1
|
Thapa A, Beh JH, Robinson SD, Deuis JR, Tran H, Vetter I, Keramidas A. A venom peptide-induced Na V channel modulation mechanism involving the interplay between fixed channel charges and ionic gradients. J Biol Chem 2024; 300:107757. [PMID: 39260690 PMCID: PMC11470524 DOI: 10.1016/j.jbc.2024.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Venoms are used by arthropods either to immobilize prey or as defense against predators. Our study focuses on the venom peptide, Ta3a, from the African ant species, Tetramorium africanum and its effects on voltage-gated sodium (NaV) channels, which are ion channels responsible for the generation of electrical signals in electrically excitable cells, such as neurons. Using the NaV1.7 isoform as our model NaV channel we show that Ta3a prolongs single channel active periods with increased open probability and induces non-inactivating whole-cell currents. Ta3a-affected NaV1.7 channels exhibit a leftward (hyperpolarizing) shift in activation threshold, constitutive activity even in the absence of an activating voltage stimulus, and at cell membrane voltages where channels are normally silent. Current-voltage experiments show that Ta3a shifts the voltage at which NaV current changes direction (reversal potential) by altering the local ionic concentration of permeant ions (Na+) rather than changing the channel's preference for ionic species. We propose a model where Ta3a maintains the positively charged voltage-sensing (S4) domains of the channel in the activated configuration where their electric field is exposed to the extracellular membrane surface to create an ionic bilayer comprising S4 domains and mobile anions (Cl-). This bilayer has a depolarizing effect on the cell membrane, thus reducing the amount of externally applied voltage required for channel activation.
Collapse
Affiliation(s)
- Ashvriya Thapa
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jia Hao Beh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Hue Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
2
|
Tikhonov DB, Zhorov BS. P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models. MEMBRANES 2022; 12:membranes12020229. [PMID: 35207150 PMCID: PMC8876033 DOI: 10.3390/membranes12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
The superfamily of P-loop channels includes potassium, sodium, and calcium channels, as well as TRP channels and ionotropic glutamate receptors. A rapidly increasing number of crystal and cryo-EM structures have revealed conserved and variable elements of the channel structures. Intriguing differences are seen in transmembrane helices of channels, which may include π-helical bulges. The bulges reorient residues in the helices and thus strongly affect their intersegment contacts and patterns of ligand-sensing residues. Comparison of the experimental structures suggests that some π-bulges are dynamic: they may appear and disappear upon channel gating and ligand binding. The AlphaFold2 models represent a recent breakthrough in the computational prediction of protein structures. We compared some crystal and cryo-EM structures of P-loop channels with respective AlphaFold2 models. Folding of the regions, which are resolved experimentally, is generally similar to that predicted in the AlphaFold2 models. The models also reproduce some subtle but significant differences between various P-loop channels. However, patterns of π-bulges do not necessarily coincide in the experimental and AlphaFold2 structures. Given the importance of dynamic π-bulges, further studies involving experimental and theoretical approaches are necessary to understand the cause of the discrepancy.
Collapse
|
3
|
Computational Analysis of the Crystal and Cryo-EM Structures of P-Loop Channels with Drugs. Int J Mol Sci 2021; 22:ijms22158143. [PMID: 34360907 PMCID: PMC8348670 DOI: 10.3390/ijms22158143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/01/2022] Open
Abstract
The superfamily of P-loop channels includes various potassium channels, voltage-gated sodium and calcium channels, transient receptor potential channels, and ionotropic glutamate receptors. Despite huge structural and functional diversity of the channels, their pore-forming domain has a conserved folding. In the past two decades, scores of atomic-scale structures of P-loop channels with medically important drugs in the inner pore have been published. High structural diversity of these complexes complicates the comparative analysis of these structures. Here we 3D-aligned structures of drug-bound P-loop channels, compared their geometric characteristics, and analyzed the energetics of ligand-channel interactions. In the superimposed structures drugs occupy most of the sterically available space in the inner pore and subunit/repeat interfaces. Cationic groups of some drugs occupy vacant binding sites of permeant ions in the inner pore and selectivity-filter region. Various electroneutral drugs, lipids, and detergent molecules are seen in the interfaces between subunits/repeats. In many structures the drugs strongly interact with lipid and detergent molecules, but physiological relevance of such interactions is unclear. Some eukaryotic sodium and calcium channels have state-dependent or drug-induced π-bulges in the inner helices, which would be difficult to predict. The drug-induced π-bulges may represent a novel mechanism of gating modulation.
Collapse
|
4
|
Lima SDC, Porta LDC, Lima ÁDC, Campeiro JD, Meurer Y, Teixeira NB, Duarte T, Oliveira EB, Picolo G, Godinho RO, Silva RH, Hayashi MAF. Pharmacological characterization of crotamine effects on mice hind limb paralysis employing both ex vivo and in vivo assays: Insights into the involvement of voltage-gated ion channels in the crotamine action on skeletal muscles. PLoS Negl Trop Dis 2018; 12:e0006700. [PMID: 30080908 PMCID: PMC6095621 DOI: 10.1371/journal.pntd.0006700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/16/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10–25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy. Representing more than 10% of the dry weight of the crude venom of crotamine-positive rattlesnakes, crotamine may act as toxin mainly by imposing the physical immobilization of preys. Its presence was described to be important for antivenom therapy, although the knowledge on the effective contribution of crotamine to the main symptoms of envenoming process remains elusive and limited. Herein, we show for the first time the dose-dependent response for the hind limbs paralysis syndrome promoted by crotamine. We also report herein that compounds active on voltage-sensitive sodium and/or potassium ion channels can affect the positive inotropic effect elicited by crotamine in vitro in isolated diaphragm and also in the hind limbs paralysis syndrome triggered by crotamine in vivo. This potential targeting of voltage-sensitive sodium and/or potassium ion channels suggested here for crotamine may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. More importantly, nociceptive threshold evaluation demonstrated that crotamine does not trigger pain, and therefore, we also suggest crotamine as a potential tool for targeting voltage-gated ion channels present in skeletal muscles, with potential to be used as a lead compound to develop drugs for neuromuscular dysfunctions therapy.
Collapse
Affiliation(s)
- Sunamita de Carvalho Lima
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lucas de Carvalho Porta
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Álvaro da Costa Lima
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Joana D'Arc Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ywlliane Meurer
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | | | - Thiago Duarte
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Eduardo Brandt Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Gisele Picolo
- Laboratório Especial de Dor e Sinalização, Instituto Butantan, São Paulo, Brazil
| | - Rosely Oliveira Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Regina Helena Silva
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mirian Akemi Furuie Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
5
|
Hoshi T, Heinemann SH. Modulation of BK Channels by Small Endogenous Molecules and Pharmaceutical Channel Openers. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:193-237. [PMID: 27238265 DOI: 10.1016/bs.irn.2016.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voltage- and Ca(2+)-activated K(+) channels of big conductance (BK channels) are abundantly found in various organs and their relevance for smooth muscle tone and neuronal signaling is well documented. Dysfunction of BK channels is implicated in an array of human diseases involving many organs including the nervous, pulmonary, cardiovascular, renal, and urinary systems. In humans a single gene (KCNMA1) encodes the pore-forming α subunit (Slo1) of BK channels, but the channel properties are variable because of alternative splicing, tissue- and subcellular-specific auxiliary subunits (β, γ), posttranslational modifications, and a multitude of endogenous signaling molecules directly affecting the channel function. Initiatives to develop drugs capable of activating BK channels (channel openers) therefore need to consider the tissue-specific variability of BK channel structure and the potential interference with endogenously produced regulatory factors. The atomic structural basis of BK channel function is only beginning to be revealed. However, building on detailed knowledge of BK channel function, including its single-channel characteristics, voltage- and Ca(2+) dependence of channel gating, and modulation by diffusible messengers, a multi-tier allosteric model of BK channel gating (Horrigan and Aldrich (HA) model) has become a valuable tool in studying modulation of the channel. Using the conceptual framework of the HA model, we here review the functional impact of endogenous modulatory factors and select small synthetic compounds that regulate BK channel activity. Furthermore, we devise experimental approaches for studying BK channel-drug interactions with the aim to classify BK-modulating substances according to their molecular mode of action.
Collapse
Affiliation(s)
- T Hoshi
- University of Pennsylvania, Philadelphia, PA, United States.
| | - S H Heinemann
- Friedrich Schiller University Jena & Jena University Hospital, Jena, Germany
| |
Collapse
|
6
|
Du Y, Garden DP, Wang L, Zhorov BS, Dong K. Identification of new batrachotoxin-sensing residues in segment IIIS6 of the sodium channel. J Biol Chem 2011; 286:13151-60. [PMID: 21303907 PMCID: PMC3075662 DOI: 10.1074/jbc.m110.208496] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ion permeation through voltage-gated sodium channels is modulated by various drugs and toxins. The atomistic mechanisms of action of many toxins are poorly understood. A steroidal alkaloid batrachotoxin (BTX) causes persistent channel activation by inhibiting inactivation and shifting the voltage dependence of activation to more negative potentials. Traditionally, BTX is considered to bind at the channel-lipid interface and allosterically modulate the ion permeation. However, amino acid residues critical for BTX action are found in the inner helices of all four repeats, suggesting that BTX binds in the pore. In the octapeptide segment IFGSFFTL in IIIS6 of a cockroach sodium channel BgNa(V), besides Ser_3i15 and Leu_3i19, which correspond to known BTX-sensing residues of mammalian sodium channels, we found that Gly_3i14 and Phe_3i16 are critical for BTX action. Using these data along with published data as distance constraints, we docked BTX in the Kv1.2-based homology model of the open BgNa(V) channel. We arrived at a model in which BTX adopts a horseshoe conformation with the horseshoe plane normal to the pore axis. The BTX ammonium group is engaged in cation-π interactions with Phe_3i16 and BTX moieties interact with known BTX-sensing residues in all four repeats. Oxygen atoms at the horseshoe inner surface constitute a transient binding site for permeating cations, whereas the bulky BTX molecule would resist the pore closure, thus causing persistent channel activation. Our study reinforces the concept that steroidal sodium channel agonists bind in the inner pore of sodium channels and elaborates the atomistic mechanism of BTX action.
