1
|
Dai P, Chen C, Yu J, Ma C, Zhang X. New insights into sperm physiology regulation: Enlightenment from G-protein-coupled receptors. Andrology 2024; 12:1253-1271. [PMID: 38225815 DOI: 10.1111/andr.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND G-protein-coupled receptors are critical in many physiological and pathological processes in various organs. Serving as the control panel for sensing extracellular stimuli, G-protein-coupled receptors recognise various ligands, including light, temperature, odours, pheromones, hormones, neurotransmitters, chemokines, etc. Most recently, G-protein-coupled receptors residing in spermatozoa have been found to be indispensable for sperm function. OBJECTIVE Here, we have summarised cutting-edge findings on the functional mechanisms of G-protein-coupled receptors that are known to be associated with sperm functions and the activation of their downstream effectors, providing new insights into the roles of G-protein-coupled receptors in sperm physiology. RESULTS Emerging studies hint that alterations in G-protein-coupled receptors could affect sperm function, implicating their role in fertility, but solid evidence needs to be continuing excavated with various means. Several members of the G-protein-coupled receptor superfamily, including olfactory receptors, opsins, orphan G-protein-coupled receptors, CXC chemokine receptor 4, CC chemokine receptor 5 and CC chemokine receptor 6 as well as their downstream effector β-arrestins, etc., were suggested to be essential for sperm motility, capacitation, thermotaxis, chemotaxis, Ca2+ influx through CatSper channel and fertilisation capacity. CONCLUSION The present review provides a comprehensive overview of studies describing G-protein-coupled receptors and their potential action in sperm function. We also present a critical discussion of these issues, and a possible framework for future investigations on the diverse ligands, biological functions and cell signalling of G-protein-coupled receptors in spermatozoa. Here, the G-protein-coupled receptors and their related G proteins that specifically were identified in spermatozoa were summarised, and provided references valuable for further illumination, despite the evidence that is not overwhelming in most cases.
Collapse
Affiliation(s)
- Pengyuan Dai
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Jingyan Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Chaoye Ma
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| |
Collapse
|
2
|
Lorenz J, Eisenhardt C, Mittermair T, Kulle AE, Holterhus PM, Fobker M, Boenigk W, Nordhoff V, Behre HM, Strünker T, Brenker C. The sperm-specific K + channel Slo3 is inhibited by albumin and steroids contained in reproductive fluids. Front Cell Dev Biol 2024; 12:1275116. [PMID: 39310227 PMCID: PMC11413451 DOI: 10.3389/fcell.2024.1275116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/19/2024] [Indexed: 09/25/2024] Open
Abstract
To locate and fertilize the egg, sperm probe the varying microenvironment prevailing at different stages during their journey across the female genital tract. To this end, they are equipped with a unique repertoire of mostly sperm-specific proteins. In particular, the flagellar Ca2+ channel CatSper has come into focus as a polymodal sensor used by human sperm to register ligands released into the female genital tract. Here, we provide the first comprehensive study on the pharmacology of the sperm-specific human Slo3 channel, shedding light on its modulation by reproductive fluids and their constituents. We show that seminal fluid and contained prostaglandins and Zn2+ do not affect the channel, whereas human Slo3 is inhibited in a non-genomic fashion by diverse steroids as well as by albumin, which are released into the oviduct along with the egg. This indicates that not only CatSper but also Slo3 harbours promiscuous ligand-binding sites that can accommodate structurally diverse molecules, suggesting that Slo3 is involved in chemosensory signalling in human sperm.
Collapse
Affiliation(s)
- Johannes Lorenz
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Clara Eisenhardt
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Teresa Mittermair
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Alexandra E. Kulle
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Paul Martin Holterhus
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Manfred Fobker
- Center for Laboratory Medicine, University Hospital, Münster, Germany
| | - Wolfgang Boenigk
- Max Planck Institute for Neurobiology of Behaviour—Caesar, Bonn, Germany
| | - Verena Nordhoff
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Young S, Schiffer C, Wagner A, Patz J, Potapenko A, Herrmann L, Nordhoff V, Pock T, Krallmann C, Stallmeyer B, Röpke A, Kierzek M, Biagioni C, Wang T, Haalck L, Deuster D, Hansen JN, Wachten D, Risse B, Behre HM, Schlatt S, Kliesch S, Tüttelmann F, Brenker C, Strünker T. Human fertilization in vivo and in vitro requires the CatSper channel to initiate sperm hyperactivation. J Clin Invest 2024; 134:e173564. [PMID: 38165034 PMCID: PMC10760960 DOI: 10.1172/jci173564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024] Open
Abstract
The infertility of many couples rests on an enigmatic dysfunction of the man's sperm. To gain insight into the underlying pathomechanisms, we assessed the function of the sperm-specific multisubunit CatSper-channel complex in the sperm of almost 2,300 men undergoing a fertility workup, using a simple motility-based test. We identified a group of men with normal semen parameters but defective CatSper function. These men or couples failed to conceive naturally and upon medically assisted reproduction via intrauterine insemination and in vitro fertilization. Intracytoplasmic sperm injection (ICSI) was, ultimately, required to conceive a child. We revealed that the defective CatSper function was caused by variations in CATSPER genes. Moreover, we unveiled that CatSper-deficient human sperm were unable to undergo hyperactive motility and, therefore, failed to penetrate the egg coat. Thus, our study provides the experimental evidence that sperm hyperactivation is required for human fertilization, explaining the infertility of CatSper-deficient men and the need of ICSI for medically assisted reproduction. Finally, our study also revealed that defective CatSper function and ensuing failure to hyperactivate represents the most common cause of unexplained male infertility known thus far and that this sperm channelopathy can readily be diagnosed, enabling future evidence-based treatment of affected couples.
Collapse
Affiliation(s)
- Samuel Young
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christian Schiffer
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Alice Wagner
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- Institute of Reproductive Genetics
| | - Jannika Patz
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Anton Potapenko
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Leonie Herrmann
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Verena Nordhoff
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Tim Pock
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Claudia Krallmann
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | | | - Michelina Kierzek
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- CiM-IMPRS Graduate School
| | - Cristina Biagioni
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Tao Wang
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Lars Haalck
- Institute of Geoinformatics, Computer Vision and Machine Learning Systems, University of Münster, Münster, Germany
| | - Dirk Deuster
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jan N. Hansen
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin Risse
- Institute of Geoinformatics, Computer Vision and Machine Learning Systems, University of Münster, Münster, Germany
- Computer Science Department, University of Münster, Münster, Germany
| | - Hermann M. Behre
- UKM Fertility Centre, University Hospital Münster, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Breitbart H, Grinshtein E. Mechanisms That Protect Mammalian Sperm from the Spontaneous Acrosome Reaction. Int J Mol Sci 2023; 24:17005. [PMID: 38069328 PMCID: PMC10707520 DOI: 10.3390/ijms242317005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
To acquire the capacity to fertilize the oocyte, mammalian spermatozoa must undergo a series of biochemical reactions in the female reproductive tract, which are collectively called capacitation. The capacitated spermatozoa subsequently interact with the oocyte zona-pellucida and undergo the acrosome reaction, which enables the penetration of the oocyte and subsequent fertilization. However, the spontaneous acrosome reaction (sAR) can occur prematurely in the sperm before reaching the oocyte cumulus oophorus, thereby jeopardizing fertilization. One of the main processes in capacitation involves actin polymerization, and the resulting F-actin is subsequently dispersed prior to the acrosome reaction. Several biochemical reactions that occur during sperm capacitation, including actin polymerization, protect sperm from sAR. In the present review, we describe the protective mechanisms that regulate sperm capacitation and prevent sAR.
Collapse
Affiliation(s)
- Haim Breitbart
- The Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | | |
Collapse
|
5
|
Kijima T, Kurokawa D, Sasakura Y, Ogasawara M, Aratake S, Yoshida K, Yoshida M. CatSper mediates not only chemotactic behavior but also the motility of ascidian sperm. Front Cell Dev Biol 2023; 11:1136537. [PMID: 38020915 PMCID: PMC10652287 DOI: 10.3389/fcell.2023.1136537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Sperm motility, including chemotactic behavior, is regulated by changes in the intracellular Ca2+ concentration, and the sperm-specific Ca2+ channel CatSper has been shown to play an important role in the regulation of intracellular Ca2+. In particular, in mammals, CatSper is the only functional Ca2+ channel in the sperm, and mice deficient in the genes comprising the pore region of the Ca2+ channel are infertile due to the inhibition of sperm hyperactivation. CatSper is also thought to be involved in sea urchin chemotaxis. In contrast, in ascidian Ciona intestinalis, SAAF, a sperm attractant, interacts with Ca2+/ATPase, a Ca2+ pump. Although the existence of CatSper genes has been reported, it is not clear whether CatSper is a functional Ca2+ channel in sperm. Results: We showed that CatSper is present in the sperm flagella of C. intestinalis as in mammalian species, although a small level of gene expression was found in other tissues. The spermatozoa of CatSper3 KO animals were significantly less motile, and some motile sperms did not show any chemotactic behavior. These results suggest that CatSper plays an important role in ascidians and mammals, and is involved in spermatogenesis and basic motility mechanisms.
Collapse
Affiliation(s)
- Taiga Kijima
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoe Aratake
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Kaoru Yoshida
- Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Kanagawa, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
6
|
Grahn E, Kaufmann SV, Askarova M, Ninov M, Welp LM, Berger TK, Urlaub H, Kaupp UB. Control of intracellular pH and bicarbonate by CO 2 diffusion into human sperm. Nat Commun 2023; 14:5395. [PMID: 37669933 PMCID: PMC10480191 DOI: 10.1038/s41467-023-40855-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The reaction of CO2 with H2O to form bicarbonate (HCO3-) and H+ controls sperm motility and fertilization via HCO3--stimulated cAMP synthesis. A complex network of signaling proteins participates in this reaction. Here, we identify key players that regulate intracellular pH (pHi) and HCO3- in human sperm by quantitative mass spectrometry (MS) and kinetic patch-clamp fluorometry. The resting pHi is set by amiloride-sensitive Na+/H+ exchange. The sperm-specific putative Na+/H+ exchanger SLC9C1, unlike its sea urchin homologue, is not gated by voltage or cAMP. Transporters and channels implied in HCO3- transport are not detected, and may be present at copy numbers < 10 molecules/sperm cell. Instead, HCO3- is produced by diffusion of CO2 into cells and readjustment of the CO2/HCO3-/H+ equilibrium. The proton channel Hv1 may serve as a unidirectional valve that blunts the acidification ensuing from HCO3- synthesis. This work provides a new framework for the study of male infertility.
