1
|
Hu Z, Yang J. Structural basis of properties, mechanisms, and channelopathy of cyclic nucleotide-gated channels. Channels (Austin) 2023; 17:2273165. [PMID: 37905307 PMCID: PMC10761061 DOI: 10.1080/19336950.2023.2273165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023] Open
Abstract
Recent years have seen an outpouring of atomic or near atomic resolution structures of cyclic nucleotide-gated (CNG) channels, captured in closed, transition, pre-open, partially open, and fully open states. These structures provide unprecedented molecular insights into the activation, assembly, architecture, regulation, and channelopathy of CNG channels, as well as mechanistic explanations for CNG channel biophysical and pharmacological properties. This article summarizes recent advances in CNG channel structural biology, describes key structural features and elements, and illuminates a detailed conformational landscape of activation by cyclic nucleotides. The review also correlates structures with findings and properties delineated in functional studies, including nonselective monovalent cation selectivity, Ca2+ permeation and block, block by L-cis-diltiazem, location of the activation gate, lack of voltage-dependent gating, and modulation by lipids and calmodulin. A perspective on future research is also offered.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
CNG channel structure, function, and gating: a tale of conformational flexibility. Pflugers Arch 2021; 473:1423-1435. [PMID: 34357442 DOI: 10.1007/s00424-021-02610-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 10/20/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels are key to the signal transduction machinery of certain sensory modalities both in vertebrate and invertebrate organisms. They translate a chemical change in cyclic nucleotide concentration into an electrical signal that can spread through sensory cells. Despite CNG and voltage-gated potassium channels sharing a remarkable amino acid sequence homology and basic architectural plan, their functional properties are dramatically different. While voltage-gated potassium channels are highly selective and require membrane depolarization to open, CNG channels have low ion selectivity and are not very sensitive to voltage. In the last few years, many high-resolution structures of intact CNG channels have been released. This wealth of new structural information has provided enormous progress toward the understanding of the molecular mechanisms and driving forces underpinning CNG channel activation. In this review, we report on the current understanding and controversies surrounding the gating mechanism in CNG channels, as well as the deep intertwining existing between gating, the ion permeation process, and its modulation by membrane voltage. While the existence of this powerful coupling was recognized many decades ago, its direct structural demonstration, and ties to the CNG channel inherent pore flexibility, is a recent achievement.
Collapse
|
3
|
Proks P, Schewe M, Conrad LJ, Rao S, Rathje K, Rödström KEJ, Carpenter EP, Baukrowitz T, Tucker SJ. Norfluoxetine inhibits TREK-2 K2P channels by multiple mechanisms including state-independent effects on the selectivity filter gate. J Gen Physiol 2021; 153:212184. [PMID: 34032848 PMCID: PMC8155809 DOI: 10.1085/jgp.202012812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/06/2021] [Indexed: 12/25/2022] Open
Abstract
The TREK subfamily of two-pore domain K+ (K2P) channels are inhibited by fluoxetine and its metabolite, norfluoxetine (NFx). Although not the principal targets of this antidepressant, TREK channel inhibition by NFx has provided important insights into the conformational changes associated with channel gating and highlighted the role of the selectivity filter in this process. However, despite the availability of TREK-2 crystal structures with NFx bound, the precise mechanisms underlying NFx inhibition remain elusive. NFx has previously been proposed to be a state-dependent inhibitor, but its binding site suggests many possible ways in which this positively charged drug might inhibit channel activity. Here we show that NFx exerts multiple effects on single-channel behavior that influence both the open and closed states of the channel and that the channel can become highly activated by 2-APB while remaining in the down conformation. We also show that the inhibitory effects of NFx are unrelated to its positive charge but can be influenced by agonists which alter filter stability, such as ML335, as well as by an intrinsic voltage-dependent gating process within the filter. NFx therefore not only inhibits channel activity by altering the equilibrium between up and down conformations but also can directly influence filter gating. These results provide further insight into the complex allosteric mechanisms that modulate filter gating in TREK K2P channels and highlight the different ways in which filter gating can be regulated to permit polymodal regulation.
