1
|
Liu DT, Besser G, Bayer K, Prem B, Mueller CA, Renner B. Bitter Taste Disrupts Spatial Discrimination of Piperine-Evoked Burning Sensations: A Pilot Study. BIOLOGY 2021; 10:biology10090886. [PMID: 34571763 PMCID: PMC8469466 DOI: 10.3390/biology10090886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary The chemical senses smell, taste, and trigeminal sense enable us to interact with the environment and play an essential role in protecting us from hazardous events. It is theorized that capsaicin and piperine not only elicit burning, but also bitter sensations through bitter taste-responding gustatory receptor cells that possess special channels. Similar psychophysiological responses to capsaicin and piperine suggest that bitter taste might also disrupt the spatial discrimination to piperine-induced burning sensations. Results showed that bitter taste disrupted the spatial discrimination of piperine-evoked burning sensations, providing further evidence for a qualitative similarity between burning and bitter sensations and the usefulness of chemical irritants in spatial discrimination tasks. Abstract This study aimed to investigate the perceptual similarity between piperine-induced burning sensations and bitter taste using piperine-impregnated taste strips (PTS). This pilot study included 42 healthy participants. PTS of six ascending concentrations (1 mg, 5 mg, 10 mg, 15 mg, 20 mg, and 25 mg piperine/dL 96% ethanol) were presented at the anterior tongue, and participants rated perceived intensity and duration. Then, participants performed a spatial discrimination task in which they had to report which of the two strips presented to the anterior tongue contained an irritating stimulus when one strip was always a PTS while the other strip was impregnated with either a single taste quality (sweet or bitter) or a blank strip. Repeated measures one-way ANOVA revealed that burning sensations of higher concentrated PTS were perceived more intense and more prolonged compared to lower concentrated PTS. McNemar’s test showed that PTS were identified correctly significantly less often when presented with bitter strips compared to when presented with blank (p = 0.002) or sweet strips (p = 0.017). Our results showed that bitter taste disrupts the spatial discrimination of piperine-evoked burning sensations. PTS might serve as a basis for further studies on disease-specific patterns in chemosensory disorders.
Collapse
Affiliation(s)
- David T. Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.T.L.); (G.B.); (K.B.); (B.P.)
| | - Gerold Besser
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.T.L.); (G.B.); (K.B.); (B.P.)
| | - Karina Bayer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.T.L.); (G.B.); (K.B.); (B.P.)
| | - Bernhard Prem
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.T.L.); (G.B.); (K.B.); (B.P.)
| | - Christian A. Mueller
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.T.L.); (G.B.); (K.B.); (B.P.)
- Correspondence:
| | - Bertold Renner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Hartley IE, Liem DG, Keast RS. Females' ability to discriminate MSG from NaCl influences perceived intensity but not liking of MSG added vegetable broths. J Food Sci 2020; 85:3934-3942. [PMID: 33037609 DOI: 10.1111/1750-3841.15478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022]
Abstract
This study investigated whether ability to taste monosodium glutamate (MSG) is associated with liking and intensity of sodium-reduced vegetable broths with added MSG. Six vegetable broths, with varying concentrations of added NaCl and MSG, were evaluated for overall intensity, and liking, by n = 115 female participants, mean age 24.1 ± 5.4. Broths evaluated included: control broth (0 g NaCl, 0 g MSG), high NaCl broth (0.8 g/100 mL), medium NaCl (0.4 g/100 mL), low NaCl (0.2 g/100 ml), medium NaCl (0.4 g/100 ml) + 29 mM MSG and, low NaCl (0.2 g/100 mL) + 29 mM MSG. Participant's umami discrimination status was determined using forced-choice triangle tests (29 mM MSG vs 29 mM NaCl), and suprathreshold salt taste intensity (NaCl) was measured. A 7% Na reduction was possible by partially replacing NaCl with MSG without influencing intensity or liking in the low NaCl broth, in comparison to the highest liked NaCl only broth (medium NaCl). There was no significant difference in liking of broths between MSG discriminators (n = 37) and nondiscriminators (n = 78) (P > 0.2). MSG discriminators rated all broths as significantly more intense overall (except for control broth, P > 0.2) than nondiscriminators (P < 0.05). A significant relationship was found between MSG discrimination status, and salt taste intensity tertiles (χ2 (2, N = 115) = 8.45; P < 0.02) indicating that the Na ion dominates taste profile. The ability to discriminate MSG from NaCl does not influence liking of salt-reduced broths with added MSG. MSG discrimination status was associated with NaCl taste intensity, indicating that the sodium ion is dominant in influencing intensity (common to both MSG and NaCl). PRACTICAL APPLICATION: The addition of MSG to vegetable broths is an effective way to reduce total sodium in the broths without reducing liking of the broths, this is irrespective of an individual's ability to taste MSG or salt. Salt taste and umami taste (MSG) appear to be associated, indicating the sodium is important in influencing taste intensity for both salty and umami taste.
