1
|
Vetter J, Palagi I, Waisman A, Blaeser A. Recent advances in blood-brain barrier-on-a-chip models. Acta Biomater 2025; 197:1-28. [PMID: 40127880 DOI: 10.1016/j.actbio.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
The blood-brain barrier is a physiological barrier between the vascular system and the nervous system. Under healthy conditions, it restricts the passage of most biomolecules into the brain, making drug development exceedingly challenging. Conventional cell-based in vitro models provide valuable insights into certain features of the BBB. Nevertheless, these models often lack the three-dimensional structure and dynamic interactions of the surrounding microenvironment, which greatly influence cell functionality. Consequently, considerable efforts have been made to enhance in vitro models for drug development and disease research. Recently, microfluidic organ-on-a-chip systems have emerged as promising candidates to better mimic the dynamic nature of the BBB. This review provides a comprehensive overview of recent BBB-on-chip devices. The typical building blocks, chip designs, the perfusion infrastructure, and readouts used to characterize and evaluate BBB formation are presented, analyzed, and discussed in detail. STATEMENT OF SIGNIFICANCE: The blood-brain barrier (BBB) is a highly selective barrier that controls what can enter the brain. While it protects the brain from harmful substances, it also hinders the delivery of treatments for neurological diseases such as Alzheimer's and Parkinson's. Due to its complexity, studying the BBB in living organisms remains difficult. However, recent advances in "organ-on-a-chip" technology have allowed scientists to create small, engineered models that replicate the BBB. These models provide a powerful platform to study diseases and test potential drugs with greater accuracy than traditional methods. Organ-on-a-chip devices are designed to mimic the behavior of organs or tissues in the human body, offering a more realistic and controlled environment for research. This review highlights recent breakthroughs in BBB-on-a-chip technology, showing how these models enhance current research and have the potential to transform the way we study brain diseases and develop new drugs. By integrating biology and engineering, BBB-on-a-chip technology has the potential to transform neuroscience research, improve drug development, and enhance our understanding of brain disorders.
Collapse
Affiliation(s)
- Johanna Vetter
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Ilaria Palagi
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
2
|
Badawi AH, Mohamad NA, Stanslas J, Kirby BP, Neela VK, Ramasamy R, Basri H. In Vitro Blood-Brain Barrier Models for Neuroinfectious Diseases: A Narrative Review. Curr Neuropharmacol 2024; 22:1344-1373. [PMID: 38073104 PMCID: PMC11092920 DOI: 10.2174/1570159x22666231207114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 05/16/2024] Open
Abstract
The blood-brain barrier (BBB) is a complex, dynamic, and adaptable barrier between the peripheral blood system and the central nervous system. While this barrier protects the brain and spinal cord from inflammation and infection, it prevents most drugs from reaching the brain tissue. With the expanding interest in the pathophysiology of BBB, the development of in vitro BBB models has dramatically evolved. However, due to the lack of a standard model, a range of experimental protocols, BBB-phenotype markers, and permeability flux markers was utilized to construct in vitro BBB models. Several neuroinfectious diseases are associated with BBB dysfunction. To conduct neuroinfectious disease research effectively, there stems a need to design representative in vitro human BBB models that mimic the BBB's functional and molecular properties. The highest necessity is for an in vitro standardised BBB model that accurately represents all the complexities of an intact brain barrier. Thus, this in-depth review aims to describe the optimization and validation parameters for building BBB models and to discuss previous research on neuroinfectious diseases that have utilized in vitro BBB models. The findings in this review may serve as a basis for more efficient optimisation, validation, and maintenance of a structurally- and functionally intact BBB model, particularly for future studies on neuroinfectious diseases.
Collapse
Affiliation(s)
- Ahmad Hussein Badawi
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Afiqah Mohamad
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Centre for Foundation Studies, Lincoln University College, 47301, Petaling Jaya, Selangor, Malaysia
| | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Brian Patrick Kirby
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Vasantha Kumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
4
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Bai Y, Mi W, Meng X, Dong B, Jiang Y, Lu Y, Yu Y. Hydrogen alleviated cognitive impairment and blood‒brain barrier damage in sepsis-associated encephalopathy by regulating ABC efflux transporters in a PPARα-dependent manner. BMC Neurosci 2023; 24:37. [PMID: 37474902 PMCID: PMC10360271 DOI: 10.1186/s12868-023-00795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/30/2023] [Indexed: 07/22/2023] Open
Abstract
Hydrogen (H2) can protect against blood‒brain barrier (BBB) damage in sepsis-associated encephalopathy (SAE), but the mechanism is still unclear. We examined whether it is related to PPARα and its regulatory targets, ABC efflux transporters. After injection with DMSO/GW6471 (a PPARα inhibitor), the mice subjected to sham/caecal ligation and puncture (CLP) surgery were treated with H2 for 60 min postoperation. Additionally, bEnd.3 cells were grown in DMSO/GW6471-containing or saline medium with LPS. In addition to the survival rates, cognitive function was assessed using the Y-maze and fear conditioning tests. Brain tissues were stained with TUNEL and Nissl staining. Additionally, inflammatory mediators (TNF-α, IL-6, HMGB1, and IL-1β) were evaluated with ELISA, and PPARα, ZO-1, occludin, VE-cadherin, P-gp, BCRP and MRP2 were detected using Western blotting. BBB destruction was assessed by brain water content and Evans blue (EB) extravasation. Finally, we found that H2 improved survival rates and brain dysfunction and decreased inflammatory cytokines. Furthermore, H2 decreased water content in the brain and EB extravasation and increased ZO-1, occludin, VE-cadherin and ABC efflux transporters regulated by PPARα. Thus, we concluded that H2 decreases BBB permeability to protect against brain dysfunction in sepsis; this effect is mediated by PPARα and its regulation of ABC efflux transporters.
Collapse
Affiliation(s)
- Yuanyuan Bai
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Wen Mi
- Department of Anesthesiology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, China
| | - Xiaoyin Meng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Yuechun Lu
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China.
| |
Collapse
|
6
|
Experimental Models of In Vitro Blood-Brain Barrier for CNS Drug Delivery: An Evolutionary Perspective. Int J Mol Sci 2023; 24:ijms24032710. [PMID: 36769032 PMCID: PMC9916529 DOI: 10.3390/ijms24032710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Central nervous system (CNS) disorders represent one of the leading causes of global health burden. Nonetheless, new therapies approved against these disorders are among the lowest compared to their counterparts. The absence of reliable and efficient in vitro blood-brain barrier (BBB) models resembling in vivo barrier properties stands out as a significant roadblock in developing successful therapy for CNS disorders. Therefore, advancement in the creation of robust and sensitive in vitro BBB models for drug screening might allow us to expedite neurological drug development. This review discusses the major in vitro BBB models developed as of now for exploring the barrier properties of the cerebral vasculature. Our main focus is describing existing in vitro models, including the 2D transwell models covering both single-layer and co-culture models, 3D organoid models, and microfluidic models with their construction, permeability measurement, applications, and limitations. Although microfluidic models are better at recapitulating the in vivo properties of BBB than other models, significant gaps still exist for their use in predicting the performance of neurotherapeutics. However, this comprehensive account of in vitro BBB models can be useful for researchers to create improved models in the future.
Collapse
|
7
|
Pascreau T, Saller F, Bianchini EP, Lasne D, Bruneel A, Reperant C, Foulquier F, Denis CV, De Lonlay P, Borgel D. N-Glycosylation Deficiency Reduces the Activation of Protein C and Disrupts the Endothelial Barrier Integrity. Thromb Haemost 2022; 122:1469-1478. [PMID: 35717947 DOI: 10.1055/s-0042-1744378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Phosphomannomutase 2 (PMM2) deficiency is the most prevalent congenital disorder of glycosylation. It is associated with coagulopathy, including protein C deficiency. Since all components of the anticoagulant and cytoprotective protein C system are glycosylated, we sought to investigate the impact of an N-glycosylation deficiency on this system as a whole. To this end, we developed a PMM2 knockdown model in the brain endothelial cell line hCMEC/D3. The resulting PMM2low cells were less able to generate activated protein C (APC), due to lower surface expression of thrombomodulin and endothelial protein C receptor. The low protein levels were due to downregulated transcription of the corresponding genes (THBD and PROCR, respectively), which itself was related to downregulation of transcription regulators Krüppel-like factors 2 and 4 and forkhead box C2. PMM2 knockdown was also associated with impaired integrity of the endothelial cell monolayer-partly due to an alteration in the structure of VE-cadherin in adherens junctions. The expression of protease-activated receptor 1 (involved in the cytoprotective effects of APC on the endothelium) was not affected by PMM2 knockdown. Thrombin stimulation induced hyperpermeability in PMM2low cells. However, pretreatment of cells with APC before thrombin simulation was still associated with a barrier-protecting effect. Taken as a whole, our results show that the partial loss of PMM2 in hCMEC/D3 cells is associated with impaired activation of protein C and a relative increase in barrier permeability.
