1
|
Sanghvi S, Sridharan D, Evans P, Dougherty J, Szteyn K, Gabrilovich D, Dyta M, Weist J, Pierre SV, Gururaja Rao S, Halm DR, Chen T, Athanasopoulos PS, Dolga AM, Yu L, Khan M, Singh H. Functional large-conductance calcium and voltage-gated potassium channels in extracellular vesicles act as gatekeepers of structural and functional integrity. Nat Commun 2025; 16:42. [PMID: 39747826 PMCID: PMC11697022 DOI: 10.1038/s41467-024-55379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content. EVs are known to possess ion channels and transporters in their membrane but neither the function nor the role of these channels in EVs is known. In this study, we discover a functional calcium-activated large-conductance potassium channel (BKCa) in the membrane of EVs. Furthermore, we establish that BKCa is essential for the structural and functional integrity of EVs. Together, these findings establish the critical role of ion channels such as BKCa in functioning as gatekeepers and maintaining EV-mediated signaling.
Collapse
Grants
- 916599 American Heart Association (American Heart Association, Inc.)
- TR004344 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- R01 HL133050 NHLBI NIH HHS
- HL157453 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL157453 NHLBI NIH HHS
- R13 TR004344 NCATS NIH HHS
- HL133050 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 965301 American Heart Association (American Heart Association, Inc.)
- R03 TR004178 NCATS NIH HHS
- R01 AR080946 NIAMS NIH HHS
- HL136232 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- The Ohio State University President’s Predoctoral Fellowship
Collapse
Affiliation(s)
- Shridhar Sanghvi
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Divya Sridharan
- Division of Basic and Translation Research, Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Parker Evans
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Julie Dougherty
- Division of Basic and Translation Research, Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kalina Szteyn
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Denis Gabrilovich
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Mayukha Dyta
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jessica Weist
- Division of Basic and Translation Research, Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sandrine V Pierre
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Shubha Gururaja Rao
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - Dan R Halm
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, USA
| | - Tingting Chen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, NE, USA
| | - Panagiotis S Athanasopoulos
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, NE, USA
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, NE, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Mahmood Khan
- Division of Basic and Translation Research, Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Harpreet Singh
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
2
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Echeverría F, Gonzalez-Sanabria N, Alvarado-Sanchez R, Fernández M, Castillo K, Latorre R. Large conductance voltage-and calcium-activated K + (BK) channel in health and disease. Front Pharmacol 2024; 15:1373507. [PMID: 38584598 PMCID: PMC10995336 DOI: 10.3389/fphar.2024.1373507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Large Conductance Voltage- and Calcium-activated K+ (BK) channels are transmembrane pore-forming proteins that regulate cell excitability and are also expressed in non-excitable cells. They play a role in regulating vascular tone, neuronal excitability, neurotransmitter release, and muscle contraction. Dysfunction of the BK channel can lead to arterial hypertension, hearing disorders, epilepsy, and ataxia. Here, we provide an overview of BK channel functioning and the implications of its abnormal functioning in various diseases. Understanding the function of BK channels is crucial for comprehending the mechanisms involved in regulating vital physiological processes, both in normal and pathological conditions, controlled by BK. This understanding may lead to the development of therapeutic interventions to address BK channelopathies.
Collapse
Affiliation(s)
- Felipe Echeverría
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Naileth Gonzalez-Sanabria
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
4
|
Van NTH, Kim WK, Nam JH. Challenges in the Therapeutic Targeting of KCa Channels: From Basic Physiology to Clinical Applications. Int J Mol Sci 2024; 25:2965. [PMID: 38474212 PMCID: PMC10932353 DOI: 10.3390/ijms25052965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Calcium-activated potassium (KCa) channels are ubiquitously expressed throughout the body and are able to regulate membrane potential and intracellular calcium concentrations, thereby playing key roles in cellular physiology and signal transmission. Consequently, it is unsurprising that KCa channels have been implicated in various diseases, making them potential targets for pharmaceutical interventions. Over the past two decades, numerous studies have been conducted to develop KCa channel-targeting drugs, including those for disorders of the central and peripheral nervous, cardiovascular, and urinary systems and for cancer. In this review, we synthesize recent findings regarding the structure and activating mechanisms of KCa channels. We also discuss the role of KCa channel modulators in therapeutic medicine. Finally, we identify the major reasons behind the delay in bringing these modulators to the pharmaceutical market and propose new strategies to promote their application.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
5
|
Liu H, Qu D, Cao Y, Li H, Wu X, Zhu Y, Tao J, Li Y, Cao C. TAT-Modified Martentoxin Displays Intravenous Antiseizure Activities. ACS Chem Neurosci 2024; 15:205-214. [PMID: 38112732 DOI: 10.1021/acschemneuro.3c00744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Epilepsy is a chronic disease of brain dysfunction, which arises from imbalance between excitatory and inhibitory activities in neural circuits. Previously, we reported that peptide Martentoxin (MarTX), from scorpion Buthus martensii Karsch, displayed antiseizure activities by specifically inhibiting BK(α + β4) channel currents. Injection of MarTX into the hippocampal region of mice significantly alleviated convulsive seizures. However, intravenous injection of MarTX had no antiepileptic efficacy due to the blood-brain barrier (BBB). To address this, here, we designed cell-penetrating peptide TAT-modified MarTX, in which the linker containing three glycines was put between TAT and the N-terminus of MarTX (forming MTX-N-TAT) or between TAT and the C-terminus of MarTX (forming MTX-C-TAT), respectively. We prepared them in a large amount through Escherichia coli overexpression system and then probed their antiseizure activities. Our results indicated that intravenous injection of MTX-C-TAT showed significant therapeutic efficacy of antiseizure. It increased seizure latency, reduced the total seizure duration and the number of seizures at stages 3, 4, and 5, inhibited hippocampal neuronal hyperexcitability, and exhibited neuroprotective effects on hippocampal neurons. These studies implied that MTX-C-TAT displayed intravenous antiseizure activities properly through crossing BBB and would be a potential antiepileptic drug in the future.
Collapse
Affiliation(s)
- Huan Liu
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongxiao Qu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yunzhu Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Nanjing Fenglin Biotechnology Co., 2 Taixi Road, Pukou District, Nanjing 210031, China
| | - Haiting Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yudan Zhu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Tao
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yiming Li
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyang Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Ancatén-González C, Segura I, Alvarado-Sánchez R, Chávez AE, Latorre R. Ca 2+- and Voltage-Activated K + (BK) Channels in the Nervous System: One Gene, a Myriad of Physiological Functions. Int J Mol Sci 2023; 24:3407. [PMID: 36834817 PMCID: PMC9967218 DOI: 10.3390/ijms24043407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.
Collapse
Affiliation(s)
- Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Segura
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rosangelina Alvarado-Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Doctorado en Ciencias Mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
7
|
Liu X, Tao J, Zhang S, Lan W, Yao Y, Wang C, Xue H, Ji Y, Li G, Cao C. Development of charybdotoxin Q18F variant as a selective peptide blocker of neuronal BK(α + β4) channel for the treatment of epileptic seizures. Protein Sci 2022; 31:e4506. [PMID: 36369672 PMCID: PMC9703589 DOI: 10.1002/pro.4506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
Abstract
Epilepsy is the results from the imbalance between inhibition and excitation in neural circuits, which is mainly treated by some chemical drugs with side effects. Gain-of-function of BK channels or knockout of its β4 subunit associates with spontaneous epilepsy. Currently, few reports were published about the efficacy of BK(α + β4) channel modulators in epilepsy prevention. Charybdotoxin is a non-specific inhibitor of BK and other K+ channels. Here, by nuclear magnetic resonance (NMR) and other biochemical techniques, we found that charybdotoxin might interact with the extracellular loop of human β4 subunit (i.e., hβ4-loop) of BK(α + β4) channel at a molar ratio 4:1 (hβ4-loop vs. charybdotoxin). Charybdotoxin enhanced its ability to prevent K+ current of BK(α + β4 H101Y) channel. The charybdotoxin Q18F variant selectively reduced the neuronal spiking frequency and increased interspike intervals of BK(α + β4) channel by π-π stacking interactions between its residue Phe18 and residue His101 of hβ4-loop. Moreover, intrahippocampal infusion of charybdotoxin Q18F variant significantly increased latency time of seizure, reduced seizure duration and seizure numbers on pentylenetetrazole-induced pre-sensitized rats, inhibited hippocampal hyperexcitability and c-Fos expression, and displayed neuroprotective effects on hippocampal neurons. These results implied that charybdotoxin Q18F variant could be potentially used for intractable epilepsy treatment by therapeutically targeting BK(α + β4) channel.
