1
|
Fukazawa H, Okada-Shudo Y. Photosynthetic Protein-Based Retinal Ganglion Cell Receptive Fields for Detecting Edges and Brightness Illusions. NANO LETTERS 2023; 23:10983-10990. [PMID: 38048176 PMCID: PMC10723062 DOI: 10.1021/acs.nanolett.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Bacteriorhodopsin, isolated from a halophilic bacterium, is a photosynthetic protein with a structure and function similar to those of the visual pigment rhodopsin. A voltaic cell with bacteriorhodopsin sandwiched between two transparent electrodes exhibits a time-differential response akin to that observed in retinal ganglion cells. It is intriguing as a means to emulate excitation and inhibition in the neural response. Here, we present a neuromorphic device emulating the retinal ganglion cell receptive field fabricated by patterning bacteriorhodopsin onto two transparent electrodes and encapsulating them with an electrolyte solution. This protein-based artificial ganglion cell receptive field is characterized as a bandpass filter that simultaneously replicates excitatory and inhibitory responses within a single element, successfully detecting image edges and phenomena of brightness illusions. The device naturally emulates the highly interacting ganglion cell receptive fields by exploiting the inherent properties of proteins without the need for electronic components, bias power supply, or an external operating circuit.
Collapse
Affiliation(s)
- Hikaru Fukazawa
- Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yoshiko Okada-Shudo
- Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
2
|
Somaratna MA, Freeman AW. A model for the development of binocular congruence in primary visual cortex. Sci Rep 2022; 12:12669. [PMID: 35879517 PMCID: PMC9314406 DOI: 10.1038/s41598-022-16739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Neurons in primary visual cortex are selective for stimulus orientation, and a neuron's preferred orientation changes little when the stimulus is switched from one eye to the other. It has recently been shown that monocular orientation preferences are uncorrelated before eye opening; how, then, do they become aligned during visual experience? We aimed to provide a model for this acquired congruence. Our model, which simulates the cat's visual system, comprises multiple on-centre and off-centre channels from both eyes converging onto neurons in primary visual cortex; development proceeds in two phases via Hebbian plasticity in the geniculocortical synapse. First, cortical drive comes from waves of activity drifting across each retina. The result is orientation tuning that differs between the two eyes. The second phase begins with eye opening: at each visual field location, on-centre cortical inputs from one eye can cancel off-centre inputs from the other eye. Synaptic plasticity reduces the destructive interference by up-regulating inputs from one eye at the expense of its fellow, resulting in binocular congruence of orientation tuning. We also show that orthogonal orientation preferences at the end of the first phase result in ocular dominance, suggesting that ocular dominance is a by-product of binocular congruence.
Collapse
Affiliation(s)
- Manula A Somaratna
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Alan W Freeman
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2000, Australia.
| |
Collapse
|
3
|
Kim YJ, Peterson BB, Crook JD, Joo HR, Wu J, Puller C, Robinson FR, Gamlin PD, Yau KW, Viana F, Troy JB, Smith RG, Packer OS, Detwiler PB, Dacey DM. Origins of direction selectivity in the primate retina. Nat Commun 2022; 13:2862. [PMID: 35606344 PMCID: PMC9126974 DOI: 10.1038/s41467-022-30405-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF polyaxonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we discovered that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a door to investigation of a precortical circuitry that computes motion direction in the primate visual system.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Beth B Peterson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Joanna D Crook
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Hannah R Joo
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Jiajia Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Christian Puller
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Farrel R Robinson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Paul D Gamlin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294-4390, USA
| | - King-Wai Yau
- Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2185, USA
| | - Felix Viana
- Institute of Neuroscience, UMH-CSIC, San Juan de Alicante, 03550, Spain
| | - John B Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Orin S Packer
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Peter B Detwiler
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Dennis M Dacey
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.
- Washington National Primate Research Center, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Cao AS, Van Hooser SD. Paired Feed-Forward Excitation With Delayed Inhibition Allows High Frequency Computations Across Brain Regions. Front Neural Circuits 2022; 15:803065. [PMID: 35210993 PMCID: PMC8862685 DOI: 10.3389/fncir.2021.803065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
The transmission of high frequency temporal information across brain regions is critical to perception, but the mechanisms underlying such transmission remain unclear. Long-range projection patterns across brain areas are often comprised of paired feed-forward excitation followed closely by delayed inhibition, including the thalamic triad synapse, thalamic projections to cortex, and projections within the hippocampus. Previous studies have shown that these joint projections produce a shortened period of depolarization, sharpening the timing window over which the postsynaptic neuron can fire. Here we show that these projections can facilitate the transmission of high frequency computations even at frequencies that are highly filtered by neuronal membranes. This temporal facilitation occurred over a range of synaptic parameter values, including variations in synaptic strength, synaptic time constants, short-term synaptic depression, and the delay between excitation and inhibition. Further, these projections can coordinate computations across multiple network levels, even amid ongoing local activity. We suggest that paired feed-forward excitation and inhibition provide a hybrid signal-carrying both a value and a clock-like trigger-to allow circuits to be responsive to input whenever it arrives.
Collapse
Affiliation(s)
- Alexandra S. Cao
- Department of Biology, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Stephen D. Van Hooser
- Department of Biology, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
- Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University, Waltham, MA, United States
| |
Collapse
|
5
|
Archer DR, Alitto HJ, Usrey WM. Stimulus Contrast Affects Spatial Integration in the Lateral Geniculate Nucleus of Macaque Monkeys. J Neurosci 2021; 41:6246-6256. [PMID: 34103362 PMCID: PMC8287990 DOI: 10.1523/jneurosci.2946-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
Gain-control mechanisms adjust neuronal responses to accommodate the wide range of stimulus conditions in the natural environment. Contrast gain control and extraclassical surround suppression are two manifestations of gain control that govern the responses of neurons in the early visual system. Understanding how these two forms of gain control interact has important implications for the detection and discrimination of stimuli across a range of contrast conditions. Here, we report that stimulus contrast affects spatial integration in the lateral geniculate nucleus of alert macaque monkeys (male and female), whereby neurons exhibit a reduction in the strength of extraclassical surround suppression and an expansion in the preferred stimulus size with low-contrast stimuli compared with high-contrast stimuli. Effects were greater for magnocellular neurons than for parvocellular neurons, indicating stream-specific interactions between stimulus contrast and stimulus size. Within the magnocellular pathway, contrast-dependent effects were comparable for ON-center and OFF-center neurons, despite ON neurons having larger receptive fields, less pronounced surround suppression, and more pronounced contrast gain control than OFF neurons. Together, these findings suggest that the parallel streams delivering visual information from retina to primary visual cortex, serve not only to broaden the range of signals delivered to cortex, but also to provide a substrate for differential interactions between stimulus contrast and stimulus size that may serve to improve stimulus detection and stimulus discrimination under pathway-specific lower and higher contrast conditions, respectively.SIGNIFICANCE STATEMENT Stimulus contrast is a salient feature of visual scenes. Here we examine the influence of stimulus contrast on spatial integration in the lateral geniculate nucleus (LGN). Our results demonstrate that increases in contrast generally increase extraclassical suppression and decrease the size of optimal stimuli, indicating a reduction in the extent of visual space from which LGN neurons integrate signals. Differences between magnocellular and parvocellular neurons are noteworthy and further demonstrate that the feedforward parallel pathways to cortex increase the range of information conveyed for downstream cortical processing, a range broadened by diversity in the ON and OFF pathways. These results have important implications for more complex visual processing that underly the detection and discrimination of stimuli under varying natural conditions.
Collapse
Affiliation(s)
- Darlene R Archer
- Center for Neuroscience, University of California, Davis, Davis, California 95616
- SUNY College of Optometry, New York, New York 10036
- Center for Neural Science, New York University, New York, New York 10003
| | - Henry J Alitto
- Center for Neuroscience, University of California, Davis, Davis, California 95616
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, Davis, California 95616
| |
Collapse
|
6
|
A model for the origin and development of visual orientation selectivity. PLoS Comput Biol 2019; 15:e1007254. [PMID: 31356590 PMCID: PMC6687209 DOI: 10.1371/journal.pcbi.1007254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 08/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Orientation selectivity is a key property of primary visual cortex that contributes, downstream, to object recognition. The origin of orientation selectivity, however, has been debated for decades. It is known that on- and off-centre subcortical pathways converge onto single neurons in primary visual cortex, and that the spatial offset between these pathways gives rise to orientation selectivity. On- and off-centre pathways are intermingled, however, so it is unclear how their inputs to cortex come to be spatially segregated. We here describe a model in which the segregation occurs through Hebbian strengthening and weakening of geniculocortical synapses during the development of the visual system. Our findings include the following. 1. Neighbouring on- and off-inputs to cortex largely cancelled each other at the start of development. At each receptive field location, the Hebbian process increased the strength of one input sign at the expense of the other sign, producing a spatial segregation of on- and off-inputs. 2. The resulting orientation selectivity was precise in that the bandwidths of the orientation tuning functions fell within empirical estimates. 3. The model produced maps of preferred orientation–complete with iso-orientation domains and pinwheels–similar to those found in real cortex. 4. These maps did not originate in cortical processes, but from clustering of off-centre subcortical pathways and the relative location of neighbouring on-centre clusters. We conclude that a model with intermingled on- and off-pathways shaped by Hebbian synaptic plasticity can explain both the origin and development of orientation selectivity. Many neurons in mammalian primary visual cortex are highly selective for the orientation of visual contours and can therefore contribute to object recognition. Orientation selectivity depends on on- and off-centre retinal neurons that respond, respectively, to light and dark. We describe a signal-processing model that includes both subcortical pathways and cortical neurons. The model predicts the preferred orientation of a cortical neuron from the empirically determined spatial layout of retinal cells. Further, the subcortical-to-cortical connections change in strength during visual development, meaning that cortical neurons in the model have orientation selectivity just as precise as real neurons. Our model can therefore explain the origin of orientation selectivity and the way it develops during visual system maturation.
