1
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:md21040209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
2
|
Kimball IH, Nguyen PT, Olivera BM, Sack JT, Yarov-Yarovoy V. Molecular determinants of μ-conotoxin KIIIA interaction with the human voltage-gated sodium channel Na V1.7. Front Pharmacol 2023; 14:1156855. [PMID: 37007002 PMCID: PMC10060530 DOI: 10.3389/fphar.2023.1156855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The voltage-gated sodium (NaV) channel subtype NaV1.7 plays a critical role in pain signaling, making it an important drug target. Here we studied the molecular interactions between μ-Conotoxin KIIIA (KIIIA) and the human NaV1.7 channel (hNaV1.7). We developed a structural model of hNaV1.7 using Rosetta computational modeling and performed in silico docking of KIIIA using RosettaDock to predict residues forming specific pairwise contacts between KIIIA and hNaV1.7. We experimentally validated these contacts using mutant cycle analysis. Comparison between our KIIIA-hNaV1.7 model and the cryo-EM structure of KIIIA-hNaV1.2 revealed key similarities and differences between NaV channel subtypes with potential implications for the molecular mechanism of toxin block. The accuracy of our integrative approach, combining structural data with computational modeling, experimental validation, and molecular dynamics simulations, suggests that Rosetta structural predictions will be useful for rational design of novel biologics targeting specific NaV channels.
Collapse
Affiliation(s)
- Ian H. Kimball
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Phuong T. Nguyen
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | | | - Jon T. Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Korkosh VS, Tikhonov DB. Analysis of residue-residue interactions in the structures of ASIC1a suggests possible gating mechanisms. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:111-119. [PMID: 36690863 DOI: 10.1007/s00249-023-01628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
The gating mechanism of acid-sensitive ion channels (ASICs) remains unclear, despite the availability of atomic-scale structures in various functional states. The collapse of the acidic pocket and structural changes in the low-palm region are assumed to trigger activation. For the acidic pocket, protonation of some residues can minimize repulsion in the collapsed conformation. The relationship between low-palm rearrangements and gating is unknown. In this work, we performed a Monte Carlo energy optimization of known ASIC1a structures and determined the residue-residue interactions in different functional states. For rearrangements in the acidic pocket, our results are consistent with previously proposed mechanisms, although significant complexity was revealed for the residue-residue interactions. The data support the proposal of a gating mechanism in the low-palm region, in which residues E80 and E417 share a proton to activate the channel.
Collapse
Affiliation(s)
- Vyacheslav S Korkosh
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia.
| |
Collapse
|
4
|
Zaytseva AK, Kiselev AM, Boitsov AS, Fomicheva YV, Pavlov GS, Zhorov BS, Kostareva AA. Characterization of the novel heterozygous SCN5A genetic variant Y739D associated with Brugada syndrome. Biochem Biophys Rep 2022; 30:101249. [PMID: 35300108 PMCID: PMC8920867 DOI: 10.1016/j.bbrep.2022.101249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Genetic variants in SCN5A gene were identified in patients with various arrhythmogenic conditions including Brugada syndrome. Despite significant progress of last decades in studying the molecular mechanism of arrhythmia-associated SCN5A mutations, the understanding of relationship between genetics, electrophysiological consequences and clinical phenotype is lacking. We have found a novel genetic variant Y739D in the SCN5A-encoded sodium channel Nav1.5 of a male patient with Brugada syndrome (BrS). The objective of the study was to characterize the biophysical properties of Nav1.5-Y739D and provide possible explanation of the phenotype observed in the patient. The WT and Y739D channels were heterologously expressed in the HEK-293T cells and the whole-cell sodium currents were recorded. Substitution Y739D reduced the sodium current density by 47 ± 2% at −20 mV, positively shifted voltage-dependent activation, accelerated both fast and slow inactivation, and decelerated recovery from the slow inactivation. The Y739D loss-of-function phenotype likely causes the BrS manifestation. In the hNav1.5 homology models, which are based on the cryo-EM structure of rat Nav1.5 channel, Y739 in the extracellular loop IIS1-S2 forms H-bonds with K1381 and E1435 and pi-cation contacts with K1397 (all in loop IIIS5-P1). In contrast, Y739D accepts H-bonds from K1397 and Y1434. Substantially different contacts of Y739 and Y739D with loop IIIS5-P1 would differently transmit allosteric signals from VSD-II to the fast-inactivation gate at the N-end of helix IIIS5 and slow-inactivation gate at the C-end of helix IIIP1. This may underlie the atomic mechanism of the Y739D channel dysfunction. A novel BrS-associated genetic variant Y739D in gene SCN5A is identified. Y739D caused Nav1.5 loss-of-function by enhancing slow and fast inactivation. Y739 in loop IIS1-S2 forms H-bonds and pi-cation contacts with loop IIIS5-P1. The contacts may mediate signal transfer from VSD-II to two inactivation gates. Altered contacts of Y739D would affect the allosteric signal transduction.