Collapse
Affiliation(s)
- Xinlian Liu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of ScienceBeijingChina
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Biomembrane and BiopharmaceuticsShanghai UniversityShanghaiChina
| | - Shuzhang Zhang
- Institute of Biomembrane and BiopharmaceuticsShanghai UniversityShanghaiChina
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
| | - Yu Yao
- Institute of Biomembrane and BiopharmaceuticsShanghai UniversityShanghaiChina
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
| | - Hongjuan Xue
- National Facility for Protein Science in Shanghai, Zhangjiang LabShanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
| | - Yonghua Ji
- Institute of Biomembrane and BiopharmaceuticsShanghai UniversityShanghaiChina
| | - Guoyi Li
- Department of Neurology and Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of ScienceBeijingChina
| |
Collapse
|
8
|
Barbagallo D, Palermo CI, Barbagallo C, Battaglia R, Caponnetto A, Spina V, Ragusa M, Di Pietro C, Scalia G, Purrello M. Competing endogenous RNA network mediated by circ_3205 in SARS-CoV-2 infected cells. Cell Mol Life Sci 2022; 79:75. [PMID: 35039944 PMCID: PMC8763136 DOI: 10.1007/s00018-021-04119-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a new member of the Betacoronaviridae family, responsible for the recent pandemic outbreak of COVID-19. To start exploring the molecular events that follow host cell infection, we queried VirusCircBase and identified a circular RNA (circRNA) predicted to be synthesized by SARS-CoV-2, circ_3205, which we used to probe: (i) a training cohort comprised of two pools of cells from three nasopharyngeal swabs of SARS-CoV-2 infected (positive) or uninfected (negative, UCs) individuals; (ii) a validation cohort made up of 12 positive and 3 negative samples. The expression of circRNAs, miRNAs and miRNA targets was assayed through real-time PCR. CircRNA-miRNA interactions were predicted by TarpMiR, Analysis of Common Targets for circular RNAs (ACT), and STarMir tools. Enrichment of the biological processes and the list of predicted miRNA targets were retrieved from DIANA miRPath v3.0. Our results showed that the predicted SARS-CoV-2 circ_3205 was expressed only in positive samples and its amount positively correlated with that of SARS-CoV-2 Spike (S) mRNA and the viral load (r values = 0.80952 and 0.84867, Spearman's correlation test, respectively). Human (hsa) miR-298 was predicted to interact with circ_3205 by all three predictive tools. KCNMB4 and PRKCE were predicted as hsa-miR-298 targets. Interestingly, the function of both is correlated with blood coagulation and immune response. KCNMB4 and PRKCE mRNAs were upregulated in positive samples as compared to UCs (6 and 8.1-fold, p values = 0.049 and 0.02, Student's t test, respectively) and their expression positively correlated with that of circ_3205 (r values = 0.6 and 0.25, Spearman's correlation test, respectively). We propose that our results convincingly suggest that circ_3205 is a circRNA synthesized by SARS-CoV-2 upon host cell infection and that it may behave as a competitive endogenous RNA (ceRNA), sponging hsa-miR-298 and contributing to the upregulation of KCNMB4 and PRKCE mRNAs.
Collapse
Affiliation(s)
- Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy.
| | - Concetta Ilenia Palermo
- U.O.C. Laboratory Analysis Unit, A.O.U. Policlinico‑Vittorio Emanuele, 95123, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Vittoria Spina
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Guido Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123, Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| |
Collapse
|
9
|
Ochoa SV, Otero L, Aristizabal-Pachon AF, Hinostroza F, Carvacho I, Torres YP. Hypoxic Regulation of the Large-Conductance, Calcium and Voltage-Activated Potassium Channel, BK. Front Physiol 2022; 12:780206. [PMID: 35002762 PMCID: PMC8727448 DOI: 10.3389/fphys.2021.780206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
Hypoxia is a condition characterized by a reduction of cellular oxygen levels derived from alterations in oxygen balance. Hypoxic events trigger changes in cell-signaling cascades, oxidative stress, activation of pro-inflammatory molecules, and growth factors, influencing the activity of various ion channel families and leading to diverse cardiovascular diseases such as myocardial infarction, ischemic stroke, and hypertension. The large-conductance, calcium and voltage-activated potassium channel (BK) has a central role in the mechanism of oxygen (O2) sensing and its activity has been related to the hypoxic response. BK channels are ubiquitously expressed, and they are composed by the pore-forming α subunit and the regulatory subunits β (β1–β4), γ (γ1–γ4), and LINGO1. The modification of biophysical properties of BK channels by β subunits underly a myriad of physiological function of these proteins. Hypoxia induces tissue-specific modifications of BK channel α and β subunits expression. Moreover, hypoxia modifies channel activation kinetics and voltage and/or calcium dependence. The reported effects on the BK channel properties are associated with events such as the increase of reactive oxygen species (ROS) production, increases of intracellular Calcium ([Ca2+]i), the regulation by Hypoxia-inducible factor 1α (HIF-1α), and the interaction with hemeproteins. Bronchial asthma, chronic obstructive pulmonary diseases (COPD), and obstructive sleep apnea (OSA), among others, can provoke hypoxia. Untreated OSA patients showed a decrease in BK-β1 subunit mRNA levels and high arterial tension. Treatment with continuous positive airway pressure (CPAP) upregulated β1 subunit mRNA level, decreased arterial pressures, and improved endothelial function coupled with a reduction in morbidity and mortality associated with OSA. These reports suggest that the BK channel has a role in the response involved in hypoxia-associated hypertension derived from OSA. Thus, this review aims to describe the mechanisms involved in the BK channel activation after a hypoxic stimulus and their relationship with disorders like OSA. A deep understanding of the molecular mechanism involved in hypoxic response may help in the therapeutic approaches to treat the pathological processes associated with diseases involving cellular hypoxia.
Collapse
Affiliation(s)
- Sara V Ochoa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Liliana Otero
- Center of Dental Research Dentistry Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Fernando Hinostroza
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule, CIEAM, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Facultad de Ciencias de la Salud, Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
| | - Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
10
|
Kshatri A, Cerrada A, Gimeno R, Bartolomé-Martín D, Rojas P, Giraldez T. Differential regulation of BK channels by fragile X mental retardation protein. J Gen Physiol 2021; 152:151651. [PMID: 32275741 PMCID: PMC7266151 DOI: 10.1085/jgp.201912502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/12/2020] [Indexed: 01/28/2023] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein prominently expressed in neurons. Missense mutations or complete loss of FMRP can potentially lead to fragile X syndrome, a common form of inherited intellectual disability. In addition to RNA regulation, FMRP was also proposed to modulate neuronal function by direct interaction with the large conductance Ca2+- and voltage-activated potassium channel (BK) β4 regulatory subunits (BKβ4). However, the molecular mechanisms underlying FMRP regulation of BK channels were not studied in detail. We have used electrophysiology and super-resolution stochastic optical reconstruction microscopy (STORM) to characterize the effects of FMRP on pore-forming BKα subunits, as well as the association with regulatory subunits BKβ4. Our data indicate that, in the absence of coexpressed β4, FMRP alters the steady-state properties of BKα channels by decreasing channel activation and deactivation rates. Analysis using the Horrigan-Aldrich model revealed alterations in the parameters associated with channel opening (L0) and voltage sensor activation (J0). Interestingly, FMRP also altered the biophysical properties of BKαβ4 channels favoring channel opening, although not as dramatically as BKα. STORM experiments revealed clustered multi-protein complexes, consistent with FMRP interacting not only to BKαβ4 but also to BKα. Lastly, we found that a partial loss-of-function mutation in FMRP (R138Q) counteracts many of its functional effects on BKα and BKαβ4 channels. In summary, our data show that FMRP modulates the function of both BKα and BKαβ4 channels.
