1
|
Banaganapalli B, Fallatah I, Alsubhi F, Shetty PJ, Awan Z, Elango R, Shaik NA. Paget's disease: a review of the epidemiology, etiology, genetics, and treatment. Front Genet 2023; 14:1131182. [PMID: 37180975 PMCID: PMC10169728 DOI: 10.3389/fgene.2023.1131182] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Paget's disease of bone (PDB) is the second most prevalent metabolic bone disorder worldwide, with a prevalence rate of 1.5%-8.3%. It is characterized by localized areas of accelerated, disorganized, and excessive bone production and turnover. Typically, PDB develops in the later stages of life, particularly in the late 50s, and affects men more frequently than women. PDB is a complex disease influenced by both genetic and environmental factors. PDB has a complex genetic basis involving multiple genes, with SQSTM1 being the gene most frequently associated with its development. Mutations affecting the UBA domain of SQSTM1 have been detected in both familial and sporadic PDB cases, and these mutations are often associated with severe clinical expression. Germline mutations in other genes such as TNFRSF11A, ZNF687 and PFN1, have also been associated with the development of the disease. Genetic association studies have also uncovered several PDB predisposing risk genes contributing to the disease pathology and severity. Epigenetic modifications of genes involved in bone remodelling and regulation, including RANKL, OPG, HDAC2, DNMT1, and SQSTM1, have been implicated in the development and progression of Paget's disease of bone, providing insight into the molecular basis of the disease and potential targets for therapeutic intervention. Although PDB has a tendency to cluster within families, the variable severity of the disease across family members, coupled with decreasing incidence rates, indicates that environmental factors may also play a role in the pathophysiology of PDB. The precise nature of these environmental triggers and how they interact with genetic determinants remain poorly understood. Fortunately, majority of PDB patients can achieve long-term remission with an intravenous infusion of aminobisphosphonates, such as zoledronic acid. In this review, we discuss aspects like clinical characteristics, genetic foundation, and latest updates in PDB research.
Collapse
Affiliation(s)
- Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim Fallatah
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fai Alsubhi
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Preetha Jayasheela Shetty
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Zuhier Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Abstract
Paget’s disease of bone (PDB) is the second most common metabolic bone disorder, after osteoporosis. It is characterised by focal areas of increased and disorganised bone turnover, coupled with increased bone formation. This disease usually appears in the late stages of life, being slightly more frequent in men than in women. It has been reported worldwide, but primarily affects individuals of British descent. Majority of PDB patients are asymptomatic, but clinical manifestations include pain, bone deformity and complications, like pathological fractures and deafness. The causes of the disease are poorly understood and it is considered as a complex trait, combining genetic predisposition with environmental factors. Linkage analysis identified SQSTM1, at chromosome 5q35, as directly related to the disease. A number of mutations in this gene have been reported, pP392L being the most common variant among different populations. Most of these variants affect the ubiquitin-associated (UBA) domain of the protein, which is involved in autophagy processes. Genome-wide association studies enlarged the number of loci associated with PDB, and further fine-mapping studies, combined with functional analysis, identified OPTN and RIN3 as causal genes for Paget’s disease. A combination of risk alleles identified by genome-wide association studies led to the development of a score to predict disease severity, which could improve the management of the disease. Further studies need to be conducted to elucidate other important aspects of the trait, such as its focal nature and the epidemiological changes found in some populations. In this review, we summarize the clinical characteristics of the disease and the latest genetic advances to identify susceptibility genes. We also list current available treatments and prospective options.
Collapse
|
3
|
Rai NP, Anekar J, Mustafa SM, Devang Divakar D. Paget's disease with craniofacial and skeletal bone involvement. BMJ Case Rep 2016; 2016:bcr-2016-216173. [PMID: 27587747 DOI: 10.1136/bcr-2016-216173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Paget's disease is a metabolic disorder of bone caused due to defect in the remodelling process and is very common in western countries but is very rare in Asians and Africans. It was first described by a British scientist Sir James Paget in 1877. It can be monostotic or polyostotic depending on the number of bones involved. It most commonly affects older people of more than 50 years. Disease involvement can be symptomatic or asymptomatic depending on the extent of the disease process. Diagnosis of Paget's disease can be made by raised serum alkaline phosphatase levels, radiological examination and by radioisotope bone scans.
Collapse
Affiliation(s)
- Narendra Prakash Rai
- Department of Oral Medicine and Radiology, Lincoln University College, Kuala Lumpur, Malaysia
| | - Jayaprasad Anekar
- Department of Oral Medicine and Radiology, KVG Dental College and Hospital, Karnataka, India
| | - Shabil Mohamed Mustafa
- Department of Oral Medicine and Radiology, Malabar Dental College and Research Centre, Kerala, India
| | - Darshan Devang Divakar
- Department of Oral Medicine and Radiology, College of Applied Medical Sciences, Dental Biomaterial Research Chair, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Farmer S, Choi D. Spinal Column and Spinal Cord Disorders. Neurology 2016. [DOI: 10.1002/9781118486160.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - David Choi
- National Hospital for Neurology & Neurosurgery
| |
Collapse
|
5
|
Abstract
Paget's disease of bone (PDB) is a common condition, which is characterised by focal areas of increased and disorganized bone remodeling. Genetic factors play an important role in the disease. In some cases, Paget's disease is inherited in an autosomal dominant manner and the most common cause for this is a mutation in the SQSTM1 gene. Other familial cases have been linked to the OPTN locus on Chromosome 10p13 and still other variants have been identified by genome wide association studies that lie within or close to genes that play roles in osteoclast differentiation and function. Mutations in TNFRSF11A, TNFRSF11B and VCP have been identified in rare syndromes with PDB-like features. These advances have improved understanding of bone biology and the causes of PDB. The identification of genetic markers for PDB also raises the prospect that genetic profiling could identify patients at high risk of developing complications, permitting enhanced surveillance and early therapeutic intervention.
