EC coupling. Here, we identified a Ca(V)1.1 splice variant with greatly distinct current properties. The variant of the CACNA1S gene lacking exon 29 was expressed at low levels in differentiated human and mouse muscle, and up to 80% in myotubes. To test its biophysical properties, we deleted exon 29 in a green fluorescent protein (GFP)-tagged alpha(1S) subunit and expressed it in dysgenic (alpha(1S)-null) myotubes. GFP-alpha(1S)Delta 29 was correctly targeted into triads and supported skeletal muscle EC coupling. However, the Ca(2+) currents through GFP-alpha(1S)Delta 29 showed a 30-mV left-shifted voltage dependence of activation and a substantially increased open probability, giving rise to an eightfold increased current density. This robust Ca(2+) influx contributed substantially to the depolarization-induced Ca(2+) transient that triggers contraction. Moreover, deletion of exon 29 accelerated current kinetics independent of the auxiliary alpha(2)delta-1 subunit. Thus, characterizing the Ca(V)1.1 Delta 29 splice variant revealed the structural bases underlying the specific gating properties of skeletal muscle Ca(2+) channels, and it suggests the existence of a distinct mode of EC coupling in developing muscle.
Collapse
Affiliation(s)
- Petronel Tuluc
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Local calcium signals induced by hyper-osmotic stress in mammalian skeletal muscle cells. J Muscle Res Cell Motil 2009; 30:97-109. [PMID: 19437123 DOI: 10.1007/s10974-009-9179-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
Strenuous activitiy of skeletal muscle leads to temporary osmotic dysbalance and isolated skeletal muscle fibers exposed to osmotic stress respond with characteristic micro-domain calcium signals. It has been suggested that osmotic stress targets transverse tubular (TT) dihydropyridine receptors (DHPRs) which normally serve as voltage-dependent activators of Ca release via ryanodine receptor (RyR1s) of the sarcoplasmic reticulum (SR). Here, we pursued this hypothesis by imaging the response to hyperosmotic solutions in both mouse skeletal muscle fibers and myotubes. Ca fluctuations in the cell periphery of fibers exposed to osmotic stress were accompanied by a substantial dilation of the peripheral TT. The Ca signals were completely inhibited by a conditioning depolarization that inactivates the DHPR. Dysgenic myotubes, lacking the DHP-receptor-alpha1-subunit, showed strongly reduced, yet not completely inhibited activity when stimulated with solutions of elevated tonicity. The results point to a modulatory, even though not essential, role of the DHP receptor for osmotic stress-induced Ca signals in skeletal muscle.
Collapse
|
24
|
A retrograde signal from RyR1 alters DHP receptor inactivation and limits window Ca2+ release in muscle fibers of Y522S RyR1 knock-in mice. Proc Natl Acad Sci U S A 2009; 106:4531-6. [PMID: 19246389 DOI: 10.1073/pnas.0812661106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Malignant hyperthermia (MH) is a life-threatening hypermetabolic condition caused by dysfunctional Ca(2+) homeostasis in skeletal muscle, which primarily originates from genetic alterations in the Ca(2+) release channel (ryanodine receptor, RyR1) of the sarcoplasmic reticulum (SR). Owing to its physical interaction with the dihydropyridine receptor (DHPR), RyR1 is controlled by the electrical potential across the transverse tubular (TT) membrane. The DHPR exhibits both voltage-dependent activation and inactivation. Here we determined the impact of an MH mutation in RyR1 (Y522S) on these processes in adult muscle fibers isolated from heterozygous RyR1(Y522S)-knock-in mice. The voltage dependence of DHPR-triggered Ca(2+) release flux was left-shifted by approximately 8 mV. As a consequence, the voltage window for steady-state Ca(2+) release extended to more negative holding potentials in muscle fibers of the RyR1(Y522S)-mice. A rise in temperature from 20 degrees to 30 degrees C caused a further shift to more negative potentials of this window (by approximately 20 mV). The activation of the DHPR-mediated Ca(2+) current was minimally changed by the mutation. However, surprisingly, the voltage dependence of steady-state inactivation of DHPR-mediated calcium conductance and release were also shifted by approximately 10 mV to more negative potentials, indicating a retrograde action of the RyR1 mutation on DHPR inactivation that limits window Ca(2+) release. This effect serves as a compensatory response to the lowered voltage threshold for Ca(2+) release caused by the Y522S mutation and represents a novel mechanism to counteract excessive Ca(2+) leak and store depletion in MH-susceptible muscle.