Collapse
|
5
|
Tikhonov DB, Zhorov BS. P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models. MEMBRANES 2022; 12:membranes12020229. [PMID: 35207150 PMCID: PMC8876033 DOI: 10.3390/membranes12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
The superfamily of P-loop channels includes potassium, sodium, and calcium channels, as well as TRP channels and ionotropic glutamate receptors. A rapidly increasing number of crystal and cryo-EM structures have revealed conserved and variable elements of the channel structures. Intriguing differences are seen in transmembrane helices of channels, which may include π-helical bulges. The bulges reorient residues in the helices and thus strongly affect their intersegment contacts and patterns of ligand-sensing residues. Comparison of the experimental structures suggests that some π-bulges are dynamic: they may appear and disappear upon channel gating and ligand binding. The AlphaFold2 models represent a recent breakthrough in the computational prediction of protein structures. We compared some crystal and cryo-EM structures of P-loop channels with respective AlphaFold2 models. Folding of the regions, which are resolved experimentally, is generally similar to that predicted in the AlphaFold2 models. The models also reproduce some subtle but significant differences between various P-loop channels. However, patterns of π-bulges do not necessarily coincide in the experimental and AlphaFold2 structures. Given the importance of dynamic π-bulges, further studies involving experimental and theoretical approaches are necessary to understand the cause of the discrepancy.
Collapse
|
6
|
Korkosh VS, Zaytseva AK, Kostareva AA, Zhorov BS. Intersegment Contacts of Potentially Damaging Variants of Cardiac Sodium Channel. Front Pharmacol 2021; 12:756415. [PMID: 34803699 PMCID: PMC8600069 DOI: 10.3389/fphar.2021.756415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Over 1,500 missense variants of sodium channel hNav1.5, which are reported in the ClinVar database, are associated with cardiac diseases. For most of the variants, the clinical significance is uncertain (VUS), not provided (NP), or has conflicting interpretations of pathogenicity (CIP). Reclassifying these variants as pathogenic/likely pathogenic (P/LP) variants is important for diagnosing genotyped patients. In our earlier work, several bioinformatics tools and paralogue annotation method consensually predicted that 74 VUS/NP/CIP variants of 54 wild type residues (set w54) are potentially damaging variants (PDVs). Atomic mechanisms underlying dysfunction of the PDVs are unknown. Here we employed a recent cryo-EM structure of the hNav1.5 channel with likely inactivated pore domain (PD) and activated voltage-sensing domains (VSDs), and ad hoc models of the closed and open PD and resting VSDs to explore intersegment contacts of w54 residues. We found that 44 residues from set w54 contact 84 residues with 118 disease missense variants. These include 104 VUS/NP/CIP variants, most of which are associated with the loss-of-function Brugada syndrome (BrS1) or gain-of-function long QT syndrome (LQT3). Matrix representation of the PDVs and their contact variants facilitated recognition of coupled mutations associated with the same disease. In particular, BrS1-associated coupled mutations, which disturb the P-loops region with the selectivity filter slow inactivation gate, would cause the channel dysfunction. Other likely causes of the channel dysfunction include coupled BrS1-associated variants within VSDs that would destabilize their activated states and coupled LQT3-associated variants, which would stabilize the open PD or activated VSDs. Our study proposes mechanisms of channel dysfunction for scores of BrS1- and LQT3-associated variants, confirms status for 82% of PDVs, and suggests damaging status for their contact variants, which are currently categorized as VUS/NP/CIP variants.
Collapse
Affiliation(s)
- Vyacheslav S Korkosh
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna A Kostareva
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
| | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Ji X, Huang Y, Sheng J. Structural modeling of Na v1.5 pore domain in closed state. BIOPHYSICS REPORTS 2021; 7:341-354. [PMID: 37287760 PMCID: PMC10233475 DOI: 10.52601/bpr.2021.200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/21/2021] [Indexed: 06/09/2023] Open
Abstract
The voltage-dependent cardiac sodium channel plays a key role in cardiac excitability and conduction and it is the drug target of medically important. However, its atomic- resolution structure is still lack. Here, we report a modeled structure of Nav1.5 pore domain in closed state. The structure was constructed by Rosetta-membrane homology modeling method based on the template of eukaryotic Nav channel NavPaS and selected by energy and direct coupling analysis (DCA). Moreover, this structure was optimized through molecular dynamical simulation in the lipid membrane bilayer. Finally, to validate the constructed model, the binding energy and binding sites of closed-state local anesthetics (LAs) in the modeled structure were computed by the MM-GBSA method and the results are in agreement with experiments. The modeled structure of Nav1.5 pore domain in closed state may be useful to explore molecular mechanism of a state-dependent drug binding and helpful for new drug development.