Collapse
Affiliation(s)
- Stuart H Ralston
- Bone and Rheumatology Research Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK,
| | | |
Collapse
|
6
|
Rea SL, Walsh JP, Layfield R, Ratajczak T, Xu J. New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget's disease of bone. Endocr Rev 2013; 34:501-24. [PMID: 23612225 DOI: 10.1210/er.2012-1034] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Paget's disease of bone (PDB) is characterized by focal areas of aberrant and excessive bone turnover, specifically increased bone resorption and disorganized bone formation. Germline mutations in the sequestosome 1/p62 (SQSTM1/p62) gene are common in PDB patients, with most mutations affecting the ubiquitin-associated domain of the protein. In vitro, osteoclast precursor cells expressing PDB-mutant SQSTM1/p62 protein are associated with increases in nuclear factor κB activation, osteoclast differentiation, and bone resorption. Although the precise mechanisms by which SQSTM1/p62 mutations contribute to disease pathogenesis and progression are not well defined, it is apparent that as well as affecting nuclear factor κB signaling, SQSTM1/p62 is a master regulator of ubiquitinated protein turnover via autophagy and the ubiquitin-proteasome system. Additional roles for SQSTM1/p62 in the oxidative stress-induced Keap1/Nrf2 pathway and in caspase-mediated apoptosis that were recently reported are potentially relevant to the pathogenesis of PDB. Thus, SQSTM1/p62 may serve as a molecular link or switch between autophagy, apoptosis, and cell survival signaling. The purpose of this review is to outline recent advances in understanding of the multiple pathophysiological roles of SQSTM1/p62 protein, with particular emphasis on their relationship to PDB, including challenges associated with translating SQSTM1/p62 research into clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Sarah L Rea
- Department of Endocrinology and Diabetes, Level 1, C Block, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
7
|
Roderick MR, Ramanan AV. Chronic recurrent multifocal osteomyelitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 764:99-107. [PMID: 23654059 DOI: 10.1007/978-1-4614-4726-9_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic recurrent multifocal osteomyelitis (CRMO) is an autoinflammatory bone disease occurring primarily in children and adolescents. Episodes of systemic inflammation occur due to immune dysregulation without autoantibodies, pathogens or antigen-specific T cells. CRMO is characterised by the insidious onset of pain with swelling and tenderness over the affected bones. Clavicular involvement was the classical description; however, the metaphyses and epiphyses of long bones are frequently affected. Lesions may occur in any bone, including vertebrae. Characteristic imaging includes bone oedema, lytic areas, periosteal reaction and soft tissue reaction. Biopsies from affected areas display polymorphonuclear leucocytes with osteoclasts and necrosis in the early stages. Subsequently, lymphocytes and plasma cells predominate followed by fibrosis and signs of reactive new bone forming around the inflammation. Diagnosis is facilitated by the use of STIR MRI scanning, potentially obviating the need for biopsy and unnecessary long-term antibiotics due to incorrect diagnosis. Treatment options include non-steroidal anti-inflammatory drugs and bisphosphonates. Biologics have been tried in resistant cases with promising initial results. Gene identification has not proved easy although research in this area continues. Early descriptions of the disease suggested a benign course; however, longer-term follow up shows that it can cause significant morbidity and longer-term disability. Although it has always been thought of as very rare, the prevalence is likely to be vastly underestimated due to poor recognition of the disease.
Collapse
|
8
|
Shaker JL. Paget's Disease of Bone: A Review of Epidemiology, Pathophysiology and Management. Ther Adv Musculoskelet Dis 2012; 1:107-25. [PMID: 22870432 DOI: 10.1177/1759720x09351779] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Paget's disease of bone is a common disorder which may affect one or many bones. Although many patients are asymptomatic, a variety of symptoms and complications may occur. Fortunately, effective pharmacologic therapy, primarily with potent bisphosphonates, is now available to treat patients with complications or symptoms. This review of Paget's disease of bone will include epidemiology and pathophysiology, complications and clinical findings, indications for treatment, and the drugs currently available to treat this condition.
Collapse
|
9
|
Chung PYJ, Van Hul W. Paget's Disease of Bone: Evidence for Complex Pathogenetic Interactions. Semin Arthritis Rheum 2012; 41:619-41. [DOI: 10.1016/j.semarthrit.2011.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/25/2011] [Accepted: 07/08/2011] [Indexed: 11/28/2022]
|
10
|
Chung PYJ, Beyens G, de Freitas F, Boonen S, Geusens P, Vanhoenacker F, Verbruggen L, Van Offel J, Goemaere S, Zmierczak HG, Westhovens R, Devogelaer JP, Van Hul W. Indications for a genetic association of a VCP polymorphism with the pathogenesis of sporadic Paget's disease of bone, but not for TNFSF11 (RANKL) and IL-6 polymorphisms. Mol Genet Metab 2011; 103:287-92. [PMID: 21501964 DOI: 10.1016/j.ymgme.2011.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 11/25/2022]
Abstract
Paget's disease of bone (PDB) is, after osteoporosis, the second most common metabolic bone disorder in the elderly Caucasian population. Mutations in the sequestosome 1 gene (SQSTM1) are responsible for the etiology of PDB in a subset of patients, but the disease pathogenesis in the remaining PDB patients is still unknown. Therefore association studies investigating the relationship between genetic polymorphisms and sporadic PDB have been performed in order to find the susceptibility polymorphisms. In this paper, we sought to determine whether polymorphisms in 3 functional candidate genes play a role in the development of sporadic PDB: TNFSF11 (receptor activator of nuclear factor κB ligand, RANKL), VCP (valosin-containing protein) and IL-6 (interleukin 6). Analyzing 9 tag SNPs and 2 multi-marker tests (MMTs) in TNFSF11, 3 tag SNPs and 1 MMT in VCP and 8 tag SNPs in IL-6 in a population of 196 Belgian patients with sporadic PDB and 212 Belgian control individuals revealed that one VCP SNP (rs565070) turned out to be associated with PDB in this Belgian study population (p=5.5×10(-3)). None of the tag SNPs or MMTs selected for TNFSF11 or IL-6 was associated with PDB. Still, replication of our findings in the VCP gene in other populations is important to confirm our results. However, when combining data of VCP with those from other susceptible gene regions from previous association studies (i.e. TNFRSF11A, CSF1, OPTN and TM7SF4), independent effect of each gene region was found and the cumulative population attributable risk is 72.7%.