Collapse
Affiliation(s)
- Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
7
|
Presynaptic resurgent Na+ currents sculpt the action potential waveform and increase firing reliability at a CNS nerve terminal. J Neurosci 2010; 30:15479-90. [PMID: 21084604 DOI: 10.1523/jneurosci.3982-10.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axonal and nerve terminal action potentials often display a depolarizing after potential (DAP). However, the underlying mechanism that generates the DAP, and its impact on firing patterns, are poorly understood at axon terminals. Here, we find that at calyx of Held nerve terminals in the rat auditory brainstem the DAP is blocked by low doses of externally applied TTX or by the internal dialysis of low doses of lidocaine analog QX-314. The DAP is thus generated by a voltage-dependent Na(+) conductance present after the action potential spike. Voltage-clamp recordings from the calyx terminal revealed the expression of a resurgent Na(+) current (I(NaR)), the amplitude of which increased during early postnatal development. The calyx of Held also expresses a persistent Na(+) current (I(NaP)), but measurements of calyx I(NaP) together with computer modeling indicate that the fast deactivation time constant of I(NaP) minimizes its contribution to the DAP. I(NaP) is thus neither sufficient nor necessary to generate the calyx DAP, whereas I(NaR) by itself can generate a prominent DAP. Dialysis of a small peptide fragment of the auxiliary β4 Na(+) channel subunit into immature calyces (postnatal day 5-6) induced an increase in I(NaR) and a larger DAP amplitude, and enhanced the spike-firing precision and reliability of the calyx terminal. Our results thus suggest that an increase of I(NaR) during postnatal synaptic maturation is a critical feature that promotes precise and resilient high-frequency firing.
Collapse
|
8
|
Eisenberg B, Hyon Y, Liu C. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. J Chem Phys 2010; 133:104104. [PMID: 20849161 PMCID: PMC2949347 DOI: 10.1063/1.3476262] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/16/2010] [Indexed: 01/03/2023] Open
Abstract
Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton's least action and Rayleigh's dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an "extra layer" of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler-Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components. If a new component is added to the energy or dissipation, the Euler-Lagrange equations change form and interaction terms appear without additional adjustable parameters. EnVarA has previously been used to compute properties of liquid crystals, polymer fluids, and electrorheological fluids containing solid balls and charged oil droplets that fission and fuse. Here we apply EnVarA to the primitive model of electrolytes in which ions are spheres in a frictional dielectric. The resulting Euler-Lagrange equations include electrostatics and diffusion and friction. They are a time dependent generalization of the Poisson-Nernst-Planck equations of semiconductors, electrochemistry, and molecular biophysics. They include the finite diameter of ions. The EnVarA treatment is applied to ions next to a charged wall, where layering is observed. Applied to an ion channel, EnVarA calculates a quick transient pile-up of electric charge, transient and steady flow through the channel, stationary "binding" in the channel, and the eventual accumulation of salts in "unstirred layers" near channels. EnVarA treats electrolytes in a unified way as complex rather than simple fluids. Ad hoc descriptions of interactions and flow have been used in many areas of science to deal with the nonideal properties of electrolytes. It seems likely that the variational treatment can simplify, unify, and perhaps derive and improve those descriptions.
Collapse
Affiliation(s)
- Bob Eisenberg
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
9
|
Akanda N, Molnar P, Stancescu M, Hickman JJ. Analysis of toxin-induced changes in action potential shape for drug development. ACTA ACUST UNITED AC 2010; 14:1228-35. [PMID: 19801532 DOI: 10.1177/1087057109348378] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The generation of an action potential (AP) is a complex process in excitable cells that involves the temporal opening and closing of several voltage-dependent ion channels within the cell membrane. The shape of an AP can carry information concerning the state of the involved ion channels as well as their relationship to cellular processes. Alteration of these ion channels by the administration of toxins, drugs, and biochemicals can change the AP's shape in a specific way, which can be characteristic for a given compound. Thus, AP shape analysis could be a valuable tool for toxin classification and the measurement of drug effects based on their mechanism of action. In an effort to begin classifying the effect of toxins on the shape of intracellularly recorded APs, patch-clamp experiments were performed on NG108-15 hybrid cells in the presence of veratridine, tetraethylammonium, and quinine. To analyze the effect, the authors generated a computer model of the AP mechanism to determine to what extent each ion channel was affected during compound administration based on the changes in the model parameters. This work is a first step toward establishing a new assay system for toxin detection and identification by AP shape analysis.
Collapse
Affiliation(s)
- Nesar Akanda
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | |
Collapse
|
10
|
Zhu HL, Wassall RD, Takai M, Morinaga H, Nomura M, Cunnane TC, Teramoto N. Actions of veratridine on tetrodotoxin-sensitive voltage-gated Na currents, Na1.6, in murine vas deferens myocytes. Br J Pharmacol 2009; 157:1483-93. [PMID: 19552689 DOI: 10.1111/j.1476-5381.2009.00301.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The effects of veratridine, an alkaloid found in Liliaceae plants, on tetrodotoxin (TTX)-sensitive voltage-gated Na(+) channels were investigated in mouse vas deferens. EXPERIMENTAL APPROACH Effects of veratridine on TTX-sensitive Na(+) currents (I(Na)) in vas deferens myocytes dispersed from BALB/c mice, homozygous mice with a null allele of Na(V)1.6 (Na(V)1.6(-/-)) and wild-type mice (Na(V)1.6(+/+)) were studied using patch-clamp techniques. Tension measurements were also performed to compare the effects of veratridine on phasic contractions in intact tissues. KEY RESULTS In whole-cell configuration, veratridine had a concentration-dependent dual action on the peak amplitude of I(Na): I(Na) was enhanced by veratridine (1-10 microM), while higher concentrations (> or =30 microM) inhibited I(Na). Additionally, two membrane current components were evoked by veratridine, namely a sustained inward current during the duration of the depolarizing rectangular pulse and a tail current at the repolarization. Although veratridine caused little shift of the voltage dependence of the steady-state inactivation curve and the activation curve for I(Na), veratridine enhanced a non-inactivating component of I(Na). Veratridine caused no detectable contractions in vas deferens from Na(V)1.6(-/-) mice, although in tissues from Na(V)1.6(+/+) mice, veratridine (> or =3 microM) induced TTX-sensitive contractions. Similarly, no detectable inward currents were evoked by veratridine in Na(V)1.6(-/-) vas deferens myocytes, while veratridine elicited both the sustained and tail currents in cells taken from Na(V)1.6(+/+) mice. CONCLUSIONS AND IMPLICATIONS These results suggest that veratridine possesses a dual action on I(Na) and that the veratridine-induced activation of contraction is induced by the activation of Na(V)1.6 channels.
Collapse
Affiliation(s)
- Hai-Lei Zhu
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
EL-SHERIF NABIL, CRAELIUS WILLIAM, BOUTJDIR MOHAMED, GOUGH WILLIAMB. Early Afterdepolarizations and Arrhythmogenesis. J Cardiovasc Electrophysiol 2008. [DOI: 10.1111/j.1540-8167.1990.tb01057.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Organic and inorganic calcium antagonists inhibit veratridine-induced epileptiform activity in CA3 neurons of the guinea pig. Epilepsy Res 2008; 78:147-54. [PMID: 18083347 DOI: 10.1016/j.eplepsyres.2007.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/22/2022]
Abstract
Veratridine is believed to cause epileptiform discharges via its effects on sodium channels. We addressed the question whether calcium currents, known to contribute to the generation of paroxysmal depolarization shifts (PDS) in most models of epilepsies, also contribute to veratridine-induced epileptiform activity. Therefore, we recorded from CA3 neurons (n=50) of veratridine-treated hippocampal slices and analyzed the effects of two calcium antagonists. Veratridine (0.5-1.0 microM) elicited spontaneous epileptiform bursts, paroxysmal depolarization shifts (PDS) lasting 100-300 ms, and depolarizations (LD) lasting up to several minutes. Most often PDS directly preceded LD which resulted in typical composite depolarizations termed veratridine-induced complexes (VC). VC persisted even in the presence of CNQX and APV (25 micromol/l, both), or in nominally calcium-free saline, revealing the non-synaptic nature of these potentials. Cobalt (1-2mM) abolished VC within minutes, but allowed LD type-like potentials to be elicited by depolarizing current pulses. Verapamil (50 microM) also diminished or abolished amplitudes of VC. All inhibitory effects of cobalt and verapamil were at least partly reversible. Due to the effects of both calcium antagonists we conclude that veratridine-induced epileptiform activity depends not only on sodium, but also on calcium currents.
Collapse
|
13
|
Rozhmanova OM, Dolgaya EV, Pogorelaya NK, Magura IS, Tkachouk ZY, Mikhailopulo IA. Effect of dephosphorylated 2′,5′-trioligoadenylate on the entry of sodium ions into human neuroblastoma cells. NEUROPHYSIOLOGY+ 2008. [DOI: 10.1007/s11062-008-9012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Boda D, Nonner W, Valiskó M, Henderson D, Eisenberg B, Gillespie D. Steric selectivity in Na channels arising from protein polarization and mobile side chains. Biophys J 2007; 93:1960-80. [PMID: 17526571 PMCID: PMC1959557 DOI: 10.1529/biophysj.107.105478] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 05/17/2007] [Indexed: 11/18/2022] Open
Abstract
Monte Carlo simulations of equilibrium selectivity of Na channels with a DEKA locus are performed over a range of radius R and protein dielectric coefficient epsilon(p). Selectivity arises from the balance of electrostatic forces and steric repulsion by excluded volume of ions and side chains of the channel protein in the highly concentrated and charged (approximately 30 M) selectivity filter resembling an ionic liquid. Ions and structural side chains are described as mobile charged hard spheres that assume positions of minimal free energy. Water is a dielectric continuum. Size selectivity (ratio of Na+ occupancy to K+ occupancy) and charge selectivity (Na+ to Ca2+) are computed in concentrations as low as 10(-5) M Ca2+. In general, small R reduces ion occupancy and favors Na+ over K+ because of steric repulsion. Small epsilon(p) increases occupancy and favors Na+ over Ca2+ because protein polarization amplifies the pore's net charge. Size selectivity depends on R and is independent of epsilon(p); charge selectivity depends on both R and epsilon(p). Thus, small R and epsilon(p) make an efficient Na channel that excludes K+ and Ca2+ while maximizing Na+ occupancy. Selectivity properties depend on interactions that cannot be described by qualitative or verbal models or by quantitative models with a fixed free energy landscape.
