1
|
Collins SA, Stinson HE, Himes A, Nestor-Kalinoski A, Ninan I. Sex-specific modulation of the medial prefrontal cortex by glutamatergic median raphe neurons. SCIENCE ADVANCES 2023; 9:eadg4800. [PMID: 37948526 PMCID: PMC10637752 DOI: 10.1126/sciadv.adg4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
A substantial proportion of raphe neurons are glutamatergic. However, little is known about how these glutamatergic neurons modulate the forebrain. We investigated how glutamatergic median raphe nucleus (MRN) input modulates the medial prefrontal cortex (mPFC), a critical component of fear circuitry. We show that vesicular glutamate transporter 3 (VGLUT3)-expressing MRN neurons activate VGLUT3- and somatostatin-expressing neurons in the mPFC. Consistent with this modulation of mPFC GABAergic neurons, activation of MRN (VGLUT3) neurons enhances GABAergic transmission in mPFC pyramidal neurons and attenuates fear memory in female but not male mice. Serotonin plays a key role in MRN (VGLUT3) neuron-mediated GABAergic plasticity in the mPFC. In agreement with these female-specific effects, we observed sex differences in glutamatergic transmission onto MRN (VGLUT3) neurons and in mPFC (VGLUT3) neuron-mediated dual release of glutamate and GABA. Our results demonstrate a cell type-specific modulation of the mPFC by MRN (VGLUT3) neurons and reveal a sex-specific role of this neuromodulation in mPFC synaptic plasticity.
Collapse
Affiliation(s)
- Stuart A. Collins
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hannah E. Stinson
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Amanda Himes
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Andrea Nestor-Kalinoski
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ipe Ninan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
2
|
Ahmadzadeh E, Polglase GR, Stojanovska V, Herlenius E, Walker DW, Miller SL, Allison BJ. Does fetal growth restriction induce neuropathology within the developing brainstem? J Physiol 2023; 601:4667-4689. [PMID: 37589339 PMCID: PMC10953350 DOI: 10.1113/jp284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Vanesa Stojanovska
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Eric Herlenius
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children´s HospitalKarolinska University Hospital StockholmSolnaSweden
| | - David W. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical SciencesRoyal Melbourne Institute of Technology (RMIT)MelbourneVictoriaAustralia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Beth J. Allison
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
3
|
Andrews PW, Bosyj C, Brenton L, Green L, Gasser PJ, Lowry CA, Pickel VM. All the brain's a stage for serotonin: the forgotten story of serotonin diffusion across cell membranes. Proc Biol Sci 2022; 289:20221565. [PMID: 36321487 PMCID: PMC9627707 DOI: 10.1098/rspb.2022.1565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
In the conventional model of serotonin neurotransmission, serotonin released by neurons in the midbrain raphe nuclei exerts its actions on forebrain neurons by interacting with a large family of post-synaptic receptors. The actions of serotonin are terminated by active transport of serotonin back into the releasing neuron, which is mediated by the serotonin reuptake transporter (SERT). Because SERT is expressed pre-synaptically and is widely thought to be the only serotonin transporter in the forebrain, the conventional model does not include serotonin transport into post-synaptic neurons. However, a large body of evidence accumulating since the 1970s has shown that serotonin, despite having a positive charge, can cross cell membranes through a diffusion-like process. Multiple low-affinity, high-capacity, sodium-independent transporters, widely expressed in the brain, allow the carrier-mediated diffusion of serotonin into forebrain neurons. The amount of serotonin crossing cell membranes through this mechanism under physiological conditions is considerable. Most prominent textbooks fail to include this alternative method of serotonin uptake in the brain, and even most neuroscientists are unaware of it. This failure has limited our understanding of a key regulator of serotonergic neurotransmission, impeded research on the potential intracellular actions of serotonin in post-synaptic neurons and glial cells, and may have impeded our understanding of the mechanism by which antidepressant medications reduce depressive symptoms.
