1
|
Chattopadhyay M, Pal B. Drugs Acting on Autonomic Nervous System. ESSENTIALS OF PHARMACODYNAMICS AND DRUG ACTION 2024:57-88. [DOI: 10.1007/978-981-97-2776-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|
2
|
Finol-Urdaneta RK, Zhorov BS, Baden DG, Adams DJ. Brevetoxin versus Brevenal Modulation of Human Nav1 Channels. Mar Drugs 2023; 21:396. [PMID: 37504927 PMCID: PMC10382042 DOI: 10.3390/md21070396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Brevetoxins (PbTx) and brevenal are marine ladder-frame polyethers. PbTx binds to and activates voltage-gated sodium (Nav) channels in native tissues, whereas brevenal antagonizes these actions. However, the effects of PbTx and brevenal on recombinant Nav channel function have not been systematically analyzed. In this study, the PbTx-3 and brevenal modulation of tissue-representative Nav channel subtypes Nav1.2, Nav1.4, Nav1.5, and Nav1.7 were examined using automated patch-clamp. While PbTx-3 and brevenal elicit concentration-dependent and subtype-specific modulatory effects, PbTx-3 is >1000-fold more potent than brevenal. Consistent with effects observed in native tissues, Nav1.2 and Nav1.4 channels were PbTx-3- and brevenal-sensitive, whereas Nav1.5 and Nav1.7 appeared resistant. Interestingly, the incorporation of brevenal in the intracellular solution caused Nav channels to become less sensitive to PbTx-3 actions. Furthermore, we generated a computational model of PbTx-2 bound to the lipid-exposed side of the interface between domains I and IV of Nav1.2. Our results are consistent with competitive antagonism between brevetoxins and brevenal, setting a basis for future mutational analyses of Nav channels' interaction with brevetoxins and brevenal. Our findings provide valuable insights into the functional modulation of Nav channels by brevetoxins and brevenal, which may have implications for the development of new Nav channel modulators with potential therapeutic applications.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Illawarra Health & Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Daniel G Baden
- Center for Marine Science, University of North Carolina Wilmington MARBIONC, Wilmington, NC 28409, USA
| | - David J Adams
- Illawarra Health & Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
3
|
Pliushcheuskaya P, Künze G. Recent Advances in Computer-Aided Structure-Based Drug Design on Ion Channels. Int J Mol Sci 2023; 24:ijms24119226. [PMID: 37298178 DOI: 10.3390/ijms24119226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Ion channels play important roles in fundamental biological processes, such as electric signaling in cells, muscle contraction, hormone secretion, and regulation of the immune response. Targeting ion channels with drugs represents a treatment option for neurological and cardiovascular diseases, muscular degradation disorders, and pathologies related to disturbed pain sensation. While there are more than 300 different ion channels in the human organism, drugs have been developed only for some of them and currently available drugs lack selectivity. Computational approaches are an indispensable tool for drug discovery and can speed up, especially, the early development stages of lead identification and optimization. The number of molecular structures of ion channels has considerably increased over the last ten years, providing new opportunities for structure-based drug development. This review summarizes important knowledge about ion channel classification, structure, mechanisms, and pathology with the main focus on recent developments in the field of computer-aided, structure-based drug design on ion channels. We highlight studies that link structural data with modeling and chemoinformatic approaches for the identification and characterization of new molecules targeting ion channels. These approaches hold great potential to advance research on ion channel drugs in the future.