Collapse
Affiliation(s)
- Isabella E Hartley
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin Univ., Burwood, VIC, 3125, Australia
| | - Dijn G Liem
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin Univ., Burwood, VIC, 3125, Australia
| | - Russell Sj Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin Univ., Burwood, VIC, 3125, Australia
| |
Collapse
|
3
|
Eccles R. What is the Role of Over 100 Excipients in Over the Counter (OTC) Cough Medicines? Lung 2020; 198:727-734. [PMID: 32889596 PMCID: PMC7502433 DOI: 10.1007/s00408-020-00390-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/20/2020] [Indexed: 01/17/2023]
Abstract
Most medicines are white bitter powders that are formulated as tablets and capsules but cough medicines are an exception where the taste and appearance of the medicine are more important to the patient than the pharmacology of the active ingredient. Excipients are generally defined as any ingredient in a medicine other than the active ingredient. In most medicines excipients play a supportive role in delivering the medicine, but in the case of cough medicines, excipients have more important and complex roles and they can also be the main active ingredient of the cough medicine as menthol, glycerol, and sugars, which are declared as active ingredients. This review searched the United Kingdom electronic medicines compendium (emc) and found over 100 excipients in 60 different liquid formulations of over the counter cough medicines. The excipients were divided into functional groups: sweeteners, thickeners, flavors, colors, antimicrobials, and buffers, and the incidence and function of the different excipients is discussed. When considering the efficacy of a cough medicine, clinicians and pharmacists tend to think of the pharmacology of antitussives such as dextromethorphan or expectorants such as guaifenesin, and they rarely consider the role of excipients in the efficacy of the medicine. This review discusses the functions and importance of excipients in cough medicines and provides some new information for clinicians, pharmacists, and all interested in the treatment of cough when considering the composition and efficacy of a cough medicine.
Collapse
Affiliation(s)
- Ronald Eccles
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.
| |
Collapse
|
4
|
Abstract
Taste is a homeostatic function that conveys valuable information, such as energy density, readiness to eat, or toxicity of foodstuffs. Taste is not limited to the oral cavity but affects multiple physiological systems. In this review, we outline the ergogenic potential of substances that impart bitter, sweet, hot and cold tastes administered prior to and during exercise performance and whether the ergogenic benefits of taste are attributable to the placebo effect. Carbohydrate mouth rinsing seemingly improves endurance performance, along with a potentially ergogenic effect of oral exposure to both bitter tastants and caffeine although subsequent ingestion of bitter mouth rinses is likely required to enhance performance. Hot and cold tastes may prove beneficial in circumstances where athletes' thermal state may be challenged. Efficacy is not limited to taste, but extends to the stimulation of targeted receptors in the oral cavity and throughout the digestive tract, relaying signals pertaining to energy availability and temperature to appropriate neural centres. Dose, frequency and timing of tastant application likely require personalisation to be most effective, and can be enhanced or confounded by factors that relate to the placebo effect, highlighting taste as a critical factor in designing and administering applied sports science interventions.