Collapse
Affiliation(s)
- Peter Proks
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Marcus Schewe
- Department of Physiology, University of Kiel, Kiel, Germany
| | - Linus J Conrad
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Kristin Rathje
- Department of Physiology, University of Kiel, Kiel, Germany
| | | | - Elisabeth P Carpenter
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK.,Centre for Medicines Discovery, University of Oxford, UK
| | | | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Structural mechanisms of gating and selectivity of human rod CNGA1 channel. Neuron 2021; 109:1302-1313.e4. [PMID: 33651975 DOI: 10.1016/j.neuron.2021.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 11/22/2022]
Abstract
Mammalian cyclic nucleotide-gated (CNG) channels play an essential role in the signal transduction of the visual and olfactory sensory systems. Here we reveal the structural mechanism of ligand gating in human rod CNGA1 channel by determining its cryo-EM structures in both the apo closed and cGMP-bound open states. Distinct from most other members of voltage-gated tetrameric cation channels, CNGA1 forms a central channel gate in the middle of the membrane, occluding the central cavity. Structural analyses of ion binding profiles in the selectivity filters of the wild-type channel and the E365Q filter mutant allow us to unambiguously define the two Ca2+ binding sites inside the selectivity filter, providing structural insights into Ca2+ blockage and permeation in CNG channels. The structure of the E365Q mutant also reveals two alternative side-chain conformations at Q365, providing a plausible explanation for the voltage-dependent gating of CNG channel acquired upon E365 mutation.
Collapse
|
5
|
Yang F, Xu L, Lee BH, Xiao X, Yarov‐Yarovoy V, Zheng J. An Unorthodox Mechanism Underlying Voltage Sensitivity of TRPV1 Ion Channel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000575. [PMID: 33101845 PMCID: PMC7578911 DOI: 10.1002/advs.202000575] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/05/2020] [Indexed: 05/10/2023]
Abstract
While the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) channel is a polymodal nociceptor for heat, capsaicin, and protons, the channel's responses to each of these stimuli are profoundly regulated by membrane potential, damping or even prohibiting its response at negative voltages and amplifying its response at positive voltages. Therefore, voltage sensitivity of TRPV1 is anticipated to play an important role in shaping pain responses. How voltage regulates TRPV1 activation remains unknown. Here, it is shown that voltage sensitivity does not originate from the S4 segment like classic voltage-gated ion channels; instead, outer pore acidic residues directly partake in voltage-sensitive activation, with their negative charges collectively constituting the observed gating charges. Outer pore gating-charge movement is titratable by extracellular pH and is allosterically coupled to channel activation, likely by influencing the upper gate in the ion selectivity filter. Elucidating this unorthodox voltage-gating process provides a mechanistic foundation for understanding TRPV1 polymodal gating and opens the door to novel approaches regulating channel activity for pain management.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biophysics, and Kidney Disease Center of the First Affiliated HospitalZhejiang University School of Medicine866 Yuhangtang RoadHangzhouZhejiang310058China
- Department of Physiology and Membrane BiologyUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Lizhen Xu
- Department of Biophysics, and Kidney Disease Center of the First Affiliated HospitalZhejiang University School of Medicine866 Yuhangtang RoadHangzhouZhejiang310058China
| | - Bo Hyun Lee
- Department of Physiology and Membrane BiologyUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Xian Xiao
- Department of Physiology and Membrane BiologyUniversity of California, DavisOne Shields AvenueDavisCA95616USA
- School of Life Sciences, Westlake Institute for Advanced StudyWestlake UniversityShilongshan Road No. 18, Xihu DistrictHangzhouZhejiang310064China
| | - Vladimir Yarov‐Yarovoy
- Department of Physiology and Membrane BiologyUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Jie Zheng
- Department of Physiology and Membrane BiologyUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| |
Collapse
|
6
|
Zheng X, Fu Z, Su D, Zhang Y, Li M, Pan Y, Li H, Li S, Grassucci RA, Ren Z, Hu Z, Li X, Zhou M, Li G, Frank J, Yang J. Mechanism of ligand activation of a eukaryotic cyclic nucleotide-gated channel. Nat Struct Mol Biol 2020; 27:625-634. [PMID: 32483338 PMCID: PMC7354226 DOI: 10.1038/s41594-020-0433-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/10/2020] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide-gated (CNG) channels convert cyclic nucleotide (CN) binding and unbinding into electrical signals in sensory receptors and neurons. The molecular conformational changes underpinning ligand activation are largely undefined. We report both closed- and open-state atomic cryo-EM structures of a full-length Caenorhabditis elegans cyclic GMP-activated channel TAX-4, reconstituted in lipid nanodiscs. These structures, together with computational and functional analyses and a mutant channel structure, reveal a double-barrier hydrophobic gate formed by two S6 amino acids in the central cavity. cGMP binding produces global conformational changes that open the cavity gate located ~52 Å away but do not alter the structure of the selectivity filter-the commonly presumed activation gate. Our work provides mechanistic insights into the allosteric gating and regulation of CN-gated and nucleotide-modulated channels and CNG channel-related channelopathies.