Collapse
Affiliation(s)
- Paul W. Andrews
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Catherine Bosyj
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Luke Brenton
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Laura Green
- Neuroscience Institute, New York University, New York, NY, USA
| | - Paul J. Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia M. Pickel
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
4
|
Cheng P, Wang L, Xu L, Zhou Y, Zhao G, Zhang L, Li W. Factors related to the length of stay for major depressive disorder patients in China: A real-world retrospective study. Front Public Health 2022; 10:892133. [PMID: 35968457 PMCID: PMC9372622 DOI: 10.3389/fpubh.2022.892133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background As numerous patients with depression have to be hospitalized because of various reasons, the demand far exceeds the limited bed count in the psychiatry department. Controlling the length of stay (LOS) of the patient is gradually being considered an effective method to alleviate this problem. Given the lack of statistical evidence of the LOS of patients with major depressive disorder (MDD) in China and the strain on the limited psychiatric resources, the purpose of our study was to investigate the LOS of patients with MDD among in-patient samples and to analyze related factors of the LOS in China by building a regression model. Method The data were exported from the electronic medical record system. A total of three categories of independent variables were enrolled in our study, namely, demographic, clinical, and biochemical. Univariate analysis and binominal regression analysis were applied comprehensively to find the factors related to the LOS among MDD samples. The discrimination accuracy of the model was evaluated by the receiver operating characteristic (ROC) analysis. ROC analysis indicated that the discrimination accuracy of our model was acceptable (AUC = 0.790, 95% CI = 0.714–0.865, P < 0.001). Result A total of 254 patients were finally brought into analysis after filtering. Regression analysis indicated that abnormal LDL was the only risk factor of long LOS (OR = 3.352, 95% CI = 1.087–10.337, P = 0.035) among all the kinds of variables. Notably, in the statistically irrelevant factors of the LOS, the category of anti-depressant drugs [serotonin–norepinephrine reuptake inhibitor (SNRI) or selective serotonin reuptake inhibitor (SSRI)] prescribed to patients with MDD was not associated statistically with the LOS, which was against our initial hypothesis that the LOS of patients with MDD treated with SNRI would vary from that of the patients treated with SSRI. Conclusion Up to our knowledge, our research is the first study to show the potential factors related to the LOS from various domains, especially biochemical indexes, and the effect of drugs, among clinical patients with MDD in China. Our results could provide a theoretical reference for efficient psychiatry hospitalization management and prioritization of allocating medical resources. Future studies are required for updating independent variables which are potentially related to the LOS and verifying existing results in a larger sample.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lirong Wang
- Xiangya School of Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lizhi Xu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangju Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weihui Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Weihui Li
| |
Collapse
|
5
|
Exposure to chronic stressor upsurges the excitability of serotoninergic neurons and diminishes concentrations of circulating corticosteroids in rats two weeks thereafter. Pharmacol Rep 2022; 74:451-460. [DOI: 10.1007/s43440-022-00366-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022]
|
6
|
Beyeler A, Ju A, Chagraoui A, Cuvelle L, Teixeira M, Di Giovanni G, De Deurwaerdère P. Multiple facets of serotonergic modulation. PROGRESS IN BRAIN RESEARCH 2021; 261:3-39. [PMID: 33785133 DOI: 10.1016/bs.pbr.2021.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The serotonergic system of the central nervous system (CNS) has been implicated in a broad range of physiological functions and behaviors, such as cognition, mood, social interaction, sexual behavior, feeding behavior, sleep-wake cycle and thermoregulation. Serotonin (5-hydroxytryptamine, 5-HT) establishes a plethora of interactions with neurochemical systems in the CNS via its numerous 5-HT receptors and autoreceptors. The facets of this control are multiple if we consider the molecular actors playing a role in the autoregulation of 5-HT neuron activity including the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B, 5-HT7 receptors as well as the serotonin transporter. Moreover, extrinsic loops involving other neurotransmitters giving the other 5-HT receptors the possibility to impact 5-HT neuron activity. Grasping the complexity of these interactions is essential for the development of a variety of therapeutic strategies for cognitive defects and mood disorders. Presently we can illustrate the plurality of the mechanisms and only conceive that these 5-HT controls are likely not uniform in terms of regional and neuronal distribution. Our understanding of the specific expression patterns of these receptors on specific circuits and neuronal populations are progressing and will expand our comprehension of the function and interaction of these receptors with other chemical systems. Thus, the development of new approaches profiling the expression of 5-HT receptors and autoreceptors should reveal additional facets of the 5-HT controls of neurochemical systems in the CNS.