Collapse
Affiliation(s)
- Aravind Kshatri
- Departamento de Ciencias Medicas Basicas-Fisiologia, Universidad de La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomedicas, Universidad de La Laguna, Tenerife, Spain
| | - Alejandro Cerrada
- Departamento de Ciencias Medicas Basicas-Fisiologia, Universidad de La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomedicas, Universidad de La Laguna, Tenerife, Spain
| | - Roger Gimeno
- Departamento de Ciencias Medicas Basicas-Fisiologia, Universidad de La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomedicas, Universidad de La Laguna, Tenerife, Spain
| | - David Bartolomé-Martín
- Departamento de Ciencias Medicas Basicas-Fisiologia, Universidad de La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomedicas, Universidad de La Laguna, Tenerife, Spain
| | - Patricio Rojas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Teresa Giraldez
- Departamento de Ciencias Medicas Basicas-Fisiologia, Universidad de La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomedicas, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
11
|
Rockman ME, Vouga AG, Rothberg BS. Molecular mechanism of BK channel activation by the smooth muscle relaxant NS11021. J Gen Physiol 2021; 152:151593. [PMID: 32221543 PMCID: PMC7266150 DOI: 10.1085/jgp.201912506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 12/31/2022] Open
Abstract
Large-conductance Ca2+-activated K+ channels (BK channels) are activated by cytosolic calcium and depolarized membrane potential under physiological conditions. Thus, these channels control electrical excitability in neurons and smooth muscle by gating K+ efflux and hyperpolarizing the membrane in response to Ca2+ signaling. Altered BK channel function has been linked to epilepsy, dyskinesia, and other neurological deficits in humans, making these channels a key target for drug therapies. To gain insight into mechanisms underlying pharmacological modulation of BK channel gating, here we studied mechanisms underlying activation of BK channels by the biarylthiourea derivative, NS11021, which acts as a smooth muscle relaxant. We observe that increasing NS11021 shifts the half-maximal activation voltage for BK channels toward more hyperpolarized voltages, in both the presence and nominal absence of Ca2+, suggesting that NS11021 facilitates BK channel activation primarily by a mechanism that is distinct from Ca2+ activation. 30 µM NS11021 slows the time course of BK channel deactivation at −200 mV by ∼10-fold compared with 0 µM NS11021, while having little effect on the time course of activation. This action is most pronounced at negative voltages, at which the BK channel voltage sensors are at rest. Single-channel kinetic analysis further shows that 30 µM NS11021 increases open probability by 62-fold and increases mean open time from 0.15 to 0.52 ms in the nominal absence of Ca2+ at voltages less than −60 mV, conditions in which BK voltage sensors are largely in the resting state. We could therefore account for the major activating effects of NS11021 by a scheme in which the drug primarily shifts the pore-gate equilibrium toward the open state.
Collapse
Affiliation(s)
- Michael E Rockman
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Alexandre G Vouga
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
12
|
Vouga AG, Rockman ME, Yan J, Jacobson MA, Rothberg BS. State-dependent inhibition of BK channels by the opioid agonist loperamide. J Gen Physiol 2021; 153:212539. [PMID: 34357374 PMCID: PMC8352719 DOI: 10.1085/jgp.202012834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Large-conductance Ca2+-activated K+ (BK) channels control a range of physiological functions, and their dysfunction is linked to human disease. We have found that the widely used drug loperamide (LOP) can inhibit activity of BK channels composed of either α-subunits (BKα channels) or α-subunits plus the auxiliary γ1-subunit (BKα/γ1 channels), and here we analyze the molecular mechanism of LOP action. LOP applied at the cytosolic side of the membrane rapidly and reversibly inhibited BK current, an effect that appeared as a decay in voltage-activated BK currents. The apparent affinity for LOP decreased with hyperpolarization in a manner consistent with LOP behaving as an inhibitor of open, activated channels. Increasing LOP concentration reduced the half-maximal activation voltage, consistent with relative stabilization of the LOP-inhibited open state. Single-channel recordings revealed that LOP did not reduce unitary BK channel current, but instead decreased BK channel open probability and mean open times. LOP elicited use-dependent inhibition, in which trains of brief depolarizing steps lead to accumulated reduction of BK current, whereas single brief depolarizing steps do not. The principal effects of LOP on BK channel gating are described by a mechanism in which LOP acts as a state-dependent pore blocker. Our results suggest that therapeutic doses of LOP may act in part by inhibiting K+ efflux through intestinal BK channels.
Collapse
Affiliation(s)
- Alexandre G Vouga
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Michael E Rockman
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marlene A Jacobson
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia PA
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
13
|
Abstract
K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).
Collapse
|
14
|
Abstract
Potassium channels are the most diverse and ubiquitous family of ion channels found in cells. The Ca2+ and voltage gated members form a subfamily that play a variety of roles in both excitable and non-excitable cells and are further classified on the basis of their single channel conductance to form the small conductance (SK), intermediate conductance (IK) and big conductance (BK) K+ channels.In this chapter, we will focus on the mechanisms underlying the gating of BK channels, whose function is modified in different tissues by different splice variants as well as the expanding array of regulatory accessory subunits including β, γ and LINGO subunits. We will examine how BK channels are modified by these regulatory subunits and describe how the channel gating is altered by voltage and Ca2+ whilst setting this in context with the recently published structures of the BK channel. Finally, we will discuss how BK and other calcium-activated channels are modulated by novel ion channel modulators and describe some of the challenges associated with trying to develop compounds with sufficient efficacy, potency and selectivity to be of therapeutic benefit.
Collapse
|
15
|
Abstract
Ca2+- and voltage-gated K+ channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore-forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, β and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
16
|
Lattanzi D, Di Palma M, Cuppini R, Ambrogini P. GABAergic Input Affects Intracellular Calcium Levels in Developing Granule Cells of Adult Rat Hippocampus. Int J Mol Sci 2020; 21:ijms21051715. [PMID: 32138257 PMCID: PMC7084234 DOI: 10.3390/ijms21051715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
In the dentate gyrus (DG) of the mammalian hippocampus, granule neurons are generated from neural stem cells (NSCs) throughout the life span and are integrated into the hippocampal network. Adult DG neurogenesis is regulated by multiple intrinsic and extrinsic factors that control NSC proliferation, maintenance, and differentiation into mature neurons. γ-Aminobutyric acid (GABA), released by local interneurons, regulates the development of neurons born in adulthood by activating extrasynaptic and synaptic GABAA receptors. In the present work, patch-clamp and calcium imaging techniques were used to record very immature granule cells of adult rat dentate gyrus for investigating the actual role of GABAA receptor activation in intracellular calcium level regulation at an early stage of maturation. Our findings highlight a novel molecular and electrophysiological mechanism, involving calcium-activated potassium channels (BK) and T-type voltage-dependent calcium channels, through which GABA fine-tunes intracellular calcium homeostasis in rat adult-born granule neurons early during their maturation. This mechanism might be instrumental in promoting newborn cell survival.
Collapse
|
17
|
Zhao H, Xue Q, Li C, Wang Q, Han S, Zhou Y, Yang T, Xie Y, Fu H, Lu C, Meng F, Zhang M, Zhang Y, Wu X, Wu S, Zhuo M, Xu H. Upregulation of Beta4 subunit of BK Ca channels in the anterior cingulate cortex contributes to mechanical allodynia associated anxiety-like behaviors. Mol Brain 2020; 13:22. [PMID: 32070382 PMCID: PMC7029562 DOI: 10.1186/s13041-020-0555-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/19/2020] [Indexed: 12/02/2022] Open
Abstract
The anterior cingulate cortex (ACC) serves as a critical hub for the anxiety and pain perception. The large-conductance Ca2+-activated potassium channels, or BKCa channels, are ubiquitously expressed throughout the central nervous system including the cingulate cortex. However, what changes of cortical BKCa channels undergo in the ACC remains unknown in pain-related anxiety. In the present study, a significant upregulation of synaptic and non-synaptic BKCa channel accessory β4 subunits in the ACC was accompanied with pain-associated anxiety-like behaviors in the chronic compression of multiple dorsal root ganglia (mCCD) of the rat. NS1619, an opener of BKCa channels, significantly rescued the alteration of fAHP and AP duration of ACC pyramidal neurons in mCCD rats. The mRNA expression of BKCa β4 subunits was extremely upregulated in the ACC after mCCD with the increased amount of both synaptic and non-synaptic BKCa β4 subunit protein. Meanwhile, NS1619 reversed the enhanced AMPA receptor-mediated spontaneous excitatory postsynaptic current (sEPSC) frequency and the attenuated PPR of ACC neurons in mCCD rats. Local activation of BKCa channels in the ACC reversed mechanical allodynia and anxiety-like behaviors. These results suggest that the upregulation of postsynaptic and presynaptic BKCa β4 subunit may contribute to neuronal hyperexcitability and the enhanced synaptic transmission in the ACC in neuropathic pain state, and then may result in anxiety-like behavior induced by neuropathic pain.