Collapse
Affiliation(s)
- Elena Grahn
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Svenja V Kaufmann
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Malika Askarova
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Momchil Ninov
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Luisa M Welp
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Thomas K Berger
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstrasse 1-2, 35037, Marburg, Germany.
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany.
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- Cluster of Excellence, Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
| | - U Benjamin Kaupp
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Life & Medical Sciences Institute (LIMES), University Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany.
| |
Collapse
|
7
|
Wang P, Wang Q, Chen L, Cao Z, Zhao H, Su R, Wang N, Ma X, Shan J, Chen X, Zhang Q, Du B, Yuan Z, Zhao Y, Zhang X, Guo X, Xue Y, Miao L. RNA-binding protein complex AMG-1/SLRP-1 mediates germline development and spermatogenesis by maintaining mitochondrial homeostasis in Caenorhabditis elegans. Sci Bull (Beijing) 2023; 68:1399-1412. [PMID: 37355389 DOI: 10.1016/j.scib.2023.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/26/2023]
Abstract
The mechanisms of RNA-binding proteins (RBPs)-mediated post-transcriptional regulation of pre-existing mRNAs, which is essential for spermatogenesis, remain poorly understood. In this study, we identify that a germline-specific mitochondrial RBP AMG-1(abnormal mitochondria in germline 1), a homolog of mammalian leucine-rich PPR motif-containing protein (LRPPRC), is required for spermatogenesis in Caenorhabditis elegans. The amg-1 mutation hinders germline development without affecting somatic development and leads to the aberrant mitochondrial morphology and structure associated with mitochondrial dysfunctions specifically in the germline. We demonstrate that AMG-1 is most frequently bound to mtDNA-encoded 12S and 16S ribosomal RNA, the essential components of mitochondrial ribosomes, and that 12S rRNA expression mediated by AMG-1 is crucial for germline mitochondrial protein homeostasis. Furthermore, steroid receptor RNA activator (SRA) stem loop interacting RNA binding protein (SLRP-1), a homolog of mammalian SRA stem loop interacting RNA binding protein (SLIRP) in C. elegans, interacts with AMG-1 genetically to regulate germline development and reproductive success in C. elegans. Overall, these findings reveal the novel function of mtRBP, specifically in regulating germline development.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Qiushi Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Lianwan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailian Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Ning Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Xiaojing Ma
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Jin Shan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Xinyan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Qi Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Baochen Du
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Zhiheng Yuan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaorong Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China.
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
8
|
Lyon MD, Ferreira JJ, Li P, Bhagwat S, Butler A, Anderson K, Polo M, Santi CM. SLO3: A Conserved Regulator of Sperm Membrane Potential. Int J Mol Sci 2023; 24:11205. [PMID: 37446382 DOI: 10.3390/ijms241311205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Sperm cells must undergo a complex maturation process after ejaculation to be able to fertilize an egg. One component of this maturation is hyperpolarization of the membrane potential to a more negative value. The ion channel responsible for this hyperpolarization, SLO3, was first cloned in 1998, and since then much progress has been made to determine how the channel is regulated and how its function intertwines with various signaling pathways involved in sperm maturation. Although Slo3 was originally thought to be present only in the sperm of mammals, recent evidence suggests that a primordial form of the gene is more widely expressed in some fish species. Slo3, like many reproductive genes, is rapidly evolving with low conservation between closely related species and different regulatory and pharmacological profiles. Despite these differences, SLO3 appears to have a conserved role in regulating sperm membrane potential and driving large changes in response to stimuli. The effect of this hyperpolarization of the membrane potential may vary among mammalian species just as the regulation of the channel does. Recent discoveries have elucidated the role of SLO3 in these processes in human sperm and provided tools to target the channel to affect human fertility.
Collapse
Affiliation(s)
- Maximilian D Lyon
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ping Li
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shweta Bhagwat
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alice Butler
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kelsey Anderson
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Maria Polo
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Cong S, Zhang J, Pan F, Pan L, Zhang A, Ma J. Research progress on ion channels and their molecular regulatory mechanisms in the human sperm flagellum. FASEB J 2023; 37:e23052. [PMID: 37352114 DOI: 10.1096/fj.202300756r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
The ion channels in sperm tail play an important role in triggering key physiological reactions, e.g., progressive motility, hyperactivation, required for successful fertilization. Among them, CatSper and KSper have been shown to be important ion channels for the transport of Ca2+ and K+ . Moreover, the voltage-gated proton channel Hv1, the sperm-specific sodium-hydrogen exchanger (sNHE), the epithelial sodium channel (ENaC), members of the temperature-sensitive TRP channel family, and the cystic fibrosis transmembrane regulator (CFTR) are also found in the flagellum. This review focuses on the latest advances in ion channels located at the flagellum, describes how they affect sperm physiological function, and summarizes some primary mutual regulation mechanism between ion channels, including PH, membrane potential, and cAMP. These ion channels may be promising targets for clinical application in infertility.
Collapse
Affiliation(s)
- Shengnan Cong
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jingjing Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Feng Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Lianjun Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Aixia Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jiehua Ma
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
10
|
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int J Mol Sci 2023; 24:6995. [PMID: 37108159 PMCID: PMC10138380 DOI: 10.3390/ijms24086995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
During the last seventy years, studies on mammalian sperm cells have demonstrated the essential role of capacitation, hyperactivation and the acrosome reaction in the acquisition of fertilization ability. These studies revealed the important biochemical and physiological changes that sperm undergo in their travel throughout the female genital tract, including changes in membrane fluidity, the activation of soluble adenylate cyclase, increases in intracellular pH and Ca2+ and the development of motility. Sperm are highly polarized cells, with a resting membrane potential of about -40 mV, which must rapidly adapt to the ionic changes occurring through the sperm membrane. This review summarizes the current knowledge about the relationship between variations in the sperm potential membrane, including depolarization and hyperpolarization, and their correlation with changes in sperm motility and capacitation to further lead to the acrosome reaction, a calcium-dependent exocytosis process. We also review the functionality of different ion channels that are present in spermatozoa in order to understand their association with human infertility.
Collapse
Affiliation(s)
- Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Ainize Odriozola
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| |
Collapse
|
11
|
Sensui N, Itoh Y, Okura N, Shiba K, Baba SA, Inaba K, Yoshida M. Spawning-Induced pH Increase Activates Sperm Attraction and Fertilization Abilities in Eggs of the Ascidian, Phallusia philippinensis and Ciona intestinalis. Int J Mol Sci 2023; 24:2666. [PMID: 36768985 PMCID: PMC9917126 DOI: 10.3390/ijms24032666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
In Phlebobranchiata ascidians, oocytes and spermatozoa are stored in the oviduct and spermiduct, respectively, until spawning occurs. Gametes in the gonoducts are mature and fertilizable; however, it was found that the gametes of the ascidians Phallusia philippinensis and Ciona intestinalis could not undergo fertilization in the gonoductal fluids. The body fluids of the ascidians, especially in the gonoducts, were much more acidic (pH 5.5-6.8) than seawater (pH 8.2), and the fertilization rate was low under such acidic conditions. Hence, we examined the effect of pH on gametes. Pre-incubation of gonoductal eggs at pH 8.2 prior to insemination increased fertilization rates, even when insemination was performed under low pH conditions. Furthermore, an increase in ambient pH induced an increase in the intracellular pH of the eggs. It was also found that an increase in ambient pH triggered the release of sperm attractants from the egg and is therefore necessary for sperm chemotaxis. Hence, acidic conditions in the gonoductal fluids keep the gametes, especially eggs, infertile, and the release of eggs into seawater upon spawning induces an increase in ambient pH, which enables egg fertilization.
Collapse
Affiliation(s)
- Noburu Sensui
- Department of Human Biology and Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Yosinori Itoh
- Department of Human Biology and Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Shoji A. Baba
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura 238-0225, Japan
| |
Collapse
|
12
|
Yunaini L, Erlina L, Fadilah F, Pujianto DA. In silico docking analysis of beta-defensin 20 against cation channel sperm-associated protein 1-4 to predict its role in the sperm maturation. Asian J Androl 2023; 25:528-532. [PMID: 36571327 PMCID: PMC10411257 DOI: 10.4103/aja2022103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/16/2022] [Indexed: 12/27/2022] Open
Abstract
Beta-defensin 20 (DEFB20) is widely expressed in the epididymis with gene features involved in epididymal sperm maturation. However, the action mechanism and function of DEFB20 in sperm maturation are still unclear. One of the important roles of beta-defensin is the ion channel activity. The cation channel sperm-associated protein (CatSper) alpha is an ion channel protein found on the sperm surface. This study aimed to investigate the interaction between DEFB20 and CatSper1-4 protein in relation to the sperm maturation process. Protein sequences were obtained from the National Center for Biotechnology Information (NCBI). Protein modeling and validation were carried out by using the Robetta modeling server and the Ramachandran plot method. Rosetta web server was used for the docking analysis. The results revealed a natural interaction between DEFB20 and CatSper1-4. The interaction occurred at the cation channel (close to the casein kinase II), ion transport protein, and kinase c phosphorylation of the CatSper1-4 active site. The DEFB20 region interacting with CatSper2-4 was the beta-defensin domain, while with CatSper1 was the non-beta-defensin domain. Based on the analysis, DEFB20 may interact with CatSper α subunits, particularly CatsSper1, to affect ion channel activity during sperm maturation.
Collapse
Affiliation(s)
- Luluk Yunaini
- Doctoral Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Linda Erlina
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Bioinformatics Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Fadilah Fadilah
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Bioinformatics Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Dwi Ari Pujianto
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
13
|
How to study a highly toxic protein to bacteria: A case of voltage sensor domain of mouse sperm-specific sodium/proton exchanger. Protein Expr Purif 2023; 201:106172. [DOI: 10.1016/j.pep.2022.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
|
14
|
Yunaini L, Ari Pujianto D. Various gene modification techniques to discover molecular targets for nonhormonal male contraceptives: A review. Int J Reprod Biomed 2023; 21:17-32. [PMID: 36875503 PMCID: PMC9982321 DOI: 10.18502/ijrm.v21i1.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/07/2022] [Accepted: 11/20/2022] [Indexed: 02/11/2023] Open
Abstract
The identification and characterization of relevant targets are necessary for developing nonhormonal male contraceptives. The molecules must demonstrate that they are necessary for reproduction. As a result, a sophisticated technique is required to identify the molecular targets for nonhormonal male contraceptives. Genetic modification (GM) techniques are one method that can be applied. This technique has been widely used to study gene function that effected male fertility and has resulted in the discovery of numerous nonhormonal male contraceptive target molecules. We examined GM techniques and approaches used to investigate genes involved in male fertility as potential targets for nonhormonal contraceptives. The discovery of nonhormonal contraceptive candidate molecules was increased by using GM techniques, especially the Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 method. The discovery of candidate nonhormonal contraceptive molecules can be a wide-open research for the development of nonhormonal male contraceptives. Therefore, we are believing that one day nonhormonal male contraceptives will be released.