Collapse
|
5
|
Eccles R. The Powerful Placebo Effect in Cough: Relevance to Treatment and Clinical Trials. Lung 2020; 198:13-21. [PMID: 31834478 PMCID: PMC7012959 DOI: 10.1007/s00408-019-00305-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
Interest in the placebo effect of medicines has developed from the use of placebo treatments as controls in clinical trials into a whole new area of research around how placebos fit into a psychosocial model of therapeutics. The large placebo effect associated with cough medicines is both a problem and an opportunity for researchers: a problem for clinical trials on new actives as the active must beat the large placebo effect, and an opportunity for harnessing the placebo effect to produce effective cough medicines without any pharmacologically active ingredient. This review discusses the mechanisms associated with the placebo effect of cough medicines and distinguishes between a 'perceived placebo effect' and a true 'placebo effect'. The efficacy of sweeteners in cough syrups is discussed as well as viscosity, mucoadhesion, and flavoring. The complexity of modern cough medicines is demonstrated by an example of a medicine which contains one active ingredient, and eighteen excipients which provide a complex and intense sensory experience to enhance the placebo effect and complement the pharmacological activity of the medicine.
Collapse
Affiliation(s)
- Ron Eccles
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK.
| |
Collapse
|
6
|
Qu T, Han W, Niu J, Tong J, de Araujo IE. On the roles of the Duodenum and the Vagus nerve in learned nutrient preferences. Appetite 2019; 139:145-151. [PMID: 31029689 DOI: 10.1016/j.appet.2019.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIM In most species, including humans, food preference is primarily controlled by nutrient value. However, the gut-brain pathways involved in preference learning remain elusive. The aim of the present study, performed in C57BL6/J mice, was to characterize the roles in nutrient preference of two critical elements of gut-brain pathways, i.e. the duodenum and vagal gut innervation. METHODS Adult wild-type C57BL6/J mice from a normal-weight cohort sustained one of the following three procedures: duodenal-jejunal bypass intestinal rerouting (DJB), total subdiaphragmatic vagotomy (SDV), or sham surgery. Mice were assessed in short-term two-bottle preference tests before and after 24 h s exposures to solutions containing one of glutamate, lipids, sodium, or glucose. RESULTS DJB and SDV interfered in preference formation in a nutrient-specific manner: whereas normal preference learning for lipids and glutamate was disrupted by both DJB and SDV, these interventions did not alter the formation of preferences for glucose. Interestingly, sodium preferences were abrogated by DJB but not by SDV. CONCLUSIONS Different macronutrients make use of distinct gut-brain pathways to influence food preferences, thereby mirroring nutrient-specific processes of food digestion. Specifically, whereas both vagal innervation and duodenal sensing appear critical for generating responses to fats and protein, glucose preferences recruit post-duodenal, vagal-independent pathways in pair with the control of glucose homeostasis. Overall, our data suggest that the physiological processes involved in digesting and absorbing fats, amino acids, and glucose overlap with those mediating learned preferences for each of these nutrients.
Collapse
Affiliation(s)
- Taoran Qu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China; The John B Pierce Laboratory, New Haven, CT, USA
| | - Wenfei Han
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jingjing Niu
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jenny Tong
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ivan E de Araujo
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Physiology, Yale University School of Arts and Sciences, New Haven, CT, USA.