Collapse
Affiliation(s)
- Huan Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, Shandong, China
| | - Qian Xue
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Cong Li
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.,Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, Shandong, China.,Shandong First Medcial University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingchuan Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongsheng Zhou
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Yang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yingli Xie
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Fu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Changbo Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fancheng Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zhang
- Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, Shandong, China
| | - Xianglong Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Phsyiology, University of Toronto, Toronto, Canada
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
18
|
Moldenhauer HJ, Matychak KK, Meredith AL. Comparative gain-of-function effects of the KCNMA1-N999S mutation on human BK channel properties. J Neurophysiol 2019; 123:560-570. [PMID: 31851553 PMCID: PMC7052641 DOI: 10.1152/jn.00626.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
KCNMA1, encoding the voltage- and calcium-activated potassium channel, has a pivotal role in brain physiology. Mutations in KCNMA1 are associated with epilepsy and/or dyskinesia (PNKD3). Two KCNMA1 mutations correlated with these phenotypes, D434G and N999S, were previously identified as producing gain-of-function (GOF) effects on BK channel activity. Three new patients have been reported harboring N999S, one carrying a second mutation, R1128W, but the effects of these mutations have not yet been reported under physiological K+ conditions or compared to D434G. In this study, we characterize N999S, the novel N999S/R1128W double mutation, and D434G in a brain BK channel splice variant, comparing the effects on BK current properties under a physiological K+ gradient with action potential voltage commands. N999S, N999S/R1128W, and D434G cDNAs were expressed in HEK293T cells and characterized by patch-clamp electrophysiology. N999S BK currents were shifted to negative potentials, with faster activation and slower deactivation compared with wild type (WT) and D434G. The double mutation N999S/R1128W did not show any additional changes in current properties compared with N999S alone. The antiepileptic drug acetazolamide was assessed for its ability to directly modulate WT and N999S channels. Neither the WT nor N999S channels were sensitive to the antiepileptic drug acetazolamide, but both were sensitive to the inhibitor paxilline. We conclude that N999S is a strong GOF mutation that surpasses the D434G phenotype, without mitigation by R1128W. Acetazolamide has no direct modulatory action on either WT or N999S channels, indicating that its use may not be contraindicated in patients harboring GOF KCNMA1 mutations.NEW & NOTEWORTHY KCNMA1-linked channelopathy is a new neurological disorder characterized by mutations in the BK voltage- and calcium-activated potassium channel. The epilepsy- and dyskinesia-associated gain-of-function mutations N999S and D434G comprise the largest number of patients in the cohort. This study provides the first direct comparison between D434G and N999S BK channel properties as well as a novel double mutation, N999S/R1128W, from another patient, defining the functional effects during an action potential stimulus.
Collapse
Affiliation(s)
- Hans J Moldenhauer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Katia K Matychak
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Liu X, Tao J, Zhang S, Lan W, Wang C, Ji Y, Cao C. Selective Blockade of Neuronal BK (α + β4) Channels Preventing Epileptic Seizure. J Med Chem 2019; 63:216-230. [DOI: 10.1021/acs.jmedchem.9b01241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xinlian Liu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Science, No. 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jie Tao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Putuo District, Shanghai 200062, China
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, 99 Shangda Road,
BaoShan District, Shanghai 200444, China
| | - Shuzhang Zhang
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, 99 Shangda Road,
BaoShan District, Shanghai 200444, China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yonghua Ji
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, 99 Shangda Road,
BaoShan District, Shanghai 200444, China
- Xinhua Hospital (Chongming) Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, 25 Nanmen Port Street, Chongming Branch, Shanghai 202150, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Science, No. 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
- Institute of Drug Discovery Technology, Ningbo University, No 818 Fenghua Road, Ningbo, Zhejiang 313211, China
| |
Collapse
|
20
|
Tao X, MacKinnon R. Molecular structures of the human Slo1 K + channel in complex with β4. eLife 2019; 8:51409. [PMID: 31815672 PMCID: PMC6934384 DOI: 10.7554/elife.51409] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Slo1 is a Ca2+- and voltage-activated K+ channel that underlies skeletal and smooth muscle contraction, audition, hormone secretion and neurotransmitter release. In mammals, Slo1 is regulated by auxiliary proteins that confer tissue-specific gating and pharmacological properties. This study presents cryo-EM structures of Slo1 in complex with the auxiliary protein, β4. Four β4, each containing two transmembrane helices, encircle Slo1, contacting it through helical interactions inside the membrane. On the extracellular side, β4 forms a tetrameric crown over the pore. Structures with high and low Ca2+ concentrations show that identical gating conformations occur in the absence and presence of β4, implying that β4 serves to modulate the relative stabilities of 'pre-existing' conformations rather than creating new ones. The effects of β4 on scorpion toxin inhibition kinetics are explained by the crown, which constrains access but does not prevent binding.
Collapse
Affiliation(s)
- Xiao Tao
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, New York, United States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
21
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
22
|
Abstract
Ca2+- and voltage-gated K+ channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore-forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, β and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
23
|
Wang Y, Lan W, Yan Z, Gao J, Liu X, Wang S, Guo X, Wang C, Zhou H, Ding J, Cao C. Solution structure of extracellular loop of human β4 subunit of BK channel and its biological implication on ChTX sensitivity. Sci Rep 2018; 8:4571. [PMID: 29545539 PMCID: PMC5854672 DOI: 10.1038/s41598-018-23016-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/05/2018] [Indexed: 01/06/2023] Open
Abstract
Large-conductance Ca2+- and voltage-dependent K+ (BK) channels display diverse biological functions while their pore-forming α subunit is coded by a single Slo1 gene. The variety of BK channels is correlated with the effects of BKα coexpression with auxiliary β (β1-β4) subunits, as well as newly defined γ subunits. Charybdotoxin (ChTX) blocks BK channel through physically occluding the K+-conduction pore. Human brain enriched β4 subunit (hβ4) alters the conductance-voltage curve, slows activation and deactivation time courses of BK channels. Its extracellular loop (hβ4-loop) specifically impedes ChTX to bind BK channel pore. However, the structure of β4 subunit's extracellular loop and the molecular mechanism for gating kinetics, toxin sensitivity of BK channels regulated by β4 are still unclear. To address them, here, we first identified four disulfide bonds in hβ4-loop by mass spectroscopy and NMR techniques. Then we determined its three-dimensional solution structure, performed NMR titration and electrophysiological analysis, and found that residue Asn123 of β4 subunit regulated the gating and pharmacological characteristics of BK channel. Finally, by constructing structure models of BKα/β4 and thermodynamic double-mutant cycle analysis, we proposed that BKα subunit might interact with β4 subunit through the conserved residue Glu264(BKα) coupling with residue Asn123(β4).