Collapse
Affiliation(s)
- Tiffany Pascreau
- HITh, UMR_S 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Laboratoire d'Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
| | - François Saller
- HITh, UMR_S 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Elsa P Bianchini
- HITh, UMR_S 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Dominique Lasne
- HITh, UMR_S 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Laboratoire d'Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
| | - Arnaud Bruneel
- Biochimie Métabolique et Cellulaire, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France.,INSERM UMR1193, Université Paris-Saclay, Châtenay-Malabry, France
| | - Christelle Reperant
- HITh, UMR_S 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - François Foulquier
- Université de Lille, CNRS, UMR 8576-UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Cécile V Denis
- HITh, UMR_S 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Pascale De Lonlay
- Centre de référence des maladies héréditaires du métabolisme de l'enfant et de l'adulte - MAMEA, Filière G2M, MetabERN, Imagine Institute, AP-HP, Hôpital Necker-Enfants Maladies, University Paris-Descartes, Paris, France
| | - Delphine Borgel
- HITh, UMR_S 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Laboratoire d'Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
| |
Collapse
|
8
|
Sekulic-Jablanovic M, Paproth J, Sgambato C, Albano G, Fuster DG, Bodmer D, Petkovic V. Lack of NHE6 and Inhibition of NKCC1 Associated With Increased Permeability in Blood Labyrinth Barrier-Derived Endothelial Cell Layer. Front Cell Neurosci 2022; 16:862119. [PMID: 35496913 PMCID: PMC9039518 DOI: 10.3389/fncel.2022.862119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022] Open
Abstract
Acoustic trauma, autoimmune inner ear disease, and presbycusis feature loss of the integrity of the blood-labyrinth barrier (BLB). Normal BLB function depends on endothelial structural integrity, which is supported and maintained by tight junctions and adherens junctions within the microvascular endothelial layer. When these junctions are disrupted, vascular leakage occurs. Tight junctions and adherens junctions are functionally and structurally linked, but the exact signaling pathways underlying their interaction remain unknown. In addition, solute carriers (SC) are essential for optimal exchange through BLB. Previously, we found that SC family member, the sodium–hydrogen exchanger NHE6, was expressed in all wildtype cochlear tissues, and that Nhe6-knockout mice displayed moderate hearing loss. Moreover, NHE6 depletion affected Trk protein turnover and endosomal signaling. Here, we investigated whether NHE6 might impact BLB integrity. We found that Nhe6-knockout, BLB-derived endothelial cells showed reduced expression of major junctional genes: Tjp1, F11r, Ocln, Cdh5, and Cldn5. Co-culturing BLB-derived endothelial cells with pericytes and/or perivascular resident macrophage-like melanocytes in a transwell system showed that monolayers of Nhe6-knockout BLB-derived cells had lower electrical resistance and higher permeability, compared to wildtype endothelial monolayers. Additionally, another SC, NKCC1, which was previously linked to congenital deafness, was downregulated in our Nhe6-knockout mouse model. Blocking NKCC1 with a NKCC1-specific inhibitor, bumetanide, in wildtype BLB-derived endothelial cells also caused the downregulation of major junctional proteins, particularly Tjp1 and F11r, which encode the zonula occludens and junctional adhesion molecule-1 proteins, respectively. Moreover, bumetanide treatment increased cell permeability. In conclusion, we showed that the lack or inhibition of NHE6 or NKCC1 affected the permeability of endothelial BLB-derived cells. These findings suggested that NHE6 and NKCC1 could serve as potential targets for modifying BLB permeability to facilitate drug delivery across the BLB to the cochlea or to protect the cochlea from ototoxic insults.
Collapse
Affiliation(s)
- Marijana Sekulic-Jablanovic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- *Correspondence: Marijana Sekulic-Jablanovic,
| | - Jessica Paproth
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cinzia Sgambato
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giuseppe Albano
- Inselspital Bern, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Daniel G. Fuster
- Inselspital Bern, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| | - Vesna Petkovic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Molina SA, Maier-Begandt D, Isakson BE, Koval M. Electrophysiological Measurements of Isolated Blood Vessels. Bio Protoc 2022; 12:e4359. [PMID: 35434187 PMCID: PMC8983162 DOI: 10.21769/bioprotoc.4359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/12/2021] [Accepted: 02/07/2022] [Indexed: 10/07/2023] Open
Abstract
The lumen of blood vessels is covered by endothelial cells, which regulate their permeability to ions and solutes. Endothelial permeability depends on the vascular bed and cell phenotype, and is influenced by different disease states. Most characterization of endothelial permeability has been carried out using isolated cells in culture. While analysis of cultured cells is a valuable approach, it does not account for factors of the native cell environment. Building on Ussing chamber studies of intact tissue specimens, here we describe a method to measure the electrophysiological properties of intact arteriole and venule endothelia, including transendothelial electrical resistance (TEER) and ion permselectivity. As an example, vessels isolated from the mesentery were treated ex vivo, then mounted in a custom-made tissue cassette that enable their analysis by classical approaches with an Ussing chamber. This method enables a detailed analysis of electrophysiological vessel responses to stresses such as proinflammatory cytokines, in the context of an intact vessel. Graphic abstract.
Collapse
Affiliation(s)
- Samuel A Molina
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniela Maier-Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
- Walter Brendel Center of Experimental Medicine, University Hospital, and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Shah B, Dong X. Current Status of In vitro Models of the Blood-Brain Barrier. Curr Drug Deliv 2022; 19:1034-1046. [PMID: 35240972 DOI: 10.2174/1567201819666220303102614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Disorders of the brain are the most debilitating situation affected globally with increased mortality rates every year, while brain physiology and cumbersome drug development processes exacerbate this. Although blood-brain barrier (BBB) and its components are important for brain protection, their complexity creates major obstacles for brain drug delivery and the BBB is the primary cause of treatment failure leading to disease progression. Therefore, developing an ideal platform which can predict the behavior of a drug delivery system in the brain at the early development phase is extremely crucial. In this direction, since the last two decades, numerous in vitro BBB models have been developed and investigated by researchers to understand the barrier properties and how closely the in vitro models mimic with in vivo BBB. In-vitro BBB models are mainly culture of endothelial cells or their coculture with other perivascular cells either in two or three-dimensional platforms. In this article, we have briefly summarized the fundamentals of BBB and outlined different types of in vitro BBB models with their pros and cons. Based on the available reports, no model seems to be robust that can truly mimic the entire properties of the in vivo BBB microvasculature. However, human stem cells, coculture and three-dimensional models were found to mimic the complexity of the barrier integrity not completely but more precisely than other in vitro models. More studies aiming towards combining them together would be needed to develop an ideal in vitro model that can overcome the existing limitations and unravel the mysterious BBB.
Collapse
Affiliation(s)
- Brijesh Shah
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
11
|
Lan G, Wang P, Chan RB, Liu Z, Yu Z, Liu X, Yang Y, Zhang J. Astrocytic VEGFA: An essential mediator in blood-brain-barrier disruption in Parkinson's disease. Glia 2021; 70:337-353. [PMID: 34713920 DOI: 10.1002/glia.24109] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
The integrity of blood-brain-barrier (BBB) is essential for normal brain functions, synaptic remodeling, and angiogenesis. BBB disruption is a common pathology during Parkinson's disease (PD), and has been hypothesized to contribute to the progression of PD. However, the molecular mechanism of BBB disruption in PD needs further investigation. Here, A53T PD mouse and a 3-cell type in vitro BBB model were used to study the roles of α-synuclein (α-syn) in BBB disruption with the key results confirmed in the brains of PD patients obtained at autopsy. The A53T PD mouse studies showed that the expression of tight junction-related proteins decreased, along with increased vascular permeability and accumulation of oligomeric α-syn in activated astrocytes in the brain. The in vitro BBB model studies demonstrated that treatment with oligomeric α-syn, but not monomeric or fibrillar α-syn, resulted in significant disruption of BBB integrity. This process involved the expression and release of vascular endothelial growth factor A (VEGFA) and nitric oxide (NO) from oligomeric α-syn treated astrocytes. Increased levels of VEGFA and iNOS were also observed in the brain of PD patients. Blocking the VEGFA signaling pathway in the in vitro BBB model effectively protected the barrier against the harmful effects of oligomeric α-syn. Finally, the protective effects on BBB integrity associated with inhibition of VEGFA signaling pathway was also confirmed in PD mice. Taken together, our study concluded that oligomeric α-syn is critically involved in PD-associated BBB disruption, in a process that is mediated by astrocyte-derived VEGFA.