Collapse
Affiliation(s)
- Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,These authors contributed equally to this work
| | - Ziao Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA,These authors contributed equally to this work
| | - Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China,These authors contributed equally to this work
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Minghui Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Current address: HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yaping Pan
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huan Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Shufang Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert A. Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Zhenning Ren
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xueming Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Zhou
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
7
|
Burkard M, Kohl S, Krätzig T, Tanimoto N, Brennenstuhl C, Bausch AE, Junger K, Reuter P, Sothilingam V, Beck SC, Huber G, Ding XQ, Mayer AK, Baumann B, Weisschuh N, Zobor D, Hahn GA, Kellner U, Venturelli S, Becirovic E, Charbel Issa P, Koenekoop RK, Rudolph G, Heckenlively J, Sieving P, Weleber RG, Hamel C, Zong X, Biel M, Lukowski R, Seeliger MW, Michalakis S, Wissinger B, Ruth P. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. J Clin Invest 2018; 128:5663-5675. [PMID: 30418171 PMCID: PMC6264655 DOI: 10.1172/jci96098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2018] [Indexed: 01/01/2023] Open
Abstract
Mutations in CNGA3 and CNGB3, the genes encoding the subunits of the tetrameric cone photoreceptor cyclic nucleotide-gated ion channel, cause achromatopsia, a congenital retinal disorder characterized by loss of cone function. However, a small number of patients carrying the CNGB3/c.1208G>A;p.R403Q mutation present with a variable retinal phenotype ranging from complete and incomplete achromatopsia to moderate cone dysfunction or progressive cone dystrophy. By exploring a large patient cohort and published cases, we identified 16 unrelated individuals who were homozygous or (compound-)heterozygous for the CNGB3/c.1208G>A;p.R403Q mutation. In-depth genetic and clinical analysis revealed a co-occurrence of a mutant CNGA3 allele in a high proportion of these patients (10 of 16), likely contributing to the disease phenotype. To verify these findings, we generated a Cngb3R403Q/R403Q mouse model, which was crossbred with Cnga3-deficient (Cnga3-/-) mice to obtain triallelic Cnga3+/- Cngb3R403Q/R403Q mutants. As in human subjects, there was a striking genotype-phenotype correlation, since the presence of 1 Cnga3-null allele exacerbated the cone dystrophy phenotype in Cngb3R403Q/R403Q mice. These findings strongly suggest a digenic and triallelic inheritance pattern in a subset of patients with achromatopsia/severe cone dystrophy linked to the CNGB3/p.R403Q mutation, with important implications for diagnosis, prognosis, and genetic counseling.
Collapse
Affiliation(s)
- Markus Burkard
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
- Department of Vegetative and Clinical Physiology
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Timm Krätzig
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | - Anne E. Bausch
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Katrin Junger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Peggy Reuter
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Susanne C. Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Gesine Huber
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Anja K. Mayer
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Britta Baumann
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Ditta Zobor
- Institute of Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Gesa-Astrid Hahn
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Ulrich Kellner
- Rare Retinal Disease Center, Augenzentrum Siegburg, MVZ ADTC Siegburg GmbH, Siegburg, Germany
| | | | - Elvir Becirovic
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, OUH NHS Foundation Trust and the Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert K. Koenekoop
- McGill Ocular Genetics Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | - Paul Sieving
- The National Eye Institute, Bethesda, Maryland, USA
| | - Richard G. Weleber
- Casey Eye Institute, Department of Ophthalmogenetics, Portland, Oregon, USA
| | - Christian Hamel
- INSERM U583, Institut des Neurosciences, Montpellier, France
| | - Xiangang Zong
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Matthias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| |
Collapse
|
8
|