Collapse
Affiliation(s)
- Yanting Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai, 200032, China.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai, 200032, China
| | - Zhenzhen Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, China
| | - Jing Gao
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, CAS, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xinlian Liu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai, 200032, China
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, China
| | - Xiying Guo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai, 200032, China
| | - Hu Zhou
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, CAS, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jiuping Ding
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai, 200032, China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China. .,Collaborative Innovation Center of Chemistry for Life Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
24
|
Jaffe DB, Brenner R. A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. J Neurophysiol 2018; 119:1506-1520. [PMID: 29357445 DOI: 10.1152/jn.00385.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gain of a neuron, the number and frequency of action potentials triggered in response to a given amount of depolarizing injection, is an important behavior underlying a neuron's function. Variations in action potential waveform can influence neuronal discharges by the differential activation of voltage- and ion-gated channels long after the end of a spike. One component of the action potential waveform, the afterhyperpolarization (AHP), is generally considered an inhibitory mechanism for limiting firing rates. In dentate gyrus granule cells (DGCs) expressing fast-gated BK channels, large fast AHPs (fAHP) are paradoxically associated with increased gain. In this article, we describe a mechanism for this behavior using a computational model. Hyperpolarization provided by the fAHP enhances activation of a dendritic inward current (a T-type Ca2+ channel is suggested) that, in turn, boosts rebound depolarization at the soma. The model suggests that the fAHP may both reduce Ca2+ channel inactivation and, counterintuitively, enhance its activation. The magnitude of the rebound depolarization, in turn, determines the activation of a subsequent, slower inward current (a persistent Na+ current is suggested) limiting the interspike interval. Simulations also show that the effect of AHP on gain is also effective for physiologically relevant stimulation; varying AHP amplitude affects interspike interval across a range of "noisy" stimulus frequency and amplitudes. The mechanism proposed suggests that small fAHPs in DGCs may contribute to their limited excitability. NEW & NOTEWORTHY The afterhyperpolarization (AHP) is canonically viewed as a major factor underlying the refractory period, serving to limit neuronal firing rate. We recently reported that enhancing the amplitude of the fast AHP (fAHP) in a relatively slowly firing neuron (vs. fast spiking neurons) expressing fast-gated BK channels augments neuronal excitability. In this computational study, we present a novel, quantitative hypothesis for how varying the amplitude of the fAHP can, paradoxically, influence a subsequent spike tens of milliseconds later.
Collapse
Affiliation(s)
- David B Jaffe
- Department of Biology, UTSA Neurosciences Institute, University of Texas at San Antonio , San Antonio, Texas
| | - Robert Brenner
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
25
|
Howard RJ, Carnevale V, Delemotte L, Hellmich UA, Rothberg BS. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:927-942. [PMID: 29258839 DOI: 10.1016/j.bbamem.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022]
Abstract
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Rebecca J Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden.
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Theoretical Physics, KTH Royal Institute of Technology, Box 1031, 17121 Solna, Sweden.
| | - Ute A Hellmich
- Johannes Gutenberg University Mainz, Institute for Pharmacy and Biochemistry, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
26
|
Mager T, Wood PG, Bamberg E. Optogenetic Control of Ca 2+ and Voltage-Dependent Large Conductance (BK) Potassium Channels. J Mol Biol 2017; 429:911-921. [PMID: 28192090 DOI: 10.1016/j.jmb.2017.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/23/2022]
Abstract
Ca2+ concentration jumps for the activation of Ca2+-dependent ion channels or transporters can be obtained either by fast solution exchange or by the use of caged Ca2+. Here, we report on an alternate optogenetic method for the activation of Ca2+ and voltage-dependent large conductance (BK) potassium channels. This was achieved through the use of the light-gated channelrhodopsin 2 variant, CatCh(Calcium translocating Channelrhodopsin) with enhanced Ca, which produces locally [Ca2+] in the μM range on the inner side of the membrane, without significant [Ca2+] increase in the cytosol. BK channel subunits α and β1 were expressed together with CatCh in HEK293 cells, and voltage and Ca2+ dependence were analyzed. Light activation of endogenous BK channels under native conditions in astrocytes and glioma cells was also investigated. Additionally, BK channels were used as sensors for the calibration of the [Ca2+] on the inner surface of the cell membrane.
Collapse
Affiliation(s)
- Thomas Mager
- Max Planck Institute of Biophysics, Department of Biophysical Chemistry, 60438 Frankfurt am Main, Germany.
| | - Phillip G Wood
- Max Planck Institute of Biophysics, Department of Biophysical Chemistry, 60438 Frankfurt am Main, Germany.
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Department of Biophysical Chemistry, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol Rev 2017; 97:39-87. [DOI: 10.1152/physrev.00001.2016] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-conductance Ca2+- and voltage-activated K+ (BK) channels play many physiological roles ranging from the maintenance of smooth muscle tone to hearing and neurosecretion. BK channels are tetramers in which the pore-forming α subunit is coded by a single gene ( Slowpoke, KCNMA1). In this review, we first highlight the physiological importance of this ubiquitous channel, emphasizing the role that BK channels play in different channelopathies. We next discuss the modular nature of BK channel-forming protein, in which the different modules (the voltage sensor and the Ca2+ binding sites) communicate with the pore gates allosterically. In this regard, we review in detail the allosteric models proposed to explain channel activation and how the models are related to channel structure. Considering their extremely large conductance and unique selectivity to K+, we also offer an account of how these two apparently paradoxical characteristics can be understood consistently in unison, and what we have learned about the conduction system and the activation gates using ions, blockers, and toxins. Attention is paid here to the molecular nature of the voltage sensor and the Ca2+ binding sites that are located in a gating ring of known crystal structure and constituted by four COOH termini. Despite the fact that BK channels are coded by a single gene, diversity is obtained by means of alternative splicing and modulatory β and γ subunits. We finish this review by describing how the association of the α subunit with β or with γ subunits can change the BK channel phenotype and pharmacology.
Collapse
Affiliation(s)
- Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Romina V. Sepulveda
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gonzalez-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Griguoli M, Sgritta M, Cherubini E. Presynaptic BK channels control transmitter release: physiological relevance and potential therapeutic implications. J Physiol 2016; 594:3489-500. [PMID: 26969302 DOI: 10.1113/jp271841] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca(2+) sensitivity, voltage dependence and gating properties. Abundantly expressed in the CNS, they have the peculiar characteristic of being activated by both voltage and intracellular calcium rise. The increase in intracellular calcium via voltage-dependent calcium channels (Cav ) during spiking triggers conformational changes and BK channel opening. This narrows the action potential and induces a fast after-hyperpolarization that shuts calcium channels. The tight coupling between BK and Cav channels at presynaptic active zones makes them particularly suitable for regulating calcium entry and neurotransmitter release. While in most synapses, BK channels exert a negative control on transmitter release under basal conditions, in others they do so only under pathological conditions, serving as an emergency brake to protect against hyperactivity. In particular cases, by interacting with other channels (i.e. limiting the activation of the delayed rectifier and the inactivation of Na(+) channels), BK channels induce spike shortening, increase in firing rate and transmitter release. Changes in transmitter release following BK channel dysfunction have been implicated in several neurological disorders including epilepsy, schizophrenia, fragile X syndrome, mental retardation and autism. In particular, two mutations, one in the α and one in the β3 subunit, resulting in a gain of function have been associated with epilepsy. Hence, these discoveries have allowed identification of BK channels as new drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marilena Griguoli
- European Brain Research Institute (EBRI) 'Fondazione Rita Levi-Montalcini', Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Martina Sgritta
- European Brain Research Institute (EBRI) 'Fondazione Rita Levi-Montalcini', Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI) 'Fondazione Rita Levi-Montalcini', Via del Fosso di Fiorano 64, 00143, Rome, Italy.,International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
29
|
Hoshi T, Heinemann SH. Modulation of BK Channels by Small Endogenous Molecules and Pharmaceutical Channel Openers. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:193-237. [PMID: 27238265 DOI: 10.1016/bs.irn.2016.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voltage- and Ca(2+)-activated K(+) channels of big conductance (BK channels) are abundantly found in various organs and their relevance for smooth muscle tone and neuronal signaling is well documented. Dysfunction of BK channels is implicated in an array of human diseases involving many organs including the nervous, pulmonary, cardiovascular, renal, and urinary systems. In humans a single gene (KCNMA1) encodes the pore-forming α subunit (Slo1) of BK channels, but the channel properties are variable because of alternative splicing, tissue- and subcellular-specific auxiliary subunits (β, γ), posttranslational modifications, and a multitude of endogenous signaling molecules directly affecting the channel function. Initiatives to develop drugs capable of activating BK channels (channel openers) therefore need to consider the tissue-specific variability of BK channel structure and the potential interference with endogenously produced regulatory factors. The atomic structural basis of BK channel function is only beginning to be revealed. However, building on detailed knowledge of BK channel function, including its single-channel characteristics, voltage- and Ca(2+) dependence of channel gating, and modulation by diffusible messengers, a multi-tier allosteric model of BK channel gating (Horrigan and Aldrich (HA) model) has become a valuable tool in studying modulation of the channel. Using the conceptual framework of the HA model, we here review the functional impact of endogenous modulatory factors and select small synthetic compounds that regulate BK channel activity. Furthermore, we devise experimental approaches for studying BK channel-drug interactions with the aim to classify BK-modulating substances according to their molecular mode of action.