Collapse
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France.
| | - Anes Ju
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Lise Cuvelle
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Maxime Teixeira
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | - Philippe De Deurwaerdère
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| |
Collapse
|
7
|
Jansch C, Ziegler GC, Forero A, Gredy S, Wäldchen S, Vitale MR, Svirin E, Zöller JEM, Waider J, Günther K, Edenhofer F, Sauer M, Wischmeyer E, Lesch KP. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. J Neural Transm (Vienna) 2021; 128:225-241. [PMID: 33560471 PMCID: PMC7914246 DOI: 10.1007/s00702-021-02303-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Charline Jansch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany.
| | - Andrea Forero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Sina Gredy
- Institute of Physiology, Molecular Electrophysiology, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sina Wäldchen
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Maria Rosaria Vitale
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Evgeniy Svirin
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Johanna E M Zöller
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Katharina Günther
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
- Institute of Molecular Regenerative Medicine, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Erhard Wischmeyer
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Institute of Physiology, Molecular Electrophysiology, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Delcourte S, Etievant A, Haddjeri N. Role of central serotonin and noradrenaline interactions in the antidepressants' action: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 259:7-81. [PMID: 33541681 DOI: 10.1016/bs.pbr.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of antidepressant drugs, in the last 6 decades, has been associated with theories based on a deficiency of serotonin (5-HT) and/or noradrenaline (NA) systems. Although the pathophysiology of major depression (MD) is not fully understood, numerous investigations have suggested that treatments with various classes of antidepressant drugs may lead to an enhanced 5-HT and/or adapted NA neurotransmissions. In this review, particular morpho-physiological aspects of these systems are first considered. Second, principal features of central 5-HT/NA interactions are examined. In this regard, the effects of the acute and sustained antidepressant administrations on these systems are discussed. Finally, future directions including novel therapeutic strategies are proposed.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Adeline Etievant
- Integrative and Clinical Neurosciences EA481, University of Bourgogne Franche-Comté, Besançon, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
9
|
Sizemore TR, Hurley LM, Dacks AM. Serotonergic modulation across sensory modalities. J Neurophysiol 2020; 123:2406-2425. [PMID: 32401124 PMCID: PMC7311732 DOI: 10.1152/jn.00034.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
The serotonergic system has been widely studied across animal taxa and different functional networks. This modulatory system is therefore well positioned to compare the consequences of neuromodulation for sensory processing across species and modalities at multiple levels of sensory organization. Serotonergic neurons that innervate sensory networks often bidirectionally exchange information with these networks but also receive input representative of motor events or motivational state. This convergence of information supports serotonin's capacity for contextualizing sensory information according to the animal's physiological state and external events. At the level of sensory circuitry, serotonin can have variable effects due to differential projections across specific sensory subregions, as well as differential serotonin receptor type expression within those subregions. Functionally, this infrastructure may gate or filter sensory inputs to emphasize specific stimulus features or select among different streams of information. The near-ubiquitous presence of serotonin and other neuromodulators within sensory regions, coupled with their strong effects on stimulus representation, suggests that these signaling pathways should be considered integral components of sensory systems.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, West Virginia
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
10
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
11
|
Montalbano A, Mlinar B, Bonfiglio F, Polenzani L, Magnani M, Corradetti R. Dual inhibitory action of trazodone on dorsal raphe serotonergic neurons through 5-HT1A receptor partial agonism and α1-adrenoceptor antagonism. PLoS One 2019; 14:e0222855. [PMID: 31557210 PMCID: PMC6763016 DOI: 10.1371/journal.pone.0222855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