Collapse
Affiliation(s)
- Guoyu Lan
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Pan Wang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Zongran Liu
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Zhenwei Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaodan Liu
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Ying Yang
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Abstract
The blood-brain barrier (BBB) is one of the most selective endothelial barriers. An understanding of its cellular, morphological, and biological properties in health and disease is necessary to develop therapeutics that can be transported from blood to brain. In vivo models have provided some insight into these features and transport mechanisms adopted at the brain, yet they have failed as a robust platform for the translation of results into clinical outcomes. In this article, we provide a general overview of major BBB features and describe various models that have been designed to replicate this barrier and neurological pathologies linked with the BBB. We propose several key parameters and design characteristics that can be employed to engineer physiologically relevant models of the blood-brain interface and highlight the need for a consensus in the measurement of fundamental properties of this barrier.
Collapse
Affiliation(s)
- Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Baptiste Le Roi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ben M Maoz
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
13
|
Scalise AA, Kakogiannos N, Zanardi F, Iannelli F, Giannotta M. The blood-brain and gut-vascular barriers: from the perspective of claudins. Tissue Barriers 2021; 9:1926190. [PMID: 34152937 PMCID: PMC8489939 DOI: 10.1080/21688370.2021.1926190] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In some organs, such as the brain, endothelial cells form a robust and highly selective blood-to-tissue barrier. However, in other organs, such as the intestine, endothelial cells provide less stringent permeability, to allow rapid exchange of solutes and nutrients where needed. To maintain the structural and functional integrity of the highly dynamic blood–brain and gut–vascular barriers, endothelial cells form highly specialized cell-cell junctions, known as adherens junctions and tight junctions. Claudins are a family of four-membrane-spanning proteins at tight junctions and they have both barrier-forming and pore-forming properties. Tissue-specific expression of claudins has been linked to different diseases that are characterized by barrier impairment. In this review, we summarize the more recent progress in the field of the claudins, with particular attention to their expression and function in the blood–brain barrier and the recently described gut–vascular barrier, under physiological and pathological conditions. Abbreviations: 22q11DS 22q11 deletion syndrome; ACKR1 atypical chemokine receptor 1; AD Alzheimer disease; AQP aquaporin; ATP adenosine triphosphate; Aβ amyloid β; BAC bacterial artificial chromosome; BBB blood-brain barrier; C/EBP-α CCAAT/enhancer-binding protein α; cAMP cyclic adenosine monophosphate (or 3ʹ,5ʹ-cyclic adenosine monophosphate); CD cluster of differentiation; CNS central nervous system; DSRED discosoma red; EAE experimental autoimmune encephalomyelitis; ECV304 immortalized endothelial cell line established from the vein of an apparently normal human umbilical cord; EGFP enhanced green fluorescent protein; ESAM endothelial cell-selective adhesion molecule; GLUT-1 glucose transporter 1; GVB gut-vascular barrier; H2B histone H2B; HAPP human amyloid precursor protein; HEK human embryonic kidney; JACOP junction-associated coiled coil protein; JAM junctional adhesion molecules; LYVE1 lymphatic vessel endothelial hyaluronan receptor 1; MADCAM1 mucosal vascular addressin cell adhesion molecule 1; MAPK mitogen-activated protein kinase; MCAO middle cerebral artery occlusion; MMP metalloprotease; MS multiple sclerosis; MUPP multi-PDZ domain protein; PATJ PALS-1-associated tight junction protein; PDGFR-α platelet-derived growth factor receptor α polypeptide; PDGFR-β platelet-derived growth factor receptor β polypeptide; RHO rho-associated protein kinase; ROCK rho-associated, coiled-coil-containing protein kinase; RT-qPCR real time quantitative polymerase chain reactions; PDGFR-β soluble platelet-derived growth factor receptor, β polypeptide; T24 human urinary bladder carcinoma cells; TG2576 transgenic mice expressing the human amyloid precursor protein; TNF-α tumor necrosis factor α; WTwild-type; ZO zonula occludens.
Collapse
|
14
|
Cameron T, Bennet T, Rowe EM, Anwer M, Wellington CL, Cheung KC. Review of Design Considerations for Brain-on-a-Chip Models. MICROMACHINES 2021; 12:441. [PMID: 33921018 PMCID: PMC8071412 DOI: 10.3390/mi12040441] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, the need for sophisticated human in vitro models for integrative biology has motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered to mimic the mechanical, biochemical and physiological properties of human organs; however, there are many important considerations when selecting or designing an appropriate device for investigating a specific scientific question. Building microfluidic Brain-on-a-Chip (BoC) models from the ground-up will allow for research questions to be answered more thoroughly in the brain research field, but the design of these devices requires several choices to be made throughout the design development phase. These considerations include the cell types, extracellular matrix (ECM) material(s), and perfusion/flow considerations. Choices made early in the design cycle will dictate the limitations of the device and influence the end-point results such as the permeability of the endothelial cell monolayer, and the expression of cell type-specific markers. To better understand why the engineering aspects of a microfluidic BoC need to be influenced by the desired biological environment, recent progress in microfluidic BoC technology is compared. This review focuses on perfusable blood-brain barrier (BBB) and neurovascular unit (NVU) models with discussions about the chip architecture, the ECM used, and how they relate to the in vivo human brain. With increased knowledge on how to make informed choices when selecting or designing BoC models, the scientific community will benefit from shorter development phases and platforms curated for their application.
Collapse
Affiliation(s)
- Tiffany Cameron
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tanya Bennet
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mehwish Anwer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Maier-Begandt D, Comstra HS, Molina SA, Krüger N, Ruddiman CA, Chen YL, Chen X, Biwer LA, Johnstone SR, Lohman AW, Good ME, DeLalio LJ, Hong K, Bacon HM, Yan Z, Sonkusare SK, Koval M, Isakson BE. A venous-specific purinergic signaling cascade initiated by Pannexin 1 regulates TNFα-induced increases in endothelial permeability. Sci Signal 2021; 14:14/672/eaba2940. [PMID: 33653920 PMCID: PMC8011850 DOI: 10.1126/scisignal.aba2940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The endothelial cell barrier regulates the passage of fluid between the bloodstream and underlying tissues, and barrier function impairment exacerbates the severity of inflammatory insults. To understand how inflammation alters vessel permeability, we studied the effects of the proinflammatory cytokine TNFα on transendothelial permeability and electrophysiology in ex vivo murine veins and arteries. We found that TNFα specifically decreased the barrier function of venous endothelium without affecting that of arterial endothelium. On the basis of RNA expression profiling and protein analysis, we found that claudin-11 (CLDN11) was the predominant claudin in venous endothelial cells and that there was little, if any, CLDN11 in arterial endothelial cells. Consistent with a difference in claudin composition, TNFα increased the permselectivity of Cl- over Na+ in venous but not arterial endothelium. The vein-specific effects of TNFα also required the activation of Pannexin 1 (Panx1) channels and the CD39-mediated hydrolysis of ATP to adenosine, which subsequently stimulated A2A adenosine receptors. Moreover, the increase in vein permeability required the activation of the Ca2+ channel TRPV4 downstream of Panx1 activation. Panx1-deficient mice resisted the pathologic effects of sepsis induced by cecal ligation and puncture on life span and lung vascular permeability. These data provide a targetable pathway with the potential to promote vein barrier function and prevent the deleterious effects of vascular leak in response to inflammation.