Collapse
|
25
|
Royer L, Pouvreau S, Ríos E. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle. J Physiol 2008; 586:4609-29. [PMID: 18687715 PMCID: PMC2614033 DOI: 10.1113/jphysiol.2008.157990] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 08/06/2008] [Indexed: 01/21/2023] Open
Abstract
Intracellular calcium signals regulate multiple cellular functions. They depend on release of Ca(2+) from cellular stores into the cytosol, a process that in many types of cells appears to be tightly controlled by changes in [Ca(2+)] within the store. In contrast with cardiac muscle, where depletion of Ca(2+) in the sarcoplasmic reticulum is a crucial determinant of termination of Ca(2+) release, in skeletal muscle there is no agreement regarding the sign, or even the existence of an effect of SR Ca(2+) level on Ca(2+) release. To address this issue we measured Ca(2+) transients in mouse flexor digitorum brevis (FDB) skeletal muscle fibres under voltage clamp, using confocal microscopy and the Ca(2+) monitor rhod-2. The evolution of Ca(2+) release flux was quantified during long-lasting depolarizations that reduced severely the Ca(2+) content of the SR. As in all previous determinations in mammals and non-mammals, release flux consisted of an early peak, relaxing to a lower level from which it continued to decay more slowly. Decay of flux in this second stage, which has been attributed largely to depletion of SR Ca(2+), was studied in detail. A simple depletion mechanism without change in release permeability predicts an exponential decay with time. In contrast, flux decreased non-exponentially, to a finite, measurable level that could be maintained for the longest pulses applied (1.8 s). An algorithm on the flux record allowed us to define a quantitative index, the normalized flux rate of change (NFRC), which was shown to be proportional to the ratio of release permeability P and inversely proportional to Ca(2+) buffering power B of the SR, thus quantifying the 'evacuability' or ability of the SR to empty its content. When P and B were constant, flux then decayed exponentially, and NFRC was equal to the exponential rate constant. Instead, in most cases NFRC increased during the pulse, from a minimum reached immediately after the early peak in flux, to a time between 200 and 250 ms, when the index was no longer defined. NFRC increased by 111% on average (in 27 images from 18 cells), reaching 300% in some cases. The increase may reflect an increase in P, a decrease in B, or both. On experimental and theoretical grounds, both changes are to be expected upon SR depletion. A variable evacuability helps maintain a constant Ca(2+) output under conditions of diminishing store Ca(2+) load.
Collapse
Affiliation(s)
- Leandro Royer
- Department of Molecular Biophysics & Physiology, Section of Cellular Signalling, Rush University School of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
26
|
Jiménez-Moreno R, Wang ZM, Gerring RC, Delbono O. Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice. Biophys J 2008; 94:3178-88. [PMID: 18178643 PMCID: PMC2275691 DOI: 10.1529/biophysj.107.118786] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 12/03/2007] [Indexed: 11/18/2022] Open
Abstract
This study hypothesized that decline in sarcoplasmic reticulum (SR) Ca(2+) release and maximal SR-releasable Ca(2+) contributes to decreased specific force with aging. To test it, we recorded electrically evoked maximal isometric specific force followed by 4-chloro-m-cresol (4-CmC)-evoked maximal contracture force in single intact fibers from the mouse flexor digitorum brevis muscle. Significant differences in tetanic, but not in 4-CmC-evoked, contracture forces were recorded in fibers from aging mice as compared to younger mice. Peak intracellular Ca(2+) in response to 4-CmC did not differ significantly. SR Ca(2+) release was recorded in whole-cell patch-clamped fibers in the linescan mode of confocal microscopy using a low-affinity Ca(2+) indicator (Oregon green bapta-5N) with high-intracellular ethylene glycol-bis(alpha-aminoethyl ether)-N,N,N'N'-tetraacetic acid (20 mM). Maximal SR Ca(2+) release, but not voltage dependence, was significantly changed in fibers from old compared to young mice. Increasing the duration of fiber depolarization did not increase the maximal rate of SR Ca(2+) release in fibers from old compared to young mice. Voltage-dependent inactivation of SR Ca(2+) release did not differ significantly between fibers from young and old mice. These findings indicate that alterations in excitation-contraction coupling, but not in maximal SR-releasable Ca(2+), account for the age-dependent decline in intracellular Ca(2+) mobilization and specific force.