Collapse
Affiliation(s)
- Xiaofeng Ji
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Yanzhao Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Sheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| |
Collapse
|
8
|
Yates P, Koester JA, Taylor AR. Brevetoxin and Conotoxin Interactions with Single-Domain Voltage-Gated Sodium Channels from a Diatom and Coccolithophore. Mar Drugs 2021; 19:md19030140. [PMID: 33801270 PMCID: PMC8002053 DOI: 10.3390/md19030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/16/2023] Open
Abstract
The recently characterized single-domain voltage-gated ion channels from eukaryotic protists (EukCats) provide an array of novel channel proteins upon which to test the pharmacology of both clinically and environmentally relevant marine toxins. Here, we examined the effects of the hydrophilic µ-CTx PIIIA and the lipophilic brevetoxins PbTx-2 and PbTx-3 on heterologously expressed EukCat ion channels from a marine diatom and coccolithophore. Surprisingly, none of the toxins inhibited the peak currents evoked by the two EukCats tested. The lack of homology in the outer pore elements of the channel may disrupt the binding of µ-CTx PIIIA, while major structural differences between mammalian sodium channels and the C-terminal domains of the EukCats may diminish interactions with the brevetoxins. However, all three toxins produced significant negative shifts in the voltage dependence of activation and steady state inactivation, suggesting alternative and state-dependent binding conformations that potentially lead to changes in the excitability of the phytoplankton themselves.
Collapse
|
9
|
Zhorov BS. Structure of Sodium and Calcium Channels
with Ligands. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Adachi K, Yamada T, Ishizuka H, Oki M, Tsunogae S, Shimada N, Chiba O, Orihara T, Hidaka M, Hirokawa T, Odagi M, Konoki K, Yotsu‐Yamashita M, Nagasawa K. Synthesis of C12‐Keto Saxitoxin Derivatives with Unusual Inhibitory Activity Against Voltage‐Gated Sodium Channels. Chemistry 2020; 26:2025-2033. [DOI: 10.1002/chem.201904184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/04/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Kanna Adachi
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Tomoshi Yamada
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Hayate Ishizuka
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Mana Oki
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Shunsuke Tsunogae
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Noriko Shimada
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Osamu Chiba
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Tatsuya Orihara
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Masafumi Hidaka
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8575 Japan
- Division of Biomedical Science University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8575 Japan
- Molecular Profiling Research Center for Drug Discovery National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ward Tokyo 135-0064 Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Keiichi Konoki
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Mari Yotsu‐Yamashita
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| |
Collapse
|
11
|
Finol-Urdaneta RK, McArthur JR, Korkosh VS, Huang S, McMaster D, Glavica R, Tikhonov DB, Zhorov BS, French RJ. Extremely Potent Block of Bacterial Voltage-Gated Sodium Channels by µ-Conotoxin PIIIA. Mar Drugs 2019; 17:md17090510. [PMID: 31470595 PMCID: PMC6780087 DOI: 10.3390/md17090510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/24/2019] [Indexed: 12/15/2022] Open
Abstract
µ-Conotoxin PIIIA, in the sub-picomolar, range inhibits the archetypal bacterial sodium channel NaChBac (NavBh) in a voltage- and use-dependent manner. Peptide µ-conotoxins were first recognized as potent components of the venoms of fish-hunting cone snails that selectively inhibit voltage-gated skeletal muscle sodium channels, thus preventing muscle contraction. Intriguingly, computer simulations predicted that PIIIA binds to prokaryotic channel NavAb with much higher affinity than to fish (and other vertebrates) skeletal muscle sodium channel (Nav 1.4). Here, using whole-cell voltage clamp, we demonstrate that PIIIA inhibits NavBac mediated currents even more potently than predicted. From concentration-response data, with [PIIIA] varying more than 6 orders of magnitude (10−12 to 10−5 M), we estimated an IC50 = ~5 pM, maximal block of 0.95 and a Hill coefficient of 0.81 for the inhibition of peak currents. Inhibition was stronger at depolarized holding potentials and was modulated by the frequency and duration of the stimulation pulses. An important feature of the PIIIA action was acceleration of macroscopic inactivation. Docking of PIIIA in a NaChBac (NavBh) model revealed two interconvertible binding modes. In one mode, PIIIA sterically and electrostatically blocks the permeation pathway. In a second mode, apparent stabilization of the inactivated state was achieved by PIIIA binding between P2 helices and trans-membrane S5s from adjacent channel subunits, partially occluding the outer pore. Together, our experimental and computational results suggest that, besides blocking the channel-mediated currents by directly occluding the conducting pathway, PIIIA may also change the relative populations of conducting (activated) and non-conducting (inactivated) states.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
- Department of Biochemistry, Brandeis University, Waltham, MA 0254-9110, USA.