Collapse
|
7
|
Eiber C, Pietersen A, Zeater N, Solomon S, Martin P. Chromatic summation and receptive field properties of blue-on and blue-off cells in marmoset lateral geniculate nucleus. Vision Res 2018; 151:41-52. [DOI: 10.1016/j.visres.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
8
|
Pathway-Specific Asymmetries between ON and OFF Visual Signals. J Neurosci 2018; 38:9728-9740. [PMID: 30249795 DOI: 10.1523/jneurosci.2008-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023] Open
Abstract
Visual processing is largely organized into ON and OFF pathways that signal stimulus increments and decrements, respectively. These pathways exhibit natural pairings based on morphological and physiological similarities, such as ON and OFF α-ganglion cells in the mammalian retina. Several studies have noted asymmetries in the properties of ON and OFF pathways. For example, the spatial receptive fields (RFs) of OFF α-cells are systematically smaller than ON α-cells. Analysis of natural scenes suggests that these asymmetries are optimal for visual encoding. To test the generality of ON/OFF asymmetries, we measured the spatiotemporal RF properties of multiple RGC types in rat retina. Through a quantitative and serial classification, we identified three functional pairs of ON and OFF RGCs. We analyzed the structure of their RFs and compared spatial integration, temporal integration, and gain across ON and OFF pairs. Similar to previous results from the cat and primate, RGC types with larger spatial RFs exhibited briefer temporal integration and higher gain. However, each pair of ON and OFF RGC types exhibited distinct asymmetric relationships between RF properties, some of which were opposite to the findings of previous reports. These results reveal the functional organization of six RGC types in the rodent retina and indicate that ON/OFF asymmetries are pathway specific.SIGNIFICANCE STATEMENT Circuits that process sensory input frequently process increments separately from decrements, so-called ON and OFF responses. Theoretical studies indicate that this separation, and associated asymmetries in ON and OFF pathways, may be beneficial for encoding natural stimuli. However, the generality of ON and OFF pathway asymmetries has not been tested. Here we compare the functional properties of three distinct pairs of ON and OFF pathways in the rodent retina and show that their asymmetries are pathway specific. These results provide a new view on the partitioning of vision across diverse ON and OFF signaling pathways.
Collapse
|
9
|
Borghuis BG, Ratliff CP, Smith RG. Impact of light-adaptive mechanisms on mammalian retinal visual encoding at high light levels. J Neurophysiol 2018; 119:1437-1449. [PMID: 29357459 PMCID: PMC5966735 DOI: 10.1152/jn.00682.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
A persistent change in illumination causes light-adaptive changes in retinal neurons. Light adaptation improves visual encoding by preventing saturation and by adjusting spatiotemporal integration to increase the signal-to-noise ratio (SNR) and utilize signaling bandwidth efficiently. In dim light, the visual input contains a greater relative amount of quantal noise, and vertebrate receptive fields are extended in space and time to increase SNR. Whereas in bright light, SNR of the visual input is high, the rate of synaptic vesicle release from the photoreceptors is low so that quantal noise in synaptic output may limit SNR postsynaptically. Whether and how reduced synaptic SNR impacts spatiotemporal integration in postsynaptic neurons remains unclear. To address this, we measured spatiotemporal integration in retinal horizontal cells and ganglion cells in the guinea pig retina across a broad illumination range, from low to high photopic levels. In both cell types, the extent of spatial and temporal integration changed according to an inverted U-shaped function consistent with adaptation to low SNR at both low and high light levels. We show how a simple mechanistic model with interacting, opponent filters can generate the observed changes in ganglion cell spatiotemporal receptive fields across light-adaptive states and postulate that retinal neurons postsynaptic to the cones in bright light adopt low-pass spatiotemporal response characteristics to improve visual encoding under conditions of low synaptic SNR.
Collapse
Affiliation(s)
- Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, Kentucky
| | - Charles P Ratliff
- Center for Systems Vision Science, Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Murphy-Baum BL, Taylor WR. Diverse inhibitory and excitatory mechanisms shape temporal tuning in transient OFF α ganglion cells in the rabbit retina. J Physiol 2018; 596:477-495. [PMID: 29222817 DOI: 10.1113/jp275195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/23/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neurons combine excitatory and inhibitory signals to perform computations. In the retina, interactions between excitation and inhibition enable neurons to detect specific visual features. We describe how several excitatory and inhibitory mechanisms work together to allow transient OFF α ganglion cells in the rabbit retina to respond selectively to high temporal frequencies and thus detect faster image motion. The weightings of these different mechanisms change with the contrast and spatiotemporal properties of the visual input, and thereby support temporal tuning in α cells over a range of visual conditions. The results help us understand how ganglion cells selectively integrate excitatory and inhibitory signals to extract specific information from the visual input. ABSTRACT The 20 to 30 types of ganglion cell in the mammalian retina represent parallel signalling pathways that convey different information to the brain. α ganglion cells are selective for high temporal frequencies in visual inputs, which makes them particularly sensitive to rapid motion. Although α ganglion cells have been studied in several species, the synaptic basis for their selective temporal tuning remains unclear. Here, we analyse excitatory synaptic inputs to transient OFF α ganglion cells (t-OFF α GCs) in the rabbit retina. We show that convergence of excitatory and inhibitory synaptic inputs within the bipolar cell terminals presynaptic to the t-OFF α GCs shifts the temporal tuning to higher temporal frequencies. GABAergic inhibition suppresses the excitatory input at low frequencies, but potentiates it at high frequencies. Crossover glycinergic inhibition and sodium channel activity in the presynaptic bipolar cells also potentiate high frequency excitatory inputs. We found differences in the spatial and temporal properties, and contrast sensitivities of these mechanisms. These differences in stimulus selectivity allow these mechanisms to generate bandpass temporal tuning of t-OFF α GCs over a range of visual conditions.
Collapse
Affiliation(s)
- Benjamin L Murphy-Baum
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Science University, 3375 SW Terwilliger Boulevard, Portland, OR, 97239, USA
| | - W Rowland Taylor
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Science University, 3375 SW Terwilliger Boulevard, Portland, OR, 97239, USA
| |
Collapse
|
11
|
Cowan CS, Sabharwal J, Wu SM. Space-time codependence of retinal ganglion cells can be explained by novel and separable components of their receptive fields. Physiol Rep 2017; 4:4/17/e12952. [PMID: 27604400 PMCID: PMC5027358 DOI: 10.14814/phy2.12952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/24/2022] Open
Abstract
Reverse correlation methods such as spike‐triggered averaging consistently identify the spatial center in the linear receptive fields (RFs) of retinal ganglion cells (GCs). However, the spatial antagonistic surround observed in classical experiments has proven more elusive. Tests for the antagonistic surround have heretofore relied on models that make questionable simplifying assumptions such as space–time separability and radial homogeneity/symmetry. We circumvented these, along with other common assumptions, and observed a linear antagonistic surround in 754 of 805 mouse GCs. By characterizing the RF's space–time structure, we found the overall linear RF's inseparability could be accounted for both by tuning differences between the center and surround and differences within the surround. Finally, we applied this approach to characterize spatial asymmetry in the RF surround. These results shed new light on the spatiotemporal organization of GC linear RFs and highlight a major contributor to its inseparability.
Collapse
Affiliation(s)
- Cameron S Cowan
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Jasdeep Sabharwal
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
Kóbor P, Petykó Z, Telkes I, Martin PR, Buzás P. Temporal properties of colour opponent receptive fields in the cat lateral geniculate nucleus. Eur J Neurosci 2017; 45:1368-1378. [PMID: 28391639 DOI: 10.1111/ejn.13574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
The primordial form of mammalian colour vision relies on opponent interactions between inputs from just two cone types, 'blue' (S-) and 'green' (ML-) cones. We recently described the spatial receptive field structure of colour opponent blue-ON cells from the lateral geniculate nucleus of cats. Functional inputs from the opponent cone types were spatially coextensive and equally weighted, supporting their high chromatic and low achromatic sensitivity. Here, we studied relative cone weights, temporal frequency tuning and visual latency of cat blue-ON cells and non-opponent achromatic cells to temporally modulated cone-isolating and achromatic stimuli. We confirmed that blue-ON cells receive equally weighted antagonistic inputs from S- and ML-cones whereas achromatic cells receive exclusive ML-cone input. The temporal frequency tuning curves of S- and ML-cone inputs to blue-ON cells were tightly correlated between 1 and 48 Hz. Optimal temporal frequencies of blue-ON cells were around 3 Hz, whereas the frequency optimum of achromatic cells was close to 10 Hz. Most blue-ON cells showed negligible response to achromatic flicker across all frequencies tested. Latency to visual stimulation was significantly greater in blue-ON than in achromatic cells. The S- and ML-cone responses of blue-ON cells had on average, similar latencies to each other. Altogether, cat blue-ON cells showed remarkable balance of opponent cone inputs. Our results also confirm similarities to primate blue-ON cells suggesting that colour vision in mammals evolved on the basis of a sluggish pathway that is optimized for chromatic sensitivity at a wide range of spatial and temporal frequencies.