Collapse
Affiliation(s)
- Palina Pliushcheuskaya
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Georg Künze
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
4
|
Abdelsayed M, Page D, Ruben PC. ARumenamides: A novel class of potential antiarrhythmic compounds. Front Pharmacol 2022; 13:976903. [PMID: 36249789 PMCID: PMC9554508 DOI: 10.3389/fphar.2022.976903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Most therapeutics targeting cardiac voltage-gated sodium channels (Nav1.5) attenuate the sodium current (INa) conducted through the pore of the protein. Whereas these drugs may be beneficial for disease states associated with gain-of-function (GoF) in Nav1.5, few attempts have been made to therapeutically treat loss-of-function (LoF) conditions. The primary impediment to designing efficacious therapies for LoF is a tendency for drugs to occlude the Nav1.5 central pore. We hypothesized that molecular candidates with a high affinity for the fenestrations would potentially reduce pore block.Methods and Results: Virtual docking was performed on 21 compounds, selected based on their affinity for the fenestrations in Nav1.5, which included a class of sulfonamides and carboxamides we identify as ARumenamide (AR). Six ARs, AR-051, AR-189, AR-674, AR-802, AR-807 and AR-811, were further docked against Nav1.5 built on NavAb and rNav1.5. Based on the virtual docking results, these particular ARs have a high affinity for Domain III-IV and Domain VI-I fenestrations. Upon functional characterization, a trend was observed in the effects of the six ARs on INa. An inverse correlation was established between the aromaticity of the AR’s functional moieties and compound block. Due to its aromaticity, AR-811 blocked INa the least compared with other aromatic ARs, which also decelerated fast inactivation onset. AR-674, with its aliphatic functional group, significantly suppresses INa and enhances use-dependence in Nav1.5. AR-802 and AR-811, in particular, decelerated fast inactivation kinetics in the most common Brugada Syndrome Type 1 and Long-QT Syndrome Type 3 mutant, E1784K, without affecting peak or persistent INa.Conclusion: Our hypothesis that LoF in Nav1.5 may be therapeutically treated was supported by the discovery of ARs, which appear to preferentially block the fenestrations. ARs with aromatic functional groups as opposed to aliphatic groups efficaciously maintained Nav1.5 availability. We predict that these bulkier side groups may have a higher affinity for the hydrophobic milieu of the fenestrations, remaining there rather than in the central pore of the channel. Future refinements of AR compound structures and additional validation by molecular dynamic simulations and screening against more Brugada variants will further support their potential benefits in treating certain LoF cardiac arrhythmias.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Mena Abdelsayed, ; Peter C. Ruben,
| | - Dana Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Mena Abdelsayed, ; Peter C. Ruben,
| |
Collapse
|
5
|
MacKenzie TMG, Abderemane-Ali F, Garrison CE, Minor DL, Bois JD. Differential effects of modified batrachotoxins on voltage-gated sodium channel fast and slow inactivation. Cell Chem Biol 2022; 29:615-624.e5. [PMID: 34963066 PMCID: PMC9035044 DOI: 10.1016/j.chembiol.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
Voltage-gated sodium channels (NaVs) are targets for a number of acute poisons. Many of these agents act as allosteric modulators of channel activity and serve as powerful chemical tools for understanding channel function. Herein, we detail studies with batrachotoxin (BTX), a potent steroidal amine, and three ester derivatives prepared through de novo synthesis against recombinant NaV subtypes (rNaV1.4 and hNaV1.5). Two of these compounds, BTX-B and BTX-cHx, are functionally equivalent to BTX, hyperpolarizing channel activation and blocking both fast and slow inactivation. BTX-yne-a C20-n-heptynoate ester-is a conspicuous outlier, eliminating fast but not slow inactivation. This property differentiates BTX-yne among other NaV modulators as a unique reagent that separates inactivation processes. These findings are supported by functional studies with bacterial NaVs (BacNaVs) that lack a fast inactivation gate. The availability of BTX-yne should advance future efforts aimed at understanding NaV gating mechanisms and designing allosteric regulators of NaV activity.