Marchesi A, Arcangeletti M, Mazzolini M, Torre V. Proton transfer unlocks inactivation in cyclic nucleotide-gated A1 channels. J Physiol 2015; 593:857-70. [PMID: 25480799 DOI: 10.1113/jphysiol.2014.284216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Desensitization and inactivation provide a form of short-term memory controlling the firing patterns of excitable cells and adaptation in sensory systems. Unlike many of their cousin K(+) channels, cyclic nucleotide-gated (CNG) channels are thought not to desensitize or inactivate. Here we report that CNG channels do inactivate and that inactivation is controlled by extracellular protons. Titration of a glutamate residue within the selectivity filter destabilizes the pore architecture, which collapses towards a non-conductive, inactivated state in a process reminiscent of the usual C-type inactivation observed in many K(+) channels. These results indicate that inactivation in CNG channels represents a regulatory mechanism that has been neglected thus far, with possible implications in several physiological processes ranging from signal transduction to growth cone navigation. ABSTRACT Ion channels control ionic fluxes across biological membranes by residing in any of three functionally distinct states: deactivated (closed), activated (open) or inactivated (closed). Unlike many of their cousin K(+) channels, cyclic nucleotide-gated (CNG) channels do not desensitize or inactivate. Using patch recording techniques, we show that when extracellular pH (pHo ) is decreased from 7.4 to 6 or lower, wild-type CNGA1 channels inactivate in a voltage-dependent manner. pHo titration experiments show that at pHo < 7 the I-V relationships are outwardly rectifying and that inactivation is coupled to current rectification. Single-channel recordings indicate that a fast mechanism of proton blockage underlines current rectification while inactivation arises from conformational changes downstream from protonation. Furthermore, mutagenesis and ionic substitution experiments highlight the role of the selectivity filter in current decline, suggesting analogies with the C-type inactivation observed in K(+) channels. Analysis with Markovian models indicates that the non-independent binding of two protons within the transmembrane electrical field explains both the voltage-dependent blockage and the inactivation. Low pH, by inhibiting the CNGA1 channels in a state-dependent manner, may represent an unrecognized endogenous signal regulating CNG physiological functions in diverse tissues.
Collapse
Affiliation(s)
- Arin Marchesi
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | |
Collapse
|
9
|
Lyashchenko AK, Redd KJ, Goldstein PA, Tibbs GR. cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore. PLoS One 2014; 9:e101236. [PMID: 24983358 PMCID: PMC4077740 DOI: 10.1371/journal.pone.0101236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model) but couple more loosely (as envisioned in a modular model of protein activation). Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile “slow” channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales.
Collapse
Affiliation(s)
- Alex K. Lyashchenko
- Department of Anesthesiology, Columbia University, New York, New York, United States of America
| | - Kacy J. Redd
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Peter A. Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Gareth R. Tibbs
- Department of Anesthesiology, Columbia University, New York, New York, United States of America
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Arcangeletti M, Marchesi A, Mazzolini M, Torre V. Multiple mechanisms underlying rectification in retinal cyclic nucleotide-gated (CNGA1) channels. Physiol Rep 2013; 1:e00148. [PMID: 24400150 PMCID: PMC3871463 DOI: 10.1002/phy2.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/03/2013] [Indexed: 11/29/2022] Open
Abstract
In cyclic nucleotide-gated (CNGA1) channels, in the presence of symmetrical ionic conditions, current–voltage (I-V) relationship depends, in a complex way, on the radius of permeating ion. It has been suggested that both the pore and S4 helix contribute to the observed rectification. In the present manuscript, using tail and gating current measurements from homotetrameric CNGA1 channels expressed in Xenopus oocytes, we clarify and quantify the role of the pore and of the S4 helix. We show that in symmetrical Rb+ and Cs+ single-channel current rectification dominates macroscopic currents while voltage-dependent gating becomes larger in symmetrical ethylammonium and dimethylammonium, where the open probability strongly depends on voltage. Isochronal tail currents analysis in dimethylammonium shows that at least two voltage-dependent transitions underlie the observed rectification. Only the first voltage-dependent transition is sensible to mutation of charge residues in the S4 helix. Moreover, analysis of tail and gating currents indicates that the number of elementary charges per channel moving across the membrane is less than 2, when they are about 12 in K+ channels. These results indicate the existence of distinct mechanisms underlying rectification in CNG channels. A restricted motion of the S4 helix together with an inefficient coupling to the channel gate render CNGA1 channels poorly sensitive to voltage in the presence of physiological Na+ and K+.