Collapse
Affiliation(s)
- Péter Kóbor
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zoltán Petykó
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ildikó Telkes
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Paul R Martin
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Péter Buzás
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
13
|
Mavilio A, Sisto D, Ferreri P, Cardascia N, Alessio G. RE-PERG, a new procedure for electrophysiologic diagnosis of glaucoma that may improve PERG specificity. Clin Ophthalmol 2017; 11:209-218. [PMID: 28176965 PMCID: PMC5271393 DOI: 10.2147/opth.s122706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE A significant variability of the second harmonic (2ndH) phase of steady-state pattern electroretinogram (SS-PERG) in intrasession retest has been recently described in glaucoma patients (GP), which has not been found in healthy subjects. To evaluate the reliability of phase variability in retest (a procedure called RE-PERG or REPERG) in the presence of cataract, which is known to affect standard PERG, we tested this procedure in GP, normal controls (NC), and cataract patients (CP). METHODS The procedure was performed on 50 GP, 35 NC, and 27 CP. All subjects were examined with RE-PERG and SS-PERG and also with spectral domain optical coherence tomography and standard automated perimetry. Standard deviation of phase and amplitude value of 2ndH were correlated by means of one-way analysis of variance and Pearson correlation, with the mean deviation and pattern standard deviation assessed by standard automated perimetry and retinal nerve fiber layer and the ganglion cell complex thickness assessed by spectral domain optical coherence tomography. Receiver operating characteristics were calculated in cohort populations with and without cataract. RESULTS Standard deviation of phase of 2ndH was significantly higher in GP with respect to NC (P<0.001) and CP (P<0.001), and it correlated with retinal nerve fiber layer (r=-0.5, P<0.001) and ganglion cell complex (r=-0.6, P<0.001) defects in GP. Receiver operating characteristic evaluation showed higher specificity of RE-PERG (86.4%; area under the curve 0.93) with respect to SS-PERG (54.5%; area under the curve 0.68) in CP. CONCLUSION RE-PERG may improve the specificity of SS-PERG in clinical practice in the discrimination of GP.
Collapse
Affiliation(s)
- Alberto Mavilio
- Social Health District, Glaucoma Center, Azienda Sanitaria Locale, Brindisi
| | - Dario Sisto
- Department of Ophthalmology and Otolaryngology, University of Bari, Bari, Italy
| | - Paolo Ferreri
- Department of Ophthalmology and Otolaryngology, University of Bari, Bari, Italy
| | - Nicola Cardascia
- Department of Ophthalmology and Otolaryngology, University of Bari, Bari, Italy
| | - Giovanni Alessio
- Department of Ophthalmology and Otolaryngology, University of Bari, Bari, Italy
| |
Collapse
|
14
|
Yue L, Weiland JD, Roska B, Humayun MS. Retinal stimulation strategies to restore vision: Fundamentals and systems. Prog Retin Eye Res 2016; 53:21-47. [DOI: 10.1016/j.preteyeres.2016.05.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/13/2016] [Accepted: 05/21/2016] [Indexed: 11/28/2022]
|
15
|
Heiberg T, Hagen E, Halnes G, Einevoll GT. Biophysical Network Modelling of the dLGN Circuit: Different Effects of Triadic and Axonal Inhibition on Visual Responses of Relay Cells. PLoS Comput Biol 2016; 12:e1004929. [PMID: 27203421 PMCID: PMC4874694 DOI: 10.1371/journal.pcbi.1004929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 04/20/2016] [Indexed: 02/04/2023] Open
Abstract
Despite its prominent placement between the retina and primary visual cortex in the early visual pathway, the role of the dorsal lateral geniculate nucleus (dLGN) in molding and regulating the visual signals entering the brain is still poorly understood. A striking feature of the dLGN circuit is that relay cells (RCs) and interneurons (INs) form so-called triadic synapses, where an IN dendritic terminal can be simultaneously postsynaptic to a retinal ganglion cell (GC) input and presynaptic to an RC dendrite, allowing for so-called triadic inhibition. Taking advantage of a recently developed biophysically detailed multicompartmental model for an IN, we here investigate putative effects of these different inhibitory actions of INs, i.e., triadic inhibition and standard axonal inhibition, on the response properties of RCs. We compute and investigate so-called area-response curves, that is, trial-averaged visual spike responses vs. spot size, for circular flashing spots in a network of RCs and INs. The model parameters are grossly tuned to give results in qualitative accordance with previous in vivo data of responses to such stimuli for cat GCs and RCs. We particularly investigate how the model ingredients affect salient response properties such as the receptive-field center size of RCs and INs, maximal responses and center-surround antagonisms. For example, while triadic inhibition not involving firing of IN action potentials was found to provide only a non-linear gain control of the conversion of input spikes to output spikes by RCs, axonal inhibition was in contrast found to substantially affect the receptive-field center size: the larger the inhibition, the more the RC center size shrinks compared to the GC providing the feedforward excitation. Thus, a possible role of the different inhibitory actions from INs to RCs in the dLGN circuit is to provide separate mechanisms for overall gain control (direct triadic inhibition) and regulation of spatial resolution (axonal inhibition) of visual signals sent to cortex.
Collapse
Affiliation(s)
- Thomas Heiberg
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Hagen
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Geir Halnes
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Gaute T. Einevoll
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
16
|
Cooper B, Lee BB, Cao D. Macaque retinal ganglion cell responses to visual patterns: harmonic composition, noise, and psychophysical detectability. J Neurophysiol 2016; 115:2976-88. [PMID: 26936977 DOI: 10.1152/jn.00411.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 03/01/2016] [Indexed: 11/22/2022] Open
Abstract
The goal of these experiments was to test how well cell responses to visual patterns can be predicted from the sinewave tuning curve. Magnocellular (MC) and parvocellular (PC) ganglion cell responses to different spatial waveforms (sinewave, squarewave, and ramp waveforms) were measured across a range of spatial frequencies. Sinewave spatial tuning curves were fit with standard Gaussian models. From these fits, waveforms and spatial tuning of a cell's responses to the other waveforms were predicted for different harmonics by scaling in amplitude for the power in the waveform's Fourier expansion series over spatial frequency. Since higher spatial harmonics move at a higher temporal frequency, an additional scaling for each harmonic by the MC (bandpass) or PC (lowpass) temporal response was included, together with response phase. Finally, the model included a rectifying nonlinearity. This provided a largely satisfactory estimation of MC and PC cell responses to complex waveforms. As a consequence of their transient responses, MC responses to complex waveforms were found to have significantly more energy in higher spatial harmonic components than PC responses. Response variance (noise) was also quantified as a function of harmonic component. Noise increased to some degree for the higher harmonics. The data are relevant for psychophysical detection or discrimination of visual patterns, and we discuss the results in this context.
Collapse
Affiliation(s)
- Bonnie Cooper
- College of Optometry, State University of New York, New York, New York
| | - Barry B Lee
- College of Optometry, State University of New York, New York, New York; Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; and
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
17
|
Hoggarth A, McLaughlin AJ, Ronellenfitch K, Trenholm S, Vasandani R, Sethuramanujam S, Schwab D, Briggman KL, Awatramani GB. Specific wiring of distinct amacrine cells in the directionally selective retinal circuit permits independent coding of direction and size. Neuron 2015; 86:276-91. [PMID: 25801705 DOI: 10.1016/j.neuron.2015.02.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/13/2014] [Accepted: 02/11/2015] [Indexed: 01/24/2023]
Abstract
Local and global forms of inhibition controlling directionally selective ganglion cells (DSGCs) in the mammalian retina are well documented. It is established that local inhibition arising from GABAergic starburst amacrine cells (SACs) strongly contributes to direction selectivity. Here, we demonstrate that increasing ambient illumination leads to the recruitment of GABAergic wide-field amacrine cells (WACs) endowing the DS circuit with an additional feature: size selectivity. Using a combination of electrophysiology, pharmacology, and light/electron microscopy, we show that WACs predominantly contact presynaptic bipolar cells, which drive direct excitation and feedforward inhibition (through SACs) to DSGCs, thus maintaining the appropriate balance of inhibition/excitation required for generating DS. This circuit arrangement permits high-fidelity direction coding over a range of ambient light levels, over which size selectivity is adjusted. Together, these results provide novel insights into the anatomical and functional arrangement of multiple inhibitory interneurons within a single computational module in the retina.
Collapse
Affiliation(s)
- Alex Hoggarth
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - Kara Ronellenfitch
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Stuart Trenholm
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Rishi Vasandani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - David Schwab
- Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road F165, Evanston, IL 60208, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
18
|
Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina. J Neurosci 2014; 34:6128-39. [PMID: 24790183 DOI: 10.1523/jneurosci.4941-13.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.