Collapse
Affiliation(s)
- T Hoshi
- University of Pennsylvania, Philadelphia, PA, United States.
| | - S H Heinemann
- Friedrich Schiller University Jena & Jena University Hospital, Jena, Germany
| |
Collapse
|
30
|
Atia J, McCloskey C, Shmygol AS, Rand DA, van den Berg HA, Blanks AM. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells. PLoS Comput Biol 2016; 12:e1004828. [PMID: 27105427 PMCID: PMC4841602 DOI: 10.1371/journal.pcbi.1004828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/23/2016] [Indexed: 11/28/2022] Open
Abstract
Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the ‘conductance repertoire’ being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations. A well-known problem in electrophysiologal modeling is that the parameters of the gating kinetics of the ion channels cannot be uniquely determined from observed behavior at the cellular level. One solution is to employ simplified “macroscopic” currents that mimic the behavior of aggregates of distinct entities at the protein level. The gating parameters of each channel or pump can be determined by studying it in isolation, leaving the general problem of finding the densities at which the channels occur in the plasma membrane. We propose an approach, which we apply to uterine smooth muscle cells, whereby we constrain the list of possible entities by means of transcriptomics and chart the indeterminacy of the problem in terms of the kernel of the corresponding linear transformation. A graphical representation of this kernel visualises the functional redundancy of the system. We show that the role of certain conductances can be fulfilled, or compensated for, by suitable combinations of other conductances; this is not always the case, and such “non-substitutable” conductances can be regarded as functionally non-redundant. Electrogenic entities belonging to the latter category are suitable putative clinical targets.
Collapse
Affiliation(s)
- Jolene Atia
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Conor McCloskey
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Anatoly S. Shmygol
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | | - Andrew M. Blanks
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Modulation of BK Channel Function by Auxiliary Beta and Gamma Subunits. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:51-90. [PMID: 27238261 DOI: 10.1016/bs.irn.2016.03.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The large-conductance, Ca(2+)- and voltage-activated K(+) (BK) channel is ubiquitously expressed in mammalian tissues and displays diverse biophysical or pharmacological characteristics. This diversity is in part conferred by channel modulation with different regulatory auxiliary subunits. To date, two distinct classes of BK channel auxiliary subunits have been identified: β subunits and γ subunits. Modulation of BK channels by the four auxiliary β (β1-β4) subunits has been well established and intensively investigated over the past two decades. The auxiliary γ subunits, however, were identified only very recently, which adds a new dimension to BK channel regulation and improves our understanding of the physiological functions of BK channels in various tissues and cell types. This chapter will review the current understanding of BK channel modulation by auxiliary β and γ subunits, especially the latest findings.
Collapse
|
32
|
17Beta-Estradiol Inhibits Calcium-Activated Potassium Channel Expressions in Rat Whole Bladder. Int Neurourol J 2016; 20:18-25. [PMID: 27032553 PMCID: PMC4819160 DOI: 10.5213/inj.1630492.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 11/22/2022] Open
Abstract
Purpose: To investigate the effect of estrogen on the expression of calcium-activated potassium (KCa) channels in an overactive bladder rat model. To this end, mRNA and protein levels of KCa channel subtypes in the bladder of ovariectomized rats were measured by reverse transcription polymerase chain reaction and western blotting, respectively. Methods: Ten-week-old female Sprague-Dawley rats were divided randomly into 3 groups: sham-operated control group (n=11), ovariectomy group (n=11), and the group treated with estrogen after ovariectomy (n=12). Rats in the last group were subcutaneously injected with 17β-estradiol (50 μg/kg) every other day for 2 weeks, whereas rats in the other 2 groups received vehicle (soybean oil) alone. Two weeks after treatment, the whole bladder was excised for mRNA and protein measurements. Results: Protein levels of the large-conductance KCa (BK) channels in the ovariectomy group were 1.5 folds higher than those in the sham-operated control group. However, the protein levels of the other KCa channel subtypes did not change significantly upon bilateral ovariectomy. Treatment with 17β-estradiol after ovariectomy restored BK channel protein levels to the control value. In contrast, BK channel mRNA levels were not significantly affected by either ovariectomy alone or 17β-estradiol treatment. The small-conductance KCa type 3 channel (SK3) mRNA and protein levels decreased to 75% of control levels upon 17β-estradiol treatment. Conclusions: These results suggest that 17β-estradiol may influence urinary bladder function by modulating BK and SK3 channel expression.
Collapse
|
33
|
Webb TN, Carrisoza-Gaytan R, Montalbetti N, Rued A, Roy A, Socovich AM, Subramanya AR, Satlin LM, Kleyman TR, Carattino MD. Cell-specific regulation of L-WNK1 by dietary K. Am J Physiol Renal Physiol 2016; 310:F15-26. [PMID: 26662201 PMCID: PMC4675801 DOI: 10.1152/ajprenal.00226.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/11/2015] [Indexed: 12/31/2022] Open
Abstract
Flow-induced K(+) secretion in the aldosterone-sensitive distal nephron is mediated by high-conductance Ca(2+)-activated K(+) (BK) channels. Familial hyperkalemic hypertension (pseudohypoaldosteronism type II) is an inherited form of hypertension with decreased K(+) secretion and increased Na(+) reabsorption. This disorder is linked to mutations in genes encoding with-no-lysine kinase 1 (WNK1), WNK4, and Kelch-like 3/Cullin 3, two components of an E3 ubiquitin ligase complex that degrades WNKs. We examined whether the full-length (or "long") form of WNK1 (L-WNK1) affected the expression of BK α-subunits in HEK cells. Overexpression of L-WNK1 promoted a significant increase in BK α-subunit whole cell abundance and functional channel expression. BK α-subunit abundance also increased with coexpression of a kinase dead L-WNK1 mutant (K233M) and with kidney-specific WNK1 (KS-WNK1), suggesting that the catalytic activity of L-WNK1 was not required to increase BK expression. We examined whether dietary K(+) intake affected L-WNK1 expression in the aldosterone-sensitive distal nephron. We found a paucity of L-WNK1 labeling in cortical collecting ducts (CCDs) from rabbits on a low-K(+) diet but observed robust staining for L-WNK1 primarily in intercalated cells when rabbits were fed a high-K(+) diet. Our results and previous findings suggest that L-WNK1 exerts different effects on renal K(+) secretory channels, inhibiting renal outer medullary K(+) channels and activating BK channels. A high-K(+) diet induced an increase in L-WNK1 expression selectively in intercalated cells and may contribute to enhanced BK channel expression and K(+) secretion in CCDs.
Collapse
Affiliation(s)
- Tennille N Webb
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Anna Rued
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ankita Roy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania;
| | - Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Carrisoza-Gaytan R, Carattino MD, Kleyman TR, Satlin LM. An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron. Am J Physiol Cell Physiol 2015; 310:C243-59. [PMID: 26632600 DOI: 10.1152/ajpcell.00328.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flow-induced K secretion (FIKS) in the aldosterone-sensitive distal nephron (ASDN) is mediated by large-conductance, Ca(2+)/stretch-activated BK channels composed of pore-forming α-subunits (BKα) and accessory β-subunits. This channel also plays a critical role in the renal adaptation to dietary K loading. Within the ASDN, the cortical collecting duct (CCD) is a major site for the final renal regulation of K homeostasis. Principal cells in the ASDN possess a single apical cilium whereas the surfaces of adjacent intercalated cells, devoid of cilia, are decorated with abundant microvilli and microplicae. Increases in tubular (urinary) flow rate, induced by volume expansion, diuretics, or a high K diet, subject CCD cells to hydrodynamic forces (fluid shear stress, circumferential stretch, and drag/torque on apical cilia and presumably microvilli/microplicae) that are transduced into increases in principal (PC) and intercalated (IC) cell cytoplasmic Ca(2+) concentration that activate apical voltage-, stretch- and Ca(2+)-activated BK channels, which mediate FIKS. This review summarizes studies by ourselves and others that have led to the evolving picture that the BK channel is localized in a macromolecular complex at the apical membrane, composed of mechanosensitive apical Ca(2+) channels and a variety of kinases/phosphatases as well as other signaling molecules anchored to the cytoskeleton, and that an increase in tubular fluid flow rate leads to IC- and PC-specific responses determined, in large part, by the cell-specific composition of the BK channels.