Trazodone is an antidepressant drug with considerable affinity for 5-HT1A receptors and α1-adrenoceptors for which the drug is competitive agonist and antagonist, respectively. In this study, we used cell-attached or whole-cell patch-clamp recordings to characterize the effects of trazodone at somatodendritic 5-HT1A receptors (5-HT1AARs) and α1-adrenoceptors of serotonergic neurons in rodent dorsal raphe slices. To reveal the effects of trazodone at α1-adrenoceptors, the baseline firing of 5-HT neurons was facilitated by applying the selective α1-adrenoceptor agonist phenylephrine at various concentrations. In the absence of phenylephrine, trazodone (1–10 μM) concentration-dependently silenced neurons through activation of 5-HT1AARs. The effect was fully antagonized by the selective 5-HT1A receptor antagonist Way-100635. With 5-HT1A receptors blocked by Way-100635, trazodone (1–10 μM) concentration-dependently inhibited neuron firing facilitated by 1 μM phenylephrine. Parallel rightward shift of dose-response curves for trazodone recorded in higher phenylephrine concentrations (10–100 μM) indicated competitive antagonism at α1-adrenoceptors. Both effects of trazodone were also observed in slices from Tph2-/- mice that lack synthesis of brain serotonin, showing that the activation of 5-HT1AARs was not mediated by endogenous serotonin. In whole-cell recordings, trazodone activated 5-HT1AAR-coupled G protein-activated inwardly-rectifying (GIRK) channel conductance with weak partial agonist efficacy (~35%) compared to that of the full agonist 5-CT. Collectively our data show that trazodone, at concentrations relevant to its clinical effects, exerts weak partial agonism at 5-HT1AARs and disfacilitation of firing through α1-adrenoceptor antagonism. These two actions converge in inhibiting dorsal raphe serotonergic neuron activity, albeit with varying contribution depending on the intensity of α1-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Alberto Montalbano
- NEUROFARBA—Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Firenze, Italia
| | - Boris Mlinar
- NEUROFARBA—Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Firenze, Italia
| | - Francesco Bonfiglio
- NEUROFARBA—Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Firenze, Italia
| | - Lorenzo Polenzani
- Angelini RR&D (Research, Regulatory & Development), Angelini S.p.A, S.Palomba-Pomezia (Roma), Italia
| | - Maurizio Magnani
- Angelini RR&D (Research, Regulatory & Development), Angelini S.p.A, S.Palomba-Pomezia (Roma), Italia
| | - Renato Corradetti
- NEUROFARBA—Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Firenze, Italia
- * E-mail:
| |
Collapse
|
12
|
Alekseyenko OV, Chan YB, Okaty BW, Chang Y, Dymecki SM, Kravitz EA. Serotonergic Modulation of Aggression in Drosophila Involves GABAergic and Cholinergic Opposing Pathways. Curr Biol 2019; 29:2145-2156.e5. [PMID: 31231050 DOI: 10.1016/j.cub.2019.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
Pathological aggression is commonly associated with psychiatric and neurological disorders and can impose a substantial burden and cost on human society. Serotonin (5HT) has long been implicated in the regulation of aggression in a wide variety of animal species. In Drosophila, a small group of serotonergic neurons selectively modulates the escalation of aggression. Here, we identified downstream targets of serotonergic input-two types of neurons with opposing roles in aggression control. The dendritic fields of both neurons converge on a single optic glomerulus LC12, suggesting a key pathway linking visual input to the aggression circuitry. The first type is an inhibitory GABAergic neuron: its activation leads to a decrease in aggression. The second neuron type is excitatory: its silencing reduces and its activation increases aggression. RNA sequencing (RNA-seq) profiling of this neuron type identified that it uses acetylcholine as a neurotransmitter and likely expresses 5HT1A, short neuropeptide F receptor (sNPFR), and the resistant to dieldrin (RDL) category of GABA receptors. Knockdown of RDL receptors in these neurons increases aggression, suggesting the possibility of a direct crosstalk between the inhibitory GABAergic and the excitatory cholinergic neurons. Our data show further that neurons utilizing serotonin, GABA, ACh, and short neuropeptide F interact in the LC12 optic glomerulus. Parallel cholinergic and GABAergic pathways descending from this sensory integration area may be key elements in fine-tuning the regulation of aggression.
Collapse
Affiliation(s)
- Olga V Alekseyenko
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louise Pasteur, Boston, MA 02115, USA.