Collapse
|
19
|
Suematsu N, Naito T, Miyoshi T, Sawai H, Sato H. Spatiotemporal receptive field structures in retinogeniculate connections of cat. Front Syst Neurosci 2013; 7:103. [PMID: 24367299 PMCID: PMC3856685 DOI: 10.3389/fnsys.2013.00103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/18/2013] [Indexed: 11/15/2022] Open
Abstract
The spatial structure of the receptive field (RF) of cat lateral geniculate nucleus (LGN) neurons is significantly elliptical, which may provide a basis for the orientation tuning of LGN neurons, especially at high spatial frequency stimuli. However, the input mechanisms generating this elliptical RF structure are poorly defined. We therefore compared the spatiotemporal RF structures of pairs of retinal ganglion cells (RGCs) and LGN neurons that form monosynaptic connections based on the cross-correlation analysis of their firing activities. We found that the spatial RF structure of both RGCs and LGN neurons were comparably elliptical and oriented in a direction toward the area centralis. Additionally, the spatial RF structures of pairs with the same response sign were often overlapped and similarly oriented. We also found there was a small population of pairs with RF structures that had the opposite response sign and were spatially displaced and independently oriented. Finally, the temporal RF structure of an RGC was tightly correlated with that of its target LGN neuron, though the response duration of the LGN neuron was significantly longer. Our results suggest that the elliptical RF structure of an LGN neuron is mainly inherited from the primary projecting RGC and is affected by convergent inputs from multiple RGCs. We discuss how the convergent inputs may enhance the stimulus feature sensitivity of LGN neurons.
Collapse
Affiliation(s)
- Naofumi Suematsu
- Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan
| | - Tomoyuki Naito
- Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Tomomitsu Miyoshi
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Hajime Sawai
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Hiromichi Sato
- Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan ; Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Medicine, Osaka University Osaka, Japan
| |
Collapse
|
20
|
Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res 2012; 31:407-41. [PMID: 22580106 PMCID: PMC3401171 DOI: 10.1016/j.preteyeres.2012.04.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (I(Ca)) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Stuart C. Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
21
|
Liang Z, Freed MA. Cross inhibition from ON to OFF pathway improves the efficiency of contrast encoding in the mammalian retina. J Neurophysiol 2012; 108:2679-88. [PMID: 22933723 DOI: 10.1152/jn.00589.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retina is divided into parallel and mostly independent ON and OFF pathways, but the ON pathway "cross" inhibits the OFF pathway. Cross inhibition was thought to improve signal processing by the OFF pathway, but its effect on contrast encoding had not been tested experimentally. To quantify the effect of cross inhibition on the encoding of contrast, we presented a dark flash to an in vitro preparation of the mammalian retina. We then recorded excitatory currents, inhibitory currents, membrane voltages, and spikes from OFF α-ganglion cells. The recordings were subjected to an ideal observer analysis that used Bayesian methods to determine how accurately the recordings detected the dark flash. We found that cross inhibition increases the detection accuracy of currents and membrane voltages. Yet these improvements in encoding do not fully reach the spike train, because cross inhibition also hyperpolarizes the OFF α-cell below spike threshold, preventing small signals in the membrane voltages at low contrast from reaching the spike train. The ultimate effect of cross inhibition is to increase the accuracy with which the spike train detects moderate contrast, but reduce the accuracy with which it detects low contrast. In apparent compensation for the loss of accuracy at low contrast, cross inhibition, by hyperpolarizing the OFF α-cell, reduces the number of spikes required to detect the dark flash and thereby increases encoding efficiency.
Collapse
Affiliation(s)
- Zhiyin Liang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
22
|
Hesam Shariati N, Freeman AW. A multi-stage model for fundamental functional properties in primary visual cortex. PLoS One 2012; 7:e34466. [PMID: 22496811 PMCID: PMC3322115 DOI: 10.1371/journal.pone.0034466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/02/2012] [Indexed: 11/23/2022] Open
Abstract
Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. We here define a model that accounts for many of the empirical observations concerning direction selectivity. The model describes a single column of cat primary visual cortex and comprises a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small (∼4 ms) interval, and it is this difference that confers direction selectivity on model neurons. We show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex.
Collapse
Affiliation(s)
- Nastaran Hesam Shariati
- Discipline of Biomedical Science, University of Sydney, Lidcombe, New South Wales, Australia
| | - Alan W. Freeman
- Discipline of Biomedical Science, University of Sydney, Lidcombe, New South Wales, Australia
- * E-mail:
| |
Collapse
|
23
|
Abstract
The rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON-OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.
Collapse
|
24
|
Einevoll GT, Jurkus P, Heggelund P. Coarse-to-fine changes of receptive fields in lateral geniculate nucleus have a transient and a sustained component that depend on distinct mechanisms. PLoS One 2011; 6:e24523. [PMID: 21931739 PMCID: PMC3170358 DOI: 10.1371/journal.pone.0024523] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/12/2011] [Indexed: 11/19/2022] Open
Abstract
Visual processing in the brain seems to provide fast but coarse information before information about fine details. Such dynamics occur also in single neurons at several levels of the visual system. In the dorsal lateral geniculate nucleus (LGN), neurons have a receptive field (RF) with antagonistic center-surround organization, and temporal changes in center-surround organization are generally assumed to be due to a time-lag of the surround activity relative to center activity. Spatial resolution may be measured as the inverse of center size, and in LGN neurons RF-center width changes during static stimulation with durations in the range of normal fixation periods (250-500 ms) between saccadic eye-movements. The RF-center is initially large, but rapidly shrinks during the first ~100 ms to a rather sustained size. We studied such dynamics in anesthetized cats during presentation (250 ms) of static spots centered on the RF with main focus on the transition from the first transient and highly dynamic component to the second more sustained component. The results suggest that the two components depend on different neuronal mechanisms that operate in parallel and with partial temporal overlap rather than on a continuously changing center-surround balance. Results from mathematical modeling further supported this conclusion. We found that existing models for the spatiotemporal RF of LGN neurons failed to account for our experimental results. The modeling demonstrated that a new model, in which the response is given by a sum of an early transient component and a partially overlapping sustained component, adequately accounts for our experimental data.
Collapse
Affiliation(s)
- Gaute T. Einevoll
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Aas, Norway
| | - Paulius Jurkus
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Aas, Norway
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Paul Heggelund
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
25
|
Abstract
Decoding the wiring diagram of the retina requires simultaneous observation of activity in identified neuron populations. Available recording methods are limited in their scope: electrodes can access only a small fraction of neurons at once, whereas synthetic fluorescent indicator dyes label tissue indiscriminately. Here, we describe a method for studying retinal circuitry at cellular and subcellular levels combining two-photon microscopy and a genetically encoded calcium indicator. Using specific viral and promoter constructs to drive expression of GCaMP3, we labeled all five major neuron classes in the adult mouse retina. Stimulus-evoked GCaMP3 responses as imaged by two-photon microscopy permitted functional cell type annotation. Fluorescence responses were similar to those measured with the small molecule dye OGB-1. Fluorescence intensity correlated linearly with spike rates >10 spikes/s, and a significant change in fluorescence always reflected a significant change in spike firing rate. GCaMP3 expression had no apparent effect on neuronal function. Imaging at subcellular resolution showed compartment-specific calcium dynamics in multiple identified cell types.
Collapse
|
26
|
Hess RF, Maehara G. Does cognitive perception have access to brief temporal events? Iperception 2011; 2:142-9. [PMID: 23145231 PMCID: PMC3485778 DOI: 10.1068/i0418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/05/2011] [Indexed: 10/29/2022] Open
Abstract
To determine whether conscious perception has access to brief temporal event, we asked subjects in an odd-man out paradigm to determine which of the four Gaussian blobs was flickering asynchronously in time. We measure synchrony thresholds as a function of the base temporal frequency for spatially scaled stimuli in foveal and peripheral vision. The results are consistent with a time delay of around 67 milliseconds (ms) for foveal vision and 91 ms for peripheral vision. We conclude that conscious perception has access to only relatively long (∼67 ms) time events.
Collapse
Affiliation(s)
- Robert F Hess
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada; e-mail:
| | | |
Collapse
|
27
|
Martin PR, Blessing EM, Buzás P, Szmajda BA, Forte JD. Transmission of colour and acuity signals by parvocellular cells in marmoset monkeys. J Physiol 2011; 589:2795-812. [PMID: 21486786 DOI: 10.1113/jphysiol.2010.194076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The red-green axis of colour vision evolved recently in primate evolutionary history. Signals serving red-green colour vision travel together with signals serving spatial vision, in the parvocellular (PC) division of the subcortical visual pathway. However, the question of whether receptive fields of PC pathway cells are specialized to transmit red-green colour signals remains unresolved. We addressed this question in single-cell recordings from the lateral geniculate nucleus of anaesthetized marmosets. Marmosets show a high proportion of dichromatic (red-green colour-blind) individuals, allowing spatial and colour tuning properties of PC cells to be directly compared in dichromatic and trichromatic visual systems. We measured spatial frequency tuning for sine gratings that provided selective stimulation of individual photoreceptor types. We found that in trichromatic marmosets, the foveal visual field representation is dominated by red-green colour-selective PC cells. Colour selectivity of PC cells is reduced at greater eccentricities, but cone inputs to centre and surround are biased to create more selectivity than predicted by a purely 'random wiring' model. Thus, one-to-one connections in the fovea are sufficient, but not necessary, to create colour-selective responses. The distribution of spatial tuning properties for achromatic stimuli shows almost complete overlap between PC cells recorded in dichromatic and trichromatic marmosets. These data indicate that transmission of red-green colour signals has been enabled by centre-surround receptive fields of PC cells, and has not altered the capacity of PC cells to serve high-acuity vision at high stimulus contrast.