Collapse
Affiliation(s)
- Tim M G MacKenzie
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, CA 94305, USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, Box 3122, 555 Mission Bay Boulevard South, Rm. 452Z, San Francisco, CA 94158-9001, USA
| | - Catherine E Garrison
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, CA 94305, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, Box 3122, 555 Mission Bay Boulevard South, Rm. 452Z, San Francisco, CA 94158-9001, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-9001, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158-9001, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94158-9001, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - J Du Bois
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Körner J, Albani S, Sudha Bhagavath Eswaran V, Roehl AB, Rossetti G, Lampert A. Sodium Channels and Local Anesthetics-Old Friends With New Perspectives. Front Pharmacol 2022; 13:837088. [PMID: 35418860 PMCID: PMC8996304 DOI: 10.3389/fphar.2022.837088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
The long history of local anesthetics (LAs) starts out in the late 19th century when the content of coca plant leaves was discovered to alleviate pain. Soon after, cocaine was established and headed off to an infamous career as a substance causing addiction. Today, LAs and related substances-in modified form-are indispensable in our clinical everyday life for pain relief during and after minor and major surgery, and dental practices. In this review, we elucidate on the interaction of modern LAs with their main target, the voltage-gated sodium channel (Navs), in the light of the recently published channel structures. Knowledge of the 3D interaction sites of the drug with the protein will allow to mechanistically substantiate the comprehensive data available on LA gating modification. In the 1970s it was suggested that LAs can enter the channel pore from the lipid phase, which was quite prospective at that time. Today we know from cryo-electron microscopy structures and mutagenesis experiments, that indeed Navs have side fenestrations facing the membrane, which are likely the entrance for LAs to induce tonic block. In this review, we will focus on the effects of LA binding on fast inactivation and use-dependent inhibition in the light of the proposed new allosteric mechanism of fast inactivation. We will elaborate on subtype and species specificity and provide insights into modelling approaches that will help identify the exact molecular binding orientation, access pathways and pharmacokinetics. With this comprehensive overview, we will provide new perspectives in the use of the drug, both clinically and as a tool for basic ion channel research.
Collapse
Affiliation(s)
- Jannis Körner
- Institute of Physiology, Aachen, Germany.,Clinic of Anesthesiology, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| | - Simone Albani
- Institute for Neuroscience and Medicine (INM-9/IAS-5), Forschungszentrum Jülich, Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, Germany
| | | | - Anna B Roehl
- Clinic of Anesthesiology, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine (INM-9/IAS-5), Forschungszentrum Jülich, Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, Aachen, Germany.,Department of Neurology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
7
|
Alvarez-Buylla A, Payne CY, Vidoudez C, Trauger SA, O’Connell LA. Molecular physiology of pumiliotoxin sequestration in a poison frog. PLoS One 2022; 17:e0264540. [PMID: 35275922 PMCID: PMC8916643 DOI: 10.1371/journal.pone.0264540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Poison frogs bioaccumulate alkaloids for chemical defense from their arthropod diet. Although many alkaloids are accumulated without modification, some poison frog species can metabolize pumiliotoxin (PTX 251D) into the more potent allopumiliotoxin (aPTX 267A). Despite extensive research characterizing the chemical arsenal of poison frogs, the physiological mechanisms involved in the sequestration and metabolism of individual alkaloids remain unclear. We first performed a feeding experiment with the Dyeing poison frog (Dendrobates tinctorius) to ask if this species can metabolize PTX 251D into aPTX 267A and what gene expression changes are associated with PTX 251D exposure in the intestines, liver, and skin. We found that D. tinctorius can metabolize PTX 251D into aPTX 267A, and that PTX 251D exposure changed the expression level of genes involved in immune system function and small molecule metabolism and transport. To better understand the functional significance of these changes in gene expression, we then conducted a series of high-throughput screens to determine the molecular targets of PTX 251D and identify potential proteins responsible for metabolism of PTX 251D into aPTX 267A. Although screens of PTX 251D binding human voltage-gated ion channels and G-protein coupled receptors were inconclusive, we identified human CYP2D6 as a rapid metabolizer of PTX 251D in a cytochrome P450 screen. Furthermore, a CYP2D6-like gene had increased expression in the intestines of animals fed PTX, suggesting this protein may be involved in PTX metabolism. These results show that individual alkaloids can modify gene expression across tissues, including genes involved in alkaloid metabolism. More broadly, this work suggests that specific alkaloid classes in wild diets may induce physiological changes for targeted accumulation and metabolism.