Collapse
Affiliation(s)
- Ramón Jiménez-Moreno
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
27
|
García K, Nabhani T, García J. The calcium channel alpha2/delta1 subunit is involved in extracellular signalling. J Physiol 2007; 586:727-38. [PMID: 18063658 DOI: 10.1113/jphysiol.2007.147959] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The alpha2/delta1 subunit forms part of the dihydropyridine receptor, an essential protein complex for excitation-contraction (EC) coupling in skeletal muscle. Because of the lack of a viable knock-out animal, little is known regarding the role of the alpha2/delta1 subunit in EC coupling or in other cell functions. Interestingly, the alpha2/delta1 appears before the alpha1 subunit in development and contains extracellular conserved domains known to be important in cell signalling and inter-protein interactions. These facts raise the possibility that the alpha2/delta1 subunit performs vital functions not associated with EC coupling. Here, we tested the hypothesis that the alpha2/delta1 subunit is important for interactions of muscle cells with their environment. Using confocal microscopy, we followed the immunolocalization of alpha2/delta1 and alpha1 subunits with age. We found that in 2-day-old myotubes, the alpha2/delta1 subunit concentrated towards the ends of the cells, while the alpha1 subunit clustered near the centre. As myotubes aged (6-12 days), the alpha2/delta1 became evenly distributed along the myotubes and co-localized with alpha1. When the expression of alpha2/delta1 was blocked with siRNA, migration, attachment and spreading of myoblasts were impaired while the L-type calcium current remained unaffected. The results suggest a previously unidentified role of the alpha2/delta1 subunit in skeletal muscle and support the involvement of this protein in extracellular signalling. This new role of the alpha2/delta1 subunit may be crucial for muscle development, muscle repair and at times in which myoblast attachment and migration are fundamental.
Collapse
Affiliation(s)
- Kelly García
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
28
|
The auxiliary subunit gamma 1 of the skeletal muscle L-type Ca2+ channel is an endogenous Ca2+ antagonist. Proc Natl Acad Sci U S A 2007; 104:17885-90. [PMID: 17978188 DOI: 10.1073/pnas.0704340104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca2+ channels play crucial roles in cellular signal transduction and are important targets of pharmacological agents. They are also associated with auxiliary subunits exhibiting functions that are still incompletely resolved. Skeletal muscle L-type Ca2+ channels (dihydropyridine receptors, DHPRs) are specialized for the remote voltage control of type 1 ryanodine receptors (RyR1) to release stored Ca2+. The skeletal muscle-specific gamma subunit of the DHPR (gamma 1) down-modulates availability by altering its steady state voltage dependence. The effect resembles the action of certain Ca2+ antagonistic drugs that are thought to stabilize inactivated states of the DHPR. In the present study we investigated the cross influence of gamma 1 and Ca2+ antagonists by using wild-type (gamma+/+) and gamma 1 knockout (gamma-/-) mice. We studied voltage-dependent gating of both L-type Ca2+ current and Ca2+ release and the allosteric modulation of drug binding. We found that 10 microM diltiazem, a benzothiazepine drug, more than compensated for the reduction in high-affinity binding of the dihydropyridine agent isradipine caused by gamma 1 elimination; 5 muM devapamil [(-)D888], a phenylalkylamine Ca2+ antagonist, approximately reversed the right-shifted voltage dependence of availability and the accelerated recovery kinetics of Ca2+ current and Ca2+ release. Moreover, the presence of gamma 1 altered the effect of D888 on availability and strongly enhanced its impact on recovery kinetics demonstrating that gamma 1 and the drug do not act independently of each other. We propose that the gamma 1 subunit of the DHPR functions as an endogenous Ca2+ antagonist whose task may be to minimize Ca2+ entry and Ca2+ release under stress-induced conditions favoring plasmalemma depolarization.