Collapse
Affiliation(s)
- Luluk Yunaini
- Doctoral Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta Pusat, Indonesia.,Department of Medicine Biology, Faculty of Medicine, Universitas Indonesia, Jakarta Pusat, Indonesia
| | - Dwi Ari Pujianto
- Department of Medicine Biology, Faculty of Medicine, Universitas Indonesia, Jakarta Pusat, Indonesia
| |
Collapse
|
15
|
Hernández-Garduño S, Chavez JC, Matamoros-Volante A, Sánchez-Guevara Y, Torres P, Treviño CL, Nishigaki T. Hyperpolarization induces cytosolic alkalization of mouse sperm flagellum probably through sperm Na+/H+ exchanger. Reproduction 2022; 164:125-134. [PMID: 35900329 DOI: 10.1530/rep-22-0101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
The sperm-specific sodium/proton exchanger (sNHE) is an indispensable protein for male fertility in mammals. Nevertheless, it is still unknown how mammalian sNHE is regulated. Evidence obtained from sea urchin sNHE indicates that hyperpolarization of plasma membrane potential (Vm), which is a hallmark of mammalian capacitation, positively regulates the sNHE. Therefore, we explored the activity of sNHE in mouse and human sperm by fluorescence imaging of intracellular pH (pHi) with a ratiometric dye, SNARF-5F. A valinomycin-induced Vm hyperpolarization elevated sperm flagellar pHi of wild-type mouse, but not in sNHE-KO mouse. Moreover, this pHi increase was inhibited in a high K+ (40 mM) medium. These results support the idea that mouse sNHE is activated by Vm hyperpolarization. Interestingly, we observed different types of kinetics derived from valinomycin-induced alkalization, including some (30 %) without any pHi changes. Our quantitative pHi determinations revealed that unresponsive cells had a high resting pHi (> 7.5), suggesting that the activity of mouse sNHE is regulated by the resting pHi. On the other hand, valinomycin did not increase the pHi of human sperm in the head or the flagellum, regardless of their resting pHi values. Our findings suggest that the regulatory mechanisms of mammalian sNHEs are probably distinct depending on the species.
Collapse
Affiliation(s)
- Sandra Hernández-Garduño
- S Hernández-Garduño, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Julio C Chavez
- J Chavez, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Arturo Matamoros-Volante
- A Matamoros-Volante, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Yoloxochitl Sánchez-Guevara
- Y Sánchez-Guevara, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Paulina Torres
- P Torres, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Claudia L Treviño
- C Treviño, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Takuya Nishigaki
- T Nishigaki, Genetica del Desarrollo y Fisiologia Molecular, Instituto de Biotecnologia UNAM, Cuernavaca, 62210, Mexico
| |
Collapse
|
16
|
Lv M, Liu C, Ma C, Yu H, Shao Z, Gao Y, Liu Y, Wu H, Tang D, Tan Q, Zhang J, Li K, Xu C, Geng H, Zhang J, Li H, Mao X, Ge L, Fu F, Zhong K, Xu Y, Tao F, Zhou P, Wei Z, He X, Zhang F, Cao Y. Homozygous mutation in SLO3 leads to severe asthenoteratozoospermia due to acrosome hypoplasia and mitochondrial sheath malformations. Reprod Biol Endocrinol 2022; 20:5. [PMID: 34980136 PMCID: PMC8722334 DOI: 10.1186/s12958-021-00880-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Potassium channels are important for the structure and function of the spermatozoa. As a potassium transporter, the mSlo3 is essential for male fertility as Slo3 knockout male mice were infertile with the series of functional defects in sperm cells. However, no pathogenic variant has been detected in human SLO3 to date. Here we reported a human case with homozygous SLO3 mutation. The function of SLO3 in human sperm and the corresponding assisted reproductive strategy are also investigated. METHODS We performed whole-exome sequencing analysis from a large cohort of 105 patients with asthenoteratozoospermia. The effects of the variant were investigated by quantitative RT-PCR, western blotting, and immunofluorescence assays using the patient spermatozoa. Sperm morphological and ultrastructural studies were conducted using haematoxylin and eosin staining, scanning and transmission electron microscopy. RESULTS We identified a homozygous missense variant (c.1237A > T: p.Ile413Phe) in the sperm-specific SLO3 in one Chinese patient with male infertility. This SLO3 variant was rare in human control populations and predicted to be deleterious by multiple bioinformatic tools. Sperm from the individual harbouring the homozygous SLO3 variant exhibited severe morphological abnormalities, such as acrosome hypoplasia, disruption of the mitochondrial sheath, coiled tails, and motility defects. The levels of SLO3 mRNA and protein in spermatozoa from the affected individual were reduced. Furthermore, the acrosome reaction, mitochondrial membrane potential, and membrane potential during capacitation were also afflicted. The levels of acrosome marker glycoproteins and PLCζ1 as well as the mitochondrial sheath protein HSP60 and SLO3 auxiliary subunit LRRC52, were significantly reduced in the spermatozoa from the affected individual. The affected man was sterile due to acrosome and mitochondrial dysfunction; however, intra-cytoplasmic sperm injection successfully rescued this infertile condition. CONCLUSIONS SLO3 deficiency seriously impact acrosome formation, mitochondrial sheath assembly, and the function of K+ channels. Our findings provided clinical implications for the genetic and reproductive counselling of affected families.
Collapse
Affiliation(s)
- Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200011, China
| | - Chunjie Ma
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, 510600, China
| | - Hui Yu
- Department of Obstetrics and Gynecology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Zhongmei Shao
- Department of Obstetrics and Gynecology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Yang Gao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Yiyuan Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junqiang Zhang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Jingjing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Hang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohong Mao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Ge
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feifei Fu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kaixin Zhong
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, 510600, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Fangbiao Tao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China.
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200011, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| |
Collapse
|
17
|
Aguado-García A, Priego-Espinosa DA, Aldana A, Darszon A, Martínez-Mekler G. Mathematical model reveals that heterogeneity in the number of ion transporters regulates the fraction of mouse sperm capacitation. PLoS One 2021; 16:e0245816. [PMID: 34793454 PMCID: PMC8601445 DOI: 10.1371/journal.pone.0245816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
Capacitation is a complex maturation process mammalian sperm must undergo in the female genital tract to be able to fertilize an egg. This process involves, amongst others, physiological changes in flagellar beating pattern, membrane potential, intracellular ion concentrations and protein phosphorylation. Typically, in a capacitation medium, only a fraction of sperm achieve this state. The cause for this heterogeneous response is still not well understood and remains an open question. Here, one of our principal results is to develop a discrete regulatory network, with mostly deterministic dynamics in conjunction with some stochastic elements, for the main biochemical and biophysical processes involved in the early events of capacitation. The model criterion for capacitation requires the convergence of specific levels of a select set of nodes. Besides reproducing several experimental results and providing some insight on the network interrelations, the main contribution of the model is the suggestion that the degree of variability in the total amount and individual number of ion transporters among spermatozoa regulates the fraction of capacitated spermatozoa. This conclusion is consistent with recently reported experimental results. Based on this mathematical analysis, experimental clues are proposed for the control of capacitation levels. Furthermore, cooperative and interference traits that become apparent in the modelling among some components also call for future theoretical and experimental studies.
Collapse
Affiliation(s)
- Alejandro Aguado-García
- Instituto de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | - Andrés Aldana
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, CDMX, México
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gustavo Martínez-Mekler
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, CDMX, México
| |
Collapse
|
18
|
Sperm ion channels and transporters in male fertility and infertility. Nat Rev Urol 2020; 18:46-66. [PMID: 33214707 DOI: 10.1038/s41585-020-00390-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Mammalian sperm cells must respond to cues originating from along the female reproductive tract and from the layers of the egg in order to complete their fertilization journey. Dynamic regulation of ion signalling is, therefore, essential for sperm cells to adapt to their constantly changing environment. Over the past 15 years, direct electrophysiological recordings together with genetically modified mouse models and human genetics have confirmed the importance of ion channels, including the principal Ca2+-selective plasma membrane ion channel CatSper, for sperm activity. Sperm ion channels and membrane receptors are attractive targets for both the development of contraceptives and infertility treatment drugs. Furthermore, in this era of assisted reproductive technologies, understanding the signalling processes implicated in defective sperm function, particularly those arising from genetic abnormalities, is of the utmost importance not only for the development of infertility treatments but also to assess the overall health of a patient and his children. Future studies to improve reproductive health care and overall health care as a function of the ability to reproduce should include identification and analyses of gene variants that underlie human infertility and research into fertility-related molecules.
Collapse
|
19
|
Zalazar L, Stival C, Nicolli AR, De Blas GA, Krapf D, Cesari A. Male Decapacitation Factor SPINK3 Blocks Membrane Hyperpolarization and Calcium Entry in Mouse Sperm. Front Cell Dev Biol 2020; 8:575126. [PMID: 33102481 PMCID: PMC7554638 DOI: 10.3389/fcell.2020.575126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023] Open
Abstract
Mammalian sperm acquire ability to fertilize through a process called capacitation, occurring after ejaculation and regulated by both female molecules and male decapacitation factors. Bicarbonate and calcium present in the female reproductive tract trigger capacitation in sperm, leading to acrosomal responsiveness and hyperactivated motility. Male decapacitating factors present in the semen avert premature capacitation, until detached from the sperm surface. However, their mechanism of action remains elusive. Here we describe for the first time the molecular basis for the decapacitating action of the seminal protein SPINK3 in mouse sperm. When present in the capacitating medium, SPINK3 inhibited Src kinase, a modulator of the potassium channel responsible for plasma membrane hyperpolarization. Lack of hyperpolarization affected calcium channels activity, impairing the acquisition of acrosomal responsiveness and blocking hyperactivation. Interestingly, SPINK3 acted only on non-capacitated sperm, as it did not bind to capacitated cells. Binding selectivity allows its decapacitating action only in non-capacitated sperm, without affecting capacitated cells.