Collapse
Affiliation(s)
- Paul R Martin
- Department of Ophthalmology and Save Sight Institute, University of Sydney Eye Hospital Campus, GPO Box 4337, Sydney, NSW 2001, Australia.
| | | | | | | | | |
Collapse
|
28
|
Lipin MY, Smith RG, Taylor WR. Maximizing contrast resolution in the outer retina of mammals. BIOLOGICAL CYBERNETICS 2010; 103:57-77. [PMID: 20361204 PMCID: PMC2932674 DOI: 10.1007/s00422-010-0385-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 03/12/2010] [Indexed: 05/29/2023]
Abstract
The outer retina removes the first-order correlation, the background light level, and thus more efficiently transmits contrast. This removal is accomplished by negative feedback from horizontal cell to photoreceptors. However, the optimal feedback gain to maximize the contrast sensitivity and spatial resolution is not known. The objective of this study was to determine, from the known structure of the outer retina, the synaptic gains that optimize the response to spatial and temporal contrast within natural images. We modeled the outer retina as a continuous 2D extension of the discrete 1D model of Yagi et al. (Proc Int Joint Conf Neural Netw 1: 787-789, 1989). We determined the spatio-temporal impulse response of the model using small-signal analysis, assuming that the stimulus did not perturb the resting state of the feedback system. In order to maximize the efficiency of the feedback system, we derived the relationships between time constants, space constants, and synaptic gains that give the fastest temporal adaptation and the highest spatial resolution of the photoreceptor input to bipolar cells. We found that feedback which directly modulated photoreceptor calcium channel activation, as opposed to changing photoreceptor voltage, provides faster adaptation to light onset and higher spatial resolution. The optimal solution suggests that the feedback gain from horizontal cells to photoreceptors should be approximately 0.5. The model can be extended to retinas that have two or more horizontal cell networks with different space constants. The theoretical predictions closely match experimental observations of outer retinal function.
Collapse
Affiliation(s)
- Mikhail Y Lipin
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| | | | | |
Collapse
|
29
|
Magnocellular and parvocellular pathway mediated luminance contrast discrimination in amblyopia. Vision Res 2010; 50:969-76. [PMID: 20211198 DOI: 10.1016/j.visres.2010.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 11/21/2022]
Abstract
To evaluate whether luminance contrast discrimination losses in amblyopia on putative magnocellular (MC) and parvocellular (PC) pathway tasks reflect deficits at retinogeniculate or cortical sites. Fifteen amblyopes including six anisometropes, seven strabismics, two mixed and 12 age-matched controls were investigated. Contrast discrimination was measured using established psychophysical procedures that differentiate MC and PC processing. Data were described with a model of the contrast response of primate retinal ganglion cells. All amblyopes and controls displayed the same contrast signatures on the MC and PC tasks, with three strabismics having reduced sensitivity. Amblyopic PC contrast gain was similar to electrophysiological estimates from visually normal, non-human primates. Sensitivity losses evident in a subset of the amblyopes reflect cortical summation deficits, with no change in retinogeniculate contrast responses. The data do not support the proposal that amblyopic contrast sensitivity losses on MC and PC tasks reflect retinogeniculate deficits, but rather are due to anomalous post-retinogeniculate cortical processing of retinal signals.
Collapse
|
30
|
Physiologic significance of steady-state pattern electroretinogram losses in glaucoma: clues from simulation of abnormalities in normal subjects. J Glaucoma 2009; 18:535-42. [PMID: 19745668 DOI: 10.1097/ijg.0b013e318193c2e1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To better understand pathophysiologic mechanisms underlying pattern electroretinogram (PERG) losses in glaucoma by simulating either retinal ganglion cell (RGC) dysfunction or RGC loss in normal subjects. MATERIALS AND METHODS The steady-state PERG has been recorded in 10 normal subjects (mean age: 31+/-8 y) according to the PERGLA paradigm by means of skin electrodes in response to horizontal gratings (1.7 cycles/degree, 99% contrast, 40 cd/m mean luminance, circular field size 25 degree diameter) alternating 16.28 times/seconds. Simulated RGC dysfunction has been obtained by reducing either contrast and mean luminance or blurring the visual stimulus. Simulated RGC loss has been obtained by reducing stimulus area. Outcome measures were PERG amplitude and phase obtained by discrete Fourier transform of PERG waveforms. RESULTS Progressive PERG amplitude reductions spanning the entire dynamic range of PERG response could be obtained by progressively reducing stimulus contrast and luminance, blurring the stimulus, and reducing stimulus area. The same variations in stimulus conditions caused phase changes of disparate sign and magnitude. Phase advanced (latency shortened) by reducing stimulus contrast or blurring the stimulus; phase lagged (latency increased) by reducing stimulus luminance; phase remained constant by reducing stimulus area. CONCLUSIONS PERG amplitude and phase are essentially uncoupled, implying that these measures reflect distinct aspects of RGC activity. On the basis of our results and known PERG physiology, we propose a model in which both RGC dendrites and RGC axons contribute to the PERG signal. PERG delays may represent an indication of synaptic dysfunction that is potentially reversible.
Collapse
|
31
|
The spatiotemporal frequency tuning of LGN receptive field facilitates neural discrimination of natural stimuli. J Neurosci 2009; 29:11409-16. [PMID: 19741147 DOI: 10.1523/jneurosci.1268-09.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The efficient coding hypothesis suggests that the early visual system is optimized to represent stimuli in the natural environment. While it is believed that LGN processing removes the redundant information of natural scenes, it is not clear whether the early visual processing can selectively amplify important signals in natural stimuli to facilitate discrimination. In this study, we examined the functional role of LGN spatiotemporal frequency tuning in the processing of natural scenes. First, we characterized the relationship between spatial and temporal frequency tuning for LGN receptive fields. We found that LGN neurons exhibit inseparable spatiotemporal frequency tuning in a manner consistent with the feature of optimal filters that can maximize information transmission of natural scenes. Second, we analyzed the spatiotemporal power spectrum of natural scenes and found that some frequencies exhibit larger variation in power across different scenes. Interestingly, the preferred frequency of ensemble LGN neurons matches the range of frequencies in which natural power spectrum varies most. Comparison of neural discrimination for natural stimuli and for artificial stimuli with similar mean power spectra but different variation structure showed that the match between LGN tuning and natural spectra variation enhances neural discrimination for natural stimuli. Our results indicate that, in addition to removing redundancy, the spatiotemporal frequency characteristics of LGN neurons can facilitate neural discrimination of natural stimuli.
Collapse
|
32
|
Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. J Neurosci 2009; 29:8372-87. [PMID: 19571128 DOI: 10.1523/jneurosci.1218-09.2009] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the primate retina the small bistratified, "blue-yellow" color-opponent ganglion cell receives parallel ON-depolarizing and OFF-hyperpolarizing inputs from short (S)-wavelength sensitive and combined long (L)- and middle (M)-wavelength sensitive cone photoreceptors, respectively. However, the synaptic pathways that create S versus LM cone-opponent receptive field structure remain controversial. Here, we show in the macaque monkey retina in vitro that at photopic light levels, when an identified rod input is excluded, the small bistratified cell displays a spatially coextensive receptive field in which the S-ON-input is in spatial, temporal, and chromatic balance with the LM-OFF-input. ON pathway block with l-AP-4, the mGluR6 receptor agonist, abolished the S-ON response but spared the LM-OFF response. The isolated LM component showed a center-surround receptive field structure consistent with an input from OFF-center, ON-surround "diffuse" cone bipolar cells. Increasing retinal buffering capacity with HEPES attenuated the LM-ON surround component, consistent with a non-GABAergic outer retina feedback mechanism for the bipolar surround. The GABAa/c receptor antagonist picrotoxin and the glycine receptor antagonist strychnine did not affect chromatic balance or the basic coextensive receptive field structure, suggesting that the LM-OFF field is not generated by an inner retinal inhibitory pathway. We conclude that the opponent S-ON and LM-OFF responses originate from the excitatory receptive field centers of S-ON and LM-OFF cone bipolar cells, and that the LM-OFF- and ON-surrounds of these parallel bipolar inputs largely cancel, explaining the small, spatially coextensive but spectrally antagonistic receptive field structure of the blue-ON ganglion cell.
Collapse
|
33
|
Dhruv NT, Tailby C, Sokol SH, Majaj NJ, Lennie P. Nonlinear signal summation in magnocellular neurons of the macaque lateral geniculate nucleus. J Neurophysiol 2009; 102:1921-9. [PMID: 19587318 DOI: 10.1152/jn.00331.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnocellular (M-), but not parvocellular (P-), neurons of the macaque lateral geniculate nucleus (LGN) differ distinctively in their responses to counterphase-modulated and drifting gratings. Relative to stimulation with drifting gratings, counterphase modulation reduces the responses of M- cells in a band around 25 Hz, producing a "notch" in the temporal modulation transfer function (tMTF). The notch is prominent in nearly every M- cell with little variation in the temporal frequency at which it is deepest. The machinery responsible for the notch lies mostly outside the classical linear center. Directly driving the notching mechanism with annular gratings evokes no linear response but elicits a second harmonic (F2) modulation of the discharge accompanied by a drop in the mean discharge (F0). Analysis of the S- potential, which reveals inputs from ganglion cells, shows that 1) tMTFs of the afferent retinal ganglion cells are not notched and 2) during stimulation with annular gratings, the second harmonic component is present, but the drop in the F0 is largely absent from the responses of parasol ganglion cells. These results suggest that the notch is caused by the combined action of the linear response and the second harmonic response, both inherited from retina, and a suppression that originates after the retina. Our results reveal a distinctive signal transformation in the LGN and they show that nearly every M- cell exhibits a spatial nonlinearity like that observed in Y cells of the cat.