| | - Yick-Bun Chan
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Benjamin W Okaty
- Department of Genetics, Harvard Medical School, 77 Avenue Louise Pasteur, Boston, MA 02115, USA
| | - YoonJeung Chang
- Department of Genetics, Harvard Medical School, 77 Avenue Louise Pasteur, Boston, MA 02115, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louise Pasteur, Boston, MA 02115, USA
| | - Edward A Kravitz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
13
|
He B, Yu L, Li S, Xu F, Yang L, Ma S, Guo Y. Neuroprotective effect of lurasidone via antagonist activities on histamine in a rat model of cranial nerve involvement. Mol Med Rep 2018; 17:6002-6008. [PMID: 29436643 DOI: 10.3892/mmr.2018.8595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/11/2017] [Indexed: 11/06/2022] Open
Abstract
Cranial nerve involvement frequently involves neuron damage and often leads to psychiatric disorder caused by multiple inducements. Lurasidone is a novel antipsychotic agent approved for the treatment of cranial nerve involvement and a number of mental health conditions in several countries. In the present study, the neuroprotective effect of lurasidone by antagonist activities on histamine was investigated in a rat model of cranial nerve involvement. The antagonist activities of lurasidone on serotonin 5‑HT7, serotonin 5‑HT2A, serotonin 5‑HT1A and serotonin 5‑HT6 were analyzed, and the preclinical therapeutic effects of lurasidone were examined in a rat model of cranial nerve involvement. The safety, maximum tolerated dose (MTD) and preliminary antitumor activity of lurasidone were also assessed in the cranial nerve involvement model. The therapeutic dose of lurasidone was 0.32 mg once daily, administered continuously in 14‑day cycles. The results of the present study found that the preclinical prescriptions induced positive behavioral responses following treatment with lurasidone. The MTD was identified as a once daily administration of 0.32 mg lurasidone. Long‑term treatment with lurasidone for cranial nerve involvement was shown to improve the therapeutic effects and reduce anxiety in the experimental rats. In addition, treatment with lurasidone did not affect body weight. The expression of the language competence protein, Forkhead‑BOX P2, was increased, and the levels of neuroprotective SxIP motif and microtubule end‑binding protein were increased in the hippocampal cells of rats with cranial nerve involvement treated with lurasidone. Lurasidone therapy reinforced memory capability and decreased anxiety. Taken together, lurasidone treatment appeared to protect against language disturbances associated with negative and cognitive impairment in the rat model of cranial nerve involvement, providing a basis for its use in the clinical treatment of patients with cranial nerve involvement.
Collapse
Affiliation(s)
- Baoming He
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Liang Yu
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Suping Li
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Fei Xu
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Lili Yang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Shuai Ma
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Guo
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
14
|
Mlinar B, Montalbano A, Waider J, Lesch KP, Corradetti R. Increased functional coupling of 5-HT 1A autoreceptors to GIRK channels in Tph2 -/- mice. Eur Neuropsychopharmacol 2017; 27:1258-1267. [PMID: 29126768 DOI: 10.1016/j.euroneuro.2017.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 10/14/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
Abstract
Firing activity of serotonergic neurons is under regulatory control by somatodendritic 5-HT1A autoreceptors (5-HT1AARs). Enhanced 5-HT1AAR functioning may cause decreased serotonergic signaling in brain and has thereby been implicated in the etiology of mood and anxiety disorders. Tryptophan hydroxylase-2 knockout (Tph2-/-) mice exhibit sensitization of 5-HT1A agonist-induced inhibition of serotonergic neuron firing and thus represents a unique animal model of enhanced 5-HT1AAR functioning. To elucidate the mechanisms underlying 5-HT1AAR supersensitivity in Tph2-/- mice, we characterized the activation of G protein-coupled inwardly-rectifying potassium (GIRK) conductance by the 5-HT1A receptor agonist 5-carboxamidotryptamine using whole-cell recordings from serotonergic neurons in dorsal raphe nucleus. Tph2-/- mice exhibited a mean twofold leftward shift of the agonist concentration-response curve (p < 0.001) whereas the maximal response, proportional to the 5-HT1AAR number, was not different (p = 0.42) compared to Tph2+/- and Tph2+/+ littermates. No differences were found in the basal inwardly-rectifying potassium conductance, determined in the absence of agonist, (p = 0.80) nor in total GIRK conductance activated by intracellular application of GTP-γ-S (p = 0.69). These findings indicate increased functional coupling of 5-HT1AARs to GIRK channels in Tph2-/- mice without a concomitant increase in 5-HT1AARs and/or GIRK channel density. In addition, no changes were found in α1-adrenergic facilitation of firing (p = 0.72) indicating lack of adaptive changes Tph2-/- mice. 5-HT1AAR supersensitivity may represents a previously unrecognized cause of serotonergic system hypofunction and associated disorders and provides a possible explanation for conflicting results on the correlation between 5-HT1AAR density and depression in clinical imaging studies.