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Vyacheslav S Korkosh
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
| | - Sun Huang
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Denis McMaster
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robert Glavica
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Denis B Tikhonov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
| | - Boris S Zhorov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 4K1, Canada
| | - Robert J French
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
12
|
Morales Duque H, Campos Dias S, Franco OL. Structural and Functional Analyses of Cone Snail Toxins. Mar Drugs 2019; 17:md17060370. [PMID: 31234371 PMCID: PMC6628382 DOI: 10.3390/md17060370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cone snails are marine gastropod mollusks with one of the most powerful venoms in nature. The toxins, named conotoxins, must act quickly on the cone snails´ prey due to the fact that snails are extremely slow, reducing their hunting capability. Therefore, the characteristics of conotoxins have become the object of investigation, and as a result medicines have been developed or are in the trialing process. Conotoxins interact with transmembrane proteins, showing specificity and potency. They target ion channels and ionotropic receptors with greater regularity, and when interaction occurs, there is immediate physiological decompensation. In this review we aimed to evaluate the structural features of conotoxins and the relationship with their target types.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS 79.117-900, Brazil.
| |
Collapse
|
13
|
Mansbach RA, Travers T, McMahon BH, Fair JM, Gnanakaran S. Snails In Silico: A Review of Computational Studies on the Conopeptides. Mar Drugs 2019; 17:E145. [PMID: 30832207 PMCID: PMC6471681 DOI: 10.3390/md17030145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
Marine cone snails are carnivorous gastropods that use peptide toxins called conopeptides both as a defense mechanism and as a means to immobilize and kill their prey. These peptide toxins exhibit a large chemical diversity that enables exquisite specificity and potency for target receptor proteins. This diversity arises in terms of variations both in amino acid sequence and length, and in posttranslational modifications, particularly the formation of multiple disulfide linkages. Most of the functionally characterized conopeptides target ion channels of animal nervous systems, which has led to research on their therapeutic applications. Many facets of the underlying molecular mechanisms responsible for the specificity and virulence of conopeptides, however, remain poorly understood. In this review, we will explore the chemical diversity of conopeptides from a computational perspective. First, we discuss current approaches used for classifying conopeptides. Next, we review different computational strategies that have been applied to understanding and predicting their structure and function, from machine learning techniques for predictive classification to docking studies and molecular dynamics simulations for molecular-level understanding. We then review recent novel computational approaches for rapid high-throughput screening and chemical design of conopeptides for particular applications. We close with an assessment of the state of the field, emphasizing important questions for future lines of inquiry.
Collapse
Affiliation(s)
- Rachael A Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Jeanne M Fair
- Biosecurity and Public Health Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
14
|
Tikhonov DB, Zhorov BS. Predicting Structural Details of the Sodium Channel Pore Basing on Animal Toxin Studies. Front Pharmacol 2018; 9:880. [PMID: 30131702 PMCID: PMC6090064 DOI: 10.3389/fphar.2018.00880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/20/2018] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic voltage-gated sodium channels play key roles in physiology and are targets for many toxins and medically important drugs. Physiology, pharmacology, and general architecture of the channels has long been the subject of intensive research in academia and industry. In particular, animal toxins such as tetrodotoxin, saxitoxin, and conotoxins have been used as molecular probes of the channel structure. More recently, X-ray structures of potassium and prokaryotic sodium channels allowed elaborating models of the toxin-channel complexes that integrated data from biophysical, electrophysiological, and mutational studies. Atomic level cryo-EM structures of eukaryotic sodium channels, which became available in 2017, show that the selectivity filter structure and other important features of the pore domain have been correctly predicted. This validates further employments of toxins and other small molecules as sensitive probes of fine structural details of ion channels.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Chen F, Huang W, Jiang T, Yu R. Determination of the μ-Conotoxin PIIIA Specificity Against Voltage-Gated Sodium Channels from Binding Energy Calculations. Mar Drugs 2018; 16:E153. [PMID: 29735899 PMCID: PMC5983284 DOI: 10.3390/md16050153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (NaV) channels generate and propagate action potentials in excitable cells, and several NaV subtypes have become important targets for pain management. The μ-conotoxins inhibit subtypes of the NaV with varied specificity but often lack of specificity to interested subtypes. Engineering the selectivity of the μ-conotoxins presents considerable complexity and challenge, as it involves the optimization of their binding affinities to multiple highly conserved NaV subtypes. In this study, a model of NaV1.4 bound with μ-conotoxin PIIIA complex was constructed using homology modeling, docking, molecular dynamic simulations and binding energy calculations. The accuracy of this model was confirmed based on the experimental mutagenesis data. The complex models of PIIIA bound with varied subtypes of NaV1.x (x = 1, 2, 3, 5, 6, 7, 8, or 9) were built using NaV1.4/PIIIA complex as a template, and refined using molecular dynamic simulations. The binding affinities of PIIIA to varied subtypes of NaV1.x (x = 1 to 9) were calculated using the Molecular Mechanics Generalized Born/Surface Area (MMGB/SA) and umbrella sampling, and were compared with the experimental values. The binding affinities calculated using MMGB/SA and umbrella sampling are correlated with the experimental values, with the former and the latter giving correlation coefficient of 0.41 (R²) and 0.68 (R²), respectively. Binding energy decomposition suggests that conserved and nonconserved residues among varied NaV subtypes have a synergistic effect on the selectivity of PIIIA.