Collapse
|
29
|
Patterson M, Sneyd J, Friel DD. Depolarization-induced calcium responses in sympathetic neurons: relative contributions from Ca2+ entry, extrusion, ER/mitochondrial Ca2+ uptake and release, and Ca2+ buffering. ACTA ACUST UNITED AC 2007; 129:29-56. [PMID: 17190902 PMCID: PMC2151609 DOI: 10.1085/jgp.200609660] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many models have been developed to account for stimulus-evoked [Ca(2+)] responses, but few address how responses elicited in specific cell types are defined by the Ca(2+) transport and buffering systems that operate in the same cells. In this study, we extend previous modeling studies by linking the time course of stimulus-evoked [Ca(2+)] responses to the underlying Ca(2+) transport and buffering systems. Depolarization-evoked [Ca(2+)](i) responses were studied in sympathetic neurons under voltage clamp, asking how response kinetics are defined by the Ca(2+) handling systems expressed in these cells. We investigated five cases of increasing complexity, comparing observed and calculated responses deduced from measured Ca(2+) handling properties. In Case 1, [Ca(2+)](i) responses were elicited by small Ca(2+) currents while Ca(2+) transport by internal stores was inhibited, leaving plasma membrane Ca(2+) extrusion intact. In Case 2, responses to the same stimuli were measured while mitochondrial Ca(2+) uptake was active. In Case 3, responses were elicited as in Case 2 but with larger Ca(2+) currents that produce larger and faster [Ca(2+)](i) elevations. Case 4 included the mitochondrial Na/Ca exchanger. Finally, Case 5 included ER Ca(2+) uptake and release pathways. We found that [Ca(2+)](i) responses elicited by weak stimuli (Cases 1 and 2) could be quantitatively reconstructed using a spatially uniform model incorporating the measured properties of Ca(2+) entry, removal, and buffering. Responses to strong depolarization (Case 3) could not be described by this model, but were consistent with a diffusion model incorporating the same Ca(2+) transport and buffering descriptions, as long as endogenous buffers have low mobility, leading to steep radial [Ca(2+)](i) gradients and spatially nonuniform Ca(2+) loading by mitochondria. When extended to include mitochondrial Ca(2+) release (Case 4) and ER Ca(2+) transport (Case 5), the diffusion model could also account for previous measurements of stimulus-evoked changes in total mitochondrial and ER Ca concentration.