Collapse
Affiliation(s)
- Dezso Boda
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
15
|
Hui K, Gardzinski P, Sun HS, Backx PH, Feng ZP. Permeable ions differentially affect gating kinetics and unitary conductance of L-type calcium channels. Biochem Biophys Res Commun 2005; 338:783-92. [PMID: 16243294 DOI: 10.1016/j.bbrc.2005.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 10/04/2005] [Indexed: 11/24/2022]
Abstract
Although ion permeation and gating of L-type Ca(2+) channels are generally considered separate processes controlled by distinct components of the channel protein, ion selectivity can vary with the kinetic state. To test this possibility, we studied single-channel currents (cell-attached) of recombinant L-type channels (Ca(V)1.2, beta(2a), and alpha(2)delta) transiently expressed in tsA201 cells in the presence of the channel agonist BayK 8644 which promotes long channel openings (Mode 2 openings). We found that both the brief (Mode 1) and long (Mode 2) mean open times in the presence of Ca(2+) were relatively longer than those with Ba(2+). The unitary slope conductance with Ba(2+) was significantly larger (p<0.05) in Mode 2 openings than for brief Mode 1 openings, whereas the conductance with Ca(2+) did not vary with mode gating. Consequently, the gamma(Ba):gamma(Ca) ratio was greater for Mode 2 than Mode 1 openings. Our findings indicate that both ion permeation and gating kinetics of the L-type channel are differentially modulated by permeable ions. Ca(2+) binding to the L-type channel may stabilize the alteration of channel ion permeability mediated by gating kinetics, and thus, play a role in preventing excessive ion entry when the activation gating of the channel is promoted to the prolonged open state.
Collapse
Affiliation(s)
- Kwokyin Hui
- Department of Physiology, University of Toronto, Toronto, Ont., Canada M5S 1A8
| | | | | | | | | |
Collapse
|
16
|
Abstract
Voltage-gated sodium channels open (activate) when the membrane is depolarized and close on repolarization (deactivate) but also on continuing depolarization by a process termed inactivation, which leaves the channel refractory, i.e., unable to open again for a period of time. In the “classical” fast inactivation, this time is of the millisecond range, but it can last much longer (up to seconds) in a different slow type of inactivation. These two types of inactivation have different mechanisms located in different parts of the channel molecule: the fast inactivation at the cytoplasmic pore opening which can be closed by a hinged lid, the slow inactivation in other parts involving conformational changes of the pore. Fast inactivation is highly vulnerable and affected by many chemical agents, toxins, and proteolytic enzymes but also by the presence of β-subunits of the channel molecule. Systematic studies of these modulating factors and of the effects of point mutations (experimental and in hereditary diseases) in the channel molecule have yielded a fairly consistent picture of the molecular background of fast inactivation, which for the slow inactivation is still lacking.
Collapse
Affiliation(s)
- Werner Ulbricht
- Psychologisches Institut, University of Kiel, Hermann-Rodewald-Strasse 5, D-24118 Kiel, Germany.
| |
Collapse
|
17
|
French RJ, Zamponi GW. Voltage-gated sodium and calcium channels in nerve, muscle, and heart. IEEE Trans Nanobioscience 2005; 4:58-69. [PMID: 15816172 DOI: 10.1109/tnb.2004.842500] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated ion channels are membrane proteins which underlie rapid electrical signals among neurons and the spread of excitation in skeletal muscle and heart. We outline some recent advances in the study of voltage-sensitive sodium and calcium channels. Investigations are providing insight into the changes in molecular conformation associated with open-closed gating of the channels, the mechanisms by which they allow only specific ion species to pass through and carry an electric current, and the pathological consequences of small perturbations in channel structure which result from genetic mutations. Determination of three-dimensional structures, coupled with molecular manipulations by site-directed mutagenesis, and parallel electrophysiological analyses of currents through the ion channels, are providing an understanding of the roles and function of these channels at an unprecedented level of molecular detail. Crucial to these advances are studies of bacterial homologues of ion channels from man and other eukaryotes, and the use of naturally occurring peptide toxins which target different ion channel types with exquisite specificity.
Collapse
Affiliation(s)
- Robert J French
- Department of Physiology and Biophysics, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | | |
Collapse
|
18
|
Sikes RA, Walls AM, Brennen WN, Anderson JD, Choudhury-Mukherjee I, Schenck HA, Brown ML. Therapeutic Approaches Targeting Prostate Cancer Progression Using Novel Voltage-Gated Ion Channel Blockers. ACTA ACUST UNITED AC 2003; 2:181-7. [PMID: 15040863 DOI: 10.3816/cgc.2003.n.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The early detection and treatment of prostate cancer have increased survival and improved clinical outcomes. The nature of the disease and pathologic understaging result in a high proportion of patients developing locally recurrent disease or distant metastases. The development of prostate cancer the time from tumor initiation and progression to invasive carcinoma often begins in men in the fourth or fifth decades of life and extends across decades. This prolonged window highlights the tremendous clinical impact that early intervention with therapeutic agents that selectively target the invasive and metastatic potential of the prostate cancer cell could have on patient survival and quality of life. Our research is currently focused on the development and testing of novel voltage-gated ion channel blockers. The expression of voltage-gated sodium channels (VGSCs) was recently associated with the metastatic behavior of prostate cancer cells. In these studies, VGSC blockers altered prostate cancer cell morphology and arrested prostate cancer cell migration. Clinically, one of the most widely used sodium channel blockers is phenytoin. We have used rational drug design based on the phenytoin binding site in a VGSC to make novel sodium channel blockers with enhanced activity and minimal acute toxicity. Our initial studies in vitro demonstrate enhanced binding of the compounds to the sodium channel and increased inhibition of prostate cancer cell growth in culture and in soft agarose compared with phenytoin. These derivatives are currently being tested for their antitumor activity in human prostate cancer xenografts.
Collapse
Affiliation(s)
- Robert A Sikes
- Laboratory for Cancer Ontogeny and Therapeutics, Department of Biological Sciences, 330 Wolf Hall, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang GK, Wang SY. Veratridine block of rat skeletal muscle Nav1.4 sodium channels in the inner vestibule. J Physiol 2003; 548:667-75. [PMID: 12626674 PMCID: PMC2342907 DOI: 10.1113/jphysiol.2002.035469] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Veratridine (VTD) is an alkaloid toxin found in Liliaceae plants. VTD causes persistent opening of the voltage-gated Na+ channel and reduces its single-channel conductance by 75 %. The mechanisms for these different VTD actions are unknown. Recent reports indicate that the VTD receptor aligns closely with the local anaesthetic (LA) receptor, which resides at D1S6, D3S6 and D4S6 of the Na+ channel alpha-subunit. To study this alignment, we created a mutant with cysteine substitutions at three S6 residues (rNav1.4-N434C/L1280C/F1579C). Under voltage-clamp conditions, amitriptyline and bupivacaine remained as potent blockers of this mutant channel when expressed in human embryonic kidney cells, whereas VTD completely failed to cause persistent opening. Unexpectedly, VTD at 100 microM progressively blocked mutant currents by 90.4 +/- 1.6 % (n = 5), as assayed at 0.1 Hz for 15 min. This VTD block was reversed little during wash-off: approximately 70 % of mutant currents did not return in 30 min. An increase in channel opening either by repetitive pulses at 1 Hz or by the inhibition of the fast inactivation hastened the VTD block. Co-application of amitriptyline or bupivacaine, which targeted the LA receptor, prevented this VTD block. Our data suggest that (a) the VTD receptor and the LA receptor overlap extensively, (b) receptor-bound VTD lies in the inner vestibule, and (c) VTD blocks this mutant channel as a bona fide Na+ channel blocker. We propose that VTD likewise blocks the wild-type open Na+ channel, albeit partially, to decrease the unitary conductance and to stabilize the open conformation for persistent opening.
Collapse
Affiliation(s)
- Ging Kuo Wang
- Department of Anesthesia, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | | |
Collapse
|
20
|
Boda D, Busath DD, Eisenberg B, Henderson D, Nonner W. Monte Carlo simulations of ion selectivity in a biological Na channel: Charge–space competition. Phys Chem Chem Phys 2002. [DOI: 10.1039/b203686j] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Abstract
Interictal electroencephalography (EEG) potentials in focal epilepsies are sustained by synchronous paroxysmal membrane depolarization generated by assemblies of hyperexcitable neurons. It is currently believed that interictal spiking sets a condition that preludes to the onset of an ictal discharge. Such an assumption is based on little experimental evidence. Human pre-surgical studies and recordings in chronic and acute models of focal epilepsy showed that: (i) interictal spikes (IS) and ictal discharges are generated by different populations of neuron through different cellular and network mechanisms; (ii) the cortical region that generates IS (irritative area) does not coincide with the ictal-onset area; (iii) IS frequency does not increase before a seizure and is enhanced just after an ictal event; (iv) spike suppression is found to herald ictal discharges; and (v) enhancement of interictal spiking suppresses ictal events. Several experimental evidences indicate that the highly synchronous cellular discharge associated with an IS is generated by a multitude of mechanisms involving synaptic and non-synaptic communication between neurons. The synchronized neuronal discharge associated with a single IS induces and is followed by a profound and prolonged refractory period sustained by inhibitory potentials and by activity-dependent changes in the ionic composition of the extracellular space. Post-spike depression may be responsible for pacing interictal spiking periodicity commonly observed in both animal models and human focal epilepsies. It is proposed that the strong after-inhibition produced by IS protects against the occurrence of ictal discharges by maintaining a low level of excitation in a general condition of hyperexcitability determined by the primary epileptogenic dysfunction.