Collapse
Affiliation(s)
- Lucia Zalazar
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biologia Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabella R Nicolli
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Gerardo A De Blas
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, National Scientific and Technical Research Council, Mendoza, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biologia Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Andreina Cesari
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.,Escuela Superior de Medicina, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
20
|
Balbach M, Hamzeh H, Jikeli JF, Brenker C, Schiffer C, Hansen JN, Neugebauer P, Trötschel C, Jovine L, Han L, Florman HM, Kaupp UB, Strünker T, Wachten D. Molecular Mechanism Underlying the Action of Zona-pellucida Glycoproteins on Mouse Sperm. Front Cell Dev Biol 2020; 8:572735. [PMID: 32984353 PMCID: PMC7487327 DOI: 10.3389/fcell.2020.572735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Mammalian oocytes are enveloped by the zona pellucida (ZP), an extracellular matrix of glycoproteins. In sperm, stimulation with ZP proteins evokes a rapid Ca2+ influx via the sperm-specific, pH-sensitive Ca2+ channel CatSper. However, the physiological role and molecular mechanisms underlying ZP-dependent activation of CatSper are unknown. Here, we delineate the sequence of ZP-signaling events in mouse sperm. We show that ZP proteins evoke a rapid intracellular pHi increase that rests predominantly on Na+/H+ exchange by NHA1 and requires cAMP synthesis by the soluble adenylyl cyclase sAC as well as a sufficiently negative membrane potential set by the spem-specific K+ channel Slo3. The alkaline-activated CatSper channel translates the ZP-induced pHi increase into a Ca2+ response. Our findings reveal the molecular components underlying ZP action on mouse sperm, opening up new avenues for understanding the basic principles of sperm function and, thereby, mammalian fertilization.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany
| | - Hussein Hamzeh
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany
| | - Jan F Jikeli
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christoph Brenker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christian Schiffer
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Pia Neugebauer
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Harvey M Florman
- Department of Obstetrics and Gynecology, University of Massachusetts Medical School Worcester, Worcester, MA, United States
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany.,Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Timo Strünker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Trötschel C, Hamzeh H, Alvarez L, Pascal R, Lavryk F, Bönigk W, Körschen HG, Müller A, Poetsch A, Rennhack A, Gui L, Nicastro D, Strünker T, Seifert R, Kaupp UB. Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation. EMBO J 2020; 39:e102723. [PMID: 31880004 PMCID: PMC7024835 DOI: 10.15252/embj.2019102723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
Cilia serve as cellular antennae that translate sensory information into physiological responses. In the sperm flagellum, a single chemoattractant molecule can trigger a Ca2+ rise that controls motility. The mechanisms underlying such ultra-sensitivity are ill-defined. Here, we determine by mass spectrometry the copy number of nineteen chemosensory signaling proteins in sperm flagella from the sea urchin Arbacia punctulata. Proteins are up to 1,000-fold more abundant than the free cellular messengers cAMP, cGMP, H+ , and Ca2+ . Opto-chemical techniques show that high protein concentrations kinetically compartmentalize the flagellum: Within milliseconds, cGMP is relayed from the receptor guanylate cyclase to a cGMP-gated channel that serves as a perfect chemo-electrical transducer. cGMP is rapidly hydrolyzed, possibly via "substrate channeling" from the channel to the phosphodiesterase PDE5. The channel/PDE5 tandem encodes cGMP turnover rates rather than concentrations. The rate-detection mechanism allows continuous stimulus sampling over a wide dynamic range. The textbook notion of signal amplification-few enzyme molecules process many messenger molecules-does not hold for sperm flagella. Instead, high protein concentrations ascertain messenger detection. Similar mechanisms may occur in other small compartments like primary cilia or dendritic spines.
Collapse
Affiliation(s)
- Christian Trötschel
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
| | - Hussein Hamzeh
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - Luis Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - René Pascal
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Fedir Lavryk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Heinz G Körschen
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Astrid Müller
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Ansgar Poetsch
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
- Present address:
Center for Marine and Molecular BiotechnologyQNLMQindaoChina
- Present address:
College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Andreas Rennhack
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Long Gui
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Daniela Nicastro
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Timo Strünker
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Center of Reproductive Medicine and AndrologyUniversity Hospital MünsterMünsterGermany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Life& Medical Sciences Institute (LIMES)University of BonnBonnGermany
| |
Collapse
|
22
|
Matamoros-Volante A, Treviño CL. Capacitation-associated alkalization in human sperm is differentially controlled at the subcellular level. J Cell Sci 2020; 133:jcs238816. [PMID: 31932506 DOI: 10.1242/jcs.238816] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Capacitation in mammalian sperm involves the accurate balance of intracellular pH (pHi), but the mechanisms controlling this process are not fully understood, particularly regarding the spatiotemporal regulation of the proteins involved in pHi modulation. Here, we employed an image-based flow cytometry technique combined with pharmacological approaches to study pHi dynamics at the subcellular level during capacitation. We found that, upon capacitation induction, sperm cells undergo intracellular alkalization in the head and principal piece regions. The observed localized pHi increases require the initial uptake of HCO3-, which is mediated by several proteins acting consistently with their subcellular localization. Hv1 proton channel (also known as HVCN1) and cAMP-activated protein kinase (protein kinase A, PKA) antagonists impair alkalization mainly in the principal piece. Na+/HCO3- cotransporter (NBC) and cystic fibrosis transmembrane regulator (CFTR) antagonists impair alkalization only mildly, predominantly in the head. Motility measurements indicate that inhibition of alkalization in the principal piece prevents the development of hyperactivated motility. Altogether, our findings shed light on the complex control mechanisms of pHi and underscore their importance during human sperm capacitation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Arturo Matamoros-Volante
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, México
| |
Collapse
|
23
|
Brown SG, Publicover SJ, Barratt CLR, Martins da Silva SJ. Human sperm ion channel (dys)function: implications for fertilization. Hum Reprod Update 2019; 25:758-776. [PMID: 31665287 PMCID: PMC6847974 DOI: 10.1093/humupd/dmz032] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Intensive research on sperm ion channels has identified members of several ion channel families in both mouse and human sperm. Gene knock-out studies have unequivocally demonstrated the importance of the calcium and potassium conductances in sperm for fertility. In both species, the calcium current is carried by the highly complex cation channel of sperm (CatSper). In mouse sperm, the potassium current has been conclusively shown to be carried by a channel consisting of the pore forming subunit SLO3 and auxiliary subunit leucine-rich repeat-containing 52 (LRRC52). However, in human sperm it is controversial whether the pore forming subunit of the channel is composed of SLO3 and/or SLO1. Deciphering the role of the proton-specific Hv1 channel is more challenging as it is only expressed in human sperm. However, definitive evidence for a role in, and importance for, human fertility can only be determined through studies using clinical samples. OBJECTIVE AND RATIONALE This review aims to provide insight into the role of sperm ion channels in human fertilization as evidenced from recent studies of sperm from infertile men. We also summarize the key discoveries from mouse ion channel knock-out models and contrast the properties of mouse and human CatSper and potassium currents. We detail the evidence for, and consequences of, defective ion channels in human sperm and discuss hypotheses to explain how defects arise and why affected sperm have impaired fertilization potential. SEARCH METHODS Relevant studies were identified using PubMed and were limited to ion channels that have been characterized in mouse and human sperm. Additional notable examples from other species are included as appropriate. OUTCOMES There are now well-documented fundamental differences between the properties of CatSper and potassium channel currents in mouse and human sperm. However, in both species, sperm lacking either channel cannot fertilize in vivo and CatSper-null sperm also fail to fertilize at IVF. Sperm-lacking potassium currents are capable of fertilizing at IVF, albeit at a much lower rate. However, additional complex and heterogeneous ion channel dysfunction has been reported in sperm from infertile men, the causes of which are unknown. Similarly, the nature of the functional impairment of affected patient sperm remains elusive. There are no reports of studies of Hv1 in human sperm from infertile men. WIDER IMPLICATIONS Recent studies using sperm from infertile men have given new insight and critical evidence supporting the supposition that calcium and potassium conductances are essential for human fertility. However, it should be highlighted that many fundamental questions remain regarding the nature of molecular and functional defects in sperm with dysfunctional ion channels. The development and application of advanced technologies remains a necessity to progress basic and clinical research in this area, with the aim of providing effective screening methodologies to identify and develop treatments for affected men in order to help prevent failed ART cycles. Conversely, development of drugs that block calcium and/or potassium conductances in sperm is a plausible strategy for producing sperm-specific contraceptives.
Collapse
Affiliation(s)
- Sean G Brown
- School of Applied Sciences, Abertay University, Dundee DD11HG, UK
| | | | - Christopher L R Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Sarah J Martins da Silva
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|
24
|
Civetta A, Ranz JM. Genetic Factors Influencing Sperm Competition. Front Genet 2019; 10:820. [PMID: 31572439 PMCID: PMC6753916 DOI: 10.3389/fgene.2019.00820] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Females of many different species often mate with multiple males, creating opportunities for competition among their sperm. Although originally unappreciated, sperm competition is now considered a central form of post-copulatory male–male competition that biases fertilization. Assays of differences in sperm competitive ability between males, and interactions between females and males, have made it possible to infer some of the main mechanisms of sperm competition. Nevertheless, classical genetic approaches have encountered difficulties in identifying loci influencing sperm competitiveness while functional and comparative genomic methodologies, as well as genetic variant association studies, have uncovered some interesting candidate genes. We highlight how the systematic implementation of approaches that incorporate gene perturbation assays in experimental competitive settings, together with the monitoring of progeny output or sperm features and behavior, has allowed the identification of genes unambiguously linked to sperm competitiveness. The emerging portrait from 45 genes (33 from fruit flies, 8 from rodents, 2 from nematodes, and 2 from ants) is their remarkable breadth of biological roles exerted through males and females, the non-preponderance of sperm genes, and their overall pleiotropic nature.