Collapse
Affiliation(s)
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
35
|
Kreifeldt M, Cates-Gatto C, Roberts AJ, Contet C. BK Channel β1 Subunit Contributes to Behavioral Adaptations Elicited by Chronic Intermittent Ethanol Exposure. Alcohol Clin Exp Res 2015; 39:2394-402. [PMID: 26578345 DOI: 10.1111/acer.12911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Large conductance, calcium- and voltage-activated potassium (BK) channels regulate neuronal excitability and neurotransmission. They can be directly activated by ethanol (EtOH) and they may be implicated in EtOH dependence. In this study, we sought to determine the influence of the auxiliary β1 and β4 subunits on EtOH metabolism, acute sensitivity to EtOH intoxication, acute functional tolerance, chronic tolerance, and handling-induced convulsions during withdrawal. METHODS Motor coordination, righting reflex, and body temperature were evaluated in BK β1 and β4 knockout, heterozygous, and wild-type mice following acute EtOH administration. Chronic tolerance and physical dependence were induced by chronic intermittent inhalation of EtOH vapor. RESULTS Constitutive deficiency in BK β1 or β4 subunits did not alter the clearance rate of EtOH, acute sensitivity to EtOH-induced ataxia, sedation, and hypothermia, nor acute functional tolerance to ataxia. BK β1 deletion reduced chronic tolerance to sedation and abolished chronic tolerance to hypothermia, while BK β4 deletion did not affect these adaptations to chronic EtOH exposure. Finally, the absence of BK β1 accelerated the appearance, while the absence of BK β4 delayed the resolution, of the hyperexcitable state associated with EtOH withdrawal. CONCLUSIONS Altogether, the present findings reveal the critical role of BK β1 in behavioral adaptations to prolonged, repeated EtOH intoxication.
Collapse
Affiliation(s)
- Max Kreifeldt
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Chelsea Cates-Gatto
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, California
| | - Amanda J Roberts
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, California
| | - Candice Contet
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
36
|
Leo A, Citraro R, Constanti A, De Sarro G, Russo E. Are big potassium-type Ca2+-activated potassium channels a viable target for the treatment of epilepsy? Expert Opin Ther Targets 2015; 19:911-26. [DOI: 10.1517/14728222.2015.1026258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels. Proc Natl Acad Sci U S A 2015; 112:4809-14. [PMID: 25825713 DOI: 10.1073/pnas.1504378112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Being activated by depolarizing voltages and increases in cytoplasmic Ca(2+), voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation.
Collapse
|
38
|
Brain mitochondrial ATP-insensitive large conductance Ca⁺²-activated K⁺ channel properties are altered in a rat model of amyloid-β neurotoxicity. Exp Neurol 2015; 269:8-16. [PMID: 25828534 DOI: 10.1016/j.expneurol.2014.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/01/2014] [Accepted: 12/20/2014] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is a hallmark of amyloid-beta (Aβ)-induced neuronal toxicity in Alzheimer's disease (AD). However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was undertaken to investigate whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive-IbTx-sensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a rat model of Aβ neurotoxicity. Aβ1-42 (4 μg/μl) was intracerebroventricularly injected in male Wistar rats (220-250 g). Brain Aβ accumulation was confirmed two weeks later on the basis of an immunohistochemistry staining assay, and physiological impacts measured in passive avoidance task cognitive performance experiments. Brain mitochondrial inner membranes were then extracted and membrane vesicles prepared for channel incorporation into bilayer lipid. Purity of the cell fraction was confirmed by Western blot using specific markers of mitochondria, plasma membrane, endoplasmic reticulum, and Golgi. Our results first provide evidence for differences in mitoBKCa ion permeation properties with channels coming from Aβ vesicle preparations characterized by an inward rectifying I-V curve, in contrast to control mitoBKCa channels which showed a linear I-V relationship under the same ionic conditions (200 mM cis/50mM trans). More importantly the open probability of channels from Aβ vesicles appeared 1.5 to 2.5 smaller compared to controls, the most significant decrease being observed at depolarizing potentials (30 mV to 50 mV). Because BKCa-β4 subunit has been documented to shift the BKCa channel voltage dependence curve, a Western blot analysis was undertaken where expression of mitoBKCa α and β4 subunits was estimated using anti-α and β4 subunit antibodies. Our results indicated a significant increase in mitoBKCa-β4 subunit expression coupled to a decrease in the expression of α subunit. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from a rat model of Aβ neurotoxicity, an effect potentially linked to a change in mitoBKCa-β4 and -α subunits expression or increased ROS production due to an enhanced Aβ mitochondrial accumulation. Our results may provide new insights into the cellular mechanisms underlying mitochondrial dysfunctions in Aβ neurotoxicity.
Collapse
|
39
|
Impairment of brain mitochondrial charybdotoxin- and ATP-insensitive BK channel activities in diabetes. Neuromolecular Med 2014; 16:862-71. [PMID: 25344764 DOI: 10.1007/s12017-014-8334-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
Existing evidence indicates an impairment of mitochondrial functions and alterations in potassium channel activities in diabetes. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a streptozotocin (STZ) model of diabetes. Using ion channel incorporation of brain mitochondrial inner membrane into the bilayer lipid membrane, we provide in this work evidence for modifications of the mitoBKCa ion permeation properties with channels from vesicles preparations coming from diabetic rats characterized by a significant decrease in conductance. More importantly, the open probability of channels from diabetic rats was reduced 1.5-2.5 fold compared to control, the most significant decrease being observed at depolarizing potentials. Because BKCa β4 subunit has been documented to left shift the BKCa channel voltage dependence curve in high Ca(2+) conditions, a Western blot analysis was undertaken where the expression of mitoBKCa α and β4 subunits was estimated using of anti-α and β4 subunit antibodies. Our results indicated a significant decrease in mitoBKCa β4 subunit expression coupled to a decrease in the expression of α subunit, an observation compatible with the observed decrease in Ca(2+) sensitivity. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from STZ model of diabetic rats, an effect potentially linked to a change in mitoBKCa β4 and α subunits expression and/or to an increase in reactive oxygen species production in high glucose conditions.
Collapse
|
40
|
Brenner R. Knockout of the BK β2 subunit reveals the importance of accessorizing your channel. ACTA ACUST UNITED AC 2014; 144:351-6. [PMID: 25311634 PMCID: PMC4210423 DOI: 10.1085/jgp.201411291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Robert Brenner
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78230
| |
Collapse
|
41
|
Torres YP, Granados ST, Latorre R. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits. Front Physiol 2014; 5:383. [PMID: 25346693 PMCID: PMC4193333 DOI: 10.3389/fphys.2014.00383] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/16/2014] [Indexed: 01/03/2023] Open
Abstract
Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca(2+) concentration, the large conductance voltage- and Ca(2+)-activated K(+) channel (BK) is unique among the superfamily of K(+) channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K(+) channels) and a large C terminus composed of two regulators of K(+) conductance domains (RCK domains), where the Ca(2+)-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca(2+) sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.