Collapse
Affiliation(s)
- M de Curtis
- Department of Experimental Neurophysiology, Istituto Nazionale Neurologico 'Carlo Besta', via Celoria 11, 20133, Milan, Italy.
| | | |
Collapse
|
22
|
Effects of veratridine and its derivatives on the Na-conducting channels in Helix neurons. ACTA BIOLOGICA HUNGARICA 1999. [DOI: 10.1007/bf03543037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Kurata Y, Sato R, Hisatome I, Imanishi S. Mechanisms of cation permeation in cardiac sodium channel: description by dynamic pore model. Biophys J 1999; 77:1885-904. [PMID: 10512810 PMCID: PMC1300471 DOI: 10.1016/s0006-3495(99)77031-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The selective permeability to monovalent metal cations, as well as the relationship between cation permeation and gating kinetics, was investigated for native tetrodotoxin-insensitive Na-channels in guinea pig ventricular myocytes using the whole-cell patch clamp technique. By the measurement of inward unidirectional currents and biionic reversal potentials, we demonstrate that the cardiac Na-channel is substantially permeable to all of the group Ia and IIIa cations tested, with the selectivity sequence Na(+) >/= Li(+) > Tl(+) > K(+) > Rb(+) > Cs(+). Current kinetics was little affected by the permeant cation species and concentrations tested (</=160 mM), suggesting that the permeation process is independent of the gating process in the Na-channel. The permeability ratios determined from biionic reversal potentials were concentration and orientation dependent: the selectivity to Na(+) increased with increasing internal [K(+)] or external [Tl(+)]. The dynamic pore model describing the conformational transition of the Na-channel pore between different selectivity states could account for all the experimental data, whereas conventional static pore models failed to fit the concentration-dependent permeability ratio data. We conclude that the dynamic pore mechanism, independent of the gating machinery, may play an important physiological role in regulating the selective permeability of native Na-channels.
Collapse
Affiliation(s)
- Y Kurata
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | | | | | | |
Collapse
|
24
|
Little MJ, Zappia C, Gilles N, Connor M, Tyler MI, Martin-Eauclaire MF, Gordon D, Nicholson GM. delta-Atracotoxins from australian funnel-web spiders compete with scorpion alpha-toxin binding but differentially modulate alkaloid toxin activation of voltage-gated sodium channels. J Biol Chem 1998; 273:27076-83. [PMID: 9765223 DOI: 10.1074/jbc.273.42.27076] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
delta-Atracotoxins from the venom of Australian funnel-web spiders are a unique group of peptide toxins that slow sodium current inactivation in a manner similar to scorpion alpha-toxins. To analyze their interaction with known sodium channel neurotoxin receptor sites, we studied their effect on [3H]batrachotoxin and 125I-Lqh II (where Lqh is alpha-toxin II from the venom of the scorpion Leiurus quinquestriatus hebraeus) binding and on alkaloid toxin-stimulated 22Na+ uptake in rat brain synaptosomes. delta-Atracotoxins significantly increased [3H]batrachotoxin binding yet decreased maximal batrachotoxin-activated 22Na+ uptake by 70-80%, the latter in marked contrast to the effect of scorpion alpha-toxins. Unlike the inhibition of batrachotoxin-activated 22Na+ uptake, delta-atracotoxins increased veratridine-stimulated 22Na+ uptake by converting veratridine from a partial to a full agonist, analogous to scorpion alpha-toxins. Hence, delta-atracotoxins are able to differentiate between the open state of the sodium channel stabilized by batrachotoxin and veratridine and suggest a distinct sub-conductance state stabilized by delta-atracotoxins. Despite these actions, low concentrations of delta-atracotoxins completely inhibited the binding of the scorpion alpha-toxin, 125I-Lqh II, indicating that they bind to similar, or partially overlapping, receptor sites. The apparent uncoupling between the increase in binding but inhibition of the effect of batrachotoxin induced by delta-atracotoxins suggests that the binding and action of certain alkaloid toxins may represent at least two distinguishable steps. These results further contribute to the understanding of the complex dynamic interactions between neurotoxin receptor site areas related to sodium channel gating.
Collapse
Affiliation(s)
- M J Little
- Department of Health Sciences, University of Technology, Sydney, Broadway, New South Wales 2007, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Veratridine causes Na+ channels to stay open during a sustained membrane depolarization by abolishing inactivation. The consequential Na+ influx, either by itself or by causing a maintained depolarization, leads to many secondary effects such as increasing pump activity, Ca2+ influx, and in turn exocytosis. If the membrane is voltage clamped in the presence of the alkaloid, a lasting depolarizing impulse induces, following the "normal" transient current, another much more slowly developing Na+ current that reaches a constant level after a few seconds. Repolarization then is followed by an inward tail current that slowly subsides. Development of these slow currents is enhanced by additional treatment with agents that inhibit inactivation. Most of these phenomena can be satisfactorily explained by assuming that Na+ channels must open before veratridine binds to them, and that the slow current changes reflect the kinetics of binding and unbinding. It is unclear, however, where the alkaloid stays when it is not bound. Although the effect sets in promptly, once this pool is filled, access to it from outside must be impeded since in most preparations veratridine can only partially be washed out. Cooling acts as if the available concentration is reduced, but this reversible "reduction" takes much longer to develop than the cold-induced changes in kinetics. Several authors assume that the binding site, site 2, is accessed from the lipid phase of the membrane. Considerations of this kind are often based on experiments with batrachotoxin, the widely used site-2 ligand which has a much higher affinity and acts as a full agonist in contrast to the partial agonist veratridine. Batrachotoxin thus lends itself to binding studies using radiolabeled derivatives. Such experiments may eventually lead to the characterization of neurotoxin site 2; the first promising steps have been taken. Modern techniques of molecular biology will almost certainly be successful, and one hopes for point-mutated channels with distinctly different reactions also to veratridine. A considerable amount of research is still required to clarify the structural basis for the numerous allosteric interactions with other sites, the mechanism of the very large potential shift of activation, the reduced single-channel conductance and selectivity, and the chemical nature of the different affinities of the site-2 toxins. Note Added in Proof. A report on point mutations with effects on neurotoxin site 2 (see Sect. 8) has just appeared: Wang S-Y, Wang GK (1988) Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin. Proc Natl Acad USA 95:2653-2658. In microliter muscle Na+ channels expressed in mammalian cells, mutation Asn434Lys leads to complete, Asn434Ala to partial insensitivity to 5 mM batrachotoxin. (Asn434 corresponds to Asn419 of Trainer et al. 1996). The mutant channel displays almost normal current kinetics and in the presence of veratridine little, if any, slow tail current. However, veratridine inhibits peak Na+ currents in the mutant which may point to a complex structure of site 2.
Collapse
Affiliation(s)
- W Ulbricht
- Department of Physiology, University of Kiel, Germany
| |
Collapse
|
26
|
Otoom S, Tian LM, Alkadhi KA. Veratridine-treated brain slices: a cellular model for epileptiform activity. Brain Res 1998; 789:150-6. [PMID: 9602103 DOI: 10.1016/s0006-8993(98)00026-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study introduces veratridine-treated brain slices as a new in vitro synaptic-independent model for epileptiform discharge. Studies were performed on the hippocampus in rat brain slices using conventional electrophysiological intracellular recording techniques. Veratridine (0.3 microM) produced a time-dependent blockade of synaptic transmission as indicated by inhibition of the evoked population spike in the region CA1 of the hippocampus. However, in the same slices, intracellularly-evoked single action potentials were converted to epileptiform bursting shortly after exposure to veratridine. Additionally, in the veratridine model, spontaneous epileptiform activity developed after prolonged (more than 45 min) superfusion. The model was utilized to examine the action of two antiepileptic drugs: a sodium channel dependent and a synaptic dependent antiepileptic agents. Therapeutic concentrations of valproic acid (VPA, 10-100 microM) inhibited both evoked and spontaneous bursting induced by veratridine. However, therapeutic concentrations of the synaptic-dependent antiepileptic drug phenobarbital (20-40 microM) failed to inhibit veratridine-induced bursting. These results demonstrate that the veratridine-treated brain slice is a simple and reliable model for studying mechanisms of action and for screening of potential sodium channel-dependent antiepileptic drugs.
Collapse
Affiliation(s)
- S Otoom
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX 77204-5515, USA
| | | | | |
Collapse
|
27
|
Castillo C, Díaz ME, Balbi D, Thornhill WB, Recio-Pinto E. Changes in sodium channel function during postnatal brain development reflect increases in the level of channel sialidation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 104:119-30. [PMID: 9466714 DOI: 10.1016/s0165-3806(97)00159-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Developmental changes of forebrain sodium channels were studied at three postnatal ages: P0, P15 and adult (P30/P180). Electrophysiological analysis determined that the midpoint potential of activation was -64, -75 and -81 mV for P0, P15 and adult channels, respectively. At negative potentials, gating state changes were observed in all channels; at positive potentials they were observed in most P0 (72%) and to a lower extent in older channels (25%). A long non-conductive state was displayed with a higher frequency in P0 than in older channels. Immunoblot analysis determined that the apparent molecular weight was approximately 227, approximately 241 and approximately 246 kDa for P0, P15 and adult channels, respectively. Upon neuraminidase treatment, which cleaves sialic acids, these differences in molecular weight were abolished. The data suggest that these developmental changes in the function of forebrain sodium channels correlate with changes in the channel's sialidation level.