Collapse
Affiliation(s)
- Daniela Maier-Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Walter Brendel Center of Experimental Medicine, University Hospital, and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Heather Skye Comstra
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Samuel A Molina
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nenja Krüger
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Institute of Animal Developmental and Molecular Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Xiaobin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lauren A Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Alexander W Lohman
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Leon J DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kwangseok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul 06974, South Korea
| | - Hannah M Bacon
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Zhen Yan
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA. .,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
16
|
Ngowi EE, Wang YZ, Qian L, Helmy YASH, Anyomi B, Li T, Zheng M, Jiang ES, Duan SF, Wei JS, Wu DD, Ji XY. The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders. Front Bioeng Biotechnol 2021; 9:629832. [PMID: 33738278 PMCID: PMC7960921 DOI: 10.3389/fbioe.2021.629832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Brain is by far the most complex organ in the body. It is involved in the regulation of cognitive, behavioral, and emotional activities. The organ is also a target for many diseases and disorders ranging from injuries to cancers and neurodegenerative diseases. Brain diseases are the main causes of disability and one of the leading causes of deaths. Several drugs that have shown potential in improving brain structure and functioning in animal models face many challenges including the delivery, specificity, and toxicity. For many years, researchers have been facing challenge of developing drugs that can cross the physical (blood–brain barrier), electrical, and chemical barriers of the brain and target the desired region with few adverse events. In recent years, nanotechnology emerged as an important technique for modifying and manipulating different objects at the molecular level to obtain desired features. The technique has proven to be useful in diagnosis as well as treatments of brain diseases and disorders by facilitating the delivery of drugs and improving their efficacy. As the subject is still hot, and new research findings are emerging, it is clear that nanotechnology could upgrade health care systems by providing easy and highly efficient diagnostic and treatment methods. In this review, we will focus on the application of nanotechnology in the diagnosis and treatment of brain diseases and disorders by illuminating the potential of nanoparticles.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China.,Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yasmeen Ahmed Saleheldin Hassan Helmy
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Bright Anyomi
- Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - En-She Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Nursing and Health, Institutes of Nursing and Health, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jian-She Wei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
17
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
18
|
Villalba N, Baby S, Cha BJ, Yuan SY. Site-specific opening of the blood-brain barrier by extracellular histones. J Neuroinflammation 2020; 17:281. [PMID: 32962721 PMCID: PMC7510151 DOI: 10.1186/s12974-020-01950-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Increased extracellular histones in the bloodstream are known as a biomarker for vascular dysfunction associated with severe trauma or sepsis. There is limited information regarding the pathogenic role of circulating histones in neuroinflammation and cerebrovascular endothelial injury. Particularly, it remains unclear whether histones affect the blood-brain barrier (BBB) permeability function. METHODS The direct effects of unfractionated histones on endothelial barrier properties were first assessed in brain microvascular endothelial cell monolayers by measuring transendothelial electrical resistance and solute flux. This was followed by in vivo mouse experiments, where BBB function was assessed by quantifying brain tissue accumulation of intravenously injected tracers of different molecular sizes, and comparison was made in mice receiving a sublethal dose of histones versus sterile saline. In parallel, the endothelial barrier ultrastructure was examined in histone- and saline-injected animals under transmission electron microscopy, corresponding to the expression of tight junction and adherens junction proteins. RESULTS Histones increased paracellular permeability to sodium fluorescein and reduced barrier resistance at 100 μg/mL; these responses were accompanied by discontinuous staining of the tight junction proteins claudin-5 and zona ocludens-1. Interestingly, the effects of histones did not seem to result from cytotoxicity, as evidenced by negative propidium iodide staining. In vivo, histones increased the paracellular permeability of the BBB to small tracers of < 1-kDa, whereas tracers larger than 3-kDa remained impermeable across brain microvessels. Further analysis of different brain regions showed that histone-induced tracer leakage and loss of tight junction protein expression mainly occurred in the hippocampus, but not in the cerebral cortex. Consistently, opening of tight junctions was found in hippocampal capillaries from histone-injected animals. Protein expression levels of GFAP and iBA1 remained unchanged in histone-injected mice indicating that histones did not affect reactive gliosis. Moreover, cell membrane surface charge alterations are involved in histone-induced barrier dysfunction and tight junction disruption. CONCLUSIONS Extracellular histones cause a reversible, region-specific increase in BBB permeability to small molecules by disrupting tight junctions in the hippocampus. We suggest that circulating histones may contribute to cerebrovascular injury or brain dysfunction by altering BBB structure and function.
Collapse
Affiliation(s)
- Nuria Villalba
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Sheon Baby
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Byeong J Cha
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
19
|
Lynn KS, Peterson RJ, Koval M. Ruffles and spikes: Control of tight junction morphology and permeability by claudins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183339. [PMID: 32389670 DOI: 10.1016/j.bbamem.2020.183339] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Epithelial barrier function is regulated by a family of transmembrane proteins known as claudins. Functional tight junctions are formed when claudins interact with other transmembrane proteins, cytosolic scaffold proteins and the actin cytoskeleton. The predominant scaffold protein, zonula occludens-1 (ZO-1), directly binds to most claudin C-terminal domains, crosslinking them to the actin cytoskeleton. When imaged by immunofluorescence microscopy, tight junctions most frequently are linear structures that form between tricellular junctions. However, tight junctions also adapt non-linear architectures exhibiting either a ruffled or spiked morphology, which both are responses to changes in claudin engagement of actin filaments. Other terms for ruffled tight junctions include wavy, tortuous, undulating, serpentine or zig-zag junctions. Ruffling is under the control of hypoxia induced factor (HIF) and integrin-mediated signaling, as well as direct mechanical stimulation. Tight junction ruffling is specifically enhanced by claudin-2, antagonized by claudin-1 and requires claudin binding to ZO-1. Tight junction spikes are sites of active vesicle budding and fusion that appear as perpendicular projections oriented towards the nucleus. Spikes share molecular features with focal adherens junctions and tubulobulbar complexes found in Sertoli cells. Lung epithelial cells under stress form spikes due to an increase in claudin-5 expression that directly disrupts claudin-18/ZO-1 interactions. Together this suggests that claudins are not simply passive cargoes controlled by scaffold proteins. We propose a model where claudins specifically influence tight junction scaffold proteins to control interactions with the cytoskeleton as a mechanism that regulates tight junction assembly and function.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Raven J Peterson
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Koval
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Mesquida M, Drawnel F, Lait PJ, Copland DA, Stimpson ML, Llorenç V, Sainz de la Maza M, Adan A, Widmer G, Strassburger P, Fauser S, Dick AD, Lee RWJ, Molins B. Modelling Macular Edema: The Effect of IL-6 and IL-6R Blockade on Human Blood-Retinal Barrier Integrity In Vitro. Transl Vis Sci Technol 2019; 8:32. [PMID: 31667008 PMCID: PMC6819001 DOI: 10.1167/tvst.8.5.32] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/22/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose Macular edema (ME) is a leading cause of visual loss in a range of retinal diseases and despite the use of antivascular endothelial growth factor (anti-VEGF) agents, its successful treatment remains a major clinical challenge. Based on the indirect clinical evidence that interleukin-6 (IL-6) is a key additional candidate mediator of ME, we interrogated the effect of IL-6 on blood–retinal barrier (BRB) integrity in vitro. Methods Human retinal pigment epithelial cell (ARPE-19) and human retinal microvascular endothelial cell (HRMEC) monolayers were used to mimic the outer and inner BRB, respectively. Their paracellular permeability was assessed by measuring the passive permeation of 40 kDa fluorescein isothiocyanate (FITC)-dextran across confluent cells in the presence of IL-6. Transendothelial/epithelial electrical resistance (TEER) then was measured and the distribution of the tight junction protein ZO-1 was assessed by immunofluorescence using confocal microscopy. Results Treatment with IL-6 for 48 hours significantly increased the diffusion rate of FITC-dextran, decreased TEER, and disrupted the distribution of ZO-1 in ARPE-19 cells, which constitutively express the IL-6 transmembrane receptor, and this was reversed with IL-6R blockade. In contrast, IL-6 did not affect the paracellular permeability, TEER, or ZO-1 distribution in HRMECs. Conclusions These in vitro data support the hypothesis that IL-6 reversibly disrupts the integrity of ARPE-19 cells, but it does not affect HRMECs. Translational Relevance IL-6 is a candidate therapeutic target in the treatment of outer BRB driven ME.
Collapse
Affiliation(s)
- Marina Mesquida
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Hospital Clínic de Barcelona, Spain.,Roche Pharma Research and Early Development, Roche Innocation Centre Basel, Switzerland
| | - Faye Drawnel
- Roche Pharma Research and Early Development, Roche Innocation Centre Basel, Switzerland
| | - Philippa J Lait
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Madeleine L Stimpson
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Victor Llorenç
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Hospital Clínic de Barcelona, Spain
| | - Maite Sainz de la Maza
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Hospital Clínic de Barcelona, Spain
| | - Alfredo Adan
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Hospital Clínic de Barcelona, Spain
| | - Gabriella Widmer
- Roche Pharma Research and Early Development, Roche Innocation Centre Basel, Switzerland
| | - Pamela Strassburger
- Roche Pharma Research and Early Development, Roche Innocation Centre Basel, Switzerland
| | - Sascha Fauser
- Roche Pharma Research and Early Development, Roche Innocation Centre Basel, Switzerland
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | - Richard W J Lee
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | - Blanca Molins
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Hospital Clínic de Barcelona, Spain
| |
Collapse
|
21
|
Molins B, Mora A, Romero-Vázquez S, Pascual-Méndez A, Rovira S, Figueras-Roca M, Balcells M, Adán A, Martorell J. Shear stress modulates inner blood retinal barrier phenotype. Exp Eye Res 2019; 187:107751. [DOI: 10.1016/j.exer.2019.107751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/28/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
|
22
|
Sato K. [Consideration for future in vitro BBB models - technical development to investigate the drug delivery to the CNS]. Nihon Yakurigaku Zasshi 2019; 152:287-294. [PMID: 30531099 DOI: 10.1254/fpj.152.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Blood vessels in the central nervous system (CNS) limit the material exchange between blood and parenchyma by blood brain barrier (BBB). At present, no appropriate in vitro BBB models are available for the investigation whether or not the candidate compounds for new drugs could be delivered to the CNS. This causes huge difficulties of the development of CNS drugs and prediction of CNS adverse effects. In this review, I first outline the structures and functions of BBB, together with the parameters used for the quantification of BBB functions. I also introduce the history of in vitro BBB models used in the drug development so far, i.e., the transition from non-cell models to the models using primary culture of rodent cells, porcine, bovine, cell lines, etc. More recently, the application of human cells differentiated from human induced pluripotent stem cells and microfluidic engineering have already started. BBB is essential for the maintenance of brain homeostasis and the mechanisms of the BBB development will be clarified by reproducing functional BBB on the dish. The new in vitro models and the data may provide accurate prediction of drug delivery to the CNS and the improvement of the evaluation system for toxicity and safety, thereby leading to successful launch of new drugs on the market.