Collapse
Affiliation(s)
- Manuel Arcangeletti
- Neuroscience Area, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Arin Marchesi
- Neuroscience Area, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Monica Mazzolini
- Neuroscience Area, International School for Advanced Studies (SISSA) Trieste, Italy ; CBM S.c.r.l., Area Science Park Basovizza, 34012, Trieste, Italy
| | - Vincent Torre
- Neuroscience Area, International School for Advanced Studies (SISSA) Trieste, Italy
| |
Collapse
|
11
|
Gating of cyclic nucleotide-gated channels is voltage dependent. Nat Commun 2012; 3:973. [PMID: 22828633 DOI: 10.1038/ncomms1972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/25/2012] [Indexed: 01/09/2023] Open
Abstract
Cyclic nucleotide-gated channels belong to the family of voltage-gated ion channels, but pore opening requires the presence of intracellular cyclic nucleotides. In the presence of a saturating agonist, cyclic nucleotide-gated channel gating is voltage independent and it is not known why cyclic nucleotide-gated channels are voltage-insensitive despite harbouring the S4-type voltage sensor. Here we report that, in the presence of Li(+), Na(+) and K(+), the gating of wild-type cyclic nucleotide-gated A1 and native cyclic nucleotide-gated channels is voltage independent, whereas their gating is highly voltage-dependent in the presence of Rb(+), Cs(+) and organic cations. Mutagenesis experiments show that voltage sensing occurs through a voltage sensor composed of charged/polar residues in the pore and of the S4-type voltage sensor. During evolution, cyclic nucleotide-gated channels lose their voltage-sensing ability when Na(+) or K(+) permeate so that the vertebrate photoreceptor cyclic nucleotide-gated channels are open at negative voltages, a necessary condition for phototransduction.
Collapse
|
12
|
Furini S, Domene C. Gating at the selectivity filter of ion channels that conduct Na+ and K+ ions. Biophys J 2011; 101:1623-31. [PMID: 21961588 PMCID: PMC3183810 DOI: 10.1016/j.bpj.2011.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/22/2011] [Accepted: 08/25/2011] [Indexed: 11/24/2022] Open
Abstract
The NaK channel is a cation selective channel with similar permeability for K(+) and Na(+). The available crystallographic structure of wild-type (WT) NaK is usually associated with a conductive state of the channel. Here, potential of mean force for complete conduction events of Na(+) and K(+) ions through NaK show that: i), large energy barriers prevent the passage of ions through the WT NaK structure, ii), the barriers are correlated to the presence of a hydrogen bond between Asp-66 and Asn-68, and iii), the structure of NaK mutated to mimic cyclic nucleotide-gated channels conducts Na(+) and K(+). These results support the hypothesis that the filter of cation selective channels can adopt at least two different structures: a conductive one, represented by the x-ray structures of the NaK-CNG chimeras, and a closed one, represented by the x-ray structures of the WT NaK.
Collapse
Affiliation(s)
- Simone Furini
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
- Department of Medical Surgery and Bioengineering, University of Siena, Siena, Italy
| | - Carmen Domene
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Wilkinson WJ, Benjamin AR, De Proost I, Orogo-Wenn MC, Yamazaki Y, Staub O, Morita T, Adriaensen D, Riccardi D, Walters DV, Kemp PJ. Alveolar epithelial CNGA1 channels mediate cGMP-stimulated, amiloride-insensitive, lung liquid absorption. Pflugers Arch 2011; 462:267-79. [PMID: 21559843 DOI: 10.1007/s00424-011-0971-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 11/25/2022]
Abstract
Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 μM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 μM amiloride and that recombinant αβγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 μM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the β(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.
Collapse
Affiliation(s)
- William J Wilkinson
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Phillips LR, Swartz KJ. Position and motions of the S4 helix during opening of the Shaker potassium channel. ACTA ACUST UNITED AC 2011; 136:629-44. [PMID: 21115696 PMCID: PMC2995149 DOI: 10.1085/jgp.201010517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The four voltage sensors in voltage-gated potassium (Kv) channels activate upon membrane depolarization and open the pore. The location and motion of the voltage-sensing S4 helix during the early activation steps and the final opening transition are unresolved. We studied Zn2+ bridges between two introduced His residues in Shaker Kv channels: one in the R1 position at the outer end of the S4 helix (R362H), and another in the S5 helix of the pore domain (A419H or F416H). Zn2+ bridges readily form between R362H and A419H in open channels after the S4 helix has undergone its final motion. In contrast, a distinct bridge forms between R362H and F416H after early S4 activation, but before the final S4 motion. Both bridges form rapidly, providing constraints on the average position of S4 relative to the pore. These results demonstrate that the outer ends of S4 and S5 remain in close proximity during the final opening transition, with the S4 helix translating a significant distance normal to the membrane plane.