Collapse
Affiliation(s)
- Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| |
Collapse
|
25
|
Lv MG, Chen WQ, Weng SQ, Chen HY, Cheng YM, Luo T. Rosmarinic acid compromises human sperm functions by an intracellular Ca 2+ concentration-related mechanism. Reprod Toxicol 2018; 81:58-63. [PMID: 30009954 DOI: 10.1016/j.reprotox.2018.07.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/08/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022]
Abstract
Rosmarinic acid (RA), a natural phenolic ester, is cytoprotective for male reproduction in animal models. The present study investigated the in vitro actions of RA on human sperm functions. Human sperm were exposed to 1, 10, 100, and 1000 μM RA in vitro and sperm functions were examined. The results showed that although RA did not affect human sperm viability, RA at 10-1000 μM dose-dependently reduced sperm motility, penetration ability, capacitation, and spontaneous acrosome reaction. In addition, the intracellular Ca2+ concentration ([Ca2+]i), which serve as a key regulator of sperm function, was decreased by RA (10-1000 μM) in a dose-dependent manner. Furthermore, the current of the sperm-specific potassium channel, KSPER, which is predominant for Ca2+ influx in sperm, was dose-dependently inhibited by 10-1000 μM RA. Therefore, we conclude that in vitro exposure to RA can compromise human sperm functions by decreasing sperm [Ca2+]i through the suppression of KSPER current.
Collapse
Affiliation(s)
- Meng-Ge Lv
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wen-Qiong Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shi-Qi Weng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hou-Yang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Yi-Min Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
26
|
Rennhack A, Schiffer C, Brenker C, Fridman D, Nitao ET, Cheng Y, Tamburrino L, Balbach M, Stölting G, Berger TK, Kierzek M, Alvarez L, Wachten D, Zeng X, Baldi E, Publicover SJ, Benjamin Kaupp U, Strünker T. A novel cross-species inhibitor to study the function of CatSper Ca 2+ channels in sperm. Br J Pharmacol 2018; 175:3144-3161. [PMID: 29723408 PMCID: PMC6031884 DOI: 10.1111/bph.14355] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Sperm from many species share the sperm-specific Ca2+ channel CatSper that controls the intracellular Ca2+ concentration and, thereby, the swimming behaviour. A growing body of evidence suggests that the mechanisms controlling the activity of CatSper and its role during fertilization differ among species. A lack of suitable pharmacological tools has hampered the elucidation of the function of CatSper. Known inhibitors of CatSper exhibit considerable side effects and also inhibit Slo3, the principal K+ channel of mammalian sperm. The compound RU1968 was reported to suppress Ca2+ signaling in human sperm by an unknown mechanism. Here, we examined the action of RU1968 on CatSper in sperm from humans, mice, and sea urchins. EXPERIMENTAL APPROACH We resynthesized RU1968 and studied its action on sperm from humans, mice, and the sea urchin Arbacia punctulata by Ca2+ fluorimetry, single-cell Ca2+ imaging, electrophysiology, opto-chemistry, and motility analysis. KEY RESULTS RU1968 inhibited CatSper in sperm from invertebrates and mammals. The compound lacked toxic side effects in human sperm, did not affect mouse Slo3, and inhibited human Slo3 with about 15-fold lower potency than CatSper. Moreover, in human sperm, RU1968 mimicked CatSper dysfunction and suppressed motility responses evoked by progesterone, an oviductal steroid known to activate CatSper. Finally, RU1968 abolished CatSper-mediated chemotactic navigation in sea urchin sperm. CONCLUSION AND IMPLICATIONS We propose RU1968 as a novel tool to elucidate the function of CatSper channels in sperm across species.
Collapse
Affiliation(s)
- Andreas Rennhack
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Christian Schiffer
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Christoph Brenker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Dmitry Fridman
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Elis T Nitao
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Yi‐Min Cheng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Lara Tamburrino
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | - Melanie Balbach
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Gabriel Stölting
- Institute of Complex Systems – Zelluläre Biophysik 4, Forschungszentrum JülichJülichGermany
| | - Thomas K Berger
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Michelina Kierzek
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Luis Alvarez
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Dagmar Wachten
- Max‐Planck Research Group of Molecular Physiology, Center of Advanced European Studies and ResearchBonnGermany
- Institute of Innate ImmunityUniversity Hospital, University of BonnBonnGermany
| | - Xu‐Hui Zeng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | | | - U Benjamin Kaupp
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Timo Strünker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| |
Collapse
|
27
|
Paul RK, Balaganur K, Kumar D, Naqvi SMK. Modulation of seminal plasma content in extended semen improves the quality attributes of ram spermatozoa following liquid preservation at 3-5°C. Reprod Domest Anim 2018; 53:1200-1210. [DOI: 10.1111/rda.13227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 02/25/2018] [Accepted: 04/26/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Rajani K. Paul
- Semen Cryobiology Laboratory, Division of Animal Physiology and Biochemistry; ICAR-Central Sheep and Wool Research Institute; Avikanagar Rajasthan India
| | - Krishnappa Balaganur
- Semen Cryobiology Laboratory, Division of Animal Physiology and Biochemistry; ICAR-Central Sheep and Wool Research Institute; Avikanagar Rajasthan India
| | - Davendra Kumar
- Semen Cryobiology Laboratory, Division of Animal Physiology and Biochemistry; ICAR-Central Sheep and Wool Research Institute; Avikanagar Rajasthan India
| | - Syed M. K. Naqvi
- Semen Cryobiology Laboratory, Division of Animal Physiology and Biochemistry; ICAR-Central Sheep and Wool Research Institute; Avikanagar Rajasthan India
| |
Collapse
|
28
|
Abstract
Fertilization is exceptionally complex and, depending on the species, happens in entirely different environments. External fertilizers in aquatic habitats, like marine invertebrates or fish, release their gametes into the seawater or freshwater, whereas sperm from most internal fertilizers like mammals cross the female genital tract to make their way to the egg. Various chemical and physical cues guide sperm to the egg. Quite generally, these cues enable signaling pathways that ultimately evoke a cellular Ca2+ response that modulates the waveform of the flagellar beat and, hence, the swimming path. To cope with the panoply of challenges to reach and fertilize the egg, sperm from different species have developed their own unique repertoire of signaling molecules and mechanisms. Here, we review the differences and commonalities for sperm sensory signaling in marine invertebrates (sea urchin), fish (zebrafish), and mammals (mouse, human).
Collapse
Affiliation(s)
- Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Jan F Jikeli
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - U Benjamin Kaupp
- Department Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| |
Collapse
|
29
|
Martins da Silva SJ, Brown SG, Sutton K, King LV, Ruso H, Gray DW, Wyatt PG, Kelly MC, Barratt CL, Hope AG. Drug discovery for male subfertility using high-throughput screening: a new approach to an unsolved problem. Hum Reprod 2017; 32:974-984. [PMID: 28333338 PMCID: PMC5850465 DOI: 10.1093/humrep/dex055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/16/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Can pharma drug discovery approaches be utilized to transform investigation into novel therapeutics for male infertility? SUMMARY ANSWER High-throughput screening (HTS) is a viable approach to much-needed drug discovery for male factor infertility. WHAT IS KNOWN ALREADY There is both huge demand and a genuine clinical need for new treatment options for infertile men. However, the time, effort and resources required for drug discovery are currently exorbitant, due to the unique challenges of the cellular, physical and functional properties of human spermatozoa and a lack of appropriate assay platform. STUDY DESIGN, SIZE, DURATION Spermatozoa were obtained from healthy volunteer research donors and subfertile patients undergoing IVF/ICSI at a hospital-assisted reproductive techniques clinic between January 2012 and November 2016. PARTICIPANTS/MATERIALS, SETTING, METHODS A HTS assay was developed and validated using intracellular calcium ([Ca2+]i) as a surrogate for motility in human spermatozoa. Calcium fluorescence was detected using a Flexstation microplate reader (384-well platform) and compared with responses evoked by progesterone, a compound known to modify a number of biologically relevant behaviours in human spermatozoa. Hit compounds identified following single point drug screen (10 μM) of an ion channel-focussed library assembled by the University of Dundee Drug Discovery Unit were rescreened to ensure potency using standard 10 point half-logarithm concentration curves, and tested for purity and integrity using liquid chromatography and mass spectrometry. Hit compounds were grouped by structure activity relationships and five representative compounds then further investigated for direct effects on spermatozoa, using computer-assisted sperm assessment, sperm penetration assay and whole-cell patch clamping. MAIN RESULTS AND THE ROLE OF CHANCE Of the 3242 ion channel library ligands screened, 384 compounds (11.8%) elicited a statistically significant increase in calcium fluorescence, with greater than 3× median absolute deviation above the baseline. Seventy-four compounds eliciting ≥50% increase in fluorescence in the primary screen were rescreened and evaluated further, resulting in 48 hit compounds that produced a concentration-dependent increase in [Ca2+]i. Sperm penetration studies confirmed in vitro exposure to two hit compounds (A and B) resulted in significant improvement in functional motility in spermatozoa from healthy volunteer donors (A: 1 cm penetration index 2.54, 2 cm penetration index 2.49; P < 0.005 and B: 1 cm penetration index 2.1, 2 cm penetration index 2.6; P < 0.005), but crucially, also in patient samples from those undergoing fertility treatment (A: 1 cm penetration index 2.4; P = 0.009, 2 cm penetration index 3.6; P = 0.02 and B: 1 cm penetration index 2.2; P = 0.0004, 2 cm penetration index 3.6; P = 0.002). This was primarily as a result of direct or indirect CatSper channel action, supported by evidence from electrophysiology studies of individual sperm. LIMITATIONS, REASONS FOR CAUTION Increase and fluxes in [Ca2+]i are fundamental to the regulation of sperm motility and function, including acrosome reaction. The use of calcium signalling as a surrogate for sperm motility is acknowledged as a potential limitation in this study. WIDER IMPLICATIONS OF THE FINDINGS We conclude that HTS can robustly, efficiently, identify novel compounds that increase [Ca2+]i in human spermatozoa and functionally modify motility, and propose its use as a cornerstone to build and transform much-needed drug discovery for male infertility. STUDY FUNDING/COMPETING INTEREST(S) The majority of the data were obtained using funding from TENOVUS Scotland and Chief Scientist Office NRS Fellowship. Additional funding was provided by NHS Tayside, MRC project grants (MR/K013343/1, MR/012492/1) and University of Abertay. The authors declare that there is no conflict of interest. TRAIL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Sarah J. Martins da Silva
- Reproductive and Developmental Biology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
- Assisted Conception Unit, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Sean G. Brown
- School of Science Engineering and Technology, University of Abertay, Dundee DD1 1HG, UK
| | - Keith Sutton
- Reproductive and Developmental Biology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Louise V. King
- Reproductive and Developmental Biology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Halil Ruso
- Reproductive and Developmental Biology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - David W. Gray
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paul G. Wyatt
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mark C. Kelly
- Reproductive and Developmental Biology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Christopher L.R. Barratt
- Reproductive and Developmental Biology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
- Assisted Conception Unit, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Anthony G. Hope
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
30
|
Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2017; 69:1-11. [PMID: 28267675 PMCID: PMC11060434 DOI: 10.1124/pr.116.012864] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Richard W Aldrich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - K George Chandy
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Stephan Grissmer
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Aguan D Wei
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Heike Wulff
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| |
Collapse
|
31
|
Kaupp UB, Strünker T. Signaling in Sperm: More Different than Similar. Trends Cell Biol 2016; 27:101-109. [PMID: 27825709 DOI: 10.1016/j.tcb.2016.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/30/2022]
Abstract
For a given sensory cell type, signaling motifs are rather uniform across phyla. By contrast, sperm from different species use diverse repertoires of sperm-specific signaling molecules and even closely related protein isoforms feature different properties and serve different functions. This surprising diversity has consequences for strategies in fertilization research and it will take some time to get the big picture. We discuss the function of receptors, ion channels, and exchangers embedded in cellular pathways from different sperm species.