Collapse
|
23
|
Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, Bai X. Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Compr Physiol 2019; 9:565-611. [PMID: 30873582 PMCID: PMC6705133 DOI: 10.1002/cphy.c180025] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurological disorders have emerged as a predominant healthcare concern in recent years due to their severe consequences on quality of life and prevalence throughout the world. Understanding the underlying mechanisms of these diseases and the interactions between different brain cell types is essential for the development of new therapeutics. Induced pluripotent stem cells (iPSCs) are invaluable tools for neurological disease modeling, as they have unlimited self-renewal and differentiation capacity. Mounting evidence shows: (i) various brain cells can be generated from iPSCs in two-dimensional (2D) monolayer cultures; and (ii) further advances in 3D culture systems have led to the differentiation of iPSCs into organoids with multiple brain cell types and specific brain regions. These 3D organoids have gained widespread attention as in vitro tools to recapitulate complex features of the brain, and (iii) complex interactions between iPSC-derived brain cell types can recapitulate physiological and pathological conditions of blood-brain barrier (BBB). As iPSCs can be generated from diverse patient populations, researchers have effectively applied 2D, 3D, and BBB models to recapitulate genetically complex neurological disorders and reveal novel insights into molecular and genetic mechanisms of neurological disorders. In this review, we describe recent progress in the generation of 2D, 3D, and BBB models from iPSCs and further discuss their limitations, advantages, and future ventures. This review also covers the current status of applications of 2D, 3D, and BBB models in drug screening, precision medicine, and modeling a wide range of neurological diseases (e.g., neurodegenerative diseases, neurodevelopmental disorders, brain injury, and neuropsychiatric disorders). © 2019 American Physiological Society. Compr Physiol 9:565-611, 2019.
Collapse
Affiliation(s)
- Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott G. Canfield
- Department of Cellular & Integrative Physiology, IU School of Medicine-Terre Haute, Terre Haute, IN, USA
| | - Emily R. Seminary
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samantha L. Sison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
24
|
Abstract
Treatment of certain central nervous system disorders, including different types of cerebral malignancies, is limited by traditional oral or systemic administrations of therapeutic drugs due to possible serious side effects and/or lack of the brain penetration and, therefore, the efficacy of the drugs is diminished. During the last decade, several new technologies were developed to overcome barrier properties of cerebral capillaries. This review gives a short overview of the structural elements and anatomical features of the blood–brain barrier. The various in vitro (static and dynamic), in vivo (microdialysis), and in situ (brain perfusion) blood–brain barrier models are also presented. The drug formulations and administration options to deliver molecules effectively to the central nervous system (CNS) are presented. Nanocarriers, nanoparticles (lipid, polymeric, magnetic, gold, and carbon based nanoparticles, dendrimers, etc.), viral and peptid vectors and shuttles, sonoporation and microbubbles are briefly shown. The modulation of receptors and efflux transporters in the cell membrane can also be an effective approach to enhance brain exposure to therapeutic compounds. Intranasal administration is a noninvasive delivery route to bypass the blood–brain barrier, while direct brain administration is an invasive mode to target the brain region with therapeutic drug concentrations locally. Nowadays, both technological and mechanistic tools are available to assist in overcoming the blood–brain barrier. With these techniques more effective and even safer drugs can be developed for the treatment of devastating brain disorders.
Collapse
|
25
|
Ludewig P, Winneberger J, Magnus T. The cerebral endothelial cell as a key regulator of inflammatory processes in sterile inflammation. J Neuroimmunol 2018; 326:38-44. [PMID: 30472304 DOI: 10.1016/j.jneuroim.2018.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/17/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022]
Abstract
Cerebral endothelial cells accomplish numerous tasks connected to the maintenance of homeostasis of the central nervous system. They create a barrier between the central nervous system and peripheral blood and regulate mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. In pathophysiological conditions (e.g., stroke or ischemia-reperfusion injury) the endothelial functions are impaired, leading to increased vascular permeability, vascular inflammation, leukocyte-endothelium interactions, and transendothelial migration, driving CNS inflammation and neuronal destruction. This review describes the current knowledge on the regulatory roles of endothelial cells in neuroinflammatory processes.
Collapse
Affiliation(s)
- Peter Ludewig
- Department of Neurology at the University Medical Center Hamburg- Eppendorf, Hamburg, Germany.
| | - Jack Winneberger
- Department of Neurology at the University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology at the University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Endothelial Protrusions in Junctional Integrity and Barrier Function. CURRENT TOPICS IN MEMBRANES 2018; 82:93-140. [PMID: 30360784 DOI: 10.1016/bs.ctm.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endothelial cells of the microcirculation form a semi-permeable diffusion barrier between the blood and tissues. This permeability of the endothelium, particularly in the capillaries and postcapillary venules, is a normal physiological function needed for blood-tissue exchange in the microcirculation. During inflammation, microvascular permeability increases dramatically and can lead to tissue edema, which in turn can lead to dysfunction of tissues and organs. The molecular mechanisms that control the barrier function of endothelial cells have been under investigation for several decades and remain an important topic due to the potential for discovery of novel therapeutic strategies to reduce edema. This review highlights current knowledge of the cellular and molecular mechanisms that lead to endothelial hyperpermeability during inflammatory conditions associated with injury and disease. This includes a discussion of recent findings demonstrating temporal protrusions by endothelial cells that may contribute to intercellular junction integrity between endothelial cells and affect the diffusion distance for solutes via the paracellular pathway.
Collapse
|
27
|
Abstract
Silicon nanomembranes are ultrathin, highly permeable, optically transparent and biocompatible substrates for the construction of barrier tissue models. Trans-epithelial/endothelial electrical resistance (TEER) is often used as a non-invasive, sensitive and quantitative technique to assess barrier function. The current study characterizes the electrical behavior of devices featuring silicon nanomembranes to facilitate their application in TEER studies. In conventional practice with commercial systems, raw resistance values are multiplied by the area of the membrane supporting cell growth to normalize TEER measurements. We demonstrate that under most circumstances, this multiplication does not 'normalize' TEER values as is assumed, and that the assumption is worse if applied to nanomembrane chips with a limited active area. To compare the TEER values from nanomembrane devices to those obtained from conventional polymer track-etched (TE) membranes, we develop finite element models (FEM) of the electrical behavior of the two membrane systems. Using FEM and parallel cell-culture experiments on both types of membranes, we successfully model the evolution of resistance values during the growth of endothelial monolayers. Further, by exploring the relationship between the models we develop a 'correction' function, which when applied to nanomembrane TEER, maps to experiments on conventional TE membranes. In summary, our work advances the the utility of silicon nanomembranes as substrates for barrier tissue models by developing an interpretation of TEER values compatible with conventional systems.
Collapse
|
28
|
Skjærvø Ø, Brandtzaeg OK, Lausund KB, Pabst O, Martinsen ØG, Lundanes E, Wilson SR. Exploring bioimpendance instrumentation for the characterization of open tubular liquid chromatography columns. J Chromatogr A 2018; 1534:195-200. [DOI: 10.1016/j.chroma.2017.12.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/26/2022]
|
29
|
More VR, Campos CR, Evans RA, Oliver KD, Chan GN, Miller DS, Cannon RE. PPAR-α, a lipid-sensing transcription factor, regulates blood-brain barrier efflux transporter expression. J Cereb Blood Flow Metab 2017; 37:1199-1212. [PMID: 27193034 PMCID: PMC5453444 DOI: 10.1177/0271678x16650216] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lipid sensor peroxisome proliferator-activated receptor alpha (PPAR- α) is the master regulator of lipid metabolism. Dietary release of endogenous free fatty acids, fibrates, and certain persistent environmental pollutants, e.g. perfluoroalkyl fire-fighting foam components, are peroxisome proliferator-activated receptor alpha ligands. Here, we define a role for peroxisome proliferator-activated receptor alpha in regulating the expression of three ATP-driven drug efflux transporters at the rat and mouse blood-brain barriers: P-glycoprotein (Abcb1), breast cancer resistance protein (Bcrp/Abcg2), and multidrug resistance-associated protein 2 (Mrp2/Abcc2). Exposing isolated rat brain capillaries to linoleic acid, clofibrate, or PKAs increased the transport activity and protein expression of the three ABC transporters. These effects were blocked by the PPAR- α antagonist, GW6471. Dosing rats with 20 mg/kg or 200 mg/kg of clofibrate decreased the brain accumulation of the P-glycoprotein substrate, verapamil, by 50% (in situ brain perfusion; effects blocked by GW6471) and increased P-glycoprotein expression and activity in capillaries ex vivo. Fasting C57Bl/6 wild-type mice for 24 h increased both serum lipids and brain capillary P-glycoprotein transport activity. Fasting did not alter P-glycoprotein activity in PPAR- α knockout mice. These results indicate that hyperlipidemia, lipid-lowering fibrates and exposure to certain fire-fighting foam components activate blood-brain barrier peroxisome proliferator-activated receptor alpha, increase drug efflux transporter expression and reduce drug delivery to the brain.