Collapse
Affiliation(s)
- Aurora Alvarez-Buylla
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Cheyenne Y. Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sunia A. Trauger
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, Massachusetts, United States of America
| | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
D'Avanzo N, Miles AJ, Powl AM, Nichols CG, Wallace BA, O'Reilly AO. The T1-tetramerisation domain of Kv1.2 rescues expression and preserves function of a truncated NaChBac sodium channel. FEBS Lett 2022; 596:772-783. [PMID: 35015304 PMCID: PMC9303580 DOI: 10.1002/1873-3468.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Cytoplasmic domains frequently promote functional assembly of multimeric ion channels. To investigate structural determinants of this process, we generated the ‘T1‐chimera’ construct of the NaChBac sodium channel by truncating its C‐terminal domain and splicing the T1‐tetramerisation domain of the Kv1.2 channel to the N terminus. Purified T1‐chimera channels were tetrameric, conducted Na+ when reconstituted into proteoliposomes, and were functionally blocked by the drug mibefradil. Both the T1‐chimera and full‐length NaChBac had comparable expression levels in the membrane, whereas a NaChBac mutant lacking a cytoplasmic domain had greatly reduced membrane expression. Our findings support a model whereby bringing the transmembrane regions into close proximity enables their tetramerisation. This phenomenon is found with other channels, and thus, our findings substantiate this as a common assembly mechanism.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Pharmacology and Physiology, Université de Montréal, Canada
| | - Andrew J Miles
- Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| | - Andrew M Powl
- Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, USA
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| | - Andrias O O'Reilly
- School of Biological & Environmental Sciences, Liverpool John Moores University, UK
| |
Collapse
|
9
|
Angsutararux P, Kang PW, Zhu W, Silva JR. Conformations of voltage-sensing domain III differentially define NaV channel closed- and open-state inactivation. J Gen Physiol 2021; 153:212533. [PMID: 34347027 PMCID: PMC8348240 DOI: 10.1085/jgp.202112891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated Na+ (NaV) channels underlie the initiation and propagation of action potentials (APs). Rapid inactivation after NaV channel opening, known as open-state inactivation, plays a critical role in limiting the AP duration. However, NaV channel inactivation can also occur before opening, namely closed-state inactivation, to tune the cellular excitability. The voltage-sensing domain (VSD) within repeat IV (VSD-IV) of the pseudotetrameric NaV channel α-subunit is known to be a critical regulator of NaV channel inactivation. Yet, the two processes of open- and closed-state inactivation predominate at different voltage ranges and feature distinct kinetics. How inactivation occurs over these different ranges to give rise to the complexity of NaV channel dynamics is unclear. Past functional studies and recent cryo-electron microscopy structures, however, reveal significant inactivation regulation from other NaV channel components. In this Hypothesis paper, we propose that the VSD of NaV repeat III (VSD-III), together with VSD-IV, orchestrates the inactivation-state occupancy of NaV channels by modulating the affinity of the intracellular binding site of the IFMT motif on the III-IV linker. We review and outline substantial evidence that VSD-III activates in two distinct steps, with the intermediate and fully activated conformation regulating closed- and open-state inactivation state occupancy by altering the formation and affinity of the IFMT crevice. A role of VSD-III in determining inactivation-state occupancy and recovery from inactivation suggests a regulatory mechanism for the state-dependent block by small-molecule anti-arrhythmic and anesthetic therapies.
Collapse
Affiliation(s)
- Paweorn Angsutararux
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Po Wei Kang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Wandi Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
10
|
Abderemane-Ali F, Rossen ND, Kobiela ME, Craig RA, Garrison CE, Chen Z, Colleran CM, O’Connell LA, Du Bois J, Dumbacher JP, Minor DL. Evidence that toxin resistance in poison birds and frogs is not rooted in sodium channel mutations and may rely on "toxin sponge" proteins. J Gen Physiol 2021; 153:e202112872. [PMID: 34351379 PMCID: PMC8348241 DOI: 10.1085/jgp.202112872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/30/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Many poisonous organisms carry small-molecule toxins that alter voltage-gated sodium channel (NaV) function. Among these, batrachotoxin (BTX) from Pitohui poison birds and Phyllobates poison frogs stands out because of its lethality and unusual effects on NaV function. How these toxin-bearing organisms avoid autointoxication remains poorly understood. In poison frogs, a NaV DIVS6 pore-forming helix N-to-T mutation has been proposed as the BTX resistance mechanism. Here, we show that this variant is absent from Pitohui and poison frog NaVs, incurs a strong cost compromising channel function, and fails to produce BTX-resistant channels in poison frog NaVs. We also show that captivity-raised poison frogs are resistant to two NaV-directed toxins, BTX and saxitoxin (STX), even though they bear NaVs sensitive to both. Moreover, we demonstrate that the amphibian STX "toxin sponge" protein saxiphilin is able to protect and rescue NaVs from block by STX. Taken together, our data contradict the hypothesis that BTX autoresistance is rooted in the DIVS6 N→T mutation, challenge the idea that ion channel mutations are a primary driver of toxin resistance, and suggest the possibility that toxin sequestration mechanisms may be key for protecting poisonous species from the action of small-molecule toxins.