Collapse
Affiliation(s)
- C Castillo
- Instituto de Estudios Avanzados, Caracas, Venezuela
| | | | | | | | | |
Collapse
|
28
|
Castillo C, Piernavieja C, Recio-Pinto E. Anemone toxin II unmasks two conductance states in neuronal sodium channels. Brain Res 1996; 733:231-42. [PMID: 8891306 DOI: 10.1016/0006-8993(96)00566-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Anemone toxin II (ATX)-modified voltage-dependent neuronal sodium channels were studied in planar lipid bilayers. ATX-modified channels displayed two predominant conducting states: a short-lived (ms-s) high-conductance (approximately 65 pS) state and a long-lived (s-min) low-conductance (approximately 10 pS) state. The high-conductance state underwent brief closures (ms) and the low-conductance state underwent long closures (s). The probability of detecting these states was time- and voltage-dependent. The channel's fractional open time (fo) due to the high-conductance state increased with depolarization and had a midpoint potential (Va) of -36 mV and an apparent gating charge (Za) of 2.8. The channel's fo due to the low-conductance state increased with depolarization and had a Va of +13 mV and a Za of 1.4. At positive potentials, ATX-modified channels slowly (minutes) entered an absorbing non-conducting state. The permeability ratio of Na+/K+ was 2 and 4 for the low- and high-conductance states, respectively. The saxitoxin analog C3 blocked ATX-modified sodium channels with high affinity (Kd(60-90 mV) = 410 nM, 0.5 M NaCl). The data suggest that upon a depolarization step, ATX-modified channels enter rapidly (ms) into a high-conductance state and more slowly (s-min) into a low-conductance state. Also as the membrane potential becomes more positive, the equilibrium is shifted from the high- to the low-conductance state and from the conducting states to an absorbing non-conducting state.
Collapse
Affiliation(s)
- C Castillo
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | | | | |
Collapse
|
29
|
Tsushima RG, Kelly JE, Wasserstrom JA. Characteristics of cocaine block of purified cardiac sarcoplasmic reticulum calcium release channels. Biophys J 1996; 70:1263-74. [PMID: 8785282 PMCID: PMC1225052 DOI: 10.1016/s0006-3495(96)79683-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have examined the effects of cocaine on the SR Ca2+ release channel purified from canine cardiac muscle. Cocaine induced a flicker block of the channel from the cytoplasmic side, which resulted in an apparent reduction in the single-channel current amplitude without a marked reduction in the single-channel open probability. This block was evident only at positive holding potentials. Analysis of the block revealed that cocaine binds to a single site with an effective valence of 0.93 and an apparent dissociation constant at 0 mV (Kd(0)) of 38 mM. The kinetics of cocaine block were analyzed by amplitude distribution analysis and showed that the voltage and concentration dependence lay exclusively in the blocking reaction, whereas the unblocking reaction was independent of both voltage and concentration. Modification of the channel by ryanodine dramatically attenuated the voltage and concentration dependence of the on rates of cocaine block while diminishing the off rates to a lesser extent. In addition, ryanodine modification changed the effective valence of cocaine block to 0.52 and the Kd(0) to 110 mM, suggesting that modification of the channel results in an alteration in the binding site and its affinity for cocaine. These results suggest that cocaine block of the SR Ca2+ release channel is due to the binding at a single site within the channel pore and that modification of the channel by ryanodine leads to profound changes in the kinetics of cocaine block.
Collapse
Affiliation(s)
- R G Tsushima
- Department of Medicine (Cardiology), Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
30
|
Gleitz J, Beile A, Peters T. (+/-)-kavain inhibits the veratridine- and KCl-induced increase in intracellular Ca2+ and glutamate-release of rat cerebrocortical synaptosomes. Neuropharmacology 1996; 35:179-86. [PMID: 8734487 DOI: 10.1016/0028-3908(95)00163-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The action of (+/-)-kavain on the veratridine, monensin and KCl-depolarization evoked increase in free cytosolic Ca2+ concentration ([Ca2+]i), and its influence on the release of endogenous glutamate from rat cerebrocortical synaptosomes were investigated. [Ca2+]i was fluorimetrically determined employing FURA as the Ca2+ sensitive fluorophore, and glutamate was detected by a continuous enzyme-linked fluorimetric assay. The incubation of synaptosomes in the presence of (+/-)-kavain up to a concentration of 500 mumol/l affected neither basal [Ca2+]i nor spontaneous release of glutamate, but dose-dependently reduced both veratridine-elevated [Ca2+]i (IC50 = 63.2 mumol/l) and glutamate-release (IC500 = 116.4 mumol/l). The inhibition of these parameters, attained with 500 mumol/l(+/-)-kavain, could be overcome by inducing an artificial Na+ influx, using monensin as a Na+ ionophore, An application of (+/-)-kavain after veratridine caused a decrease in veratridine-elevated [Ca2+]i, which was similar to the action of tetrodotoxin (TTX) with regard to time course, half-life of [Ca2+]i decline and the final steady state level of [Ca2+]i. Concomitantly, veratridine-induced glutamate-release was blocked. The results indicate that specific inhibition of voltage-dependent Na+ channels is a primary target of (+/-)-kavain, thus preventing a [Na+]i provoked increase in [Ca2+]i and glutamate-release. However, pathways related to the elevation of [Ca2+]i by [Na+]i itself, and the processes involved in normalization of elevated [Ca2+]i and glutamate-release downstream to enhanced [Ca2+]i, seems to be unaffected by (+/-)-kavain. Using KCl-depolarized synaptosomes, 400 mumol/l (+/-)-kavain reduced, in analogy to Aga-GI toxin, KCl-evoked [Ca2+]i and diminished the part of glutamate-exocytosis which is related to external Ca2+ to about 75% of control. At a concentration of 150 mumol/l, which is above the IC50 value necessary to block voltage-dependent Na+ channels, (+/-)-kavain affected neither basal nor the KCl-induced increase in [Ca2+]i. These results might suggest that (+/-)-kavain at concentrations sufficient to block Na+ channels completely. moderately inhibits the non-inactivating Ca2+ channels located on mammalian presynaptic nerve endings.
Collapse
Affiliation(s)
- J Gleitz
- Institute of Naturheilkunde, University Clinics Ulm, Germany
| | | | | |
Collapse
|
31
|
Kusaka M, Sperelakis N. Veratridine actions on two types of fast Na+ channels in human uterine leiomyosarcoma cells. Eur J Pharmacol 1994; 271:387-93. [PMID: 7705438 DOI: 10.1016/0014-2999(94)90798-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In human uterine leiomyosarcoma cell line (SK-UT-1B), we previously demonstrated two types of fast Na+ current (INa(f)) induced by serum, based on different time course of current decay: fast-inactivating and slow-inactivating. To further clarify the properties of these currents, we studied the effects of veratridine, which is known to modify the inactivation process of INa(f), using whole-cell voltage clamp. Bath application of veratridine (100 microM) produced a decrease in peak INa(f) (Ipeak), simultaneous with increase in the steady-state current (Iss) and tail current (Itail). These effects of veratridine were observed in only slow-inactivating INa(f). The induction of Iss and Itail was completely reversed by washout of veratridine within 5 min, whereas the decreased Ipeak did not recover even after 15 min of washout. These findings suggest that the fast Na+ channels in this cell line may have two binding sites for veratridine: a high-affinity site, involved in the decrease in Ipeak (possibly due to a decrease in conductance), and a low-affinity site, related to the appearance of Iss and Itail (due to a long opening of the channels). It is concluded that the two types of INa(f) in this cell line have different sensitivity to veratridine and the fast Na+ channels may have two binding sites for veratridine.
Collapse
Affiliation(s)
- M Kusaka
- Department of Molecular and Cellular Physiology, University of Cincinnati, OH 45267-0576
| | | |
Collapse
|
32
|
Zamponi GW, French RJ. Transcainide causes two modes of open-channel block with different voltage sensitivities in batrachotoxin-activated sodium channels. Biophys J 1994; 67:1028-39. [PMID: 7811913 PMCID: PMC1225455 DOI: 10.1016/s0006-3495(94)80568-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transcainide, a complex derivative of lidocaine, blocks the open state of BTX-activated sodium channels from bovine heart and rat skeletal muscle in two distinct ways. When applied to either side of the membrane, transcainide caused discrete blocking events a few hundred milliseconds in duration (slow block), and a concomitant reduction in apparent single-channel amplitude, presumably because of rapid block beyond the temporal resolution of our recordings (fast block). We quantitatively analyzed block from the cytoplasmic side. Both modes of block occurred via binding of the drug to the open channel, approximately followed 1:1 stoichiometry, and were similar for both channel subtypes. For slow block, the blocking rate increased, and the unblocking rate decreased with depolarization, yielding an overall enhancement of block at positive potentials, and suggesting a blocking site at an apparent electrical distance about 45% of the way from the cytoplasmic end of the channel (z delta approximately 0.45). In contrast, the fast blocking mode was only slightly enhanced by depolarization (z delta approximately 0.15). Phenomenologically, the bulky and complex transcainide molecule combines the almost voltage-insensitive blocking action of phenylhydrazine (Zamponi and French, 1994a (companion paper)) with a slow open-channel blocking action that shows a voltage dependence typical of simpler amines. Only the slower blocking mode was sensitive to the removal of external sodium ions, suggesting that the two types of block occur at distinct sites. Dose-response relations were also consistent with independent binding of transcainide to two separate sites on the channel.