Collapse
Affiliation(s)
- Michael Patterson
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
30
|
Gouadon E, Schuhmeier RP, Ursu D, Anderson AA, Treves S, Zorzato F, Lehmann-Horn F, Melzer W. A possible role of the junctional face protein JP-45 in modulating Ca2+ release in skeletal muscle. J Physiol 2006; 572:269-80. [PMID: 16423849 PMCID: PMC1779648 DOI: 10.1113/jphysiol.2005.104406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We investigated the functional role of JP-45, a recently discovered protein of the junctional face membrane (JFM) of skeletal muscle. For this purpose, we expressed JP-45 C-terminally tagged with the fluorescent protein DsRed2 by nuclear microinjection in myotubes derived from the C2C12 skeletal muscle cell line and performed whole-cell voltage-clamp experiments. We recorded in parallel cell membrane currents and Ca(2+) signals using fura-2 during step depolarization. It was found that properties of the voltage-activated Ca(2+) current were not significantly changed in JP-45-DsRed2-expressing C2C12 myotubes whereas the amplitude of depolarization-induced Ca(2+) transient was decreased compared to control myotubes expressing only DsRed2. Converting Ca(2+) transients to Ca(2+) input flux using a model fit approach to quantify Ca(2+) removal, the change could be attributed to an alteration in voltage-activated Ca(2+) permeability rather than to altered removal properties or a lower Ca(2+) content of the sarcoplasmic reticulum (SR). Determining non-linear capacitive currents revealed a reduction of Ca(2+) permeability per voltage-sensor charge. The results may be explained by a modulatory effect of JP-45 related to its reported in vitro interaction with the dihydropyridine receptor and the SR Ca(2+) binding protein calsequestrin (CSQ).
Collapse
Affiliation(s)
- E Gouadon
- University of Ulm, Department of Applied Physiology, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ursu D, Schuhmeier RP, Freichel M, Flockerzi V, Melzer W. Altered inactivation of Ca2+ current and Ca2+ release in mouse muscle fibers deficient in the DHP receptor gamma1 subunit. ACTA ACUST UNITED AC 2005; 124:605-18. [PMID: 15504904 PMCID: PMC2234002 DOI: 10.1085/jgp.200409168] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Functional impacts of the skeletal muscle-specific Ca2+ channel subunit gamma1 have previously been studied using coexpression with the cardiac alpha1C polypeptide in nonmuscle cells and primary-cultured myotubes of gamma1-deficient mice. Data from single adult muscle fibers of gamma-/- mice are not yet available. In the present study, we performed voltage clamp experiments on enzymatically isolated mature muscle fibers of the m. interosseus obtained from gamma+/+ and gamma-/- mice. We measured L-type Ca2+ inward currents and intracellular Ca2+ transients during 100-ms step depolarizations from a holding potential of -80 mV. Ratiometric Ca2+ transients were analyzed with a removal model fit approach to calculate the flux of Ca2+ from the sarcoplasmic reticulum. Ca2+ current density, Ca2+ release flux, and the voltage dependence of activation of both Ca2+ current and Ca2+ release were not significantly different. By varying the holding potential and recording Ca2+ current and Ca2+ release flux induced by 100-ms test depolarizations to +20 mV, we studied quasi-steady-state properties of slow voltage-dependent inactivation. For the Ca2+ current, these experiments showed a right-shifted voltage dependence of inactivation. Importantly, we could demonstrate that a very similar shift occurred also in the inactivation curve of Ca2+ release. Voltages of half maximal inactivation were altered by 16 (current) and 14 mV (release), respectively. Muscle fiber bundles, activated by elevated potassium concentration (120 mM), developed about threefold larger contracture force in gamma-/- compared with gamma+/+. This difference was independent of the presence of extracellular Ca2+ and likely results from the lower sensitivity to voltage-dependent inactivation of Ca2+ release. These results demonstrate a specific alteration of voltage-dependent inactivation of both Ca2+ entry and Ca2+ release by the gamma1 subunit of the dihydropyridine receptor in mature muscle fibers of the mouse.