| |
Collapse
|
7
|
Mense S. Algesic agents exciting muscle nociceptors. Exp Brain Res 2009; 196:89-100. [PMID: 19139871 DOI: 10.1007/s00221-008-1674-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 11/27/2008] [Indexed: 12/14/2022]
Abstract
Morphologically, muscle nociceptors are free nerve endings connected to the CNS by thin myelinated (group III) or unmyelinated (group IV) afferent fibers. Not all of these endings are nociceptive; approximately 40% have a low mechanical threshold and likely fulfill non-nociceptive functions. Two chemical stimuli are particularly relevant as causes of muscle pain. The first is a drop in tissue pH, i.e. an increase in proton (H+) concentration. A large number of painful patho(physio)logical alterations of muscle tissue are associated with an acidic interstitial pH (e.g. tonic contractions, spasm, inflammation). The second important cause of muscle pain is a release of adenosine triphosphate (ATP). ATP is present in all body cells, but in muscle its concentration is particularly high. Any damage of muscle cells (trauma, necrotic myositis) is accompanied by a release of ATP from the cells. Therefore, ATP is considered a general pain stimulus by some. ATP and protons are relatively specific stimuli for muscle pain; in cutaneous pain they play a less important role. The numerous agents that are released in pathologically altered muscle include substances that desensitize mechanosensitive group IV receptors. Capsaicin has a long-lasting desensitizing action, brain-derived neurotrophic factor, and tumor necrosis factor-alpha, a short-lasting one. Most of the agents exciting group IV units (e.g. low pH, ATP, capsaicin) activate not only nociceptive endings but also non-nociceptive ones. The only substance encountered that excites exclusively nociceptive group IV receptors is nerve growth factor (NGF). In rat muscle chronically inflamed with complete Freund's adjuvant, most group IV endings are sensitized to mechanical (and to some) chemical stimuli. However, stimulants such as ATP, NGF, and solutions of low pH were found to be less effective in inflamed muscle. A possible explanation for this surprising finding is that in inflamed muscle the concentrations of ATP and NGF and H+ are increased. Therefore, experimental administration of these agents is a less effective stimulus.
Collapse
Affiliation(s)
- S Mense
- Department of Anatomy and Cell Biology III, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Katsumata T, Nakakuki H, Tokunaga C, Fujii N, Egi M, Phan THT, Mummalaneni S, DeSimone JA, Lyall V. Effect of Maillard reacted peptides on human salt taste and the amiloride-insensitive salt taste receptor (TRPV1t). Chem Senses 2008; 33:665-80. [PMID: 18603652 PMCID: PMC2533421 DOI: 10.1093/chemse/bjn033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Maillard reacted peptides (MRPs) were synthesized by conjugating a peptide fraction (1000–5000 Da) purified from soy protein hydrolyzate with galacturonic acid, glucosamine, xylose, fructose, or glucose. The effect of MRPs was investigated on human salt taste and on the chorda tympani (CT) taste nerve responses to NaCl in Sprague–Dawley rats, wild-type, and transient receptor potential vanilloid 1 (TRPV1) knockout mice. MRPs produced a biphasic effect on human salt taste perception and on the CT responses in rats and wild-type mice in the presence of NaCl + benzamil (Bz, a blocker of epithelial Na+ channels), enhancing the NaCl response at low concentrations and suppressing it at high concentrations. The effectiveness of MRPs as salt taste enhancers varied with the conjugated sugar moiety: galacturonic acid = glucosamine > xylose > fructose > glucose. The concentrations at which MRPs enhanced human salt taste were significantly lower than the concentrations of MRPs that produced increase in the NaCl CT response. Elevated temperature, resiniferatoxin, capsaicin, and ethanol produced additive effects on the NaCl CT responses in the presence of MRPs. Elevated temperature and ethanol also enhanced human salt taste perception. N-(3-methoxyphenyl)-4-chlorocinnamid (a blocker of TRPV1t) inhibited the Bz-insensitive NaCl CT responses in the absence and presence of MRPs. TRPV1 knockout mice demonstrated no Bz-insensitive NaCl CT response in the absence or presence of MRPs. The results suggest that MRPs modulate human salt taste and the NaCl + Bz CT responses by interacting with TRPV1t.