Collapse
Affiliation(s)
- G W Zamponi
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| | | |
Collapse
|
33
|
Zamponi GW, French RJ. Amine blockers of the cytoplasmic mouth of sodium channels: a small structural change can abolish voltage dependence. Biophys J 1994; 67:1015-27. [PMID: 7811912 PMCID: PMC1225454 DOI: 10.1016/s0006-3495(94)80567-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many drugs block sodium channels from the cytoplasmic end (Moczydlowski, E., A. Uehara, X, Guo, and J. Heiny. 1986. Isochannels and blocking modes of voltage-dependent sodium channels. Ann. N.Y. Acad. Sci. 479:269-292.). Lidocaine, applied to either side of the membrane, induces two blocking modes, a rapid, voltage-dependent open-channel block, and a block of the inactivated channel that occurs on a 1000-fold slower timescale. Here we describe the actions of several lidocaine-related amines on batrachotoxin(BTX)-activated bovine cardiac sodium channels incorporated into planar lipid bilayers. We applied blocking amines from the intracellular side and examined the structural determinants of fast, open-channel block. Neither hydroxyl nor carbonyl groups, present in the aryl-amine link of lidocaine, were necessary, indicating that hydrogen bonding between structures in the aryl-amine link and the channel is not required. Block, however, was significantly enhanced by addition of an aromatic ring, or by the lengthening of aliphatic side chains, suggesting that a hydrophobic domain strengthens binding while the amine group blocks the pore. For most blockers, depolarizing potentials enhanced block, with the charged amine group apparently traversing 45-60% of the transmembrane voltage. By contrast, block by phenylhydrazine was essentially voltage-independent. The relatively rigid planar structure of phenylhydrazine may prevent the charged amino end from entering the electric field when the aromatic ring is bound. The relation between structural features of different blockers and their sensitivity to voltage suggests that the transmembrane voltage drops completely over less than 5 A. We raise the possibility that the proposed hydrophobic binding domain overlaps the endogenous receptor for the inactivation gate. If so, our data place limits on the distance between this receptor and the intrapore site at which charged amines bind.
Collapse
Affiliation(s)
- G W Zamponi
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| | | |
Collapse
|
34
|
French RJ, Worley JF, Wonderlin WF, Kularatna AS, Krueger BK. Ion permeation, divalent ion block, and chemical modification of single sodium channels. Description by single- and double-occupancy rate-theory models. J Gen Physiol 1994; 103:447-70. [PMID: 8037798 PMCID: PMC2216843 DOI: 10.1085/jgp.103.3.447] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Calcium ions, applied internally, externally, or symmetrically, have been used in conjunction with rate-theory modeling to explore the energy profile of the ion-conducting pore of sodium channels. The block, by extracellular and/or intracellular calcium, of sodium ion conduction through single, batrachotoxin-activated sodium channels from rat brain was studied in planar lipid bilayers. Extracellular calcium caused a reduction of inward current that was enhanced by hyperpolarization and a weaker block of outward current. Intracellular calcium reduced both outward and inward sodium current, with the block being weakly dependent on voltage and enhanced by depolarization. These results, together with the dependence of single-channel conductance on sodium concentration, and the effects of symmetrically applied calcium, were described using single- or double-occupancy, three-barrier, two-site (3B2S), or single-occupancy, 4B3S rate-theory models. There appear to be distinct outer and inner regions of the channel, easily accessed by external or internal calcium respectively, separated by a rate-limiting barrier to calcium permeation. Most of the data could be well fit by each of the models. Reducing the ion interaction energies sufficiently to allow a small but significant probability of two-ion occupancy in the 3B2S model yielded better overall fits than for either 3B2S or 4B3S models constrained to single occupancy. The outer ion-binding site of the model may represent a section of the pore in which sodium, calcium, and guanidinium toxins, such as saxitoxin or tetrodotoxin, compete. Under physiological conditions, with millimolar calcium externally, and high potassium internally, the model channels are occupied by calcium or potassium much of the time, causing a significant reduction in single-channel conductance from the value measured with sodium as the only cation species present. Sodium conductance and degree of block by external calcium are reduced by modification of single channels with the carboxyl reagent, trimethyloxonium (TMO) (Worley et al., 1986) Journal of General Physiology. 87:327-349). Elevations of only the outermost parts of the energy profiles for sodium and calcium were sufficient to account for the reductions in conductance and in efficacy of calcium block produced by TMO modification.
Collapse
Affiliation(s)
- R J French
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
35
|
Zamponi GW, Sui X, Codding PW, French RJ. Dual actions of procainamide on batrachotoxin-activated sodium channels: open channel block and prevention of inactivation. Biophys J 1993; 65:2324-34. [PMID: 8312472 PMCID: PMC1225974 DOI: 10.1016/s0006-3495(93)81291-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have investigated the action of procainamide on batrachotoxin (BTX)-activated sodium channels from bovine heart and rat skeletal muscle. When applied to the intracellular side, procainamide induced rapid, open-channel block. We estimated rate constants using amplitude distribution analysis (Yellen, G. 1984. J. Gen. Physiol. 84:157). Membrane depolarization increased the blocking rate and slowed unblock. The rate constants were similar in both magnitude and voltage dependence for cardiac and skeletal muscle channels. Qualitatively, this block resembled the fast open-channel block by lidocaine (Zamponi, G. W., D. D. Doyle, and R. J. French. 1993. Biophys. J. 65:80), but procainamide was about sevenfold less potent. Molecular modeling suggests that the difference in potency between procainamide and lidocaine might arise from the relative orientation of their aromatic rings, or from differences in the structure of the aryl-amine link. For the cardiac channels, procainamide reduced the frequency of transitions to a long-lived closed state which shows features characteristic of inactivation (Zamponi, G. W., D. D. Doyle, and R. J. French. 1993. Biophys J. 65:91). Mean durations of kinetically identified closed states were not affected. The degree of fast block and of inhibition of the slow closures were correlated. Internally applied QX-314, a lidocaine derivative and also a fast blocker, produced a similar effect. Thus, drug binding to the fast blocking site appears to inhibit inactivation in BTX-activated cardiac channels.
Collapse
Affiliation(s)
- G W Zamponi
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
36
|
Kallen RG, Cohen SA, Barchi RL. Structure, function and expression of voltage-dependent sodium channels. Mol Neurobiol 1993; 7:383-428. [PMID: 8179845 DOI: 10.1007/bf02769184] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Voltage-dependent sodium channels control the transient inward current responsible for the action potential in most excitable cells. Members of this multigene family have been cloned, sequenced, and functionally expressed from various tissues and species, and common features of their structure have clearly emerged. Site-directed mutagenesis coupled with in vitro expression has provided additional insight into the relationship between structure and function. Subtle differences between sodium channel isoforms are also important, and aspects of the regulation of sodium channel gene expression and the modulation of channel function are becoming topics of increasing importance. Finally, sodium channel mutations have been directly linked to human disease, yielding insight into both disease pathophysiology and normal channel function. After a brief discussion of previous work, this review will focus on recent advances in each of these areas.
Collapse
Affiliation(s)
- R G Kallen
- Mahoney Institute of Neurological Sciences, University of Pennsylvania School of Medicine, Philadelphia
| | | | | |
Collapse
|
37
|
Naranjo D, Latorre R. Ion conduction in substates of the batrachotoxin-modified Na+ channel from toad skeletal muscle. Biophys J 1993; 64:1038-50. [PMID: 8388264 PMCID: PMC1262421 DOI: 10.1016/s0006-3495(93)81469-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Batrachotoxin-modified Na+ channels from toad muscle were inserted into planar lipid bilayers composed of neutral phospholipids. Single-channel conductances were measured for [Na+] ranging between 0.4 mM and 3 M. When membrane preparations were made in the absence of protease inhibitors, two open conductance states were identified: a fully open state (16.6 pS in 200 mM symmetrical NaCl) and a substate that was 71% of the full conductance. The substate was predominant at [Na+] > 65 mM, whereas the presence of the fully open state was predominant at [Na+] < 15 mM. Addition of protease inhibitors during membrane preparation stabilized the fully open state over the full range of [Na+] studied. In symmetrical Na+ solutions and in biionic conditions, the ratio of amplitudes remained constant and the two open states exhibited the same permeability ratios of PLi/PNa and PCs/PNa. The current-voltage relations for both states showed inward rectification only at [Na+] < 10 mM, suggesting the presence of asymmetric negative charge densities at both channel entrances, with higher charge density in the external side. An energy barrier profile that includes double ion occupancy and asymmetric charge densities at the channel entrances was required to fit the conductance-[Na+] relations and to account for the rectification seen at low [Na+]. Energy barrier profiles differing only in the energy peaks can give account of the differences between both conductance states. Estimation of the surface charge density at the channel entrances is very dependent on the ion occupancy used and the range of [Na+] tested. Independent evidence for the existence of a charged external vestibule was obtained at low external [Na+] by identical reduction of the outward current induced by micromolar additions of Mg2+ and Ba2+.
Collapse
Affiliation(s)
- D Naranjo
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago
| | | |
Collapse
|
38
|
Wermelskirchen D, Wilffert B, Peters T. Veratridine-induced intoxication: an in vitro model for the characterization of anti-ischemic compounds? J Basic Clin Physiol Pharmacol 1992; 3:293-321. [PMID: 1285006 DOI: 10.1515/jbcpp.1992.3.4.293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Due to the complexity of ischemia-induced cellular dysfunction many different pharmacological approaches have been tested to improve cellular ischemia resistance. However, despite the importance of [Na+]i for ischemia-induced dysfunction, only very few studies have investigated the contribution of the Na+ channel to ischemia-induced failure of intracellular ion homeostasis. Since an activation of Na+ channels by veratridine also results in a failure of intracellular ion homeostasis, the veratridine- and ischemia-induced alterations of cellular function were compared. Moreover, despite the difference in the electrophysiological changes induced by veratridine and ischemia, the possible involvement of a slowly inactivating, less selective Na+ channel in both veratridine- and ischemia-induced cellular dysfunction is discussed. As a conclusion it is suggested that veratridine intoxication could be a helpful in vitro method for the characterization of putative anti-ischemic compounds.