Collapse
Affiliation(s)
- Neel T Dhruv
- Center for Neural Science, New York University, New York City, NY, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The output of retinal ganglion cells depends on local and global aspects of the visual scene. The local receptive field is well studied and classically consists of a linear excitatory center and a linear antagonistic surround. The global receptive field contains pools of nonlinear subunits that are distributed widely across the retina. The subunit pools mediate in uncertain ways various nonlinear behaviors of ganglion cells, like temporal-frequency doubling, saccadic suppression, and contrast adaptation. To clarify mechanisms of subunit function, we systematically examined the effect of remote grating patterns on the spike activity of cat X- and Y-type ganglion cells in vivo. We present evidence for two distinct subunit types based on spatiotemporal relationships between response nonlinearities elicited by remote drifting and contrast-reversing gratings. One subunit type is excitatory and activated by gratings of approximately 0.1 cycles per degree, while the other is inhibitory and activated by gratings of approximately 1 cycle per degree. The two subunit pools contribute to a global gain control mechanism that differentially modulates ganglion cell response dynamics, particularly for ON-center cells, where excitatory and inhibitory subunit stimulation respectively makes responses to antipreferred and preferred contrast steps more transient. We show that the excitatory subunits also have a profound influence on spatial tuning, turning cells from lowpass into bandpass filters. Based on difference-of-Gaussians model fits to tuning curves, we attribute the increased bandpass selectivity to changes in center-surround strength and relative phase and not center-surround size. A conceptual model of the extraclassical receptive field that could explain many observed phenomena is discussed.
Collapse
|
35
|
Lee BB, Sun H. The chromatic input to cells of the magnocellular pathway of primates. J Vis 2009; 9:15.1-18. [PMID: 19271925 DOI: 10.1167/9.2.15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 12/15/2008] [Indexed: 11/24/2022] Open
Abstract
Parasol ganglion cells of the magnocellular (MC) pathway form the physiological substrate of a luminance channel underlying photometric tasks, but they also respond weakly to red-green chromatic modulation. This may take the form of a first-harmonic (1F) response to chromatic modulation at low temporal frequencies, and/or a second-harmonic (2F) response that is more marked at higher frequencies. It is shown here that both these responses originate from a receptive field component that is intermediate in size between center and surround, i.e., a discrete, chromatic receptive field is superimposed upon an achromatic center-surround structure. Its size is similar to the receptive field (center plus surround) of midget, parvocellular cells from the same retinal eccentricity. A 2F MC cell chromatic response component is shown to be present under cone silent substitution conditions, when only the middle- (M) or long-wavelength (L) cone is modulated. This and other features suggest it is a rectified response to a chromatic signal rather than a consequence of non-linear summation of M- and L-cone signals. A scheme is presented which could give rise to such responses. It is suggested that this chromatic input to MC cells can enhance motion signals to red-green borders close to equiluminance.
Collapse
Affiliation(s)
- Barry B Lee
- SUNY College of Optometry, New York, NY 10036, USA.
| | | |
Collapse
|
36
|
The smooth monostratified ganglion cell: evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey. J Neurosci 2009; 28:12654-71. [PMID: 19036959 DOI: 10.1523/jneurosci.2986-08.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the primate visual system approximately 20 morphologically distinct pathways originate from retinal ganglion cells and project in parallel to the lateral geniculate nucleus (LGN) and/or the superior colliculus. Understanding of the properties of these pathways and the significance of such extreme early pathway diversity for later visual processing is limited. In a companion study we found that the magnocellular LGN-projecting parasol ganglion cells also projected to the superior colliculus and showed Y-cell receptive field structure supporting the hypothesis that the parasol cells are analogous to the well studied alpha-Y cell of the cat's retina. We here identify a novel ganglion cell class, the smooth monostratified cells, that share many properties with the parasol cells. Smooth cells were retrogradely stained from tracer injections made into either the LGN or superior colliculus and formed inner-ON and outer-OFF populations with narrowly monostratified dendritic trees that surprisingly appeared to perfectly costratify with the dendrites of parasol cells. Also like parasol cells, smooth cells summed input from L- and M-cones, lacked measurable S-cone input, showed high spike discharge rates, high contrast and temporal sensitivity, and a Y-cell type nonlinear spatial summation. Smooth cells were distinguished from parasol cells however by smaller cell body and axon diameters but approximately 2 times larger dendritic tree and receptive field diameters that formed a regular but lower density mosaic organization. We suggest that the smooth and parasol populations may sample a common presynaptic circuitry but give rise to distinct, parallel achromatic spatial channels in the primate retinogeniculate pathway.
Collapse
|
37
|
Smith VC, Pokorny J, Lee BB, Dacey DM. Sequential processing in vision: The interaction of sensitivity regulation and temporal dynamics. Vision Res 2008; 48:2649-56. [PMID: 18558416 PMCID: PMC2627776 DOI: 10.1016/j.visres.2008.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 04/21/2008] [Accepted: 05/05/2008] [Indexed: 10/21/2022]
Abstract
The goal of this work was to describe the interaction of sensitivity regulation and temporal dynamics through the primate retina. A linear systems model was used to describe the temporal amplitude sensitivity at different retinal illuminances. Predictions for the primate H1 horizontal cell were taken as the starting point. The H1 model incorporated an early time-dependent stage of sensitivity regulation by the cones. It was adjusted to reduce the effects of gap junction input and then applied as input to a model describing temporal amplitude sensitivity of Parvocellular and Magnocellular pathway retinal ganglion cells. The ganglion cell model incorporated center-surround subtraction. The H1 based model required little modification to describe the Parvocellular data. The Magnocellular data required a further time-dependent stage of sensitivity regulation that resulted in Weber's Law. Psychophysical data reflect the sensitivity regulation of the retinal ganglion cell pathways but show a decline in temporal resolution that is most pronounced for the post-retinal processing of Parvocellular signals.
Collapse
Affiliation(s)
- Vivianne C. Smith
- The University of Chicago, Opthalmology and Visual Science, 940 East 57th Street, Chicago, IL 60637, USA
| | - Joel Pokorny
- The University of Chicago, Opthalmology and Visual Science, 940 East 57th Street, Chicago, IL 60637, USA
| | - Barry B. Lee
- State University of New York College of Optometry, NY, USA
- The Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
38
|
Tailby C, Szmajda BA, Buzás P, Lee BB, Martin PR. Transmission of blue (S) cone signals through the primate lateral geniculate nucleus. J Physiol 2008; 586:5947-67. [PMID: 18955378 DOI: 10.1113/jphysiol.2008.161893] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study concerns the transmission of short-wavelength-sensitive (S) cone signals through the primate dorsal lateral geniculate nucleus. The principal cell classes, magnocellular (MC) and parvocellular (PC), are traditionally segregated into on- and off-subtypes on the basis of the sign of their response to luminance variation. Cells dominated by input from S-cones ('blue-on and blue-off') are less frequently encountered and their properties are less well understood. Here we characterize the spatial and chromatic properties of a large sample of blue-on and blue-off neurons and contrast them with those of PC and MC neurons. The results confirm that blue-on and blue-off cells have larger receptive fields than PC and MC neurons at equivalent eccentricities. Relative to blue-on cells, blue-off cells are less sensitive to S-cone contrast, have larger receptive fields, and show more low-pass spatial frequency tuning. Thus, blue-on and blue-off neurons lack the functional symmetry characteristic of on- and off-subtypes in the MC and PC pathways. The majority of MC and PC cells received no detectible input from S-cones. Where present, input from S-cones tended to provide weak inhibition to PC cells. All cell types showed evidence of a suppressive extra-classical receptive field driven largely or exclusively by ML-cones. These data indicate that S-cone signals are isolated to supply the classical receptive field mechanisms of blue-on and blue-off cells in the LGN, and that the low spatial precision of S-cone vision has origins in both classical and extraclassical receptive field properties of subcortical pathways.
Collapse
Affiliation(s)
- C Tailby
- National Vision Research Institute of Australia, Corner of Keppel and Cardigan Streets, Carlton, Victoria 3053, Australia
| | | | | | | | | |
Collapse
|
39
|
Tokutake Y, Freed MA. Retinal ganglion cells--spatial organization of the receptive field reduces temporal redundancy. Eur J Neurosci 2008; 28:914-23. [PMID: 18691326 PMCID: PMC2849110 DOI: 10.1111/j.1460-9568.2008.06394.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
According to the 'redundancy reduction' hypothesis, a visual neuron removes correlations from an image to reduce redundancy in the spike train, thus increasing the efficiency of information coding. However, all elaborations of this general hypothesis have treated spatial and temporal correlations separately. To investigate how a retinal ganglion cell responds to combined spatial and temporal correlations, we selected those cells with center-surround receptive field and presented a stimulus with strong spatiotemporal correlations: we presented a random sequence of intensities (of white noise) to the receptive field center and then activated the surround with the same sequence. We found that, for most cells, activating the surround reduced temporal redundancy in the spike train. Although the surround often reduced the information rate of the spike train it always increased the amount of information per spike. However, when the surround was modulated by a different white-noise sequence than the center, eliminating spatial-temporal correlations, the surround no longer reduced redundancy or increased information per spike. The proposed mechanism for redundancy reduction is based on the temporal properties of the center and surround: the surround signal is delayed behind the center signal and subtracted from it; this implements a differentiator which removes low frequencies from the stimulus, thus reducing redundancy in the spike train. These results extend the redundancy reduction hypothesis by indicating that the spatial organization of the receptive field into center and surround can reduce temporal redundancy within the spike train of a ganglion cell.