Collapse
Affiliation(s)
- Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Nathan D. Rossen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Megan E. Kobiela
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE
| | | | | | - Zhou Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Claire M. Colleran
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | | | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, CA
| | - John P. Dumbacher
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA
- Department of Biology, San Francisco State University, San Francisco, CA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
11
|
Fernandes AS, Pombinho A, Teixeira-Duarte CM, Morais-Cabral JH, Harley CA. Fluorometric Liposome Screen for Inhibitors of a Physiologically Important Bacterial Ion Channel. Front Microbiol 2021; 12:603700. [PMID: 33732218 PMCID: PMC7956971 DOI: 10.3389/fmicb.2021.603700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial K+ homeostasis machinery is widely conserved across bacterial species, and different from that in animals. Dysfunction in components of the machinery has an impact on intracellular turgor, membrane potential, adaptation to changes in both extracellular pH and osmolarity, and in virulence. Using a fluorescence-based liposome flux assay, we have performed a high-throughput screen to identify novel inhibitors of the KtrAB ion channel complex from Bacillus subtilis, a component of the K+ homeostasis machinery that is also present in many bacterial pathogens. The screen identified 41 compounds that inhibited K+ flux and that clustered into eight chemical groups. Many of the identified inhibitors were found to target KtrAB with an in vitro potency in the low μM range. We investigated the mechanisms of inhibition and found that most molecules affected either the membrane component of the channel, KtrB alone or the full KtrAB complex without a preference for the functional conformation of the channel, thus broadening their inhibitory action. A urea derivative molecule that inhibited the membrane component of KtrAB affected cell viability in conditions in which KtrAB activity is essential. With this proof-of-concept study, we demonstrate that targeting components of the K+ homeostasis machinery has the potential as a new antibacterial strategy and that the fluorescence-based flux assay is a robust tool for screening chemical libraries.
Collapse
Affiliation(s)
- Andreia S Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - António Pombinho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Celso M Teixeira-Duarte
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - João H Morais-Cabral
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Carol A Harley
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Zhorov BS. Structure of Sodium and Calcium Channels
with Ligands. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zhu W, Li T, Silva JR, Chen J. Conservation and divergence in NaChBac and Na V1.7 pharmacology reveals novel drug interaction mechanisms. Sci Rep 2020; 10:10730. [PMID: 32612253 PMCID: PMC7329812 DOI: 10.1038/s41598-020-67761-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023] Open
Abstract
Voltage-gated Na+ (NaV) channels regulate homeostasis in bacteria and control membrane electrical excitability in mammals. Compared to their mammalian counterparts, bacterial NaV channels possess a simpler, fourfold symmetric structure and have facilitated studies of the structural basis of channel gating. However, the pharmacology of bacterial NaV remains largely unexplored. Here we systematically screened 39 NaV modulators on a bacterial channel (NaChBac) and characterized a selection of compounds on NaChBac and a mammalian channel (human NaV1.7). We found that while many compounds interact with both channels, they exhibit distinct functional effects. For example, the local anesthetics ambroxol and lidocaine block both NaV1.7 and NaChBac but affect activation and inactivation of the two channels to different extents. The voltage-sensing domain targeting toxin BDS-I increases NaV1.7 but decreases NaChBac peak currents. The pore binding toxins aconitine and veratridine block peak currents of NaV1.7 and shift activation (aconitine) and inactivation (veratridine) respectively. In NaChBac, they block the peak current by binding to the pore residue F224. Nonetheless, aconitine has no effect on activation or inactivation, while veratridine only modulates activation of NaChBac. The conservation and divergence in the pharmacology of bacterial and mammalian NaV channels provide insights into the molecular basis of channel gating and will facilitate organism-specific drug discovery.