Collapse
Affiliation(s)
- Pui Yan Jenny Chung
- Department of Medical Genetics, University of Antwerp, Antwerp, 2610, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Michou L, Brown JP. Emerging strategies and therapies for treatment of Paget's disease of bone. Drug Des Devel Ther 2011; 5:225-39. [PMID: 21607019 PMCID: PMC3096538 DOI: 10.2147/dddt.s11306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Indexed: 01/16/2023] Open
Abstract
Paget's disease of bone (PDB) is a progressive monostotic or polyostotic metabolic bone disease characterized by focal abnormal bone remodeling, with increased bone resorption and excessive, disorganized, new bone formation. PDB rarely occurs before middle age, and it is the second most frequent metabolic bone disorder after osteoporosis, affecting up to 3% of adults over 55 years of age. One of the most striking and intriguing clinical features is the focal nature of the disorder, in that once the disease is established within a bone, there is only local spread within that bone and no systemic dissemination. Despite many years of intense research, the etiology of PDB has still to be conclusively determined. Based on a detailed review of genetic and viral factors incriminated in PDB, we propose a unifying hypothesis from which we can suggest emerging strategies and therapies. PDB results in weakened bone strength and abnormal bone architecture, leading to pain, deformity or, depending on the bone involved, fracture in the affected bone. The diagnostic assessment includes serum total alkaline phosphatase, total body bone scintigraphy, skull and enlarged view pelvis x-rays, and if needed, additional x-rays. The ideal therapeutic option would eliminate bone pain, normalize serum total alkaline phosphatase with prolonged remission, heal radiographic osteolytic lesions, restore normal lamellar bone, and prevent recurrence and complications. With the development of increasingly potent bisphosphonates, culminating in the introduction of a single intravenous infusion of zoledronic acid 5 mg, these goals of treatment are close to being achieved, together with long-term remission in almost all patients. Based on the recent pathophysiological findings, emerging strategies and therapies are reviewed: ie, pulse treatment with zoledronic acid; denosumab, a fully human monoclonal antibody directed against RANK ligand; tocilizumab, an interleukin-6 receptor inhibitor; odanacatib, a cathepsin K inhibitor; and proteasome and Dickkopf-1 inhibitors.
Collapse
Affiliation(s)
- Laëtitia Michou
- Department of Medicine, CHUQ (CHUL), Research Centre and Division of Rheumatology, Laval University, Quebec City, QC, Canada.
| | | |
Collapse
|
12
|
Wolfovitz A, Shihada R, Shpak T, Braun J, Luntz M. Cochlear implantation in a patient with paget's disease. Laryngoscope 2011; 121:358-60. [DOI: 10.1002/lary.21281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/13/2010] [Indexed: 11/06/2022]
|
13
|
Abstract
INTRODUCTION Macrophages are key drivers of both the innate and adaptive immune systems. The cellular receptor for CSF-1 and IL-34, c-FMS, is a key component of the mechanism(s) by which macrophages are regulated. Several drug discovery programs aimed at uncovering inhibitors of the tyrosine kinase activity of this receptor are now entering clinical phase, and the prospect of readjusting the behavior of macrophages in a number of pathological situations, such as inflammation and cancer, is now on us. AREAS COVERED In this review, we evaluate the available patent literature on the topic of small molecule inhibitors of c-FMS. By way of background, we review the biology of c-FMS and make an analysis of the therapeutic opportunities that a small molecule c-FMS inhibitor might present. In order to place the pharmacology in perspective, we examine the literature concerning the role of the CSF-1-IL-34-c-FMS axis in macrophage function as well as cell types related to macrophages, such as the osteoclast, the dendritic cell and microglia, and provide a background to the understanding of the therapeutic opportunities for c-FMS inhibitors as well as potential obstacles that could limit their use. EXPERT OPINION The c-FMS receptor is a hot target for the development of novel regulators of macrophage behavior. Some nice candidates have been developed by a number of groups, and their recent entry into clinical phase testing means that we are now on the cusp of a fuller understanding of the role of these important regulators of the innate and adaptive immune systems in the development of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Christopher J Burns
- The Walter and Eliza Hall Institute of Medical Research, 4 Research Avenue, La Trobe R & D Park, Bundoora, VIC 3086, Australia
| | | |
Collapse
|
14
|
|
15
|
Chung PYJ, Beyens G, Riches PL, Van Wesenbeeck L, de Freitas F, Jennes K, Daroszewska A, Fransen E, Boonen S, Geusens P, Vanhoenacker F, Verbruggen L, Van Offel J, Goemaere S, Zmierczak HG, Westhovens R, Karperien M, Papapoulos S, Ralston SH, Devogelaer JP, Van Hul W. Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget's disease of bone. J Bone Miner Res 2010; 25:2592-605. [PMID: 20564239 DOI: 10.1002/jbmr.162] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/21/2010] [Accepted: 06/09/2010] [Indexed: 11/08/2022]