Collapse
Affiliation(s)
- Boris Mlinar
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.
| | - Alberto Montalbano
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Jonas Waider
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Asaoka N, Nishitani N, Kinoshita H, Kawai H, Shibui N, Nagayasu K, Shirakawa H, Nakagawa T, Kaneko S. Chronic antidepressant potentiates spontaneous activity of dorsal raphe serotonergic neurons by decreasing GABA B receptor-mediated inhibition of L-type calcium channels. Sci Rep 2017; 7:13609. [PMID: 29051549 PMCID: PMC5648823 DOI: 10.1038/s41598-017-13599-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Spontaneous activity of serotonergic neurons of the dorsal raphe nucleus (DRN) regulates mood and motivational state. Potentiation of serotonergic function is one of the therapeutic strategies for treatment of various psychiatric disorders, such as major depression, panic disorder and obsessive-compulsive disorder. However, the control mechanisms of the serotonergic firing activity are still unknown. In this study, we examined the control mechanisms for serotonergic spontaneous activity and effects of chronic antidepressant administration on these mechanisms by using modified ex vivo electrophysiological recording methods. Serotonergic neurons remained firing even in the absence of glutamatergic and GABAergic ionotropic inputs, while blockade of L-type voltage dependent Ca2+ channels (VDCCs) in serotonergic neurons decreased spontaneous firing activity. L-type VDCCs in serotonergic neurons received gamma-aminobutyric acid B (GABAB) receptor-mediated inhibition, which maintained serotonergic slow spontaneous firing activity. Chronic administration of an antidepressant, citalopram, disinhibited the serotonergic spontaneous firing activity by weakening the GABAB receptor-mediated inhibition of L-type VDCCs in serotonergic neurons. Our results provide a new mechanism underlying the spontaneous serotonergic activity and new insights into the mechanism of action of antidepressants.
Collapse
Affiliation(s)
- Nozomi Asaoka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoya Nishitani
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Haruko Kinoshita
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Kawai
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Norihiro Shibui
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
16
|
Abstract
The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of ∼1.7 µm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be "secreted" from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion.
Collapse
Affiliation(s)
- Haijie Yu
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195 Department of Physics, POSTECH, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
17
|
Mlinar B, Montalbano A, Piszczek L, Gross C, Corradetti R. Firing Properties of Genetically Identified Dorsal Raphe Serotonergic Neurons in Brain Slices. Front Cell Neurosci 2016; 10:195. [PMID: 27536220 PMCID: PMC4971071 DOI: 10.3389/fncel.2016.00195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/22/2016] [Indexed: 11/13/2022] Open
Abstract
Tonic spiking of serotonergic neurons establishes serotonin levels in the brain. Since the first observations, slow regular spiking has been considered as a defining feature of serotonergic neurons. Recent studies, however, have revealed the heterogeneity of serotonergic neurons at multiple levels, comprising their electrophysiological properties, suggesting the existence of functionally distinct cellular subpopulations. In order to examine in an unbiased manner whether serotonergic neurons of the dorsal raphe nucleus (DRN) are heterogeneous, we used a non-invasive loose-seal cell-attached method to record α1 adrenergic receptor-stimulated spiking of a large sample of neurons in brain slices obtained from transgenic mice lines that express fluorescent marker proteins under the control of serotonergic system-specific Tph2 and Pet-1 promoters. We found wide homogeneous distribution of firing rates, well fitted by a single Gaussian function (r (2) = 0.93) and independent of anatomical location (P = 0.45), suggesting that in terms of intrinsic firing properties, serotonergic neurons in the DRN represent a single cellular population. Characterization of the population in terms of spiking regularity was hindered by its dependence on the firing rate. For instance, the coefficient of variation of the interspike intervals (ISI), a common measure of spiking irregularity, is of limited usefulness since it correlates negatively with the firing rate (r = -0.33, P < 0.0001). Nevertheless, the majority of neurons exhibited regular, pacemaker-like activity, with coefficient of variance of the ISI lower than 0.5 in ~97% of cases. Unexpectedly, a small percentage of neurons (~1%) exhibited a particular spiking pattern, characterized by low frequency (~0.02-0.1 Hz) oscillations in the firing rate. Transitions between regular and oscillatory firing were observed, suggesting that the oscillatory firing is an alternative firing pattern of serotonergic neurons.