Collapse
Affiliation(s)
- Vijay R More
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - Christopher R Campos
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - Rebecca A Evans
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - Keith D Oliver
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - Gary Ny Chan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - David S Miller
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - Ronald E Cannon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| |
Collapse
|
30
|
Terrell-Hall TB, Ammer AG, Griffith JIG, Lockman PR. Permeability across a novel microfluidic blood-tumor barrier model. Fluids Barriers CNS 2017; 14:3. [PMID: 28114946 PMCID: PMC5260004 DOI: 10.1186/s12987-017-0050-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022] Open
Abstract
Background The lack of translatable in vitro blood-tumor barrier (BTB) models creates challenges in the development of drugs to treat tumors of the CNS and our understanding of how the vascular changes at the BBB in the presence of a tumor. Methods In this study, we characterize a novel microfluidic model of the BTB (and BBB model as a reference) that incorporates flow and induces shear stress on endothelial cells. Cell lines utilized include human umbilical vein endothelial cells co-cultured with CTX-TNA2 rat astrocytes (BBB) or Met-1 metastatic murine breast cancer cells (BTB). Cells were capable of communicating across microfluidic compartments via a porous interface. We characterized the device by comparing permeability of three passive permeability markers and one marker subject to efflux. Results The permeability of Sulforhodamine 101 was significantly (p < 0.05) higher in the BTB model (13.1 ± 1.3 × 10−3, n = 4) than the BBB model (2.5 ± 0.3 × 10−3, n = 6). Similar permeability increases were observed in the BTB model for molecules ranging from 600 Da to 60 kDa. The function of P-gp was intact in both models and consistent with recent published in vivo data. Specifically, the rate of permeability of Rhodamine 123 across the BBB model (0.6 ± 0.1 × 10−3, n = 4), increased 14-fold in the presence of the P-gp inhibitor verapamil (14.7 ± 7.5 × 10−3, n = 3) and eightfold with the addition of Cyclosporine A (8.8 ± 1.8 × 10−3, n = 3). Similar values were noted in the BTB model. Conclusions The dynamic microfluidic in vitro BTB model is a novel commercially available model that incorporates shear stress, and has permeability and efflux properties that are similar to in vivo data.
Collapse
Affiliation(s)
- Tori B Terrell-Hall
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, 1 Medical Center Dr., Morgantown, WV, 26506, USA
| | - Amanda G Ammer
- WVU Cancer Institute Research Laboratories, West Virginia University HSC, Morgantown, WV, 26506, USA
| | - Jessica I G Griffith
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, 1 Medical Center Dr., Morgantown, WV, 26506, USA
| | - Paul R Lockman
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, 1 Medical Center Dr., Morgantown, WV, 26506, USA.
| |
Collapse
|
31
|
Aparicio-Blanco J, Martín-Sabroso C, Torres-Suárez AI. In vitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials 2016; 103:229-255. [PMID: 27392291 DOI: 10.1016/j.biomaterials.2016.06.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier accounts for the high attrition rate of the treatments of most brain disorders, which therefore remain one of the greatest health-care challenges of the twenty first century. Against this background of hindrance to brain delivery, nanomedicine takes advantage of the assembly at the nanoscale of available biomaterials to provide a delivery platform with potential to raising brain levels of either imaging or therapeutic agents. Nevertheless, to prevent later failure due to ineffective drug levels at the target site, researchers have been endeavoring to develop a battery of in vitro screening procedures that can predict earlier in the drug discovery process the ability of these cutting-edge drug delivery platforms to cross the blood-brain barrier for biomedical purposes. This review provides an in-depth analysis of the currently available in vitro blood-brain barrier models (both cell-based and non-cell-based) with the focus on their suitability for understanding the biological brain distribution of forthcoming nanomedicines. The relationship between experimental factors and underlying physiological assumptions that would ultimately lead to a more predictive capacity of their in vivo performance, and those methods already assayed for the evaluation of the brain distribution of nanomedicines are comprehensively discussed.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Ana-Isabel Torres-Suárez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain; University Institute of Industrial Pharmacy, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
32
|
The effect of aging on brain barriers and the consequences for Alzheimer’s disease development. Mamm Genome 2016; 27:407-20. [DOI: 10.1007/s00335-016-9637-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/20/2016] [Indexed: 12/31/2022]
|
33
|
Paradis A, Leblanc D, Dumais N. Optimization of an in vitro human blood-brain barrier model: Application to blood monocyte transmigration assays. MethodsX 2015; 3:25-34. [PMID: 26865992 PMCID: PMC4710797 DOI: 10.1016/j.mex.2015.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
The blood–brain barrier (BBB) is a selectively permeable barrier that separates the circulating blood from the extracellular fluid of the brain and is an essential component in brain homeostasis. In vitro BBB models are valuable supporting tools that can precede and complement animal and human studies of the development and progression of the central nervous system diseases. At present, mono-, co-, and tri-culture models that use porcine, murine, or human cells have been developed. We have optimized a two-dimensional model of the human BBB using primary human brain microvascular endothelial cells and normal human astrocytes. We have validated the effectiveness of our model with transmigration assays of human blood monocytes toward CCL19, a natural ligand of the chemokine receptor CCR7. This model offers the following advantages:It is simple, convenient, and requires small quantities of material, reagents, and primary cells. It can be used to monitor cell migration through the BBB. It can be used to assess brain capillary permeability in the presence of xenobiotic, pro-inflammatory, or other substances.
Collapse
Affiliation(s)
- Alexandre Paradis
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1 K 2R1
| | - David Leblanc
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1 K 2R1
| | - Nancy Dumais
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1 K 2R1
| |
Collapse
|
34
|
Wilson HK, Canfield SG, Shusta EV, Palecek SP. Concise review: tissue-specific microvascular endothelial cells derived from human pluripotent stem cells. Stem Cells 2015; 32:3037-45. [PMID: 25070152 DOI: 10.1002/stem.1797] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/22/2014] [Indexed: 01/06/2023]
Abstract
Accumulating evidence suggests that endothelial cells (ECs) display significant heterogeneity across tissue types, playing an important role in tissue regeneration and homeostasis. Recent work demonstrating the derivation of tissue-specific microvascular endothelial cells (TS-MVECs) from human pluripotent stem cells (hPSCs) has ignited the potential to generate tissue-specific models which may be applied to regenerative medicine and in vitro modeling applications. Here, we review techniques by which hPSC-derived TS-MVECs have been made to date and discuss how current hPSC-EC differentiation protocols may be directed toward tissue-specific fates. We begin by discussing the nature of EC tissue specificity in vivo and review general hPSC-EC differentiation protocols generated over the last decade. Finally, we describe how specificity can be integrated into hPSC-EC protocols to generate hPSC-derived TS-MVECs in vitro, including EC and parenchymal cell coculture, directed differentiation, and direct reprogramming strategies.
Collapse
Affiliation(s)
- Hannah K Wilson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
35
|
Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. ACTA ACUST UNITED AC 2015; 20:107-26. [PMID: 25586998 DOI: 10.1177/2211068214561025] [Citation(s) in RCA: 1409] [Impact Index Per Article: 140.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) is a widely accepted quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial and epithelial monolayers. TEER values are strong indicators of the integrity of the cellular barriers before they are evaluated for transport of drugs or chemicals. TEER measurements can be performed in real time without cell damage and generally are based on measuring ohmic resistance or measuring impedance across a wide spectrum of frequencies. The measurements for various cell types have been reported with commercially available measurement systems and also with custom-built microfluidic implementations. Some of the barrier models that have been widely characterized using TEER include the blood-brain barrier (BBB), gastrointestinal (GI) tract, and pulmonary models. Variations in these values can arise due to factors such as temperature, medium formulation, and passage number of cells. The aim of this article is to review the different TEER measurement techniques and analyze their strengths and weaknesses, determine the significance of TEER in drug toxicity studies, examine the various in vitro models and microfluidic organs-on-chips implementations using TEER measurements in some widely studied barrier models (BBB, GI tract, and pulmonary), and discuss the various factors that can affect TEER measurements.