Abstract
RANK (receptor activator of nuclear factor-κB), encoded by TNFRSF11A, is a key protein in osteoclastogenesis. TNFRSF11A mutations cause Paget's disease of bone (PDB)-like diseases (ie, familial expansile osteolysis, expansile skeletal hyperphosphatasia, and early-onset PDB) and an osteoclast-poor form of osteopetrosis. However, no TNFRSF11A mutations have been found in classic PDB, neither in familial nor in isolated cases. To investigate the possible relationship between TNFRSF11A polymorphisms and sporadic PDB, we conducted an association study including 32 single-nucleotide polymorphisms (SNPs) in 196 Belgian sporadic PDB patients and 212 control individuals. Thirteen SNPs and 3 multimarker tests (MMTs) turned out to have a p value of between .036 and 3.17 × 10(-4) , with the major effect coming from females. Moreover, 6 SNPs and 1 MMT withstood the Bonferroni correction (p < .002). Replication studies were performed for 2 nonsynonymous SNPs (rs35211496 and rs1805034) in a Dutch and a British cohort. Interestingly, both SNPs resulted in p values ranging from .013 to 8.38 × 10(-5) in both populations. Meta-analysis over three populations resulted in p = .002 for rs35211496 and p = 1.27 × 10(-8) for rs1805034, again mainly coming from the female subgroups. In an attempt to identify the underlying causative SNP, we performed functional studies for the coding SNPs as well as resequencing efforts of a 31-kb region harboring a risk haplotype within the Belgian females. However, neither approach resulted in significant evidence for the causality of any of the tested genetic variants. Therefore, further studies are needed to identify the real cause of the increased risk to develop PDB shown to be present within TNFRSF11A.
Collapse
Affiliation(s)
- Pui Yan Jenny Chung
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chung PYJ, Beyens G, Boonen S, Papapoulos S, Geusens P, Karperien M, Vanhoenacker F, Verbruggen L, Fransen E, Van Offel J, Goemaere S, Zmierczak HG, Westhovens R, Devogelaer JP, Van Hul W. The majority of the genetic risk for Paget’s disease of bone is explained by genetic variants close to the CSF1, OPTN, TM7SF4, and TNFRSF11A genes. Hum Genet 2010; 128:615-26. [DOI: 10.1007/s00439-010-0888-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
|
17
|
Affiliation(s)
- G David Roodman
- University of Pittsburgh, School of Medicine/Hematology-Oncology, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Abstract
Paget's disease of bone is a focal bone disorder that is common among older people of Western European descent. It is an unusual disorder, for although we now have safe and highly effective treatment, there are many aspects of its pathogenesis and natural history that we do not yet understand. Recent years have seen significant advances in the understanding of its epidemiology, genetics and molecular biology, but an integrated view that incorporates all these aspects remains elusive. In this review we examine some of the outstanding problems, the solutions to which seem likely to change our understanding of bone cell biology.
Collapse
Affiliation(s)
- Brya Matthews
- a Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Tim Cundy
- b Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
19
|
Somatic mutations in SQSTM1 detected in affected tissues from patients with sporadic Paget's disease of bone. J Bone Miner Res 2009; 24:484-94. [PMID: 19016598 PMCID: PMC2659521 DOI: 10.1359/jbmr.081105] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Paget's disease of bone (PDB) is a focal disorder of bone remodeling that leads to overgrowth of affected bone, with rare progression to osteosarcoma. Extensive studies of familial PDB showed that a majority of cases harbor germline mutations in the Sequestosome1 gene (SQSTM1). In contrast, little is known about the mutational status of SQSTM1 in sporadic PDB. We hypothesized that somatic SQSTM1 mutations might occur in the affected tissues of sporadic PDB and pagetic osteosarcoma. We used laser capture microdissection to capture homogeneous populations of cells from the affected bone or tumor of patients with sporadic PDB or pagetic osteosarcoma, respectively. DNA from these samples and appropriate controls was used for sequence analysis and allelic discrimination analysis. Two of five patients with sporadic PDB had SQSTM1(C1215T) mutations detected in their affected bone but not in their blood samples, indicating a somatic origin of the mutations. Samples from three of five sporadic pagetic osteosarcoma patients had the SQSTM1(C1215T) mutation, whereas the normal adjacent tissue from two of these tumors clearly lacked the mutation, again indicating an occurrence of somatic events. No SQSTM1 mutations were found in primary adolescent osteosarcomas. The discovery of somatic SQSTM1 mutations in sporadic PDB and pagetic osteosarcoma shows a role for SQSTM1 in both sporadic and inherited PDB. The discovery of somatically acquired mutations in both the diseased bone and tumor samples suggests a paradigm shift in our understanding of this disease.