Collapse
Affiliation(s)
- L Revell Phillips
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
15
|
Structural studies of ion permeation and Ca2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore. Proc Natl Acad Sci U S A 2010; 108:592-7. [PMID: 21187429 DOI: 10.1073/pnas.1013643108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels play an essential role in the visual and olfactory sensory systems and are ubiquitous in eukaryotes. Details of their underlying ion selectivity properties are still not fully understood and are a matter of debate in the absence of high-resolution structures. To reveal the structural mechanism of ion selectivity in CNG channels, particularly their Ca(2+) blockage property, we engineered a set of mimics of CNG channel pores for both structural and functional analysis. The mimics faithfully represent the CNG channels they are modeled after, permeate Na(+) and K(+) equally well, and exhibit the same Ca(2+) blockage and permeation properties. Their high-resolution structures reveal a hitherto unseen selectivity filter architecture comprising three contiguous ion binding sites in which Na(+) and K(+) bind with different ion-ligand geometries. Our structural analysis reveals that the conserved acidic residue in the filter is essential for Ca(2+) binding but not through direct ion chelation as in the currently accepted view. Furthermore, structural insight from our CNG mimics allows us to pinpoint equivalent interactions in CNG channels through structure-based mutagenesis that have previously not been predicted using NaK or K(+) channel models.
Collapse
|
16
|
Koeppen K, Reuter P, Ladewig T, Kohl S, Baumann B, Jacobson SG, Plomp AS, Hamel CP, Janecke AR, Wissinger B. Dissecting the pathogenic mechanisms of mutations in the pore region of the human cone photoreceptor cyclic nucleotide-gated channel. Hum Mutat 2010; 31:830-9. [PMID: 20506298 DOI: 10.1002/humu.21283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The CNGA3 gene encodes the A3 subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel, an essential component of the phototransduction cascade. Certain mutations in CNGA3 cause autosomal recessive achromatopsia, a retinal disorder characterized by severely reduced visual acuity, lack of color discrimination, photophobia, and nystagmus. We identified three novel mutations in the pore-forming region of CNGA3 (L363P, G367V, and E376K) in patients diagnosed with achromatopsia. We assessed the expression and function of channels with these three new and two previously described mutations (S341P and P372S) in a heterologous HEK293 cell expression system using Western blot, subcellular localization on the basis of immunocytochemistry, calcium imaging, and patch clamp recordings. In this first comparative functional analysis of disease-associated mutations in the pore of a CNG channel, we found impaired surface expression of S341P, L363P, and P372S mutants and reduced macroscopic currents for channels with the mutations S341P, G367V, and E376K. Calcium imaging and patch clamp experiments after incubation at 37 degrees C revealed nonfunctional homo- and heteromeric channels in all five mutants, but incubation at 27 degrees C combined with coexpression of the B3 subunit restored residual function of channels with the mutations S341P, G367V, and E376K.
Collapse
Affiliation(s)
- Katja Koeppen
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Martínez-François JR, Xu Y, Lu Z. Extracellular protons titrate voltage gating of a ligand-gated ion channel. ACTA ACUST UNITED AC 2010; 136:179-87. [PMID: 20624857 PMCID: PMC2912074 DOI: 10.1085/jgp.201010444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cyclic nucleotide–gated channels mediate transduction of light into electric signals in vertebrate photoreceptors. These channels are primarily controlled by the binding of intracellular cyclic GMP (cGMP). Glutamate residue 363 near the extracellular end of the ion selectivity filter interacts with the pore helix and helps anchor the filter to the helix. Disruption of this interaction by mutations renders the channels essentially fully voltage gated in the presence of saturating concentrations of cGMP. Here, we find that lowering extracellular pH makes the channels conduct in an extremely outwardly rectifying manner, as does a neutral glutamine substitution at E363. A pair of cysteine mutations, E363C and L356C (the latter located midway the pore helix), largely eliminates current rectification at low pH. Therefore, this low pH-induced rectification primarily reflects voltage-dependent gating involving the ion selectivity filter rather than altered electrostatics around the external opening of the ion pore and thus ion conduction. It then follows that protonation of E363, like the E363Q mutation, disrupts the attachment of the selectivity filter to the pore helix. Loosening the selectivity filter from its surrounding structure shifts the gating equilibrium toward closed states. At low extracellular pH, significant channel opening occurs only when positive voltages drive the pore from a low probability open conformation to a second open conformation. Consequently, at low extracellular pH the channels become practically fully voltage gated, even in the presence of a saturating concentration of cGMP.