Collapse
Affiliation(s)
- U B Kaupp
- Center of Advanced European Studies and Research (CAESAR), Department of Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - T Strünker
- University Hospital Münster, Center of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Geb. D11, 48149 Münster, Germany
| |
Collapse
|
32
|
Brown SG, Publicover SJ, Mansell SA, Lishko PV, Williams HL, Ramalingam M, Wilson SM, Barratt CLR, Sutton KA, Da Silva SM. Depolarization of sperm membrane potential is a common feature of men with subfertility and is associated with low fertilization rate at IVF. Hum Reprod 2016; 31:1147-57. [PMID: 27052499 PMCID: PMC4871192 DOI: 10.1093/humrep/dew056] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Are significant abnormalities in outward (K+) conductance and resting membrane potential (Vm) present in the spermatozoa of patients undertaking IVF and ICSI and if so, what is their functional effect on fertilization success? SUMMARY ANSWER Negligible outward conductance (≈5% of patients) or an enhanced inward conductance (≈4% of patients), both of which caused depolarization of Vm, were associated with a low rate of fertilization following IVF. WHAT IS KNOWN ALREADY Sperm-specific potassium channel knockout mice are infertile with defects in sperm function, suggesting that these channels are essential for fertility. These observations suggest that malfunction of K+ channels in human spermatozoa might contribute significantly to the occurrence of subfertility in men. However, remarkably little is known of the nature of K+ channels in human spermatozoa or the incidence and functional consequences of K+ channel defects. STUDY DESIGN, SIZE AND DURATION Spermatozoa were obtained from healthy volunteer research donors and subfertile IVF and ICSI patients attending a hospital assisted reproductive techniques clinic between May 2013 and December 2015. In total, 40 IVF patients, 41 ICSI patients and 26 normozoospermic donors took part in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS Samples were examined using electrophysiology (whole-cell patch clamping). Where abnormal electrophysiological characteristics were identified, spermatozoa were further examined for Ca2+ influx induced by progesterone and penetration into viscous media if sufficient sample was available. Full exome sequencing was performed to specifically evaluate potassium calcium-activated channel subfamily M α 1 (KCNMA1), potassium calcium-activated channel subfamily U member 1 (KCNU1) and leucine-rich repeat containing 52 (LRRC52) genes and others associated with K+ signalling. In IVF patients, comparison with fertilization rates was done to assess the functional significance of the electrophysiological abnormalities. MAIN RESULTS AND THE ROLE OF CHANCE Patch clamp electrophysiology was used to assess outward (K+) conductance and resting membrane potential (Vm) and signalling/motility assays were used to assess functional characteristics of sperm from IVF and ICSI patient samples. The mean Vm and outward membrane conductance in sperm from IVF and ICSI patients were not significantly different from those of control (donor) sperm prepared under the same conditions, but variation between individuals was significantly greater (P< 0.02) with a large number of outliers (>25%). In particular, in ≈10% of patients (7/81), we observed either a negligible outward conductance (4 patients) or an enhanced inward current (3 patients), both of which caused depolarization of Vm. Analysis of clinical data from the IVF patients showed significant association of depolarized Vm (≥0 mV) with low fertilization rate (P= 0.012). Spermatozoa with electrophysiological abnormities (conductance and Vm) responded normally to progesterone with elevation of [Ca2+]i and penetration of viscous medium, indicating retention of cation channel of sperm (CatSper) channel function. LIMITATIONS, REASONS FOR CAUTION For practical, technical, ethical and logistical reasons, we could not obtain sufficient additional semen samples from men with conductance abnormalities to establish the cause of the conductance defects. Full exome sequencing was only available in two men with conductance defects. WIDER IMPLICATIONS OF THE FINDINGS These data add significantly to the understanding of the role of ion channels in human sperm function and its impact on male fertility. Impaired potassium channel conductance (Gm) and/or Vm regulation is both common and complex in human spermatozoa and importantly is associated with impaired fertilization capacity when the Vm of cells is completely depolarized. STUDY FUNDING/COMPETING INTEREST(S) The majority of the data were obtained using funding from MRC project grants (#MR/K013343/1, MR/012492/1). Additional funding was provided by NHS Tayside, TENOVUS, Chief Scientist Office NRS Fellowship and University of Abertay. The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Sean G Brown
- School of Science, Engineering and Technology, Abertay University, Dundee DD11HG, UK
| | | | - Steven A Mansell
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hannah L Williams
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Mythili Ramalingam
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Stuart M Wilson
- Wolfson Research Institute, School of Medicine, Pharmacy and Health, University of Durham, Queen's Campus, Stockton on Tees TS17 6BH, UK
| | - Christopher L R Barratt
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Keith A Sutton
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Sarah Martins Da Silva
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|
33
|
Beltrán C, Treviño CL, Mata-Martínez E, Chávez JC, Sánchez-Cárdenas C, Baker M, Darszon A. Role of Ion Channels in the Sperm Acrosome Reaction. SPERM ACROSOME BIOGENESIS AND FUNCTION DURING FERTILIZATION 2016; 220:35-69. [DOI: 10.1007/978-3-319-30567-7_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Sperm Capacitation and Acrosome Reaction in Mammalian Sperm. SPERM ACROSOME BIOGENESIS AND FUNCTION DURING FERTILIZATION 2016; 220:93-106. [DOI: 10.1007/978-3-319-30567-7_5] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Ernesto JI, Weigel Muñoz M, Battistone MA, Vasen G, Martínez-López P, Orta G, Figueiras-Fierro D, De la Vega-Beltran JL, Moreno IA, Guidobaldi HA, Giojalas L, Darszon A, Cohen DJ, Cuasnicú PS. CRISP1 as a novel CatSper regulator that modulates sperm motility and orientation during fertilization. J Cell Biol 2015; 210:1213-24. [PMID: 26416967 PMCID: PMC4586743 DOI: 10.1083/jcb.201412041] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ca(2+)-dependent mechanisms are critical for successful completion of fertilization. Here, we demonstrate that CRISP1, a sperm protein involved in mammalian fertilization, is also present in the female gamete and capable of modulating key sperm Ca(2+) channels. Specifically, we show that CRISP1 is expressed by the cumulus cells that surround the egg and that fertilization of cumulus-oocyte complexes from CRISP1 knockout females is impaired because of a failure of sperm to penetrate the cumulus. We provide evidence that CRISP1 stimulates sperm orientation by modulating sperm hyperactivation, a vigorous motility required for penetration of the egg vestments. Moreover, patch clamping of sperm revealed that CRISP1 has the ability to regulate CatSper, the principal sperm Ca(2+) channel involved in hyperactivation and essential for fertility. Given the critical role of Ca(2+) for sperm motility, we propose a novel CRISP1-mediated fine-tuning mechanism to regulate sperm hyperactivation and orientation for successful penetration of the cumulus during fertilization.
Collapse
Affiliation(s)
- Juan I Ernesto
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
| | - Mariana Weigel Muñoz
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
| | - María A Battistone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
| | - Gustavo Vasen
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
| | - Pablo Martínez-López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - Gerardo Orta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - Dulce Figueiras-Fierro
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - José L De la Vega-Beltran
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | | | - Héctor A Guidobaldi
- Centro de Biología Celular y Molecular, Instituto de Investigaciones Biológicas y Tecnológicas, Universidad Nacional de Córdoba, X5016GCA Córdoba, Argentina
| | - Laura Giojalas
- Centro de Biología Celular y Molecular, Instituto de Investigaciones Biológicas y Tecnológicas, Universidad Nacional de Córdoba, X5016GCA Córdoba, Argentina
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - Débora J Cohen
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
| | - Patricia S Cuasnicú
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
| |
Collapse
|
36
|
Chen H, Sun J, He Y, Zou Q, Wu Q, Tang Y. Expression and localization of testis developmental related gene 1 (TDRG1) in human spermatozoa. TOHOKU J EXP MED 2015; 235:103-9. [PMID: 25749352 DOI: 10.1620/tjem.235.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Testis-specific proteins, synthesized during spermatogenesis and spermiogenesis, are necessary for spermatid differentiation and/or for mature sperm function during fertilization. However, majority of these genes have neither been identified nor fully characterized. Testis developmental related gene 1 (TDRG1), a newly identified human testis-specific gene, encodes a 100-amino-acid protein without any characterized protein domains, and it may play a role in spermatogenesis. However, whether this human-specific protein is important for mature sperm function remains unclear. As an initial effort, in this study, we aimed to systematically investigate the expression and localization of TDRG1 in normal human spermatozoa. Thus, immunohistochemistry was used to analyze the distribution of TDRG1 in human testis. Reverse transcription-polymerase chain reaction, western blot analysis and indirect immunofluorescence were used to determine the expression and localization of TDRG1 in normal human spermatozoa. The immunohistochemistry results showed that the TDRG1 protein was expressed in spermatogenic cells in the seminiferous tubules of human testis. Interestingly, the TDRG1 was more abundant in spermatogenic cells at the late stages of spermatogenesis. The TDRG1 antibody specifically recognized an 11-kDa protein only in soluble extracts from normal human spermatozoa. Indirect immunofluorescence assays indicated that TDRG1 located in the midpiece, principal piece and flagellum of normal human spermatozoa. In conclusion, TDRG1 was found not only in spermatogonia, but also in spermatozoa. The localization of TDRG1 in human normal spermatozoa implies its potential regulatory role in sperm motility.