Collapse
|
20
|
Abstract
Paget's disease of bone is a common condition characterised by increased and disorganised bone turnover which can affect one or several bones throughout the skeleton. These abnormalities disrupt normal bone architecture and lead to various complications such as bone pain osteoarthritis, pathological fracture, bone deformity, deafness, and nerve compression syndromes. Genetic factors play an important role in PDB and mutations or polymorphisms have been identified in four genes that cause classical Paget's disease and related syndromes. These include TNFRSF11A, which encodes RANK, TNFRSF11B which encodes osteoprotegerin, VCP which encodes p97, and SQSTM1 which encodes p62. All of these genes play a role in the RANK-NFkappaB signalling pathway and it is likely that the mutations predispose to PDB by disrupting normal signalling, leading to osteoclast activation. Although Paget's has traditionally be considered a disease of the osteoclast there is evidence that stromal cell function and osteoblast function are also abnormal, which might account for the fact that the disease is associated with increased bone formation as well as resorption. Environmental factors also contribute to Paget's disease. Most research has focused on paramyxovirus infection as a possible environmental trigger but evidence in favour of the involvement of viruses in the disease remains conflicting. Other factors which have been implicated as possible disease triggers include mechanical loading, dietary calcium and environmental toxins. Further work will be required to identify additional genetic variants that predispose to Paget's disease and to determine how the causal mutations and predisposing polymorphisms interact with environmental factors to influence bone cell function and cause the focal bone lesions that are characteristic of the disease.
Collapse
Affiliation(s)
- Stuart H Ralston
- Rheumatic Diseases Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
21
|
Chung PYJ, Beyens G, Guañabens N, Boonen S, Papapoulos S, Karperien M, Eekhoff M, Van Wesenbeeck L, Jennes K, Geusens P, Offeciers E, Van Offel J, Westhovens R, Zmierczak H, Devogelaer JP, Van Hul W. Founder effect in different European countries for the recurrent P392L SQSTM1 mutation in Paget's Disease of Bone. Calcif Tissue Int 2008; 83:34-42. [PMID: 18543015 DOI: 10.1007/s00223-008-9137-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
Paget's Disease of Bone (PDB) is one of the most frequent metabolic bone diseases, affecting 1-5% of Western populations older than 55 years. Mutations in the sequestosome1 (SQSTM1) gene cause PDB in about one-third of familial PDB cases and in 2.4-9.3% of nonfamilial PDB cases, with the 1215C-->T (P392L) mutation being the most frequent one. We investigated whether a founder effect of the P392L SQSTM1 mutation was present in Belgian (n = 233), Dutch (n = 82), and Spanish (n = 64) patients without a PDB family history. First, direct sequencing analysis of exon 8 in these three populations showed that the P392L mutation occurred in 17 Belgian patients (7.3%), three Dutch patients without a family history (3.7%), and two Dutch patients with a family history. In the Spanish population, 15.6% of patients (n = 10) had the P392L mutation, including one homozygous mutant. This is by far the highest mutation frequency of all populations investigated so far. Next, we examined the genetic background of 33 mutated chromosomes by analyzing haplotypes. We genotyped four single-nucleotide polymorphisms (SNPs) in exon 6 and the 3'-untranslated region of SQSTM1 (rs4935C/T, rs4797G/A, rs10277T/C, and rs1065154G/T) and used software programs WHAP and PHASE to reconstruct haplotypes. Finally, allele-specific primers allowed us to assign the mutation to one of the two haplotypes from each individual. Sequencing results revealed that all 33 P392L mutations were on the CGTG (H2) haplotype. The chance to obtain this result due to 33 independent mutation events is 3.97 x 10(-14), providing strong evidence for a founder effect of the P392L SQSTM1 mutation in Belgian, Dutch, and Spanish patients with PDB.
Collapse
Affiliation(s)
- Pui Yan Jenny Chung
- Department of Medical Genetics, University & University Hospital of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Genetics and aetiology of Pagetic disorders of bone. Arch Biochem Biophys 2008; 473:172-82. [DOI: 10.1016/j.abb.2008.02.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 12/20/2022]
|
23
|
Rhodes EC, Johnson-Pais TL, Singer FR, Ankerst DP, Bruder JM, Wisdom J, Hoon DSB, Lin E, Bone HG, Simcic KJ, Leach RJ. Sequestosome 1 (SQSTM1) mutations in Paget's disease of bone from the United States. Calcif Tissue Int 2008; 82:271-7. [PMID: 18379713 DOI: 10.1007/s00223-008-9114-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
Abstract
Paget's disease of bone (PDB) is a localized bone disease characterized by excessive bone resorption due to overactive osteoclasts. Seven genetic loci (PDB1-PDB7) have been reported for late-onset PDB. PDB3 is the only locus where a gene, sequestosome 1 (SQSTM1), has been identified. Mutations in SQSTM1 have been associated with both sporadic and hereditary PDB in different populations. However, the SQSTM1 mutation frequency in PDB patients from a more heterogeneous population has never been reported. To investigate this, we determined the frequency of mutations in patients from the United States. Blood was collected from sporadic and hereditary PDB patients in the United States. DNA was isolated from whole blood or from serum. The SQSTM1 sequence was determined for exons and intron/exon junctions from whole blood and serum. A total of 112 (39 hereditary, 73 sporadic) samples were collected. Eight mutations were found in hereditary PDB patients, for a mutation frequency of 20.5% (95% confidence interval [CI] 10.8-35.5%) and did not differ significantly from mutation rates observed in studies in Canada, Great Britain, and The Netherlands. No mutations were found in sporadic patients, for a frequency of 0% (95% CI 0.0-5.0%), which was statistically significantly lower than the mutation rates previously observed in populations from Australia (P = 0.009), Canada (P = 0.008), Great Britain (P = 0.02), and France (P = 0.04) but not compared to rates from Belgium, The Netherlands, and Italy. Four out of five families with the P392L mutation carried it on the H2 haplotype. Mutations in SQSTM1 seem to contribute to the pathogenesis of PDB in hereditary, but not sporadic, patients in the United States.