Collapse
Affiliation(s)
- Fangling Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Wenxin Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
16
|
Hung A, Kuyucak S, Schroeder CI, Kaas Q. Modelling the interactions between animal venom peptides and membrane proteins. Neuropharmacology 2017; 127:20-31. [PMID: 28778835 DOI: 10.1016/j.neuropharm.2017.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022]
Abstract
The active components of animal venoms are mostly peptide toxins, which typically target ion channels and receptors of both the central and peripheral nervous system, interfering with action potential conduction and/or synaptic transmission. The high degree of sequence conservation of their molecular targets makes a range of these toxins active at human receptors. The high selectivity and potency displayed by some of these toxins have prompted their use as pharmacological tools as well as drugs or drug leads. Molecular modelling has played an essential role in increasing our molecular-level understanding of the activity and specificity of animal toxins, as well as engineering them for biotechnological and pharmaceutical applications. This review focuses on the biological insights gained from computational and experimental studies of animal venom toxins interacting with membranes and ion channels. A host of recent X-ray crystallography and electron-microscopy structures of the toxin targets has contributed to a dramatic increase in the accuracy of the molecular models of toxin binding modes greatly advancing this exciting field of study. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Andrew Hung
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
17
|
Abstract
The pore domain of human voltage-dependent cardiac sodium channel Nav1.5 (hNav1.5) is the crucial binding targets for anti-arrhythmics drugs and some local anesthetic drugs but its three-dimensional structure is still lacking. This has affected the detailed studies of the binding features and mechanism of these drugs. In this paper, we present a structural model for open-state pore domain of hNav1.5 built using single template ROSETTA-membrane homology modeling with the crystal structure of NavMs. The assembled structural models are evaluated by rosettaMP energy and locations of binding sites. The modeled structures of the pore domain of hNav1.5 in open state will be helpful to explore molecular mechanism of a state-dependent drug binding and help designing new drugs.
Collapse
Affiliation(s)
- Xiaofeng Ji
- a School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China.,b Yellow Sea Fisheries Research Institute , Chinese Academy of Fishery Sciences , Qingdao , Shandong 266071 , China
| | - Yi Xiao
- a School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Shiyong Liu
- a School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| |
Collapse
|
18
|
Sand RM, Gingrich KJ, Macharadze T, Herold KF, Hemmings HC. Isoflurane modulates activation and inactivation gating of the prokaryotic Na + channel NaChBac. J Gen Physiol 2017; 149:623-638. [PMID: 28416648 PMCID: PMC5460948 DOI: 10.1085/jgp.201611600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/04/2016] [Accepted: 03/15/2017] [Indexed: 02/01/2023] Open
Abstract
The pharmacological effects of inhaled anesthetics on ion channel function are poorly understood. Sand et al. analyze macroscopic gating of the prokaryotic voltage-gated sodium channel, NaChBac, using a six-state kinetic scheme and demonstrate that isoflurane modulates microscopic gating properties. Voltage-gated Na+ channels (Nav) have emerged as important presynaptic targets for volatile anesthetic (VA) effects on synaptic transmission. However, the detailed biophysical mechanisms by which VAs modulate Nav function remain unclear. VAs alter macroscopic activation and inactivation of the prokaryotic Na+ channel, NaChBac, which provides a useful structural and functional model of mammalian Nav. Here, we study the effects of the common general anesthetic isoflurane on NaChBac function by analyzing macroscopic Na+ currents (INa) in wild-type (WT) channels and mutants with impaired (G229A) or enhanced (G219A) inactivation. We use a previously described six-state Markov model to analyze empirical WT and mutant NaChBac channel gating data. The model reproduces the mean empirical gating manifest in INa time courses and optimally estimates microscopic rate constants, valences (z), and fractional electrical distances (x) of forward and backward transitions. The model also reproduces gating observed for all three channels in the absence or presence of isoflurane, providing further validation. We show using this model that isoflurane increases forward activation and inactivation rate constants at 0 mV, which are associated with estimated chemical free energy changes of approximately −0.2 and −0.7 kcal/mol, respectively. Activation is voltage dependent (z ≈ 2e0, x ≈ 0.3), inactivation shows little voltage dependence, and isoflurane has no significant effect on either. Forward inactivation rate constants are more than 20-fold greater than backward rate constants in the absence or presence of isoflurane. These results indicate that isoflurane modulates NaChBac gating primarily by increasing forward activation and inactivation rate constants. These findings support accumulating evidence for multiple sites of anesthetic interaction with the channel.