Collapse
Affiliation(s)
- Houyang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, P.R., China
| | | | | | | | | | | |
Collapse
|
37
|
Fechner S, Alvarez L, Bönigk W, Müller A, Berger TK, Pascal R, Trötschel C, Poetsch A, Stölting G, Siegfried KR, Kremmer E, Seifert R, Kaupp UB. A K(+)-selective CNG channel orchestrates Ca(2+) signalling in zebrafish sperm. eLife 2015; 4:e07624. [PMID: 26650356 PMCID: PMC4749565 DOI: 10.7554/elife.07624] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 12/09/2015] [Indexed: 01/03/2023] Open
Abstract
Calcium in the flagellum controls sperm navigation. In sperm of marine invertebrates and mammals, Ca(2+) signalling has been intensely studied, whereas for fish little is known. In sea urchin sperm, a cyclic nucleotide-gated K(+) channel (CNGK) mediates a cGMP-induced hyperpolarization that evokes Ca(2+) influx. Here, we identify in sperm of the freshwater fish Danio rerio a novel CNGK family member featuring non-canonical properties. It is located in the sperm head rather than the flagellum and is controlled by intracellular pH, but not cyclic nucleotides. Alkalization hyperpolarizes sperm and produces Ca(2+) entry. Ca(2+) induces spinning-like swimming, different from swimming of sperm from other species. The "spinning" mode probably guides sperm into the micropyle, a narrow entrance on the surface of fish eggs. A picture is emerging of sperm channel orthologues that employ different activation mechanisms and serve different functions. The channel inventories probably reflect adaptations to species-specific challenges during fertilization.
Collapse
Affiliation(s)
- Sylvia Fechner
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Luis Alvarez
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Wolfgang Bönigk
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Astrid Müller
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Thomas K Berger
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Rene Pascal
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | | | - Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Bochum, Germany
| | - Gabriel Stölting
- Institute of Complex Systems 4, Forschungszentrum Jülich, Jülich, Germany
| | - Kellee R Siegfried
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Elisabeth Kremmer
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, München, Germany
| | - Reinhard Seifert
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - U Benjamin Kaupp
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| |
Collapse
|
38
|
Wrighton DC, Muench SP, Lippiat JD. Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium. Br J Pharmacol 2015; 172:4355-63. [PMID: 26045093 PMCID: PMC4556473 DOI: 10.1111/bph.13214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose The Slo3 (KCa5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Experimental Approach Mouse (m) Slo3 (KCa5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Key Results Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Conclusions and Implications Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter.
Collapse
Affiliation(s)
- David C Wrighton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
39
|
Miller MR, Mansell SA, Meyers SA, Lishko PV. Flagellar ion channels of sperm: similarities and differences between species. Cell Calcium 2015; 58:105-13. [DOI: 10.1016/j.ceca.2014.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
40
|
Correia J, Michelangeli F, Publicover S. Regulation and roles of Ca2+ stores in human sperm. Reproduction 2015; 150:R65-76. [PMID: 25964382 PMCID: PMC4497595 DOI: 10.1530/rep-15-0102] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
Abstract
[Ca(2)(+)]i signalling is a key regulatory mechanism in sperm function. In mammalian sperm the Ca(2)(+)-permeable plasma membrane ion channel CatSper is central to [Ca(2)(+)]i signalling, but there is good evidence that Ca(2)(+) stored in intracellular organelles is also functionally important. Here we briefly review the current understanding of the diversity of Ca(2)(+) stores and the mechanisms for the regulation of their activity. We then consider the evidence for the involvement of these stores in [Ca(2)(+)]i signalling in mammalian (primarily human) sperm, the agonists that may activate these stores and their role in control of sperm function. Finally we consider the evidence that membrane Ca(2)(+) channels and stored Ca(2)(+) may play discrete roles in the regulation of sperm activities and propose a mechanism by which these different components of the sperm Ca(2)(+)-signalling apparatus may interact to generate complex and spatially diverse [Ca(2)(+)]i signals.
Collapse
Affiliation(s)
- Joao Correia
- School of BiosciencesUniversity of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Stephen Publicover
- School of BiosciencesUniversity of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
41
|
SLO3 auxiliary subunit LRRC52 controls gating of sperm KSPER currents and is critical for normal fertility. Proc Natl Acad Sci U S A 2015; 112:2599-604. [PMID: 25675513 DOI: 10.1073/pnas.1423869112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Following entry into the female reproductive tract, mammalian sperm undergo a maturation process termed capacitation that results in competence to fertilize ova. Associated with capacitation is an increase in membrane conductance to both Ca(2+) and K(+), leading to an elevation in cytosolic Ca(2+) critical for activation of hyperactivated swimming motility. In mice, the Ca(2+) conductance (alkalization-activated Ca(2+)-permeable sperm channel, CATSPER) arises from an ensemble of CATSPER subunits, whereas the K(+) conductance (sperm pH-regulated K(+) current, KSPER) arises from a pore-forming ion channel subunit encoded by the slo3 gene (SLO3) subunit. In the mouse, both CATSPER and KSPER are activated by cytosolic alkalization and a concerted activation of CATSPER and KSPER is likely a common facet of capacitation-associated increases in Ca(2+) and K(+) conductance among various mammalian species. The properties of heterologously expressed mouse SLO3 channels differ from native mouse KSPER current. Recently, a potential KSPER auxiliary subunit, leucine-rich-repeat-containing protein 52 (LRRC52), was identified in mouse sperm and shown to shift gating of SLO3 to be more equivalent to native KSPER. Here, we show that genetic KO of LRRC52 results in mice with severely impaired fertility. Activation of KSPER current in sperm lacking LRRC52 requires more positive voltages and higher pH than for WT KSPER. These results establish a critical role of LRRC52 in KSPER channels and demonstrate that loss of a non-pore-forming auxiliary subunit results in severe fertility impairment. Furthermore, through analysis of several genotypes that influence KSPER current properties we show that in vitro fertilization competence correlates with the net KSPER conductance available for activation under physiological conditions.
Collapse
|
42
|
Seifert R, Flick M, Bönigk W, Alvarez L, Trötschel C, Poetsch A, Müller A, Goodwin N, Pelzer P, Kashikar ND, Kremmer E, Jikeli J, Timmermann B, Kuhl H, Fridman D, Windler F, Kaupp UB, Strünker T. The CatSper channel controls chemosensation in sea urchin sperm. EMBO J 2014; 34:379-92. [PMID: 25535245 DOI: 10.15252/embj.201489376] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sperm guidance is controlled by chemical and physical cues. In many species, Ca(2+) bursts in the flagellum govern navigation to the egg. In Arbacia punctulata, a model system of sperm chemotaxis, a cGMP signaling pathway controls these Ca(2+) bursts. The underlying Ca(2+) channel and its mechanisms of activation are unknown. Here, we identify CatSper Ca(2+) channels in the flagellum of A. punctulata sperm. We show that CatSper mediates the chemoattractant-evoked Ca(2+) influx and controls chemotactic steering; a concomitant alkalization serves as a highly cooperative mechanism that enables CatSper to transduce periodic voltage changes into Ca(2+) bursts. Our results reveal intriguing phylogenetic commonalities but also variations between marine invertebrates and mammals regarding the function and control of CatSper. The variations probably reflect functional and mechanistic adaptations that evolved during the transition from external to internal fertilization.
Collapse
Affiliation(s)
- Reinhard Seifert
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany Marine Biological Laboratory, Woods Hole, MA, USA
| | - Melanie Flick
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Luis Alvarez
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany
| | | | - Ansgar Poetsch
- Ruhr-Universität Bochum Lehrstuhl Biochemie der Pflanzen, Bochum, Germany
| | - Astrid Müller
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Normann Goodwin
- Marine Biological Laboratory, Woods Hole, MA, USA Laboratory of Molecular Signalling, Babraham Institute, Cambridge, UK
| | - Patric Pelzer
- Marine Biological Laboratory, Woods Hole, MA, USA Institut für Anatomie und Zellbiologie, Abteilung für Funktionelle Neuroanatomie, Universität Heidelberg, Heidelberg, Germany
| | - Nachiket D Kashikar
- Marine Biological Laboratory, Woods Hole, MA, USA Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Elisabeth Kremmer
- Helmholtz-Zentrum München, Institut für Molekulare Immunologie, München, Germany
| | - Jan Jikeli
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany
| | | | - Heiner Kuhl
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Dmitry Fridman
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany Marine Biological Laboratory, Woods Hole, MA, USA
| | - Florian Windler
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany Marine Biological Laboratory, Woods Hole, MA, USA
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany Marine Biological Laboratory, Woods Hole, MA, USA
| | - Timo Strünker
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
43
|
Chávez JC, Ferreira JJ, Butler A, De La Vega Beltrán JL, Treviño CL, Darszon A, Salkoff L, Santi CM. SLO3 K+ channels control calcium entry through CATSPER channels in sperm. J Biol Chem 2014; 289:32266-32275. [PMID: 25271166 DOI: 10.1074/jbc.m114.607556] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Here we show how a sperm-specific potassium channel (SLO3) controls Ca(2+) entry into sperm through a sperm-specific Ca(2+) channel, CATSPER, in a totally unanticipated manner. The genetic deletion of either of those channels confers male infertility in mice. During sperm capacitation SLO3 hyperpolarizes the sperm, whereas CATSPER allows Ca(2+) entry. These two channels may be functionally connected, but it had not been demonstrated that SLO3-dependent hyperpolarization is required for Ca(2+) entry through CATSPER channels, nor has a functional mechanism linking the two channels been shown. In this study we show that Ca(2+) entry through CATSPER channels is deficient in Slo3 mutant sperm lacking hyperpolarization; we also present evidence supporting the hypothesis that SLO3 channels activate CATSPER channels indirectly by promoting a rise in intracellular pH through a voltage-dependent mechanism. This mechanism may work through a Na(+)/H(+) exchanger (sNHE) and/or a bicarbonate transporter, which utilizes the inward driving force of the Na(+) gradient, rendering it intrinsically voltage-dependent. In addition, the sperm-specific Na(+)/H(+) exchanger (sNHE) possess a putative voltage sensor that might be activated by membrane hyperpolarization, thus increasing the voltage sensitivity of internal alkalization.