Collapse
Affiliation(s)
- Yoichiro Tokutake
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6058, USA
| | | |
Collapse
|
40
|
Stetson C, Fiesta MP, Eagleman DM. Does time really slow down during a frightening event? PLoS One 2007; 2:e1295. [PMID: 18074019 PMCID: PMC2110887 DOI: 10.1371/journal.pone.0001295] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 11/06/2007] [Indexed: 12/01/2022] Open
Abstract
Observers commonly report that time seems to have moved in slow motion during a life-threatening event. It is unknown whether this is a function of increased time resolution during the event, or instead an illusion of remembering an emotionally salient event. Using a hand-held device to measure speed of visual perception, participants experienced free fall for 31 m before landing safely in a net. We found no evidence of increased temporal resolution, in apparent conflict with the fact that participants retrospectively estimated their own fall to last 36% longer than others' falls. The duration dilation during a frightening event, and the lack of concomitant increase in temporal resolution, indicate that subjective time is not a single entity that speeds or slows, but instead is composed of separable subcomponents. Our findings suggest that time-slowing is a function of recollection, not perception: a richer encoding of memory may cause a salient event to appear, retrospectively, as though it lasted longer.
Collapse
Affiliation(s)
- Chess Stetson
- California Institute of Technology, Pasadena, California, United States of America
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Matthew P. Fiesta
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - David M. Eagleman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Time course of suppression by surround gratings: highly contrast-dependent, but consistently fast. Vision Res 2007; 47:3298-306. [PMID: 17976684 DOI: 10.1016/j.visres.2007.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 06/04/2007] [Accepted: 09/07/2007] [Indexed: 11/20/2022]
Abstract
Timing is critical for the effectiveness of a modulating surround signal. In this study, the optimal timing of a suppressing surround signal was measured psychophysically in human subjects. The perceived contrast of a fixated 1-deg circular patch of vertical sinusoidal grating (the target: 4 cpd, Michelson contrast 0.2) was measured as a function of the onset asynchrony between the target and an annular "surround" grating with the same orientation and spatial frequency. The contrast and area of the surround stimulus were varied parametrically. The suppressive signal peaked at earlier times the higher the surround contrast (0.1-0.4), following a function consistent with the contrast-dependence of retinal response dynamics. Increasing the area of the surround grating also moved peak suppression to earlier times. At ca. 2 deg annulus outer diameter the time to peak of the suppressive signal was shortest, although its amplitude grew with annulus area even beyond that. When both the contrast and the area of the centre and surround gratings were equal, suppression was maximal if the surround stimulus was presented ca. 5 ms before the target. Such a short delay of suppression is consistent with a neural implementation based on feedforward-feedback connections, but not with horizontal connections.
Collapse
|
42
|
Kilavik BE, Silveira LCL, Kremers J. Spatial receptive field properties of lateral geniculate cells in the owl monkey (Aotus azarae) at different contrasts: a comparative study. Eur J Neurosci 2007; 26:992-1006. [PMID: 17714192 DOI: 10.1111/j.1460-9568.2007.05709.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several physiological properties of owl monkey lateral geniculate nucleus (LGN) cells were studied to verify whether its nocturnal habit has an influence on the organization of its subcortical visual system. Receptive field (RF) dimensions were measured using drifting gratings and bipartite field stimuli. We found that owl monkey cells LGN have larger RFs and were on average more non-linear than those of diurnal monkeys. But, as in other anthropoids, there is an increase in RF centre size with increasing eccentricity, and there is a limited correlation between these centre sizes and retinal ganglion cell dendritic tree sizes. The influence of contrast on sizes and peak sensitivities of RF centres and surrounds and on the response phases was studied. Both the sizes and peak sensitivities of the RF centres and surrounds decrease as contrast increases. As a result, the responses to low spatial frequency stimuli saturate with increasing contrast. Estimates of contrasts at half-maximal responses confirm the presence of saturation. It was found that the magnocellular cells saturate more strongly than parvocellular cells. The response phase increases with increasing contrast. These data resemble those obtained in the common marmoset, indicating that these are basic features of the primate visual system. We conclude that during evolution and as an adaptation to a nocturnal lifestyle, cells in the owl monkey LGN display an increased spatial integration in comparison with diurnal primate species, without a change in the basic organization common to the primate subcortical visual system.
Collapse
Affiliation(s)
- B E Kilavik
- Department of Experimental Ophthalmology, University of Tübingen Eye Hospital, Röntgenweg 11, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
43
|
Miller JA, Kenyon GT. Extracting number-selective responses from coherent oscillations in a computer model. Neural Comput 2007; 19:1766-97. [PMID: 17521279 DOI: 10.1162/neco.2007.19.7.1766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cortical neurons selective for numerosity may underlie an innate number sense in both animals and humans. We hypothesize that the number- selective responses of cortical neurons may in part be extracted from coherent, object-specific oscillations . Here, indirect evidence for this hypothesis is obtained by analyzing the numerosity information encoded by coherent oscillations in artificially generated spikes trains. Several experiments report that gamma-band oscillations evoked by the same object remain coherent, whereas oscillations evoked by separate objects are uncorrelated. Because the oscillations arising from separate objects would add in random phase to the total power summed across all stimulated neurons, we postulated that the total gamma activity, normalized by the number of spikes, should fall roughly as the square root of the number of objects in the scene, thereby implicitly encoding numerosity. To test the hypothesis, we examined the normalized gamma activity in multiunit spike trains, 50 to 1000 msec in duration, produced by a model feedback circuit previously shown to generate realistic coherent oscillations. In response to images containing different numbers of objects, regardless of their shape, size, or shading, the normalized gamma activity followed a square-root-of-n rule as long as the separation between objects was sufficiently large and their relative size and contrast differences were not too great. Arrays of winner-take-all numerosity detectors, each responding to normalized gamma activity within a particular band, exhibited tuning curves consistent with behavioral data. We conclude that coherent oscillations in principle could contribute to the number-selective responses of cortical neurons, although many critical issues await experimental resolution.
Collapse
Affiliation(s)
- Jeremy A Miller
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
| | | |
Collapse
|
44
|
Buzás P, Blessing EM, Szmajda BA, Martin PR. Specificity of M and L cone inputs to receptive fields in the parvocellular pathway: random wiring with functional bias. J Neurosci 2006; 26:11148-61. [PMID: 17065455 PMCID: PMC6674646 DOI: 10.1523/jneurosci.3237-06.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many of the parvocellular pathway (PC) cells in primates show red-green spectral selectivity (cone opponency), but PC ganglion cells in the retina show no anatomical signs of cone selectivity. Here we asked whether responses of PC cells are compatible with "random wiring" of cone inputs. We measured long-wavelength-sensitive (L) and medium-wavelength-sensitive (M) cone inputs to PC receptive fields in the dorsal lateral geniculate of marmosets, using discrete stimuli (apertures and annuli) to achieve functional segregation of center and surround. Receptive fields between the fovea and 30 degrees eccentricity were measured. We show that, in opponent PC cells, the center is dominated by one (L or M) cone type, with normally <20% contribution from the other cone type (high "cone purity"), whereas non-opponent cells have mixed L and M cone inputs to the receptive field center. Furthermore, opponent response strength depends on the overall segregation of L and M cone inputs to center and surround rather than exclusive input from one cone type to either region. These data are consistent with random wiring. The majority of PC cells in both foveal (<8 degrees) and peripheral retina nevertheless show opponent responses. This arises because cone purity in the receptive field surround is at least as high as in the center, and the surround in nearly all opponent PC cells is dominated by the opposite cone type to that which dominates the center. These functional biases increase the proportion of opponent PC cells, but their anatomical basis is unclear.