Collapse
Affiliation(s)
- Boris Mlinar
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence Florence, Italy
| | - Alberto Montalbano
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence Florence, Italy
| | - Lukasz Piszczek
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Cornelius Gross
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence Florence, Italy
| |
Collapse
|
18
|
Affiliation(s)
- Albert Adell
- Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| |
Collapse
|
19
|
Ye R, Quinlan MA, Iwamoto H, Wu HH, Green NH, Jetter CS, McMahon DG, Veestra-VanderWeele J, Levitt P, Blakely RD. Physical Interactions and Functional Relationships of Neuroligin 2 and Midbrain Serotonin Transporters. Front Synaptic Neurosci 2016; 7:20. [PMID: 26793096 PMCID: PMC4707279 DOI: 10.3389/fnsyn.2015.00020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
The neurotransmitter serotonin [5-hydroxytryptamine (5-HT)] modulates many key brain functions including those subserving sensation, emotion, reward, and cognition. Efficient clearance of 5-HT after release is achieved by the antidepressant-sensitive 5-HT transporter (SERT, SLC6A4). To identify novel SERT regulators, we pursued a proteomic analysis of mouse midbrain SERT complexes, evaluating findings in the context of prior studies that established a SERT-linked transcriptome. Remarkably, both efforts converged on a relationship of SERT with the synaptic adhesion protein neuroligin 2 (NLGN2), a post-synaptic partner for presynaptic neurexins, and a protein well-known to organize inhibitory GABAergic synapses. Western blots of midbrain reciprocal immunoprecipitations confirmed SERT/NLGN2 associations, and also extended to other NLGN2 associated proteins [e.g., α-neurexin (NRXN), gephyrin]. Midbrain SERT/NLGN2 interactions were found to be Ca(2+)-independent, supporting cis vs. trans-synaptic interactions, and were absent in hippocampal preparations, consistent with interactions arising in somatodendritic compartments. Dual color in situ hybridization confirmed co-expression of Tph2 and Nlgn2 mRNA in the dorsal raphe, with immunocytochemical studies confirming SERT:NLGN2 co-localization in raphe cell bodies but not axons. Consistent with correlative mRNA expression studies, loss of NLGN2 expression in Nlgn2 null mice produced significant reductions in midbrain and hippocampal SERT expression and function. Additionally, dorsal raphe 5-HT neurons from Nlgn2 null mice exhibit reduced excitability, a loss of GABAA receptor-mediated IPSCs, and increased 5-HT1A autoreceptor sensitivity. Finally, Nlgn2 null mice display significant changes in behaviors known to be responsive to SERT and/or 5-HT receptor manipulations. We discuss our findings in relation to the possible coordination of intrinsic and extrinsic regulation afforded by somatodendritic SERT:NLGN2 complexes.
Collapse
Affiliation(s)
- Ran Ye
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Meagan A Quinlan
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Hideki Iwamoto
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Hsiao-Huei Wu
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Noah H Green
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Christopher S Jetter
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Douglas G McMahon
- Department of Pharmacology, Vanderbilt University School of Medicine, NashvilleTN, USA; Department of Biological Sciences, Vanderbilt University School of Medicine, NashvilleTN, USA
| | - Jeremy Veestra-VanderWeele
- Department of Psychiatry, NYS Psychiatric Institute, Columbia University Medical Center, New York NY, USA
| | - Pat Levitt
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, NashvilleTN, USA; Department of Psychiatry, Vanderbilt University School of Medicine, NashvilleTN, USA
| |
Collapse
|
20
|
Montalbano A, Waider J, Barbieri M, Baytas O, Lesch KP, Corradetti R, Mlinar B. Cellular resilience: 5-HT neurons in Tph2(-/-) mice retain normal firing behavior despite the lack of brain 5-HT. Eur Neuropsychopharmacol 2015; 25:2022-35. [PMID: 26409296 DOI: 10.1016/j.euroneuro.2015.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/23/2015] [Accepted: 08/27/2015] [Indexed: 11/24/2022]
Abstract