Collapse
Affiliation(s)
- Daniel Ursu
- University of Ulm, Dept. of Applied Physiology, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
32
|
Pizarro G, Ríos E. How source content determines intracellular Ca2+ release kinetics. Simultaneous measurement of [Ca2+] transients and [H+] displacement in skeletal muscle. ACTA ACUST UNITED AC 2005; 124:239-58. [PMID: 15337820 PMCID: PMC2233888 DOI: 10.1085/jgp.200409071] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In skeletal muscle, the waveform of Ca2+ release under clamp depolarization exhibits an early peak. Its decay reflects an inactivation, which locally corresponds to the termination of Ca2+ sparks, and is crucial for rapid control. In cardiac muscle, both the frequency of spontaneous sparks (i.e., their activation) and their termination appear to be strongly dependent on the Ca2+ content in the sarcoplasmic reticulum (SR). In skeletal muscle, no such role is established. Seeking a robust measurement of Ca2+ release and a way to reliably modify the SR content, we combined in the same cells the “EGTA/phenol red” method (Pape et al., 1995) to evaluate Ca2+ release, with the “removal” method (Melzer et al., 1987) to evaluate release flux. The cytosol of voltage-clamped frog fibers was equilibrated with EGTA (36 mM), antipyrylazo III, and phenol red, and absorbance changes were monitored simultaneously at three wavelengths, affording largely independent evaluations of Δ[H+] and Δ[Ca2+] from which the amount of released Ca2+ and the release flux were independently derived. Both methods yielded mutually consistent evaluations of flux. While the removal method gave a better kinetic picture of the release waveform, EGTA/phenol red provided continuous reproducible measures of calcium in the SR (CaSR). Steady release permeability (P), reached at the end of a 120-ms pulse, increased as CaSR was progressively reduced by a prior conditioning pulse, reaching 2.34-fold at 25% of resting CaSR (four cells). Peak P, reached early during a pulse, increased proportionally much less with SR depletion, decreasing at very low CaSR. The increase in steady P upon depletion was associated with a slowing of the rate of decay of P after the peak (i.e., a slower inactivation of Ca2+ release). These results are consistent with a major inhibitory effect of cytosolic (rather than intra-SR) Ca2+ on the activity of Ca2+ release channels.
Collapse
Affiliation(s)
- Gonzalo Pizarro
- Dept. of Molecular Biophysics and Physiology, Rush University School of Medicine, 1750 W. Harrison St., Suite 1279JS, Chicago, IL 60612, USA
| | | |
Collapse
|
33
|
Capote J, Bolaños P, Schuhmeier RP, Melzer W, Caputo C. Calcium transients in developing mouse skeletal muscle fibres. J Physiol 2005; 564:451-64. [PMID: 15731192 PMCID: PMC1464444 DOI: 10.1113/jphysiol.2004.081034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ca(2)(+) transients elicited by action potentials were measured using MagFluo-4, at 20-22 degrees C, in intact muscle fibres enzymatically dissociated from mice of different ages (7, 10, 15 and 42 days). The rise time of the transient (time from 10 to 90% of the peak) was 2.4 and 1.1 ms in fibres of 7- and 42-day-old mice, respectively. The decay of the transient was described by a double exponential function, with time constants of 1.8 and 16.4 ms in adult, and of 4.6 and 105 ms in 7-day-old animals. The fractional recovery of the transient peak amplitude after 10 ms, F(2(10))/F(1), determined using twin pulses, was 0.53 for adult fibres and ranged between 0.03 and 0.60 in fibres of 7-day-old animals This large variance may indicate differences in the extent of inactivation of Ca(2)(+) release, possibly related to the difference in ryanodine receptor composition between young and old fibres. At the 7 and 10 day stages, fibres responded to Ca(2)(+)-free solutions with a larger decrease in the transient peak amplitude (25% versus 11% in adult fibres), possibly indicating a contribution of Ca(2)(+) influx to the Ca(2)(+) transient in younger animals. Cyclopiazonic acid (1 mum), an inhibitor of the sarcoplasmic reticulum (SR) Ca(2)(+)-ATPase, abolished the Ca(2)(+) transient decay in fibres of 7- and 10-day-old animals and significantly reduced its rate in older animals. Analysis of the transients with a Ca(2)(+) removal model showed that the results are consistent with a larger relative contribution of the SR Ca(2)(+) pump and a lower expression of myoplasmic Ca(2)(+) buffers in fibres of young versus old animals.