Collapse
Affiliation(s)
- Péter Buzás
- National Vision Research Institute of Australia, Carlton, Victoria 3053, Australia, and
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Esther M. Blessing
- National Vision Research Institute of Australia, Carlton, Victoria 3053, Australia, and
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Brett A. Szmajda
- National Vision Research Institute of Australia, Carlton, Victoria 3053, Australia, and
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul R. Martin
- National Vision Research Institute of Australia, Carlton, Victoria 3053, Australia, and
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
45
|
Victor JD, Blessing EM, Forte JD, Buzás P, Martin PR. Response variability of marmoset parvocellular neurons. J Physiol 2006; 579:29-51. [PMID: 17124265 PMCID: PMC2075379 DOI: 10.1113/jphysiol.2006.122283] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study concerns the properties of neurons carrying signals for colour vision in primates. We investigated the variability of responses of individual parvocellular lateral geniculate neurons of dichromatic and trichromatic marmosets to drifting sinusoidal luminance and chromatic gratings. Response variability was quantified by the cycle-to-cycle variation in Fourier components of the response. Averaged across the population, the variability at low contrasts was greater than predicted by a Poisson process, and at high contrasts the responses were approximately 40% more variable than responses at low contrasts. The contrast-dependent increase in variability was nevertheless below that expected from the increase in firing rate. Variability falls below the Poisson prediction at high contrast, and intrinsic variability of the spike train decreases as contrast increases. Thus, while deeply modulated responses in parvocellular cells have a larger absolute variability than weakly modulated ones, they have a more favourable signal: noise ratio than predicted by a Poisson process. Similar results were obtained from a small sample of magnocellular and koniocellular ('blue-on') neurons. For parvocellular neurons with pronounced colour opponency, chromatic responses were, on average, less variable (10-15%, p<0.01) than luminance responses of equal magnitude. Conversely, non-opponent parvocellular neurons showed the opposite tendency. This is consistent with a supra-additive noise source prior to combination of cone signals. In summary, though variability of parvocellular neurons is largely independent of the way in which they combine cone signals, the noise characteristics of retinal circuitry may augment specialization of parvocellular neurons to signal luminance or chromatic contrast.
Collapse
Affiliation(s)
- J D Victor
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
46
|
Alexander KR, Raghuram A. Effect of contrast on the frequency response of synchronous period doubling. Vision Res 2006; 47:555-63. [PMID: 17074380 PMCID: PMC1866272 DOI: 10.1016/j.visres.2006.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/20/2006] [Accepted: 09/23/2006] [Indexed: 11/23/2022]
Abstract
At temporal frequencies between approximately 30 and 70 Hz, the flicker electroretinogram (ERG) of the cone system can exhibit an alternation in response amplitude from cycle to cycle that has been termed synchronous period doubling. This phenomenon has been attributed to a nonlinear feedback mechanism at an early retinal locus. The purpose of the present study was to define the effect of stimulus contrast on period doubling in order to better understand the nature of the underlying mechanism. ERGs were recorded from three visually normal subjects in response to sinusoidal flicker ranging from 20 to 100 Hz, using stimulus contrasts of 37.7, 56.5, 75.4, and 94.2%. Period doubling was quantified as: (1) the amplitude of an harmonic component of the ERG waveform that was 1.5 times the stimulus frequency, and (2) the difference between the mean trough-to-peak amplitudes on even and odd cycles of the ERG waveform. Amplitudes were converted to responsivity by dividing by stimulus contrast. By both measures, subjects showed discrete regions of period doubling that were displaced to lower temporal frequencies as stimulus contrast was increased. The temporal frequency shift of period doubling with altered stimulus contrast can be accounted for quantitatively by postulating a neural threshold for the nonlinear feedback signal that is presumed to generate synchronous period doubling.
Collapse
Affiliation(s)
- Kenneth R Alexander
- Department of Ophthalmology and Visual Sciences, UIC Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, Chicago, IL 60612, USA.
| | | |
Collapse
|
47
|
Abstract
Prosthetic devices may someday be used to treat lesions of the central nervous system. Similar to neural circuits, these prosthetic devices should adapt their properties over time, independent of external control. Here we describe an artificial retina, constructed in silicon using single-transistor synaptic primitives, with two forms of locally controlled adaptation: luminance adaptation and contrast gain control. Both forms of adaptation rely on local modulation of synaptic strength, thus meeting the criteria of internal control. Our device is the first to reproduce the responses of the four major ganglion cell types that drive visual cortex, producing 3600 spiking outputs in total. We demonstrate how the responses of our device's ganglion cells compare to those measured from the mammalian retina. Replicating the retina's synaptic organization in our chip made it possible to perform these computations using a hundred times less energy than a microprocessor-and to match the mammalian retina in size and weight. With this level of efficiency and autonomy, it is now possible to develop fully implantable intraocular prostheses.
Collapse
Affiliation(s)
- Kareem A Zaghloul
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
48
|
Miller JA, Denning KS, George JS, Marshak DW, Kenyon GT. A high frequency resonance in the responses of retinal ganglion cells to rapidly modulated stimuli: a computer model. Vis Neurosci 2006; 23:779-94. [PMID: 17020633 PMCID: PMC3350093 DOI: 10.1017/s0952523806230104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 05/09/2006] [Indexed: 11/05/2022]
Abstract
Brisk Y-type ganglion cells in the cat retina exhibit a high frequency resonance (HFR) in their responses to large, rapidly modulated stimuli. We used a computer model to test whether negative feedback mediated by axon-bearing amacrine cells onto ganglion cells could account for the experimentally observed properties of HFRs. Temporal modulation transfer functions (tMTFs) recorded from model ganglion cells exhibited HFR peaks whose amplitude, width, and locations were qualitatively consistent with experimental data. Moreover, the wide spatial distribution of axon-mediated feedback accounted for the observed increase in HFR amplitude with stimulus size. Model phase plots were qualitatively similar to those recorded from Y ganglion cells, including an anomalous phase advance that in our model coincided with the amplification of low-order harmonics that overlapped the HFR peak. When axon-mediated feedback in the model was directed primarily to bipolar cells, whose synaptic output was graded, or else when the model was replaced with a simple cascade of linear filters, it was possible to produce large HFR peaks but the region of anomalous phase advance was always eliminated, suggesting the critical involvement of strongly non-linear feedback loops. To investigate whether HFRs might contribute to visual processing, we simulated high frequency ocular tremor by rapidly modulating a naturalistic image. Visual signals riding on top of the imposed jitter conveyed an enhanced representation of large objects. We conclude that by amplifying responses to ocular tremor, HFRs may selectively enhance the processing of large image features.
Collapse
Affiliation(s)
- J A Miller
- Applied Modern Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | |
Collapse
|
49
|
Ruksenas O, Bulatov A, Heggelund P. Dynamics of spatial resolution of single units in the lateral geniculate nucleus of cat during brief visual stimulation. J Neurophysiol 2006; 97:1445-56. [PMID: 16914606 DOI: 10.1152/jn.01338.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sharpness of vision depends on the resolution of details conveyed by individual neurons in the visual pathway. In the dorsal lateral geniculate nucleus (LGN), the neurons have receptive fields with center-surround organization, and spatial resolution may be measured as the inverse of center size. We studied dynamics of receptive field center size of single LGN neurons during the response to briefly (400-500 ms) presented static light or dark spots. Center size was estimated from a series of spatial summation curves made for successive 5-ms intervals during the stimulation period. The center was wide at the start of the response, but shrank rapidly over 50-100 ms after stimulus onset, whereupon it widened slightly. Thereby, the spatial resolution changed from coarse-to-fine with average peak resolution occurring approximately 70 ms after stimulus onset. The changes in spatial resolution did not follow changes of firing rate; peak firing appeared earlier than the maximal spatial resolution. We suggest that the response initially conveys a strong but spatially coarse message that might have a detection and tune-in function, followed by transient transmission of spatially precise information about the stimulus. Experiments with spots presented inside the maximum but outside the minimum center width suggested a dynamic reduction in number of responding neurons during the stimulation; from many responding neurons initially when the field centers are large to fewer responding neurons as the centers shrink. Thereby, there is a change from coarse-to-fine also in the recruitment of responding neurons during brief static stimulation.
Collapse
Affiliation(s)
- O Ruksenas
- Institute of Basic Medical Sciences, Department of Physiology, University of Oslo, PO Box 1103 Blindern, N-0717 Oslo, Norway
| | | | | |
Collapse
|
50
|
Priebe NJ, Lisberger SG, Movshon JA. Tuning for spatiotemporal frequency and speed in directionally selective neurons of macaque striate cortex. J Neurosci 2006; 26:2941-50. [PMID: 16540571 PMCID: PMC2532672 DOI: 10.1523/jneurosci.3936-05.2006] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We recorded the responses of direction-selective simple and complex cells in the primary visual cortex (V1) of anesthetized, paralyzed macaque monkeys. When studied with sine-wave gratings, almost all simple cells in V1 had responses that were separable for spatial and temporal frequency: the preferred temporal frequency did not change and preferred speed decreased as a function of the spatial frequency of the grating. As in previous recordings from the middle temporal visual area (MT), approximately one-quarter of V1 complex cells had separable responses to spatial and temporal frequency, and one-quarter were "speed tuned" in the sense that preferred speed did not change as a function of spatial frequency. Half fell between these two extremes. Reducing the contrast of the gratings caused the population of V1 complex cells to become more separable in their tuning for spatial and temporal frequency. Contrast dependence is explained by the contrast gain of the neurons, which was relatively higher for gratings that were either both of high or both of low temporal and spatial frequency. For stimuli that comprised two spatially superimposed sine-wave gratings, the preferred speeds and tuning bandwidths of V1 neurons could be predicted from the sum of the responses to the component gratings presented alone, unlike neurons in MT that showed nonlinear interactions. We conclude that spatiotemporal modulation of contrast gain creates speed tuning from separable inputs in V1 complex cells. Speed tuning in MT could be primarily inherited from V1, but processing that occurs after V1 and possibly within MT computes selective combinations of speed-tuned signals of special relevance for downstream perceptual and motor mechanisms.
Collapse
Affiliation(s)
- Nicholas J Priebe
- Department of Physiology, Howard Hughes Medical Institute, W. M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, California 94143, USA.
| | | | | |
Collapse
|