Collapse
Affiliation(s)
- Wandi Zhu
- Biochemical and Cellular Pharmacology, Genentech Inc., 103 DNA Way, South San Francisco, CA, USA. .,Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| | - Tianbo Li
- Biochemical and Cellular Pharmacology, Genentech Inc., 103 DNA Way, South San Francisco, CA, USA
| | - Jonathan R Silva
- Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jun Chen
- Biochemical and Cellular Pharmacology, Genentech Inc., 103 DNA Way, South San Francisco, CA, USA.
| |
Collapse
|
14
|
Wang Y, Finol-Urdaneta RK, Ngo VA, French RJ, Noskov SY. Bases of Bacterial Sodium Channel Selectivity Among Organic Cations. Sci Rep 2019; 9:15260. [PMID: 31649292 PMCID: PMC6813354 DOI: 10.1038/s41598-019-51605-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Hille's (1971) seminal study of organic cation selectivity of eukaryotic voltage-gated sodium channels showed a sharp size cut-off for ion permeation, such that no ion possessing a methyl group was permeant. Using the prokaryotic channel, NaChBac, we found some similarity and two peculiar differences in the selectivity profiles for small polyatomic cations. First, we identified a diverse group of minimally permeant cations for wildtype NaChBac, ranging in sizes from ammonium to guanidinium and tetramethylammonium; and second, for both ammonium and hydrazinium, the charge-conserving selectivity filter mutation (E191D) yielded substantial increases in relative permeability (PX/PNa). The relative permeabilities varied inversely with relative Kd calculated from 1D Potential of Mean Force profiles (PMFs) for the single cations traversing the channel. Several of the cations bound more strongly than Na+, and hence appear to act as blockers, as well as charge carriers. Consistent with experimental observations, the E191D mutation had little impact on Na+ binding to the selectivity filter, but disrupted the binding of ammonium and hydrazinium, consequently facilitating ion permeation across the NaChBac-like filter. We concluded that for prokaryotic sodium channels, a fine balance among filter size, binding affinity, occupancy, and flexibility seems to contribute to observed functional differences.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Centre for Molecular Simulation and the Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Rocio K Finol-Urdaneta
- Department of Physiology and Pharmacology, and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Van Anh Ngo
- Centre for Molecular Simulation and the Department of Biological Sciences, University of Calgary, Calgary, Canada
- Center for Nonlinear Studies, Los Alamos National Lab, Los Alamos, NM, 87544, USA
| | - Robert J French
- Department of Physiology and Pharmacology, and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Sergei Yu Noskov
- Centre for Molecular Simulation and the Department of Biological Sciences, University of Calgary, Calgary, Canada.