Collapse
Affiliation(s)
- Rheanna M Sand
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Kevin J Gingrich
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Tamar Macharadze
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Karl F Herold
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 .,Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
19
|
Vetter I, Deuis JR, Mueller A, Israel MR, Starobova H, Zhang A, Rash LD, Mobli M. NaV1.7 as a pain target – From gene to pharmacology. Pharmacol Ther 2017; 172:73-100. [DOI: 10.1016/j.pharmthera.2016.11.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET. Proc Natl Acad Sci U S A 2017; 114:E1857-E1865. [PMID: 28202723 DOI: 10.1073/pnas.1700453114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-gated sodium channels (Navs) play crucial roles in excitable cells. Although vertebrate Nav function has been extensively studied, the detailed structural basis for voltage-dependent gating mechanisms remain obscure. We have assessed the structural changes of the Nav voltage sensor domain using lanthanide-based resonance energy transfer (LRET) between the rat skeletal muscle voltage-gated sodium channel (Nav1.4) and fluorescently labeled Nav1.4-targeting toxins. We generated donor constructs with genetically encoded lanthanide-binding tags (LBTs) inserted at the extracellular end of the S4 segment of each domain (with a single LBT per construct). Three different Bodipy-labeled, Nav1.4-targeting toxins were synthesized as acceptors: β-scorpion toxin (Ts1)-Bodipy, KIIIA-Bodipy, and GIIIA-Bodipy analogs. Functional Nav-LBT channels expressed in Xenopus oocytes were voltage-clamped, and distinct LRET signals were obtained in the resting and slow inactivated states. Intramolecular distances computed from the LRET signals define a geometrical map of Nav1.4 with the bound toxins, and reveal voltage-dependent structural changes related to channel gating.
Collapse
|
21
|
Israel MR, Tay B, Deuis JR, Vetter I. Sodium Channels and Venom Peptide Pharmacology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:67-116. [PMID: 28528674 DOI: 10.1016/bs.apha.2017.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Venomous animals including cone snails, spiders, scorpions, anemones, and snakes have evolved a myriad of components in their venoms that target the opening and/or closing of voltage-gated sodium channels to cause devastating effects on the neuromuscular systems of predators and prey. These venom peptides, through design and serendipity, have not only contributed significantly to our understanding of sodium channel pharmacology and structure, but they also represent some of the most phyla- and isoform-selective molecules that are useful as valuable tool compounds and drug leads. Here, we review our understanding of the basic function of mammalian voltage-gated sodium channel isoforms as well as the pharmacology of venom peptides that act at these key transmembrane proteins.
Collapse
Affiliation(s)
- Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Bryan Tay
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
22
|
Han P, Wang K, Dai X, Cao Y, Liu S, Jiang H, Fan C, Wu W, Chen J. The Role of Individual Disulfide Bonds of μ-Conotoxin GIIIA in the Inhibition of Na V1.4. Mar Drugs 2016; 14:md14110213. [PMID: 27869701 PMCID: PMC5128756 DOI: 10.3390/md14110213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/31/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
μ-Conotoxin GIIIA, a peptide toxin isolated from Conus geographus, preferentially blocks the skeletal muscle sodium channel NaV1.4. GIIIA folds compactly to a pyramidal structure stabilized by three disulfide bonds. To assess the contributions of individual disulfide bonds of GIIIA to the blockade of NaV1.4, seven disulfide-deficient analogues were prepared and characterized, each with one, two, or three pairs of disulfide-bonded Cys residues replaced with Ala. The inhibitory potency of the analogues against NaV1.4 was assayed by whole cell patch-clamp on rNaV1.4, heterologously expressed in HEK293 cells. The corresponding IC50 values were 0.069 ± 0.005 μM for GIIIA, 2.1 ± 0.3 μM for GIIIA-1, 3.3 ± 0.2 μM for GIIIA-2, and 15.8 ± 0.8 μM for GIIIA-3 (-1, -2 and -3 represent the removal of disulfide bridges Cys3–Cys15, Cys4–Cys20 and Cys10–Cys21, respectively). Other analogues were not active enough for IC50 measurement. Our results indicate that all three disulfide bonds of GIIIA are required to produce effective inhibition of NaV1.4, and the removal of any one significantly lowers its sodium channel binding affinity. Cys10–Cys21 is the most important for the NaV1.4 potency.
Collapse
Affiliation(s)
- Penggang Han
- College of Science, National University of Defense Technology, Changsha 410073, Hunan, China.
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Kang Wang
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Xiandong Dai
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Ying Cao
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Shangyi Liu
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Hui Jiang
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Chongxu Fan
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Wenjian Wu
- College of Science, National University of Defense Technology, Changsha 410073, Hunan, China.
| | - Jisheng Chen
- College of Science, National University of Defense Technology, Changsha 410073, Hunan, China.
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| |
Collapse
|
23
|
Ahern CA, Payandeh J, Bosmans F, Chanda B. The hitchhiker's guide to the voltage-gated sodium channel galaxy. ACTA ACUST UNITED AC 2016; 147:1-24. [PMID: 26712848 PMCID: PMC4692491 DOI: 10.1085/jgp.201511492] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.