Collapse
Affiliation(s)
- Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, Colombia
| | - Sara T Granados
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, Colombia ; Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Ramón Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
42
|
Wang B, Jaffe DB, Brenner R. Current understanding of iberiotoxin-resistant BK channels in the nervous system. Front Physiol 2014; 5:382. [PMID: 25346692 PMCID: PMC4190997 DOI: 10.3389/fphys.2014.00382] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022] Open
Abstract
While most large-conductance, calcium-, and voltage-activated potassium channels (BK or Maxi-K type) are blocked by the scorpion venom iberiotoxin, the so-called “type II” subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. Studies have shown that β4 dramatically promotes BK channel opening by shifting voltage sensor activation to more negative voltage ranges, but also slows activation to timescales that theoretically preclude BK ability to shape action potentials (APs). In addition, β4 membrane trafficking is regulated through an endoplasmic retention signal and palmitoylation. More recently, the challenge has been to understand the functional role of the iberiotoxin-resistant BK subtype utilizing computational modeling of neurons and neurophysiological approaches. Utilizing iberiotoxin-resistance as a footprint for these channels, they have been identified in dentate gyrus granule neurons and in purkinje neurons of the cerebellum. In these neurons, the role of these channels is largely consistent with slow-gated channels that reduce excitability either through an interspike conductance, such as in purkinje neurons, or by replacing fast-gating BK channels that otherwise facilitate high frequency AP firing, such as in dentate gyrus neurons. They are also observed in presynaptic mossy fiber terminals of the dentate gyrus and posterior pituitary terminals. More recent studies suggest that β4 subunits may also be expressed in some neurons lacking iberiotoxin-resistant BK channels, such as in CA3 hippocampus neurons. Ongoing research using novel, specific blockers and agonists of BK/β4, and β4 knockout mice, will continue to move the field forward in understanding the function of these channels.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - David B Jaffe
- Department of Biology and the UTSA Neurosciences Institute, University of Texas at San Antonio San Antonio, TX, USA
| | - Robert Brenner
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
43
|
Kyle BD, Braun AP. The regulation of BK channel activity by pre- and post-translational modifications. Front Physiol 2014; 5:316. [PMID: 25202279 PMCID: PMC4141542 DOI: 10.3389/fphys.2014.00316] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/02/2014] [Indexed: 11/17/2022] Open
Abstract
Large conductance, Ca2+-activated K+ (BK) channels represent an important pathway for the outward flux of K+ ions from the intracellular compartment in response to membrane depolarization, and/or an elevation in cytosolic free [Ca2+]. They are functionally expressed in a range of mammalian tissues (e.g., nerve and smooth muscles), where they can either enhance or dampen membrane excitability. The diversity of BK channel activity results from the considerable alternative mRNA splicing and post-translational modification (e.g., phosphorylation) of key domains within the pore-forming α subunit of the channel complex. Most of these modifications are regulated by distinct upstream cell signaling pathways that influence the structure and/or gating properties of the holo-channel and ultimately, cellular function. The channel complex may also contain auxiliary subunits that further affect channel gating and behavior, often in a tissue-specific manner. Recent studies in human and animal models have provided strong evidence that abnormal BK channel expression/function contributes to a range of pathologies in nerve and smooth muscle. By targeting the upstream regulatory events modulating BK channel behavior, it may be possible to therapeutically intervene and alter BK channel expression/function in a beneficial manner.
Collapse
Affiliation(s)
- Barry D Kyle
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Research Institute, University of Calgary Calgary, AB, Canada
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Research Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
44
|
Shipston MJ. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels. Front Physiol 2014; 5:281. [PMID: 25140154 PMCID: PMC4122160 DOI: 10.3389/fphys.2014.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/09/2014] [Indexed: 01/14/2023] Open
Abstract
Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease.
Collapse
Affiliation(s)
- Michael J Shipston
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh Edinburgh, UK
| |
Collapse
|
45
|
Shelley C, Whitt JP, Montgomery JR, Meredith AL. Phosphorylation of a constitutive serine inhibits BK channel variants containing the alternate exon "SRKR". ACTA ACUST UNITED AC 2014; 142:585-98. [PMID: 24277602 PMCID: PMC3840924 DOI: 10.1085/jgp.201311072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BK Ca2+-activated K+ currents exhibit diverse properties across tissues. The functional variation in voltage- and Ca2+-dependent gating underlying this diversity arises from multiple mechanisms, including alternate splicing of Kcnma1, the gene encoding the pore-forming (α) subunit of the BK channel, phosphorylation of α subunits, and inclusion of β subunits in channel complexes. To address the interplay of these mechanisms in the regulation of BK currents, two native splice variants, BK0 and BKSRKR, were cloned from a tissue that exhibits dynamic daily expression of BK channel, the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of mouse hypothalamus. The BK0 and BKSRKR variants differed by the inclusion of a four–amino acid alternate exon at splice site 1 (SRKR), which showed increased expression during the day. The functional properties of the variants were investigated in HEK293 cells using standard voltage-clamp protocols. Compared with BK0, BKSRKR currents had a significantly right-shifted conductance–voltage (G-V) relationship across a range of Ca2+ concentrations, slower activation, and faster deactivation. These effects were dependent on the phosphorylation state of S642, a serine residue within the constitutive exon immediately preceding the SRKR insert. Coexpression of the neuronal β4 subunit slowed gating kinetics and shifted the G-V relationship in a Ca2+-dependent manner, enhancing the functional differences between the variants. Next, using native action potential (AP) command waveforms recorded from SCN to elicit BK currents, we found that these splice variant differences persist under dynamic activation conditions in physiological ionic concentrations. AP-induced currents from BKSRKR channels were significantly reduced compared with BK0, an effect that was maintained with coexpression of the β4 subunit but abolished by the mutation of S642. These results demonstrate a novel mechanism for reducing BK current activation under reconstituted physiological conditions, and further suggest that S642 is selectively phosphorylated in the presence of SRKR.
Collapse
Affiliation(s)
- Chris Shelley
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201
| | | | | | | |
Collapse
|
46
|
Savina TA, Levin SG, Poletaeva II, Fedotova IB, Shchipakina TG. Audiogenic kindling changes the subunit composition of BK-channels in dentate gyrus of Krushinskii-Molodkina rats. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2014. [DOI: 10.1134/s1990747813050164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Cox N, Toro B, Pacheco-Otalora LF, Garrido-Sanabria ER, Zarei MM. An endoplasmic reticulum trafficking signal regulates surface expression of β4 subunit of a voltage- and Ca²⁺-activated K⁺ channel. Brain Res 2014; 1553:12-23. [PMID: 24486049 DOI: 10.1016/j.brainres.2014.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 12/24/2022]
Abstract
Voltage-dependent and calcium-activated K⁺ (MaxiK, BK) channels are widely expressed in many tissues and organs where they play various physiological roles. Here we report discovery of a functional trafficking signal in MaxiK channel accessory β4 subunit that could regulate activity of MaxiK α subunit (hSlo) on the plasma membrane. We demonstrate that β4 is mostly retained within the cell and removal or mutation of β4 trafficking signal significantly enhances its surface expression in HEK293T expression system. In hippocampal slices and cultured neurons we also observed significant β4 expressions within the neurons. Finally, we show that unlike SV1 and β1 subunits, β4 shows no dominant-negative effect on MaxiK channel α subunit. Taken together, we propose β4 subunit of MaxiK channel is mostly retained within the cells without interfering with other subunits. Removal of β4 retention signal increases its surface expression that may lead to reduction of the MaxiK channel activity and neuronal excitability.
Collapse
Affiliation(s)
- N Cox
- Center for Biomedical Studies, University of Texas at Brownsville, Brownsville, TX 78520, USA
| | - B Toro
- South Texas Arthritis Center, Brownsville, TX 78526, USA
| | - L F Pacheco-Otalora
- Biomedicine Department, University of Texas at Brownsville, Brownsville, TX 78520, USA
| | - E R Garrido-Sanabria
- Center for Biomedical Studies, University of Texas at Brownsville, Brownsville, TX 78520, USA; Biomedicine Department, University of Texas at Brownsville, Brownsville, TX 78520, USA
| | - M M Zarei
- Center for Biomedical Studies, University of Texas at Brownsville, Brownsville, TX 78520, USA; Biomedicine Department, University of Texas at Brownsville, Brownsville, TX 78520, USA.
| |
Collapse
|
48
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
49
|
Hoshi T, Pantazis A, Olcese R. Transduction of voltage and Ca2+ signals by Slo1 BK channels. Physiology (Bethesda) 2013; 28:172-89. [PMID: 23636263 DOI: 10.1152/physiol.00055.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca2+ -and voltage-gated K+ channels are activated by an increase in intracellular Ca2+ concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca2+ sensors, and the model is an excellent framework to understand the influences of auxiliary β and γ subunits and regulatory factors such as Mg2+. Recent advances permit elucidation of structural correlates of the biophysical mechanism.
Collapse
Affiliation(s)
- T Hoshi
- Department of Physiology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
50
|
Latorre R, Contreras G. Keeping you healthy: BK channel activation by omega-3 fatty acids. ACTA ACUST UNITED AC 2013; 142:487-91. [PMID: 24127527 PMCID: PMC3813380 DOI: 10.1085/jgp.201311100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | | |
Collapse
|