Considerable evidence links dysfunction of serotonin (5-hydroxytryptamine, 5-HT) transmission to neurodevelopmental and psychiatric disorders characterized by compromised "social" cognition and emotion regulation. It is well established that the brain 5-HT system is under autoregulatory control by its principal transmitter 5-HT via its effects on activity and expression of 5-HT system-related proteins. To examine whether 5-HT itself also has a crucial role in the acquisition and maintenance of characteristic rhythmic firing of 5-HT neurons, we compared their intrinsic electrophysiological properties in mice lacking brain 5-HT, i.e. tryptophan hydroxylase-2 null mice (Tph2(-/-)) and their littermates, Tph2(+/-) and Tph2(+/+), by using whole-cell patch-clamp recordings in a brainstem slice preparation and single unit recording in anesthetized animals. We report that the active properties of dorsal raphe nucleus (DRN) 5-HT neurons in vivo (firing rate magnitude and variability; the presence of spike doublets) and in vitro (firing in response to depolarizing current pulses; action potential shape) as well as the resting membrane potential remained essentially unchanged across Tph2 genotypes. However, there were subtle differences in subthreshold properties, most notably, an approximately 25% higher input conductance in Tph2(-/-) mice compared with Tph2(+/-) and Tph2(+/+) littermates (p<0.0001). This difference may at least in part be a consequence of slightly bigger size of the DRN 5-HT neurons in Tph2(-/-) mice (approximately 10%, p<0.0001). Taken together, these findings show that 5-HT neurons acquire and maintain their signature firing properties independently of the presence of their principal neurotransmitter 5-HT, displaying an unexpected functional resilience to complete brain 5-HT deficiency.
Collapse
Affiliation(s)
- Alberto Montalbano
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Jonas Waider
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Mario Barbieri
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Ozan Baytas
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Boris Mlinar
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.
| |
Collapse
|
21
|
Montalbano A, Corradetti R, Mlinar B. Pharmacological Characterization of 5-HT1A Autoreceptor-Coupled GIRK Channels in Rat Dorsal Raphe 5-HT Neurons. PLoS One 2015; 10:e0140369. [PMID: 26460748 PMCID: PMC4603796 DOI: 10.1371/journal.pone.0140369] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/24/2015] [Indexed: 01/19/2023] Open
Abstract
G protein-activated inwardly rectifying potassium (GIRK) channels in 5-HT neurons are assumed to be principal effectors of 5-hydroxytryptamine 1A (5-HT1A) autoreceptors, but their pharmacology, subunit composition and the role in regulation of 5-HT neuron activity have not been fully elucidated. We sought for a pharmacological tool for assessing the functional role of GIRK channels in 5-HT neurons by characterizing the effects of drugs known to block GIRK channels in the submicromolar range of concentrations. Whole-cell voltage-clamp recording in brainstem slices were used to determine concentration-response relationships for the selected GIRK channel blockers on 5-HT1A autoreceptor-activated inwardly rectifying K+ conductance in rat dorsal raphe 5-HT neurons. 5-HT1A autoreceptor-activated GIRK conductance was completely blocked by the nonselective inwardly rectifying potassium channels blocker Ba2+ (EC50 = 9.4 μM, full block with 100 μM) and by SCH23390 (EC50 = 1.95 μM, full block with 30 μM). GIRK-specific blocker tertiapin-Q blocked 5-HT1A autoreceptor-activated GIRK conductance with high potency (EC50 = 33.6 nM), but incompletely, i.e. ~16% of total conductance resulted to be tertiapin-Q-resistant. U73343 and SCH28080, reported to block GIRK channels with submicromolar EC50s, were essentially ineffective in 5-HT neurons. Our data show that inwardly rectifying K+ channels coupled to 5-HT1A autoreceptors display pharmacological properties generally expected for neuronal GIRK channels, but different from GIRK1-GIRK2 heteromers, the predominant form of brain GIRK channels. Distinct pharmacological properties of GIRK channels in 5-HT neurons should be explored for the development of new therapeutic agents for mood disorders.
Collapse
Affiliation(s)
- Alberto Montalbano
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Boris Mlinar
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
22
|
Adler EM. Of capturing fish, mobilizing enzymes, and a surprising source for serotonin. J Gen Physiol 2015; 145:165-6. [PMID: 25712014 PMCID: PMC4338156 DOI: 10.1085/jgp.201511372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|