Collapse
|
9
|
Yamasaki M, Ebihara S, Ebihara T, Freeman S, Yamanda S, Asada M, Yoshida M, Arai H. Cough reflex and oral chemesthesis induced by capsaicin and capsiate in healthy never-smokers. COUGH 2007; 3:9. [PMID: 17971242 PMCID: PMC2174508 DOI: 10.1186/1745-9974-3-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 10/31/2007] [Indexed: 12/30/2022]
Abstract
Background Many tussive agents are components of foods, but little is known about the relationship between cough reflex and oral chemesthesis sensitivities. We investigated the relationships between cough reflex and oral chemesthesis in individuals using two transient receptor potential vanilloid 1 (TRPV1) agonists with different potencies: capsaicin and capsiate. Methods Twenty-eight healthy never-smokers were allocated to evaluate cough and oral chemesthesis of capsinoids. Cough reflex sensitivities are estimated by the lowest concentrations generating five coughs by each TRPV1 agonist inhalation. Oral chemesthesis sensitivities are estimated by the lowest concentrations which generate a hot sensation when filter paper loaded with each TRPV1 agonist is placed on the tongue. Results There were strong correlations between capsaicin- and capsiate-induced cough reflex sensitivities, and between capsaicin- and capsiate-induced oral chemesthesis sensitivities. However, there were no significant correlations between cough reflex and oral chemesthesis sensitivities induced by both capsaicin and capsiate. The cough reflex sensitivities are significantly greater in females than in males whereas there were no gender differences in oral chemesthesis. Conclusion The results showed that the sensitivities of sensory afferents were different between cough reflex and oral chemesthesis, suggesting that TRPV1 sensitivities differ between organs within healthy individuals. Capsiate could be a tussigen for the cough challenge test.
Collapse
Affiliation(s)
- Miyako Yamasaki
- Department of Geriatrics and Gerontology, Tohoku University School of Medicine, Seiryo-cho 1-1, Aoba-ku, Sendai, 980-8574, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lyall V, Phan THT, Mummalaneni S, Mansouri M, Heck GL, Kobal G, DeSimone JA. Effect of nicotine on chorda tympani responses to salty and sour stimuli. J Neurophysiol 2007; 98:1662-74. [PMID: 17615133 DOI: 10.1152/jn.00366.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effect of nicotine on the benzamil (Bz)-insensitive (transient receptor potential vanilloid-1 variant cation channel, TRPV1t) and the Bz-sensitive (epithelial Na(+) channel, ENaC) salt taste receptors and sour taste was investigated by monitoring intracellular Na(+) and H(+) activity (pH(i)) in polarized fungiform taste receptor cells (TRCs) and the chorda tympani (CT) nerve responses to NaCl, KCl, and HCl. CT responses in Sprague-Dawley rats and both wildtype and TRPV1 knockout (KO) mice were recorded in the presence and absence of agonists [resiniferatoxin (RTX) and elevated temperature] and an antagonist (SB-366791) of TRPV1t, the ENaC blocker (Bz), and varying apical pH (pH(o)). At concentrations <0.015 M, nicotine enhanced and at >0.015 M, it inhibited CT responses to KCl and NaCl. Nicotine produced maximum enhancement in the Bz-insensitive NaCl CT response at pH(o) between 6 and 7. RTX and elevated temperature increased the sensitivity of the CT response to nicotine in salt-containing media, and SB-366791 inhibited these effects. TRPV1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to nicotine, RTX, and elevated temperature. We conclude that nicotine modulates salt responses by direct interaction with TRPV1t. At pH(o) >8, the apical membrane permeability of nicotine was increased significantly, resulting in increase in TRC pH(i) and volume, activation of ENaC, and enhancement of the Bz-sensitive NaCl CT response. At pH(o) >8, nicotine also inhibited the phasic component of the HCl CT response. We conclude that the effects of nicotine on ENaC and the phasic HCl CT response arise from increases in TRC pH(i) and volume.
Collapse
Affiliation(s)
- Vijay Lyall
- Department of Physiology, Virginia Commonwealth University, Sanger Hall 3010, 1101 E. Marshall St., Richmond, VA 23298-0551, USA.
| | | | | | | | | | | | | |
Collapse
|