Collapse
Affiliation(s)
- Balaji Srinivasan
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Aditya Reddy Kolli
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | | | | | | | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
36
|
Knotzer H, Filipovic M, Siegemund M, Kleinsasser A. The physiologic perspective in fluid management in vascular anesthesiology. J Cardiothorac Vasc Anesth 2014; 28:1604-8. [PMID: 25240288 DOI: 10.1053/j.jvca.2014.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Indexed: 01/22/2023]
Abstract
Vascular surgery patients frequently suffer from atherosclerosis and peripheral arterial occlusive disease generating endothelial dysfunction. Furthermore, ischemia and reperfusion during surgery damage endothelial cells and, especially, the endothelial glycocalix. The damage of the glycocalix promotes an increase in permeability. Not only crystalloids, which freely diffuse between the intravascular and the interstitial compartment, but also colloidal fluids cross from the intravascular space in the interstitial space with the consequence of edema formation. Possible tissue edema may result in an impairment of tissue oxygenation, leading to wound healing disturbances and initiation of inflammatory responses up to tissue apoptosis. Particularly in vascular anesthesia, this possibly means that colloids only should be administered in acute volume resuscitation immediately after unclamping a big vessel for immediate volume restoration. Which colloidal fluid should be administered is still under intense discussion. From a theoretical physiologic point of view, iso-osmolar albumin is the best choice regarding volume effect, antioxidative properties, and protection against destruction of the glycocalix. Nonetheless, albumin experimentally has not lived up to its promise in the clinical setting. Thus, further well-conducted large randomized clinical trials are necessary to ascertain the optimal fluid therapy in vascular surgery patients.
Collapse
Affiliation(s)
- Hans Knotzer
- Institute for Anesthesiology and Critical Care Medicine, II, Klinikum Wels, Austria.
| | | | | | | |
Collapse
|
37
|
Luckenbach T, Fischer S, Sturm A. Current advances on ABC drug transporters in fish. Comp Biochem Physiol C Toxicol Pharmacol 2014; 165:28-52. [PMID: 24858718 DOI: 10.1016/j.cbpc.2014.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/14/2023]
Abstract
Most members of the large ATP-binding cassette (ABC) gene family are transporters involved in substrate translocation across biological membranes. In eukaryotes, ABC proteins functioning as drug transporters are located in the plasma membrane and mediate the cellular efflux of a wide range of organic chemicals, with some transporters also transporting certain metals. As the enhanced expression of ABC drug transporters can confer multidrug resistance (MDR) to cancers and multixenobiotic resistance (MXR) to organisms from polluted habitats, these ABC family members are also referred to as MDR or MXR proteins. In mammals, ABC drug transporters show predominant expression in tissues involved in excretion or constituting internal or external body boundaries, where they facilitate the excretion of chemicals and their metabolites, and limit chemical uptake and penetration into "sanctuary" sites of the body. Available knowledge about ABC proteins is still limited in teleost fish, a large vertebrate group of high ecological and economic importance. Using transport activity measurements and immunochemical approaches, early studies demonstrated similarities in the tissue distribution of ABC drug transporters between teleosts and mammals, suggesting conserved roles of the transporters in the biochemical defence against toxicants. Recently, the availability of teleost genome assemblies has stimulated studies of the ABC family in this taxon. This review summarises the current knowledge regarding the genetics, functional properties, physiological function, and ecotoxicological relevance of teleostean ABC transporters. The available literature is reviewed with emphasis on recent studies addressing the tissue distribution, substrate spectrum, regulation, physiological function and phylogenetic origin of teleostean ABC transporters.
Collapse
Affiliation(s)
- Till Luckenbach
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Stephan Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Environmental Systems Sciences, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Armin Sturm
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
38
|
Salameh TS, Banks WA. Delivery of therapeutic peptides and proteins to the CNS. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:277-99. [PMID: 25307220 PMCID: PMC6087545 DOI: 10.1016/bs.apha.2014.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptides and proteins have potent effects on the brain after their peripheral administration, suggesting that they may be good substrates for the development of CNS therapeutics. Major hurdles to such development include their relation to the blood-brain barrier (BBB) and poor pharmacokinetics. Some peptides cross the BBB by transendothelial diffusion and others cross in the blood-to-brain direction by saturable transporters. Some regulatory proteins are also transported across the BBB and antibodies can enter the CNS via the extracellular pathways. Glycoproteins and some antibody fragments can be taken up and cross the BBB by mechanisms related to adsorptive endocytosis/transcytosis. Many peptides and proteins are transported out of the CNS by saturable efflux systems and enzymatic activity in the blood, CNS, or BBB are substantial barriers to others. Both influx and efflux transporters are altered by various substances and in disease states. Strategies that manipulate these interactions between the BBB and peptides and proteins provide many opportunities for the development of therapeutics. Such strategies include increasing transendothelial diffusion of small peptides, upregulation of saturable influx transporters with allosteric regulators and other posttranslational means, use of vectors and other Trojan horse strategies, inhibition of efflux transporters including with antisense molecules, and improvement in pharmacokinetic parameters to overcome short half-lives, tissue sequestration, and enzymatic degradation.
Collapse
Affiliation(s)
- Therese S Salameh
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA
| | - William A Banks
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
39
|
Abstract
Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal "osmoreceptors" that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water balance. Fine-tuning of water absorption occurs along the collecting duct, and depends on unique structural modifications of renal tubular epithelium that confer a wide range of water permeability. In this article, we review the mechanisms that ensure water homeostasis as well as the fundamentals of disorders of water balance.
Collapse
Affiliation(s)
- John Danziger
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
40
|
Loureiro JA, Gomes B, Coelho MAN, do Carmo Pereira M, Rocha S. Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies. Nanomedicine (Lond) 2014; 9:709-22. [PMID: 24827845 DOI: 10.2217/nnm.14.27] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Development of therapeutics for brain disorders is one of the more difficult challenges to be overcome by the scientific community due to the inability of most molecules to cross the blood-brain barrier (BBB). Antibody-conjugated nanoparticles are drug carriers that can be used to target encapsulated drugs to the brain endothelial cells and have proven to be very promising. They significantly improve the accumulation of the drug in pathological sites and decrease the undesirable side effect of drugs in healthy tissues. We review the systems that have demonstrated promising results in crossing the BBB through receptor-mediated endocytic mechanisms for the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Joana A Loureiro
- LEBABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | | | | | | | | |
Collapse
|
41
|
Passeleu-Le Bourdonnec C, Carrupt PA, Scherrmann JM, Martel S. Methodologies to assess drug permeation through the blood-brain barrier for pharmaceutical research. Pharm Res 2013; 30:2729-56. [PMID: 23801086 DOI: 10.1007/s11095-013-1119-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/11/2013] [Indexed: 12/21/2022]
Abstract
The drug discovery process for drugs that target the central nervous system suffers from a very high rate of failure due to the presence of the blood-brain barrier, which limits the entry of xenobiotics into the brain. To minimise drug failure at different stages of the drug development process, new methodologies have been developed to understand the absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of drug candidates at early stages of drug development. Additionally, understanding the permeation of drug candidates is also important, particularly for drugs that target the central nervous system. During the first stages of the drug discovery process, in vitro methods that allow for the determination of permeability using high-throughput screening methods are advantageous. For example, performing the parallel artificial membrane permeability assay followed by cell-based models with interesting hits is a useful technique for identifying potential drugs. In silico models also provide interesting information but must be confirmed by in vitro models. Finally, in vivo models, such as in situ brain perfusion, should be studied to reduce a large number of drug candidates to a few lead compounds. This article reviews the different methodologies used in the drug discovery and drug development processes to determine the permeation of drug candidates through the blood-brain barrier.
Collapse
Affiliation(s)
- Céline Passeleu-Le Bourdonnec
- School of Pharmaceutical Sciences, University of Geneva University of Lausanne, Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | | | | | | |
Collapse
|
42
|
Gonçalves A, Ambrósio AF, Fernandes R. Regulation of claudins in blood-tissue barriers under physiological and pathological states. Tissue Barriers 2013; 1:e24782. [PMID: 24665399 PMCID: PMC3867514 DOI: 10.4161/tisb.24782] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 01/01/2023] Open
Abstract
Claudins are pivotal building blocks of tight junctions that form the paracellular barrier in epithelia and endothelia. In mammals, claudins are a 27-gene family that encodes tetraspan membrane proteins, playing a crucial role in the formation and integrity of tight junctions and regulate the barrier function. Claudin isoforms are expressed in a tissue- and/or developmental stage-dependent manner. A growing body of evidence indicates that pathological states characterized by neuroinflammation, such as Alzheimer disease, multiple sclerosis, diabetic retinopathy and retinopathy of prematurity share a common feature: the barrier breakdown. This review aims integrating and summarizing the most relevant and recent work developed in the field of claudins, with particular attention to their role in blood-brain and blood-retinal barriers, as well as describing their regulation in the aforementioned human diseases.