Collapse
Affiliation(s)
- Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| | - Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Baron Chanda
- Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
24
|
Li Y, Liu H, Xia M, Gong H. Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels. PLoS One 2016; 11:e0162413. [PMID: 27584582 PMCID: PMC5008630 DOI: 10.1371/journal.pone.0162413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are critical in the generation and transmission of neuronal signals in mammals. The crystal structures of several prokaryotic Nav channels determined in recent years inspire the mechanistic studies on their selection upon the permeable cations (especially between Na+ and K+ ions), a property that is proposed to be mainly determined by residues in the selectivity filter. However, the mechanism of cation selection in mammalian Nav channels lacks direct explanation at atomic level due to the difference in amino acid sequences between mammalian and prokaryotic Nav homologues, especially at the constriction site where the DEKA motif has been identified to determine the Na+/K+ selectivity in mammalian Nav channels but is completely absent in the prokaryotic counterparts. Among the DEKA residues, Lys is of the most importance since its mutation to Arg abolishes the Na+/K+ selectivity. In this work, we modeled the pore domain of mammalian Nav channels by mutating the four residues at the constriction site of a prokaryotic Nav channel (NavRh) to DEKA, and then mechanistically investigated the contribution of Lys in cation selection using molecular dynamics simulations. The DERA mutant was generated as a comparison to understand the loss of ion selectivity caused by the K-to-R mutation. Simulations and free energy calculations on the mutants indicate that Lys facilitates Na+/K+ selection by electrostatically repelling the cation to a highly Na+-selective location sandwiched by the carboxylate groups of Asp and Glu at the constriction site. In contrast, the electrostatic repulsion is substantially weakened when Lys is mutated to Arg, because of two intrinsic properties of the Arg side chain: the planar geometric design and the sparse charge distribution of the guanidine group.
Collapse
Affiliation(s)
- Yang Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huihui Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengdie Xia
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- * E-mail:
| |
Collapse
|
25
|
Green BR, Olivera BM. Venom Peptides From Cone Snails: Pharmacological Probes for Voltage-Gated Sodium Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:65-86. [PMID: 27586281 DOI: 10.1016/bs.ctm.2016.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The venoms of cone snails provide a rich source of neuroactive peptides (conotoxins). Several venom peptide families have been identified that are either agonists (ι- and δ-conotoxins) or antagonists (μ- and μO-conotoxins) of voltage-gated sodium channels (VGSCs). Members of these conotoxin classes have been integral in identifying and characterizing specific neurotoxin binding sites on the channel. Furthermore, given the specificity of some of these peptides for one sodium channel subtype over another, conotoxins have also proven useful in exploring differences between VGSC subtypes. This chapter summarizes the current knowledge of the structure and function based on the results of conotoxin interactions with VGSCs and correlates the peptides with the phylogeny of the Conus species from which they were derived.
Collapse
Affiliation(s)
- B R Green
- University of Utah, Salt Lake City, UT, United States; Monash University, Parkville, VIC, Australia
| | - B M Olivera
- University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
26
|
Patel D, Mahdavi S, Kuyucak S. Computational Study of Binding of μ-Conotoxin GIIIA to Bacterial Sodium Channels NaVAb and NaVRh. Biochemistry 2016; 55:1929-38. [PMID: 26959170 DOI: 10.1021/acs.biochem.5b01324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Structures of several voltage-gated sodium (NaV) channels from bacteria have been determined recently, but the same feat might not be achieved for the mammalian counterparts in the near future. Thus, at present, computational studies of the mammalian NaV channels have to be performed using homology models based on the bacterial crystal structures. A successful homology model for the mammalian NaV1.4 channel was recently constructed using the extensive mutation data for binding of μ-conotoxin GIIIA to NaV1.4, which was further validated through studies of binding of other μ-conotoxins and ion permeation. Understanding the similarities and differences between the bacterial and mammalian NaV channels is an important issue, and the NaV1.4-GIIIA system provides a good opportunity for such a comparison. To this end, we study the binding of GIIIA to the bacterial channels NaVAb and NaVRh. The complex structures are obtained using docking and molecular dynamics simulations, and the dissociation of GIIIA is studied through umbrella sampling simulations. The results are compared to those obtained from the NaV1.4-GIIIA system, and the differences in the binding modes arising from the changes in the selectivity filters are highlighted.