Collapse
Affiliation(s)
- Emily C Rhodes
- Department of Cellular and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abelson A. A review of Paget's disease of bone with a focus on the efficacy and safety of zoledronic acid 5 mg. Curr Med Res Opin 2008; 24:695-705. [PMID: 18226324 DOI: 10.1185/030079908x260899] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Paget's disease of bone, the second most common metabolic bone disease in the United States, is characterized by localized areas of excessive bone resorption coupled with accelerated bone formation, resulting in new bone that is less structurally organized and is weaker than normal bone. Complications of Paget's disease can include bone pain, osteoarthritis, skeletal deformity, hearing loss, and fractures. The objective of this review is to provide a comprehensive overview of current standards of treatment in Paget's disease. SCOPE A review of literature from 1974 to 2007 was performed on topics such as epidemiology, etiology, treatment of Paget's disease of bone, and bisphosphonates. FINDINGS Paget's disease affects an estimated 2-7% of persons of age 55 years or older in North America and western Europe. Antiresorptive treatment with bisphosphonates is the standard treatment, but there may be limitations to oral therapy. Intravenous pamidronate is efficacious and has long been available, but its use is hindered by an impractical recommended dosing regimen of 30 mg IV over 4 h for three consecutive days. In two identical, double-blind, 6-month trials, 96% of patients treated with a one-time intravenous treatment of zoledronic acid 5 mg achieved therapeutic response, compared with 74% treated with 60 days of daily oral treatment with risedronate 30 mg (p < 0.001). One limitation of this review is that historical data are not reviewed in the same level of detail as newer treatments, because recent advances in pharmacotherapy of Paget's disease have reduced the clinical utility of the older drugs. CONCLUSION The etiology of Paget's disease is unclear, but some evidence suggests genetic and viral components. Bisphosphonates restore normal bone turnover and relieve bone pain, but oral formulations may be limited by complicated dosing regimens and poor gastrointestinal absorption. The bisphosphonate, zoledronic acid is administered as a single intravenous infusion and offers antiresorptive efficacy and longer-lasting remission.
Collapse
Affiliation(s)
- Abby Abelson
- Center for Osteoporosis and Metabolic Bone Disease, Department of Rheumatic and Immunologic Diseases, Orthopaedic and Rheumatology Institute, The Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
25
|
Lucas GJ, Riches PL, Hocking LJ, Cundy T, Nicholson GC, Walsh JP, Ralston SH. Identification of a major locus for Paget's disease on chromosome 10p13 in families of British descent. J Bone Miner Res 2008; 23:58-63. [PMID: 17907922 DOI: 10.1359/jbmr.071004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED Mutations of SQSTM1 are an important cause of PDB, but other genes remain to be discovered. A major susceptibility locus for PDB was identified on chromosome 10p13 by a genome-wide linkage scan in families of British descent, which accounted for the vast majority of cases not caused by SQSTM1 mutations. INTRODUCTION Paget's disease of bone (PDB) has a strong genetic component, and several susceptibility loci have been identified by genome-wide linkage scans. We previously identified three susceptibility loci for PDB using this approach on chromosomes 5q35, 2q36, and 10p13 in 62 families of mainly British descent, but subsequently, mutations in the SQSTM1 gene were found to be the cause of PDB in 23 families from this cohort. Here we reanalyzed the results of our genome-wide search in families from this cohort who did not have SQSTM1 mutations. MATERIALS AND METHODS The study population consisted of 210 individuals from 39 families of predominantly British descent with autosomal dominant inheritance of PDB in whom SQSTM1 mutations had been excluded by mutation screening. The average family size was 5.44 +/- 3.98 (SD) individuals (range, 2-24 individuals). Genotyping was performed using standard techniques with 382 microsatellite markers spaced at an average distance of 9.06 cM throughout the autosomes. Multipoint linkage analysis was performed using the GENEHUNTER program under models of homogeneity and heterogeneity. RESULTS Multipoint parametric linkage analysis under a model of homogeneity and nonparametric linkage analysis under a model of heterogeneity both showed strong evidence of linkage to a single locus on chromosome 10p13 (LOD score, +4.08) close to the marker D10S1653 at 41.43cM. No evidence of linkage was detected at the chromosome 2q36 locus previously identified in this population, and linkage to other candidate loci previously implicated in the pathogenesis of PDB was excluded. CONCLUSIONS We conclude that there is an important susceptibility gene for PDB on chromosome 10p13 in families of British descent and find no evidence to support the existence of a susceptibility locus on chromosome 2q36 or other previously identified candidate loci for PDB in this population. The gene that lies within the 10p13 locus seems to account for the development of PDB in the vast majority of families of British descent who do not carry SQSTM1 mutations.
Collapse
Affiliation(s)
- Gavin Ja Lucas
- Rheumatic Diseases Unit, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Dell’Atti C, Cassar-Pullicino VN, Lalam RK, Tins BJ, Tyrrell PNM. The spine in Paget's disease. Skeletal Radiol 2007; 36:609-26. [PMID: 17410356 PMCID: PMC1934928 DOI: 10.1007/s00256-006-0270-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/18/2006] [Accepted: 12/22/2006] [Indexed: 02/02/2023]
Abstract
Paget's disease (PD) is a chronic metabolically active bone disease, characterized by a disturbance in bone modelling and remodelling due to an increase in osteoblastic and osteoclastic activity. The vertebra is the second most commonly affected site. This article reviews the various spinal pathomechanisms and osseous dynamics involved in producing the varied imaging appearances and their clinical relevance. Advanced imaging of osseous, articular and bone marrow manifestations of PD in all the vertebral components are presented. Pagetic changes often result in clinical symptoms including back pain, spinal stenosis and neural dysfunction. Various pathological complications due to PD involvement result in these clinical symptoms. Recognition of the imaging manifestations of spinal PD and the potential complications that cause the clinical symptoms enables accurate assessment of patients prior to appropriate management.