Collapse
Affiliation(s)
- Juan Ramón Martínez-François
- Department of Physiology, Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
18
|
Martínez-François JR, Lu Z. Intrinsic versus extrinsic voltage sensitivity of blocker interaction with an ion channel pore. ACTA ACUST UNITED AC 2010; 135:149-67. [PMID: 20100894 PMCID: PMC2812505 DOI: 10.1085/jgp.200910324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many physiological and synthetic agents act by occluding the ion conduction pore of ion channels. A hallmark of charged blockers is that their apparent affinity for the pore usually varies with membrane voltage. Two models have been proposed to explain this voltage sensitivity. One model assumes that the charged blocker itself directly senses the transmembrane electric field, i.e., that blocker binding is intrinsically voltage dependent. In the alternative model, the blocker does not directly interact with the electric field; instead, blocker binding acquires voltage dependence solely through the concurrent movement of permeant ions across the field. This latter model may better explain voltage dependence of channel block by large organic compounds that are too bulky to fit into the narrow (usually ion-selective) part of the pore where the electric field is steep. To date, no systematic investigation has been performed to distinguish between these voltage-dependent mechanisms of channel block. The most fundamental characteristic of the extrinsic mechanism, i.e., that block can be rendered voltage independent, remains to be established and formally analyzed for the case of organic blockers. Here, we observe that the voltage dependence of block of a cyclic nucleotide-gated channel by a series of intracellular quaternary ammonium blockers, which are too bulky to traverse the narrow ion selectivity filter, gradually vanishes with extreme depolarization, a predicted feature of the extrinsic voltage dependence model. In contrast, the voltage dependence of block by an amine blocker, which has a smaller "diameter" and can therefore penetrate into the selectivity filter, follows a Boltzmann function, a predicted feature of the intrinsic voltage dependence model. Additionally, a blocker generates (at least) two blocked states, which, if related serially, may preclude meaningful application of a commonly used approach for investigating channel gating, namely, inferring the properties of the activation gate from the kinetics of channel block.
Collapse
Affiliation(s)
- Juan Ramón Martínez-François
- Department of Physiology, Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
19
|
Kurata HT, Rapedius M, Kleinman MJ, Baukrowitz T., Nichols CG. Voltage-dependent gating in a "voltage sensor-less" ion channel. PLoS Biol 2010; 8:e1000315. [PMID: 20208975 PMCID: PMC2826373 DOI: 10.1371/journal.pbio.1000315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 01/19/2010] [Indexed: 01/20/2023] Open
Abstract
The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.
Collapse
Affiliation(s)
- Harley T. Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada
- * E-mail: (HTK); (CGN)
| | - Markus Rapedius
- Institute of Physiology II, Friedrich Schiller University, Jena, Germany
| | - Marc J. Kleinman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Investigation of Membrane Excitability Disorders (CIMED), Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Investigation of Membrane Excitability Disorders (CIMED), Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (HTK); (CGN)
| |
Collapse
|
20
|
Gating in CNGA1 channels. Pflugers Arch 2009; 459:547-55. [PMID: 19898862 DOI: 10.1007/s00424-009-0751-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 01/07/2023]
Abstract
The aminoacid sequences of CNG and K(+) channels share a significant sequence identity, and it has been suggested that these channels have a common ancestral 3D architecture. However, K(+) and CNG channels have profoundly different physiological properties: indeed, K(+) channels have a high ionic selectivity, their gating strongly depends on membrane voltage and when opened by a steady depolarizing voltage several K(+) channels inactivate, whereas CNG channels have a low ion selectivity, their gating is poorly voltage dependent, and they do not desensitize in the presence of a steady concentration of cyclic nucleotides that cause their opening. The purpose of the present review is to summarize and recapitulate functional and structural differences between K(+) and CNG channels with the aim to understand the gating mechanisms of CNG channels.
Collapse
|