Collapse
Affiliation(s)
- Andreia Gonçalves
- Laboratory of Pharmacology and Experimental Therapeutics; IBILI - Institute for Biomedical Imaging and Life Sciences; Faculty of Medicine; University of Coimbra; Coimbra, Portugal
| | - António Francisco Ambrósio
- Centre of Ophthalmology and Vision Sciences; IBILI; Faculty of Medicine; University of Coimbra; Coimbra, Portugal ; AIBILI; Coimbra, Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics; IBILI - Institute for Biomedical Imaging and Life Sciences; Faculty of Medicine; University of Coimbra; Coimbra, Portugal ; Centre of Ophthalmology and Vision Sciences; IBILI; Faculty of Medicine; University of Coimbra; Coimbra, Portugal
| |
Collapse
|
43
|
Lee WL, Klip A. Shuttling glucose across brain microvessels, with a little help from GLUT1 and AMP kinase. Focus on "AMP kinase regulation of sugar transport in brain capillary endothelial cells during acute metabolic stress". Am J Physiol Cell Physiol 2012; 303:C803-5. [PMID: 22814398 DOI: 10.1152/ajpcell.00241.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Sagar D, Foss C, El Baz R, Pomper MG, Khan ZK, Jain P. Mechanisms of dendritic cell trafficking across the blood-brain barrier. J Neuroimmune Pharmacol 2012; 7:74-94. [PMID: 21822588 PMCID: PMC3276728 DOI: 10.1007/s11481-011-9302-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/14/2022]
Abstract
Although the central nervous system (CNS) is considered to be an immunoprivileged site, it is susceptible to a host of autoimmune as well as neuroinflammatory disorders owing to recruitment of immune cells across the blood-brain barrier into perivascular and parenchymal spaces. Dendritic cells (DCs), which are involved in both primary and secondary immune responses, are the most potent immune cells in terms of antigen uptake and processing as well as presentation to T cells. In light of the emerging importance of DC traficking into the CNS, these cells represent good candidates for targeted immunotherapy against various neuroinflammatory diseases. This review focuses on potential physiological events and receptor interactions between DCs and the microvascular endothelial cells of the brain as they transmigrate into the CNS during degeneration and injury. A clear understanding of the underlying mechanisms involved in DC migration may advance the development of new therapies that manipulate these mechanistic properties via pharmacologic intervention. Furthermore, therapeutic validation should be in concurrence with the molecular imaging techniques that can detect migration of these cells in vivo. Since the use of noninvasive methods to image migration of DCs into CNS has barely been explored, we highlighted potential molecular imaging techniques to achieve this goal. Overall, information provided will bring this important leukocyte population to the forefront as key players in the immune cascade in the light of the emerging contribution of DCs to CNS health and disease.
Collapse
Affiliation(s)
- Divya Sagar
- Drexel Institute for Biotechnology and Virology Research, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Catherine Foss
- Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Rasha El Baz
- Drexel Institute for Biotechnology and Virology Research, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Martin G. Pomper
- Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Zafar K. Khan
- Drexel Institute for Biotechnology and Virology Research, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Pooja Jain
- Drexel Institute for Biotechnology and Virology Research, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Department of Microbiology & Immunology, Drexel Institute for Biotechnology & Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| |
Collapse
|
45
|
Coureuil M, Join-Lambert O, Lécuyer H, Bourdoulous S, Marullo S, Nassif X. Mechanism of meningeal invasion by Neisseria meningitidis. Virulence 2012; 3:164-72. [PMID: 22366962 PMCID: PMC3396695 DOI: 10.4161/viru.18639] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The blood-cerebrospinal fluid barrier physiologically protects the meningeal spaces from blood-borne bacterial pathogens, due to the existence of specialized junctional interendothelial complexes. Few bacterial pathogens are able to reach the subarachnoidal space and among those, Neisseria meningitidis is the one that achieves this task the most constantly when present in the bloodstream. Meningeal invasion is a consequence of a tight interaction of meningococci with brain endothelial cells. This interaction, mediated by the type IV pili, is responsible for the formation of microcolonies on the apical surface of the cells. This interaction is followed by the activation of signaling pathways in the host cells leading to the formation of endothelial docking structures resembling those elicited by the interaction of leukocytes with endothelial cells during extravasation. The consequence of these bacterial-induced signaling events is the recruitment of intercellular junction components in the docking structure and the subsequent opening of the intercellular junctions.
Collapse
|
46
|
McCaffrey G, Staatz WD, Quigley CA, Nametz N, Seelbach MJ, Campos CR, Brooks TA, Egleton RD, Davis TP. Tight junctions contain oligomeric protein assembly critical for maintaining blood-brain barrier integrity in vivo. J Neurochem 2011; 103:2540-55. [PMID: 17931362 DOI: 10.1111/j.1471-4159.2007.04943.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tight junctions (TJs) are major components of the blood-brain barrier (BBB) that physically obstruct the interendothelial space and restrict paracellular diffusion of blood-borne substances from the peripheral circulation to the CNS. TJs are dynamic structures whose intricate arrangement of oligomeric transmembrane and accessory proteins rapidly alters in response to external stressors to produce changes in BBB permeability. In this study, we investigate the constitutive trafficking of the TJ transmembrane proteins occludin and claudin-5 that are essential for forming the TJ seal between microvascular endothelial cells that inhibits paracellular diffusion. Using a novel, detergent-free OptiPrep density-gradient method to fractionate rat cerebral microvessels, we identify a plasma membrane lipid raft domain that contains oligomeric occludin and claudin-5. Our data suggest that oligomerization of occludin involves disulfide bond formation within transmembrane regions, and that assembly of the TJ oligomeric protein complex is facilitated by an oligomeric caveolin scaffold. This is the first time that distribution of oligomeric TJ transmembrane proteins within plasma membrane lipid rafts at the BBB has been examined in vivo. The findings reported in this study are critical to understand the mechanism of assembly of the TJ multiprotein complex that is essential for maintaining BBB integrity.
Collapse
Affiliation(s)
- Gwen McCaffrey
- Department of Medical Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Ave, Tucson, Arizona, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
ElAli A, Hermann DM. ATP-binding cassette transporters and their roles in protecting the brain. Neuroscientist 2011; 17:423-36. [PMID: 21518814 DOI: 10.1177/1073858410391270] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The blood-brain barrier is a network of endothelial cells that are tightly attached with each other via specialized cell-cell contacts. This passive diffusion barrier is complemented by ATP-binding cassette (ABC) transporters, which are localized on the surface of the endothelial cells. ABC transporters play important roles in the maintenance of blood-brain barrier integrity, as they carry a wide range of organic molecules, cell metabolites, and nutrients both out of the brain and into the brain. Recent studies have unraveled important roles of ABC transporters in the preservation of tissue homeostasis, pointing out the fact that ABC transporters protect both brain parenchymal cells and microvascular cells from injury. As such, ABC transporters have been involved in the pathogenesis of age-related neurodegenerative diseases, such as Parkinson and Alzheimer diseases, recently. This has led to the idea that neurodegenerative processes might be targeted by restoration of transport processes across the blood-brain barrier.
Collapse
Affiliation(s)
- Ayman ElAli
- Department of Neurology, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
48
|
Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 2011; 8:3. [PMID: 21349151 PMCID: PMC3045361 DOI: 10.1186/2045-8118-8-3] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/18/2011] [Indexed: 01/11/2023] Open
Abstract
Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells.
Collapse
Affiliation(s)
- Zoran Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, SAFAT 13110, Kuwait.
| |
Collapse
|
49
|
Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 2010; 1:a002584. [PMID: 20066090 DOI: 10.1101/cshperspect.a002584] [Citation(s) in RCA: 758] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding of tight junctions has evolved from their historical perception as inert solute barriers to recognition of their physiological and biochemical complexity. Many proteins are specifically localized to tight junctions, including cytoplasmic actin-binding proteins and adhesive transmembrane proteins. Among the latter are claudins, which are critical barrier proteins. Current information suggests that the paracellular barrier is most usefully modeled as having two physiologic components: a system of charge-selective small pores, 4 A in radius, and a second pathway created by larger discontinuities in the barrier, lacking charge or size discrimination. The first pathway is influenced by claudin expression patterns and the second is likely controlled by different proteins and signals. Recent information on claudin function and disease-causing mutations have led to a more complete understanding of their role in barrier formation, but progress is impeded by lack of high resolution structural information.
Collapse
Affiliation(s)
- James M Anderson
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, 6312 MBRB, Chapel Hill, North Carolina 27599-7545, USA.
| | | |
Collapse
|
50
|
Strategy for effective brain drug delivery. Eur J Pharm Sci 2010; 40:385-403. [DOI: 10.1016/j.ejps.2010.05.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 04/15/2010] [Accepted: 05/10/2010] [Indexed: 12/20/2022]
|