Collapse
Affiliation(s)
- C. Dell’Atti
- Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, SY10 7AG UK
| | - V. N. Cassar-Pullicino
- Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, SY10 7AG UK
| | - R. K. Lalam
- Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, SY10 7AG UK
| | - B. J. Tins
- Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, SY10 7AG UK
| | - P. N. M. Tyrrell
- Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, SY10 7AG UK
| |
Collapse
|
27
|
Beyens G, Daroszewska A, de Freitas F, Fransen E, Vanhoenacker F, Verbruggen L, Zmierczak HG, Westhovens R, Van Offel J, Ralston SH, Devogelaer JP, Van Hul W. Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, TNFRSF11B, and Paget's disease of bone. J Bone Miner Res 2007; 22:1062-71. [PMID: 17388729 DOI: 10.1359/jbmr.070333] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED We studied the role of TNFRSF11B polymorphisms on the risk to develop Paget's disease of bone in a Belgian study population. We observed no association in men, but a highly significant association was found in women, and this was confirmed in a population from the United Kingdom. INTRODUCTION Juvenile Paget's disease has been shown to be caused by mutations in TNFRSF11B encoding osteoprotegerin. Although mutations in this gene have never been found in patients with typical Paget's disease of bone (PDB), there are indications that polymorphisms in TNFRSF11B might contribute to the risk of developing PDB. MATERIALS AND METHODS We recruited a population of 131 Belgian patients with sporadic PDB and 171 Belgian controls. By means of the HapMap, we selected 17 SNPs that, in combination with four multimarker tests, contain most information on common genetic variation in TNFRSF11B. To replicate the findings observed in the Belgian study population, genotyping data of SNPs generated in a UK population were reanalyzed. RESULTS In our Belgian study population, associations were found for two SNPs (rs11573871, rs1485286) and for one multimarker test involving rs1032129. When subsequently analyzing men and women separately, these associations turned out to be driven by women (56 cases, 78 controls). In addition, three other tagSNPs turned out to be associated in women only. These were rs2073617 (C950T), rs6415470, and rs11573869. Reanalysis of genotyping data from a UK study population indicated that the associations found for C950T and C1181G were also exclusively driven by women (146 cases, 216 controls). Meta-analysis provided evidence for risk increasing effects of the T allele of C950T and the G allele of C1181G in the female population (p = 0.002 and 0.003, respectively). The haplotypes formed by the SNPs associated in the Belgian population were also distributed differentially between female cases and controls. CONCLUSIONS We showed for the first time that SNPs influencing the risk to develop PDB could be sex-specific. Further research is necessary to identify the causative variants in TNFRSF11B and to elucidate the molecular pathogenic mechanism.
Collapse
Affiliation(s)
- Greet Beyens
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Koh JM, Park BL, Kim DJ, Kim GS, Cheong HS, Kim TH, Hong JM, Shin HI, Park EK, Kim SY, Shin HD. Identification of novel RANK polymorphisms and their putative association with low BMD among postmenopausal women. Osteoporos Int 2007; 18:323-31. [PMID: 17115234 DOI: 10.1007/s00198-006-0244-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 09/25/2006] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Bone mineral density (BMD) is the major factor for determining bone strength, which is closely correlated to osteoporotic fracture risk and is largely determined by multiple genetic factors. The RANK (TNFRSF11A), receptor for RANKL, is a member of the tumor necrosis factor receptor (TNFR) superfamily and plays a central role in osteoclast development. METHODS In order to investigate the effects of RANK polymorphism on BMD and osteoporosis, we directly sequenced the RANK gene in 24 Korean individuals and identified 25 sequence variants. Eleven of these polymorphisms were selected and genotyped in a larger-scale study of postmenopausal women (n = 560). Areal BMD (g/cm(2)) of the anterior-posterior lumbar spine and the nondominant proximal femur were measured using dual-energy X-ray absorptiometry. RESULTS We found that two intronic polymorphisms in the RANK gene [RANK + 34863G > A (rs12458117) and RANK + 35928insdelC (new polymorphism found in this study) in intron 6] were significantly associated with the BMD of the lumbar spine, i.e., rare alleles were significantly associated with low BMD of the lumbar spine among Korean postmenopausal women (p = 0.04 and 0.02, respectively). These polymorphisms were also associated with low BMD of proximal femur sites, including Ward's triangle, trochanter, and total femur. Our results suggest that +34863G > A and +35928insdelC polymorphisms in RANK are possible genetic factors for low BMD in postmenopausal women.
Collapse
Affiliation(s)
- J-M Koh
- Division of Endocrinology and Metabolism, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 138-736, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kurth AA. [Therapy of Paget's disease]. DER ORTHOPADE 2007; 36:118, 120-3. [PMID: 17252256 DOI: 10.1007/s00132-007-1050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Paget's disease of bone, an often undiagnosed metabolic bone disease, can lead to dramatic skeletal changes with enlargement and bowing of the affected bones. The etiology of this localized bone disease has not yet been determined. Genetic factors and viral infections may be involved. Recently, the treatment options for Paget's disease have been greatly improved due to the development of potent bisphosphonates. These agents inhibit osteoclastic bone resorption and allow the suppression of the excessive bone turnover in Paget's disease. This leads to a stabilization of affected bones and to symptomatic improvements. Treatment should be initiated early after diagnosis to limit the extent of damage. The article gives an overview of recent perspectives on epidemiology, diagnosis, and treatment of the disease according to the new German guidelines for the diagnosis and therapy of Paget's disease.