Collapse
Affiliation(s)
- Dharmeshkumar Patel
- School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Somayeh Mahdavi
- School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
27
|
Zhorov B, Tikhonov D. Computational Structural Pharmacology and Toxicology of Voltage-Gated Sodium Channels. NA CHANNELS FROM PHYLA TO FUNCTION 2016; 78:117-44. [DOI: 10.1016/bs.ctm.2015.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Mahdavi S, Kuyucak S. Mechanism of Ion Permeation in Mammalian Voltage-Gated Sodium Channels. PLoS One 2015; 10:e0133000. [PMID: 26274802 PMCID: PMC4537306 DOI: 10.1371/journal.pone.0133000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/22/2015] [Indexed: 12/30/2022] Open
Abstract
Recent determination of the crystal structures of bacterial voltage-gated sodium (NaV) channels have raised hopes that modeling of the mammalian counterparts could soon be achieved. However, there are substantial differences between the pore domains of the bacterial and mammalian NaV channels, which necessitates careful validation of mammalian homology models constructed from the bacterial NaV structures. Such a validated homology model for the NaV1.4 channel was constructed recently using the extensive mutagenesis data available for binding of μ-conotoxins. Here we use this NaV1.4 model to study the ion permeation mechanism in mammalian NaV channels. Linking of the DEKA residues in the selectivity filter with residues in the neighboring domains is found to be important for keeping the permeation pathway open. Molecular dynamics simulations and potential of mean force calculations reveal that there is a binding site for a Na+ ion just inside the DEKA locus, and 1-2 Na+ ions can occupy the vestibule near the EEDD ring. These sites are separated by a low free energy barrier, suggesting that inward conduction occurs when a Na+ ion in the vestibule goes over the free energy barrier and pushes the Na+ ion in the filter to the intracellular cavity, consistent with the classical knock-on mechanism. The NaV1.4 model also provides a good description of the observed Na+/K+ selectivity.
Collapse
Affiliation(s)
- Somayeh Mahdavi
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
- * E-mail:
| |
Collapse
|
29
|
Stephens RF, Guan W, Zhorov BS, Spafford JD. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels. Front Physiol 2015; 6:153. [PMID: 26042044 PMCID: PMC4436565 DOI: 10.3389/fphys.2015.00153] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/28/2015] [Indexed: 12/19/2022] Open
Abstract
How nature discriminates sodium from calcium ions in eukaryotic channels has been difficult to resolve because they contain four homologous, but markedly different repeat domains. We glean clues from analyzing the changing pore region in sodium, calcium and NALCN channels, from single-cell eukaryotes to mammals. Alternative splicing in invertebrate homologs provides insights into different structural features underlying calcium and sodium selectivity. NALCN generates alternative ion selectivity with splicing that changes the high field strength (HFS) site at the narrowest level of the hourglass shaped pore where the selectivity filter is located. Alternative splicing creates NALCN isoforms, in which the HFS site has a ring of glutamates contributed by all four repeat domains (EEEE), or three glutamates and a lysine residue in the third (EEKE) or second (EKEE) position. Alternative splicing provides sodium and/or calcium selectivity in T-type channels with extracellular loops between S5 and P-helices (S5P) of different lengths that contain three or five cysteines. All eukaryotic channels have a set of eight core cysteines in extracellular regions, but the T-type channels have an infusion of 4–12 extra cysteines in extracellular regions. The pattern of conservation suggests a possible pairing of long loops in Domains I and III, which are bridged with core cysteines in NALCN, Cav, and Nav channels, and pairing of shorter loops in Domains II and IV in T-type channel through disulfide bonds involving T-type specific cysteines. Extracellular turrets of increasing lengths in potassium channels (Kir2.2, hERG, and K2P1) contribute to a changing landscape above the pore selectivity filter that can limit drug access and serve as an ion pre-filter before ions reach the pore selectivity filter below. Pairing of extended loops likely contributes to the large extracellular appendage as seen in single particle electron cryo-microscopy images of the eel Nav1 channel.
Collapse
Affiliation(s)
| | - W Guan
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, ON, Canada ; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences St. Petersburg, Russia
| | - J David Spafford
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| |
Collapse
|
30
|
Systematic study of binding of μ-conotoxins to the sodium channel NaV1.4. Toxins (Basel) 2014; 6:3454-70. [PMID: 25529306 PMCID: PMC4280544 DOI: 10.3390/toxins6123454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/01/2014] [Accepted: 12/10/2014] [Indexed: 01/25/2023] Open
Abstract
Voltage-gated sodium channels (NaV) are fundamental components of the nervous system. Their dysfunction is implicated in a number of neurological disorders, such as chronic pain, making them potential targets for the treatment of such disorders. The prominence of the NaV channels in the nervous system has been exploited by venomous animals for preying purposes, which have developed toxins that can block the NaV channels, thereby disabling their function. Because of their potency, such toxins could provide drug leads for the treatment of neurological disorders associated with NaV channels. However, most toxins lack selectivity for a given target NaV channel, and improving their selectivity profile among the NaV1 isoforms is essential for their development as drug leads. Computational methods will be very useful in the solution of such design problems, provided accurate models of the protein-ligand complex can be constructed. Using docking and molecular dynamics simulations, we have recently constructed a model for the NaV1.4-μ-conotoxin-GIIIA complex and validated it with the ample mutational data available for this complex. Here, we use the validated NaV1.4 model in a systematic study of binding other μ-conotoxins (PIIIA, KIIIA and BuIIIB) to NaV1.4. The binding mode obtained for each complex is shown to be consistent with the available mutation data and binding constants. We compare the binding modes of PIIIA, KIIIA and BuIIIB to that of GIIIA and point out the similarities and differences among them. The detailed information about NaV1.4-μ-conotoxin interactions provided here will be useful in the design of new NaV channel blocking peptides.
Collapse
|