Collapse
|
39
|
Leboeuf J, Baissat J, Massingham R. Protective effect of bepridil against veratrine-induced contracture in rat atria. Eur J Pharmacol 1992; 216:183-9. [PMID: 1397005 DOI: 10.1016/0014-2999(92)90359-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In isolated stimulated rat atria, superfusion with veratrine caused a marked contracture (VIC) which was absent in calcium-free medium and which was inhibited by tetrodotoxin (IC50VIC of 1.38 microM). Lowering the extracellular calcium concentration from 2.5 to 0.5 or 0.1 mM reduced the veratrine-induced contracture and delayed its onset. Superfusion of bepridil (1-10 microM) for 60 min before and during veratrine exposure markedly slowed the onset of contracture, reduced the maximum response (IC50VIC = 2.11 microM) and facilitated recovery upon washout of the alkaloid. The direct negative inotropic effect (NIE) of bepridil (IC50NIE = 10.96 microM) resulted in an VIC/NIE ratio of 5.19 for this drug. The protective effects of bepridil were rate-independent and were not modified by the presence of atropine (1.4 microM) and propranolol (0.3 microM) in the medium. Diltiazem, verapamil and nifedipine only reduced veratrine-induced contracture at concentrations much higher than those producing a negative inotropic effect, giving them negative NIE/VIC ratios of 0.31, 0.08 and 0.08 respectively. Like bepridil, flunarizine had a positive NIE/VIC ratio (15.87, IC50VIC = 3.71 microM). The lack of effect of the quaternary derivative of bepridil CERM 11888 indicated that intracellular sites of action may be involved in the activity of bepridil on veratrine-induced contracture. Given that veratrine-induced changes may mimic some of the pathological changes occurring in ischaemia, the results suggest that bepridil and flunarizine may be more effective than L-type, slow calcium ion-channel blockers in protecting against calcium overload during ischaemia and reperfusion injury.
Collapse
Affiliation(s)
- J Leboeuf
- RL-CERM, Department of Pharmacology, Riom, France
| | | | | |
Collapse
|
40
|
Castillo C, Villegas R, Recio-Pinto E. Alkaloid-modified sodium channels from lobster walking leg nerves in planar lipid bilayers. J Gen Physiol 1992; 99:897-930. [PMID: 1322451 PMCID: PMC2216628 DOI: 10.1085/jgp.99.6.897] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alkaloid-modified, voltage-dependent sodium channels from lobster walking leg nerves were studied in planar neutral lipid bilayers. In symmetrical 0.5 M NaCl the single channel conductance of veratridine (VTD) (10 pS) was less than that of batrachotoxin (BTX) (16 pS) modified channels. At positive potentials, VTD- but not BTX-modified channels remained open at a flickery substate. VTD-modified channels underwent closures on the order of milliseconds (fast process), seconds (slow process), and minutes. The channel fractional open time (f(o)) due to the fast process, the slow process, and all channel closures (overall f(o)) increased with depolarization. The fast process had a midpoint potential (V(a)) of -122 mV and an apparent gating charge (z(a)) of 2.9, and the slow process had a V(a) of -95 mV and a z(a) of 1.6. The overall f(o) was predominantly determined by closures on the order of minutes, and had a V(a) of about -24 mV and a shallow voltage dependence (z(a) approximately 0.7). Augmenting the VTD concentration increased the overall f(o) without changing the number of detectable channels. However, the occurrence of closures on the order of minutes persisted even at super-saturating concentrations of VTD. The occurrence of these long closures was nonrandom and the level of nonrandomness was usually unaffected by the number of channels, suggesting that channel behavior was nonindependent. BTX-modified channels also underwent closures on the order of milliseconds, seconds, and minutes. Their characterization, however, was complicated by the apparent low BTX binding affinity and by an apparent high binding reversibility (channel disappearance) of BTX to these channels. VTD- but not BTX-modified channels inactivated slowly at high positive potentials (greater than +30 mV). Single channel conductance versus NaCl concentrations saturated at high NaCl concentrations and was non-Langmuirian at low NaCl concentrations. At all NaCl concentrations the conductance of VTD-modified channels was lower than that of BTX-modified channels. However, this difference in conductance decreased as NaCl concentrations neared zero, approaching the same limiting value. The permeability ratio of sodium over potassium obtained under mixed ionic conditions was similar for VTD (2.46)- and BTX (2.48)-modified channels, whereas that obtained under bi-ionic conditions was lower for VTD (1.83)- than for BTX (2.70)-modified channels. Tetrodotoxin blocked these alkaloid-modified channels with an apparent binding affinity in the nanomolar range.
Collapse
Affiliation(s)
- C Castillo
- Department of Anesthesiology, Cornell University Medical College, New York 10021
| | | | | |
Collapse
|
41
|
Zong XG, Dugas M, Honerjäger P. Relation between veratridine reaction dynamics and macroscopic Na current in single cardiac cells. J Gen Physiol 1992; 99:683-97. [PMID: 1318938 PMCID: PMC2216614 DOI: 10.1085/jgp.99.5.683] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Veratridine modification of Na current was examined in single dissociated ventricular myocytes from late-fetal rats. Extracellularly applied veratridine reduced peak Na current and induced a noninactivating current during the depolarizing pulse and an inward tail current that decayed exponentially (tau = 226 ms) after repolarization. The effect was quantitated as tail current amplitude, Itail (measured 10 ms after repolarization), relative to the maximum amplitude induced by a combination of 100 microM veratridine and 1 microM BDF 9145 (which removes inactivation) in the same cell. Saturation curves for Itail were predicted on the assumption of reversible veratridine binding to open Na channels during the pulse with reaction rate constants determined previously in the same type of cell at single Na channels comodified with BDF 9145. Experimental relationships between veratridine concentration and Itail confirmed those predicted by showing (a) half-maximum effect near 60 microM veratridine and no saturation up to 300 microM in cells with normally inactivating Na channels, and (b) half-maximum effect near 3.5 microM and saturation at 30 microM in cells treated with BDF 9145. Due to its known suppressive effect on single channel conductance, veratridine induced a progressive, but partial reduction of noninactivating Na current during the 50-ms depolarizations in the presence of BDF 9145, the kinetics of which were consistent with veratridine association kinetics in showing a decrease in time constant from 57 to 22 and 11 ms, when veratridine concentration was raised from 3 to 10 and 30 microM, respectively. As predicted for a dissociation process, the tail current time constant was insensitive to veratridine concentration in the range from 1 to 300 microM. In conclusion, we have shown that macroscopic Na current of a veratridine-treated cardiomyocyte can be quantitatively predicted on the assumption of a direct relationship between veratridine binding dynamics and Na current and as such can be successfully used to analyze molecular properties of the veratridine receptor site at the cardiac Na channel.
Collapse
Affiliation(s)
- X G Zong
- Institut für Pharmakologie und Toxikologie Technischen Universität München, München, Germany
| | | | | |
Collapse
|
42
|
Ravindran A, Kwiecinski H, Alvarez O, Eisenman G, Moczydlowski E. Modeling ion permeation through batrachotoxin-modified Na+ channels from rat skeletal muscle with a multi-ion pore. Biophys J 1992; 61:494-508. [PMID: 1312366 PMCID: PMC1260264 DOI: 10.1016/s0006-3495(92)81854-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mechanism of ion permeation through Na+ channels that have been modified by batrachotoxin (BTX) and inserted into planar bilayers has been generally described by models based on single-ion occupancy, with or without an influence of negative surface charge, depending on the tissue source. For native Na+ channels there is evidence suggestive of a multi-ion conduction mechanism. To explore the question of ion occupancy, we have reexamined permeation of Na+, Li+, and K+ through BTX-modified Na+ channels from rat skeletal muscle. Single-channel current-voltage (I-V) behavior was studied in neutral lipid bilayers in the presence of symmetrical Na+ concentrations ranging from 0.5 to 3,000 mM. The dependence of unitary current on the mole fraction of Na+ was also examined in symmetrical mixtures of Na(+)-Li+ and Na(+)-K+ at a constant total ionic strength of 206 and 2,006 mM. The dependence of unitary conductance on symmetrical Na+ concentration does not exhibit Michaelis-Menten behavior characteristic of single-ion occupancy but can be simulated by an Eyring-type model with three barriers and two sites (3B2S) that includes double occupancy and ion-ion repulsion. Best-fit energy barrier profiles for Na+, Li+, and K+ were obtained by nonlinear curve fitting of I-V data using the 3B2S model. The Na(+)-Li+ and Na(+)-K+ mole-fraction experiments do not exhibit an anomalous mole-fraction effect. However, the 3B2S model is able to account for the biphasic dependence of unitary conductance on symmetrical [Na+] that is suggestive of multiple occupancy and the monotonic dependence of unitary current on the mole fraction of Na+ that is compatible with single or multiple occupancy. The best-fit 3B2S barrier profiles also successfully predict bi-ionic reversal potentials for Na(+)-Li+ and Na(+)-K+ in both orientations across the channel. Our experimental and modeling results reconcile the dual personality of ion permeation through Na+ channels, which can display features of single or multiple occupancy under various conditions. To a first approximation, the 3B2S model developed for this channel does not require corrections for vestibule surface charge. However, if negative surface charges of the protein do influence conduction, the conductance behavior in the limit of low [Na+] does not correspond to a Gouy-Chapman model of planar surface charge.
Collapse
Affiliation(s)
- A Ravindran
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | |
Collapse
|
43
|
Moczydlowski E, Moss GW, Lucchesi KJ. Bovine pancreatic trypsin inhibitor as a probe of large conductance Ca2+-activated K+ channels at an internal site of interaction. Biochem Pharmacol 1992; 43:21-8. [PMID: 1370897 DOI: 10.1016/0006-2952(92)90656-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bovine pancreatic trypsin inhibitor (BPTI) is a 58 residue protein whose binding to various serine proteases has been extensively studied by X-ray crystallography. We have found that BPTI also binds to an intracellular site associated with the large conductance Ca(2+)-activated K+ channel, as detected by the production of subconductance events in single channels incorporated into planar lipid bilayers. BPTI is highly homologous to a family of mamba snake dendrotoxin proteins that inhibit various K+ channels at an extracellular site. BPTI thus provides a useful model system to explore basic mechanisms underlying protein-channel interactions.