| |
Collapse
|
15
|
Finol-Urdaneta RK, McArthur JR, Korkosh VS, Huang S, McMaster D, Glavica R, Tikhonov DB, Zhorov BS, French RJ. Extremely Potent Block of Bacterial Voltage-Gated Sodium Channels by µ-Conotoxin PIIIA. Mar Drugs 2019; 17:md17090510. [PMID: 31470595 PMCID: PMC6780087 DOI: 10.3390/md17090510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/24/2019] [Indexed: 12/15/2022] Open
Abstract
µ-Conotoxin PIIIA, in the sub-picomolar, range inhibits the archetypal bacterial sodium channel NaChBac (NavBh) in a voltage- and use-dependent manner. Peptide µ-conotoxins were first recognized as potent components of the venoms of fish-hunting cone snails that selectively inhibit voltage-gated skeletal muscle sodium channels, thus preventing muscle contraction. Intriguingly, computer simulations predicted that PIIIA binds to prokaryotic channel NavAb with much higher affinity than to fish (and other vertebrates) skeletal muscle sodium channel (Nav 1.4). Here, using whole-cell voltage clamp, we demonstrate that PIIIA inhibits NavBac mediated currents even more potently than predicted. From concentration-response data, with [PIIIA] varying more than 6 orders of magnitude (10−12 to 10−5 M), we estimated an IC50 = ~5 pM, maximal block of 0.95 and a Hill coefficient of 0.81 for the inhibition of peak currents. Inhibition was stronger at depolarized holding potentials and was modulated by the frequency and duration of the stimulation pulses. An important feature of the PIIIA action was acceleration of macroscopic inactivation. Docking of PIIIA in a NaChBac (NavBh) model revealed two interconvertible binding modes. In one mode, PIIIA sterically and electrostatically blocks the permeation pathway. In a second mode, apparent stabilization of the inactivated state was achieved by PIIIA binding between P2 helices and trans-membrane S5s from adjacent channel subunits, partially occluding the outer pore. Together, our experimental and computational results suggest that, besides blocking the channel-mediated currents by directly occluding the conducting pathway, PIIIA may also change the relative populations of conducting (activated) and non-conducting (inactivated) states.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
- Department of Biochemistry, Brandeis University, Waltham, MA 0254-9110, USA.
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Vyacheslav S Korkosh
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
| | - Sun Huang
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Denis McMaster
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robert Glavica
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Denis B Tikhonov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
| | - Boris S Zhorov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 4K1, Canada
| | - Robert J French
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
16
|
Korkosh VS, Kiselev AM, Mikhaylov EN, Kostareva AA, Zhorov BS. Atomic Mechanisms of Timothy Syndrome-Associated Mutations in Calcium Channel Cav1.2. Front Physiol 2019; 10:335. [PMID: 30984024 PMCID: PMC6449482 DOI: 10.3389/fphys.2019.00335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Timothy syndrome (TS) is a very rare multisystem disorder almost exclusively associated with mutations G402S and G406R in helix IS6 of Cav1.2. Recently, mutations R518C/H in helix IIS0 of the voltage sensing domain II (VSD-II) were described as a cause of cardiac-only TS. The three mutations are known to decelerate voltage-dependent inactivation (VDI). Here, we report a case of cardiac-only TS caused by mutation R518C. To explore possible impact of the three mutations on interdomain contacts, we modeled channel Cav1.2 using as templates Class Ia and Class II cryo-EM structures of presumably inactivated channel Cav1.1. In both models, R518 and several other residues in VSD-II donated H-bonds to the IS6-linked α1-interaction domain (AID). We further employed steered Monte Carlo energy minimizations to move helices S4–S5, S5, and S6 from the inactivated-state positions to those seen in the X-ray structures of the open and closed NavAb channel. In the open-state models, positions of AID and VSD-II were similar to those in Cav1.1. In the closed-state models, AID moved along the β subunit (Cavβ) toward the pore axis and shifted AID-bound VSD-II. In all the models R518 retained strong contacts with AID. Our calculations suggest that conformational changes in VSD-II upon its deactivation would shift AID along Cavβ toward the pore axis. The AID-linked IS6 would bend at flexible G402 and G406, facilitating the activation gate closure. Mutations R518C/H weakened the IIS0-AID contacts and would retard the AID shift. Mutations G406R and G402S stabilized the open state and would resist the pore closure. Several Cav1.2 mutations associated with long QT syndromes are consistent with this proposition. Our results provide a mechanistic rationale for the VDI deceleration caused by TS-associated mutations and suggest targets for further studies of calcium channelopathies.
Collapse
Affiliation(s)
- Vyacheslav S Korkosh
- Almazov National Medical Research Centre, Saint Petersburg, Russia.,I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Artem M Kiselev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Anna A Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Woman and Child Health, Karolinska Institute, Stockholm, Sweden
| | - Boris S Zhorov
- Almazov National Medical Research Centre, Saint Petersburg, Russia.,I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|