Collapse
Affiliation(s)
- Joana Capote
- [corrected] Instituto Venezolano de Investigaciones Cientificas IVIC, Apartado 21827, Caracas 1020A, Venezuela
| | | | | | | | | |
Collapse
|
34
|
Schuhmeier RP, Gouadon E, Ursu D, Kasielke N, Flucher BE, Grabner M, Melzer W. Functional interaction of CaV channel isoforms with ryanodine receptors studied in dysgenic myotubes. Biophys J 2004; 88:1765-77. [PMID: 15626717 PMCID: PMC1305232 DOI: 10.1529/biophysj.104.051318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The L-type Ca(2+) channels Ca(V)1.1 (alpha(1S)) and Ca(V)1.2 (alpha(1C)) share properties of targeting but differ by their mode of coupling to ryanodine receptors in muscle cells. The brain isoform Ca(V)2.1 (alpha(1A)) lacks ryanodine receptor targeting. We studied these three isoforms in myotubes of the alpha(1S)-deficient skeletal muscle cell line GLT under voltage-clamp conditions and estimated the flux of Ca(2+) (Ca(2+) input flux) resulting from Ca(2+) entry and release. Surprisingly, amplitude and kinetics of the input flux were similar for alpha(1C) and alpha(1A) despite a previously reported strong difference in responsiveness to extracellular stimulation. The kinetic flux characteristics of alpha(1C) and alpha(1A) resembled those in alpha(1S)-expressing cells but the contribution of Ca(2+) entry was much larger. alpha(1C) but not alpha(1A)-expressing cells revealed a distinct transient flux component sensitive to sarcoplasmic reticulum depletion by 30 microM cyclopiazonic acid and 10 mM caffeine. This component likely results from synchronized Ca(2+)-induced Ca(2+) release that is absent in alpha(1A)-expressing myotubes. In cells expressing an alpha(1A)-derivative (alpha(1)Aas(1592-clip)) containing the putative targeting sequence of alpha(1S), a similar transient component was noticeable. Yet, it was considerably smaller than in alpha(1C), indicating that the local Ca(2+) entry produced by the chimera is less effective in triggering Ca(2+) release despite similar global Ca(2+) inward current density.
Collapse
Affiliation(s)
- Ralph Peter Schuhmeier
- Department of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Ursu D, Schuhmeier RP, Melzer W. Voltage-controlled Ca2+ release and entry flux in isolated adult muscle fibres of the mouse. J Physiol 2004; 562:347-65. [PMID: 15528246 PMCID: PMC1665514 DOI: 10.1113/jphysiol.2004.073882] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The voltage-activated fluxes of Ca(2+) from the sarcoplasmic reticulum (SR) and from the extracellular space were studied in skeletal muscle fibres of adult mice. Single fibres of the interosseus muscle were enzymatically isolated and voltage clamped using a two-electrode technique. The fibres were perfused from the current-passing micropipette with a solution containing 15 mm EGTA and 0.2 mm of either fura-2 or the faster, lower affinity indicator fura-FF. Electrical recordings in parallel with the fluorescence measurements allowed the estimation of intramembrane gating charge movements and transmembrane Ca(2+) inward current exhibiting half-maximal activation at -7.60 +/- 1.29 and 3.0 +/- 1.44 mV, respectively. The rate of Ca(2+) release from the SR was calculated after fitting the relaxation phases of fluorescence ratio signals with a kinetic model to quantify overall Ca(2+) removal. Results obtained with the two indicators were similar. Ca(2+) release was 2-3 orders of magnitude larger than the flux carried by the L-type Ca(2+) current. At maximal depolarization (+50 mV), release flux peaked at about 3 ms after the onset of the voltage pulse and then decayed in two distinct phases. The slower phase, most likely resulting from SR depletion, indicated a decrease in lumenal Ca(2+) content by about 80% within 100 ms. Unlike in frog fibres, the kinetics of the rapid phase of decay showed no dependence on the filling state of the SR and the results provide little evidence for a substantial increase of SR permeability on depletion. The approach described here promises insight into excitation-contraction coupling in future studies of genetically altered mice.
Collapse
Affiliation(s)
- D Ursu
- University of Ulm, Department of Applied Physiology, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | |
Collapse
|