Collapse
Affiliation(s)
- E Moczydlowski
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | | | | |
Collapse
|
44
|
Narahashi T, Herman MD. Overview of toxins and drugs as tools to study excitable membrane ion channels: I. Voltage-activated channels. Methods Enzymol 1992; 207:620-43. [PMID: 1326704 DOI: 10.1016/0076-6879(92)07045-p] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Abstract
Many drugs interact directly with ion channel proteins to alter gating and permeation functions. Single-channel recording affords resolution of drug-induced functional changes in channel behavior at the molecular level. Drug and toxin molecules that block ion channels are useful probes of channel mechanisms because blocking sites are often coupled to other pharmacologically relevant binding sites. Simple kinetic schemes describing fast block, slow block, and binding competition between two blocking molecules provide useful models of drug-induced blocking processes. From a careful perspective, a single channel is best approached as the analog of a purified enzyme preparation in the hands of an enzymologist. The confidence gained by knowing that one is viewing a single subtype must be weighed against the possibility that the channel could have been altered in the process of patch isolation or bilayer reconstitution. As in all kinetic studies, a curve fit to a two-state scheme is contingent on the possibility that a more complex multi-state system can masquerade as the simple cartoon one would like to put forward.
Collapse
|
46
|
Cukierman S. Inactivation modifiers of Na+ currents and the gating of rat brain Na+ channels in planar lipid membranes. Pflugers Arch 1991; 419:514-21. [PMID: 1663611 DOI: 10.1007/bf00370798] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rat brain Na+ channels whose inactivation process had been removed either by batrachotoxin (BTX) or veratridine (VT) were reconstituted into planar lipid membranes. The voltage dependence of the open probability (Po) of the channel, of the opening and closing rate constants, and the conductance and relative permeability for Na+ and K+ were studied in voltage-clamp conditions in the presence of agents known to modify the inactivation of Na+ currents. In relation to alkaloids (BTX, VT, and aconitine), it was found that once a Na+ channel was modified by BTX or VT, the addition of another alkaloid did not change further the gating and permeation properties of the channel over a period of about 1 h. Once the inactivation process of the channels is removed by BTX, the addition of a proteolytic enzyme (trypsin) or an halogenated compound (chloramine-T, CT) induced profound and specific modifications on the opening and closing events of Na+ channels: (1) the voltage dependence of the channel Po shifted to more hyperpolarized potentials; (2) this voltage shift can be explained by equal hyperpolarizing voltage shifts of the opening and closing rate constants of the channel; (3) although the gating properties of the channel were modified by these compounds, the permeation properties of the channel, as evaluated by the conductance and the selectivity to Na+ and K+ ions, were unaltered; (4) trypsin and CT were active only in the intracellular side of the channel and were irreversible within the time course of the experiments, suggesting covalent modifications of the channel. Inactivation modifiers also affected the gating of toxin-activated single Na+ channels.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Cukierman
- Division of Biomedical Sciences, University of California, Riverside 92521-0121
| |
Collapse
|
47
|
Cukierman S. Asymmetric electrostatic effects on the gating of rat brain sodium channels in planar lipid membranes. Biophys J 1991; 60:845-55. [PMID: 1660316 PMCID: PMC1260135 DOI: 10.1016/s0006-3495(91)82118-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The effects of ionic strength (10-1,000 mM) on the gating of batrachotoxin-activated rat brain sodium channels were studied in neutral and in negatively charged lipid bilayers. In neutral bilayers, increasing the ionic strength of the extracellular solution, shifted the voltage dependence of the open probability (gating curve) of the sodium channel to more positive membrane potentials. On the other hand, increasing the intracellular ionic strength shifted the gating curve to more negative membrane potentials. Ionic strength shifted the voltage dependence of both opening and closing rate constants of the channel in analogous ways to its effects on gating curves. The voltage sensitivities of the rate constants were not affected by ionic strength. The effects of ionic strength on the gating of sodium channels reconstituted in negatively charged bilayers were qualitatively the same as in neutral bilayers. However, important quantitative differences were noticed: in low ionic strength conditions (10-150 mM), the presence of negative charges on the membrane surface induced an extra voltage shift on the gating curve of sodium channels in relation to neutral bilayers. It is concluded that: (a) asymmetric negative surface charge densities in the extracellular (1e-/533A2) and intracellular (1e-/1,231A2) sides of the sodium channel could explain the voltage shifts caused by ionic strength on the gating curve of the channel in neutral bilayers. These surface charges create negative electric fields in both the extracellular and intracellular sides of the channel. Said electric fields interfere with gating charge movements that occur during the opening and closing of sodium channels; (b) the voltage shifts caused by ionic strength on the gating curve of sodium channels can be accounted by voltage shifts in both the opening and closing rate constants; (c) net negative surface charges on the channel's molecule do not affect the intrinsic gating properties of sodium channels but are essential in determining the relative position of the channel's gating curve; (d) provided the ionic strength is below 150 mM, the gating machinery of the sodium channel molecule is able to sense the electric field created by surface changes on the lipid membrane. I propose that during the opening and closing of sodium channels, the gating charges involved in this process are asymmetrically displaced in relation to the plane of the bilayer. Simple electrostatic calculations suggest that gating charge movements are influenced by membrane electrostatic potentials at distances of 48 and 28 A away from the plane of the membrane in the extracellular sides of the channel, respectively.
Collapse
Affiliation(s)
- S Cukierman
- Division of Biomedical Sciences, University of California, Riverside 92521-0121
| |
Collapse
|
48
|
Correa AM, Latorre R, Bezanilla F. Ion permeation in normal and batrachotoxin-modified Na+ channels in the squid giant axon. J Gen Physiol 1991; 97:605-25. [PMID: 1645396 PMCID: PMC2216484 DOI: 10.1085/jgp.97.3.605] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Na+ permeation through normal and batrachotoxin (BTX)-modified squid axon Na+ channels was characterized. Unmodified and toxin-modified Na+ channels were studied simultaneously in outside-out membrane patches using the cut-open axon technique. Current-voltage relations for both normal and BTX-modified channels were measured over a wide range of Na+ concentrations and voltages. Channel conductance as a function of Na+ concentration curves showed that within the range 0.015-1 M Na+ the normal channel conductance is 1.7-2.5-fold larger than the BTX-modified conductance. These relations cannot be fitted by a simple Langmuir isotherm. Channel conductance at low concentrations was larger than expected from a Michaelis-Menten behavior. The deviations from the simple case were accounted for by fixed negative charges located in the vicinity of the channel entrances. Fixed negative charges near the pore mouths would have the effect of increasing the local Na+ concentration. The results are discussed in terms of energy profiles with three barriers and two sites, taking into consideration the effect of the fixed negative charges. Either single- or multi-ion pore models can account for all the permeation data obtained in both symmetric and asymmetric conditions. In a temperature range of 5-15 degrees C, the estimated Q10 for the conductance of the BTX-modified Na+ channel was 1.53. BTX appears not to change the Na+ channel ion selectively (for the conditions used) or the surface charge located near the channel entrances.
Collapse
Affiliation(s)
- A M Correa
- Department of Physiology, Ahmanson Laboratory of Neurobiology, University of California, Los Angeles 90024
| | | | | |
Collapse
|
49
|
Moreno-Sánchez R, Hansford RG. Inhibition of the veratridine-induced increase in cytosolic Ca2+ and respiration by Ca2+ antagonists in isolated cardiac myocytes. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1991; 23:889-96. [PMID: 1773894 DOI: 10.1016/0020-711x(91)90076-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. We studied the effect of verapamil, nitrendipine, 3',4'-dichlorobenzamil (DCB) and Cd2+ on the increase in cytosolic free Ca2+ ([Ca2+]c) and the rate of O2-uptake induced by depolarization of isolated rat cardiac myocytes with veratridine. 2. The degree of inhibition by the several drugs tested on the increase in [Ca2+]c and respiration was dependent on extracellular Ca2+, pH and Na+. 3. Low verapamil and nitrendipine concentrations (2.5 microM) were fully effective in Ca2+ channel blockade, as indicated from experiments with isoproterenol and in a low-Na+ medium. 4. A complete inhibition of veratridine-induced increase in [Ca2+]c and O2-uptake was attained with higher Ca2+ blocker concentrations (25-30 microM), implying that these processes depend to a major extent on some other Ca2+ transport system, probably Na+/Ca2+ exchange.
Collapse
Affiliation(s)
- R Moreno-Sánchez
- Departamento de Bioquimica, Instituto Nacional de Cardiología, D.F. México
| | | |
Collapse
|
50
|
Amar M, Pichon Y, Inoue I. Micromolar concentrations of veratridine activate sodium channels in embryonic cockroach neurones in culture. Pflugers Arch 1991; 417:500-8. [PMID: 1849251 DOI: 10.1007/bf00370946] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mode of action of the alkaloid veratridine has been reinvestigated on cultured cockroach neurones, which are normally inexcitable and do not have a detectable fast sodium current. The whole-cell and cell-attached configurations of the patch-clamp technique were used to record the macroscopic and single channel currents, respectively. Concentrations of veratridine ranging from 10(-8) to 10(-5) M were found to induce a small tetrodotoxin (TTX)-sensitive inward current, which peaked around +10 mV and reversed around +55 mV. This current exhibited a pronounced plateau and was insensitive to changes in the holding potential. Bath application of veratridine induced typical TTX-sensitive inwardly-directed single-channel activity, falling into two (apparently coupled) categories of events: first, relatively large events (1 pA at a hyperpolarized potential of -125 mV relative to rest) of short duration and, second, small bursting events (0.4 pA under similar conditions) of slightly longer duration. Pipette application of similar concentrations of veratridine had similar effects in that two categories of events were observed: first, bursts of large events with multiple conductance states and, second, small events of very long duration. The current/voltage relationship of these events was linear for the voltage range studied and the (extrapolated) reversal potential approximated +110 mV. These results support the hypothesis that veratridine, in small concentrations, induces a slow voltage-dependent activation of TTX-sensitive sodium channels, independent of the fast activating and inactivating sodium channels involved in action potential generation.
Collapse
Affiliation(s)
- M Amar
- Département de Biophysique, Laboratoire de Neurobiologie Cellulaire et Moléculaire du CNRS F-91198, Gif sur Yvette, France
| | | | | |
Collapse
|