Collapse
Affiliation(s)
- Julio César Chávez
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110 and; Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210 Cuernavaca, México
| | - Juan José Ferreira
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Alice Butler
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | | | - Claudia L Treviño
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210 Cuernavaca, México
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210 Cuernavaca, México
| | - Lawrence Salkoff
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Celia M Santi
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
44
|
Pichlo M, Bungert-Plümke S, Weyand I, Seifert R, Bönigk W, Strünker T, Kashikar ND, Goodwin N, Müller A, Pelzer P, Van Q, Enderlein J, Klemm C, Krause E, Trötschel C, Poetsch A, Kremmer E, Kaupp UB, Körschen HG, Collienne U. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. J Cell Biol 2014; 206:541-57. [PMID: 25135936 PMCID: PMC4137060 DOI: 10.1083/jcb.201402027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3',5'-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 10(5) GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces "molecule noise." Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons.
Collapse
Affiliation(s)
- Magdalena Pichlo
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | - Stefanie Bungert-Plümke
- Marine Biological Laboratory, Woods Hole, MA 02543 Institute of Complex Systems (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ingo Weyand
- Marine Biological Laboratory, Woods Hole, MA 02543 Institute of Complex Systems (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research, 53175 Bonn, Germany
| | - Timo Strünker
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | - Nachiket Dilip Kashikar
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543 Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, England, UK
| | - Normann Goodwin
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543 Babraham Institute, Cambridge CB22 3AT, England, UK
| | - Astrid Müller
- Center of Advanced European Studies and Research, 53175 Bonn, Germany
| | - Patric Pelzer
- Marine Biological Laboratory, Woods Hole, MA 02543 Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Qui Van
- III. Physikalisches Institut, Universität Göttingen, 37077 Göttingen, Germany
| | - Jörg Enderlein
- III. Physikalisches Institut, Universität Göttingen, 37077 Göttingen, Germany
| | - Clementine Klemm
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | | | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum. 44801 Bochum, Germany
| | - Elisabeth Kremmer
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, 81377 München, Germany
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | | | | |
Collapse
|
45
|
Chung JJ, Shim SH, Everley RA, Gygi SP, Zhuang X, Clapham DE. Structurally distinct Ca(2+) signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell 2014; 157:808-22. [PMID: 24813608 PMCID: PMC4032590 DOI: 10.1016/j.cell.2014.02.056] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 01/21/2014] [Accepted: 02/24/2014] [Indexed: 11/23/2022]
Abstract
Spermatozoa must leave one organism, navigate long distances, and deliver their paternal DNA into a mature egg. For successful navigation and delivery, a sperm-specific calcium channel is activated in the mammalian flagellum. The genes encoding this channel (CatSpers) appear first in ancient uniflagellates, suggesting that sperm use adaptive strategies developed long ago for single-cell navigation. Here, using genetics, super-resolution fluorescence microscopy, and phosphoproteomics, we investigate the CatSper-dependent mechanisms underlying this flagellar switch. We find that the CatSper channel is required for four linear calcium domains that organize signaling proteins along the flagella. This unique structure focuses tyrosine phosphorylation in time and space as sperm acquire the capacity to fertilize. In heterogeneous sperm populations, we find unique molecular phenotypes, but only sperm with intact CatSper domains that organize time-dependent and spatially specific protein tyrosine phosphorylation successfully migrate. These findings illuminate flagellar adaptation, signal transduction cascade organization, and fertility.
Collapse
Affiliation(s)
- Jean-Ju Chung
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sang-Hee Shim
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Robert A Everley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Department of Physics, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| | - David E Clapham
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Cohen R, Buttke DE, Asano A, Mukai C, Nelson JL, Ren D, Miller RJ, Cohen-Kutner M, Atlas D, Travis AJ. Lipid modulation of calcium flux through CaV2.3 regulates acrosome exocytosis and fertilization. Dev Cell 2014; 28:310-21. [PMID: 24525187 DOI: 10.1016/j.devcel.2014.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 10/23/2013] [Accepted: 01/10/2014] [Indexed: 12/14/2022]
Abstract
Membrane lipid regulation of cell function is poorly understood. In early development, sterol efflux and the ganglioside GM1 regulate sperm acrosome exocytosis (AE) and fertilization competence through unknown mechanisms. Here, we show that sterol efflux and focal enrichment of GM1 trigger Ca(2+) influx necessary for AE through CaV2.3, whose activity has been highly controversial in sperm. Sperm lacking CaV2.3's pore-forming α1E subunit showed altered Ca(2+) responses, reduced AE, and a strong subfertility phenotype. Surprisingly, AE depended on spatiotemporal information encoded by flux through CaV2.3, not merely the presence/amplitude of Ca(2+) waves. Using studies in both sperm and voltage clamp of Xenopus oocytes, we define a molecular mechanism for GM1/CaV2.3 regulatory interaction, requiring GM1's lipid and sugar components and CaV2.3's α1E and α2δ subunits. Our results provide a mechanistic understanding of membrane lipid regulation of Ca(2+) flux and therefore Ca(2+)-dependent cellular and developmental processes such as exocytosis and fertilization.
Collapse
Affiliation(s)
- Roy Cohen
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Danielle E Buttke
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Atsushi Asano
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Jacquelyn L Nelson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Dongjun Ren
- Department of Biochemistry and Molecular Pharmacology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Richard J Miller
- Department of Biochemistry and Molecular Pharmacology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Moshe Cohen-Kutner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alexander J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA.
| |
Collapse
|
47
|
Brenker C, Zhou Y, Müller A, Echeverry FA, Trötschel C, Poetsch A, Xia XM, Bönigk W, Lingle CJ, Kaupp UB, Strünker T. The Ca2+-activated K+ current of human sperm is mediated by Slo3. eLife 2014; 3:e01438. [PMID: 24670955 PMCID: PMC3966514 DOI: 10.7554/elife.01438] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sperm are equipped with a unique set of ion channels that orchestrate fertilization. In mouse sperm, the principal K+ current (IKSper) is carried by the Slo3 channel, which sets the membrane potential (Vm) in a strongly pHi-dependent manner. Here, we show that IKSper in human sperm is activated weakly by pHi and more strongly by Ca2+. Correspondingly, Vm is strongly regulated by Ca2+ and less so by pHi. We find that inhibitors of Slo3 suppress human IKSper, and we identify the Slo3 protein in the flagellum of human sperm. Moreover, heterologously expressed human Slo3, but not mouse Slo3, is activated by Ca2+ rather than by alkaline pHi; current–voltage relations of human Slo3 and human IKSper are similar. We conclude that Slo3 represents the principal K+ channel in human sperm that carries the Ca2+-activated IKSper current. We propose that, in human sperm, the progesterone-evoked Ca2+ influx carried by voltage-gated CatSper channels is limited by Ca2+-controlled hyperpolarization via Slo3. DOI:http://dx.doi.org/10.7554/eLife.01438.001 A sperm that has been ejaculated into the female reproductive tract must complete a number of tasks to pass on its genes to the next generation. First it must travel along a meandering route to encounter an egg, before pushing through a jelly-like coating that surrounds the egg and then, finally, fusing with the egg’s surface membrane. In order to complete these steps and fertilise the egg, a sperm must undergo a process called ‘capacitation’. This process, and a variety of other sperm functions, involves the controlled flux of positive ions into and out of the sperm via specific ion channels that are located in the cell membrane. The properties of the ion channels that allow protons and calcium ions to move into and out of human sperm are well understood, but less is known about the channels that control the movement of potassium ions. In mice, a channel called Slo3 allows potassium ions to flow out of the sperm and makes the membrane voltage of these cells more negative. Also, in mice, this channel is essential for the sperm to function correctly, and for fertilization. However, in humans, it is unclear if the Slo3 channel is present in sperm and if it performs the same role. Now, Brenker et al. have shown that the flow of potassium ions out of human sperm occurs via the Slo3 channel, and that human Slo3 is responsible for setting the membrane voltage of these cells. However, whereas the mouse Slo3 channel is opened in response to a decrease in the concentration of protons within the sperm (i.e., an increase of the pH inside the cell), human Slo3 is largely controlled by changes in the levels of calcium ions. An increase in the calcium concentration within the cell opens the human Slo3 channel, more than a decrease in the proton concentration does. Altogether, Brenker et al. identify Slo3 as the principal potassium channel in human sperm and reveal more fundamental differences between human sperm and mouse sperm. Thereby, this work further stresses the need to be cautious about using mice as a model of male fertility in humans. DOI:http://dx.doi.org/10.7554/eLife.01438.002
Collapse
Affiliation(s)
- Christoph Brenker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
T-type Ca2+ channels in spermatogenic cells and sperm. Pflugers Arch 2014; 466:819-31. [DOI: 10.1007/s00424-014-1478-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/08/2014] [Indexed: 12/14/2022]
|
49
|
Mansell SA, Publicover SJ, Barratt CLR, Wilson SM. Patch clamp studies of human sperm under physiological ionic conditions reveal three functionally and pharmacologically distinct cation channels. Mol Hum Reprod 2014; 20:392-408. [PMID: 24442342 PMCID: PMC4004083 DOI: 10.1093/molehr/gau003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Whilst fertilizing capacity depends upon a K+ conductance (GK) that allows the spermatozoon membrane potential (Vm) to be held at a negative value, the characteristics of this conductance in human sperm are virtually unknown. We therefore studied the biophysical/pharmacological properties of the K+ conductance in spermatozoa from normal donors held under voltage/current clamp in the whole cell recording configuration. Our standard recording conditions were designed to maintain quasi-physiological, Na+, K+ and Cl− gradients. Experiments that explored the effects of ionic substitution/ion channel blockers upon membrane current/potential showed that resting Vm was dependent upon a hyperpolarizing K+ current that flowed via channels that displayed only weak voltage dependence and limited (∼7-fold) K+ versus Na+ selectivity. This conductance was blocked by quinidine (0.3 mM), bupivacaine (3 mM) and clofilium (50 µM), NNC55-0396 (2 µM) and mibefradil (30 µM), but not by 4-aminopyridine (2 mM, 4-AP). Progesterone had no effect upon the hyperpolarizing K+ current. Repolarization after a test depolarization consistently evoked a transient inward ‘tail current’ (ITail) that flowed via a second population of ion channels with poor (∼3-fold) K+ versus Na+ selectivity. The activity of these channels was increased by quinidine, 4-AP and progesterone. Vm in human sperm is therefore dependent upon a hyperpolarizing K+ current that flows via channels that most closely resemble those encoded by Slo3. Although 0.5 µM progesterone had no effect upon these channels, this hormone did activate the pharmacologically distinct channels that mediate ITail. In conclusion, this study reveals three functionally and pharmacologically distinct cation channels: Ik, ITail, ICatSper.
Collapse
Affiliation(s)
- S A Mansell
- Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9S, UK
| | | | | | | |
Collapse
|