Collapse
Affiliation(s)
- A A Kurth
- Orthopädische Universitätsklinik, Stiftung Friedrichsheim, Marienburgstrasse 2, 60528 Frankfurt.
| |
Collapse
|
30
|
Morissette J, Laurin N, Brown JP. Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget's disease of bone. J Bone Miner Res 2006; 21 Suppl 2:P38-44. [PMID: 17229007 DOI: 10.1359/jbmr.06s207] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Mutations of the SQSTM1/p62 gene are commonly observed in PDB. Screening an updated sample from Quebec and using previously published data from other populations, we compared frequency estimates for SQSTM1/p62 mutations and haplotype distribution. The P392L mutation was the most prevalent, embedded in two different haplotypes, possibly shared by other populations. We also examined the phenotype and penetrance of P392L. INTRODUCTION There is accumulating evidence that supports a contribution of genetic factors in the etiology of Paget's disease of bone (PDB), and several genetic loci have been suggested for the disorder. The sequestosome1/p62 (SQSTM1/p62) gene was the first gene identified to have a role in PDB, with 14 mutations reported to date. MATERIAL AND METHODS To evaluate the importance of the SQSTM1/p62 mutations in PDB, we recruited, sequenced, and genotyped a total of 123 carriers from 20 families in addition to 214 unrelated PDB patients. We compared the frequency of SQSTM1/p62 mutations in familial and unrelated cases among different populations. Finally, we examined the phenotypic expression and penetrance of the P392L mutation in the Quebecois families. RESULTS AND CONCLUSIONS The 14 mutations reported in SQSTM1/p62 all affect the ubiquitin-associated domain of the protein. The P392L mutation is the most commonly observed mutation in PDB patients and was consistently found in unrelated and familial PDB cases in the populations tested. Analysis of adjacent polymorphisms suggests that P392L is associated with two different haplotypes in the Quebecois patients, similar to what has been observed in European populations. In Quebec, both haplotypes had similar frequencies in unrelated P392L carriers, whereas one haplotype was predominant in the other populations studied. These data suggest that these two haplotypes, possibly introduced by European founders in the Quebecois population, were equally distributed in the succeeding generations. Finally, the P392L mutation is transmitted as an autosomal dominant trait in the Quebecois families, with a high but incomplete penetrance peaking after age 60. The large phenotypic variability and similarity between unrelated and familial cases, respectively, remain unexplained and require further research.
Collapse
Affiliation(s)
- Jean Morissette
- Centre de Recherche en Endocrinologie Moléculaire et Oncologique, Centre de Recherche du Centre Hospitalier de l'Université Laval, Quebec, Quebec, Canada
| | | | | |
Collapse
|
31
|
Cooper C, Harvey NC, Dennison EM, van Staa TP. Update on the epidemiology of Paget's disease of bone. J Bone Miner Res 2006; 21 Suppl 2:P3-8. [PMID: 17229005 DOI: 10.1359/jbmr.06s201] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Paget's disease of bone (PDB) is characterized by rapid bone remodeling and the formation of bone that is structurally abnormal. Recent studies have confirmed that both genetic and environmental factors are important in its etiology. Epidemiological studies in Europe and North America have revealed that PDB shows an increasing frequency of occurrence with age and is more prevalent among men than women. There is marked geographic variation in the prevalence of PDB throughout western nations, with the highest rates reported during the 1970s in Britain. Recent studies of the secular trends in PDB suggest declining rates in both prevalence and severity at diagnosis. Thus, the overall age/sex standardized prevalence rate in Britain during the period 1993-1995 was found to be 2.5% among men and 1.6% among women > or = 55 years of age. Prevalence rates had fallen by approximately 50% in several of the centers studied, suggesting an environmental contribution to the etiology of this disorder. Similar findings have been reported from other European countries and New Zealand. Recent study of the incidence and clinical manifestations of PDB have emerged from large cohort studies in primary care record linkage resources, such as the General Practice Research Database. Over the period 1988-1999, the incidence rate of clinically diagnosed PDB was found to be 5 per 10,000 person-years among men and 3 per 10,000 person-years among women 75 years of age. The disorder was associated with an increased risk of back pain (RR, 2.1; 95% CI, 1.9-2.3); osteoarthritis (RR, 1.7; 95% CI, 1.5-1.9); and fracture (RR, 1.2; 95% CI, 1.0-1.5). Using life table methodology, the estimated proportion of patients dying within 5 years of follow-up was 32.7% among the cohort with PDB compared with 28.0% among control patients (p < 0.05).
Collapse
Affiliation(s)
- Cyrus Cooper
- MRC Epidemiology Resource Centre, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Beyens G, Wuyts W, Cleiren E, de Freitas F, Tiegs R, Van Hul W. Identification and molecular characterization of a novel splice-site mutation (G1205C) in the SQSTM1 gene causing Paget's disease of bone in an extended American family. Calcif Tissue Int 2006; 79:281-8. [PMID: 17120186 DOI: 10.1007/s00223-006-0122-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 07/27/2006] [Indexed: 12/13/2022]
Abstract
Paget's disease of bone (PDB) is a common late-onset bone disorder characterized by focal areas of abnormal bone remodeling. Positional cloning efforts resulted in the identification of seven genetic loci (PDB1-7) with putative involvement in the pathogenesis of PDB. Meanwhile, the PDB-causing gene from the PDB3 region on chromosome 5q35 has been identified as the SQSTM1 gene. All mutations identified in this gene so far are located in or close to the ubiquitin-associated (UBA) domain of the protein. In 2001, we reported genotyping results of genetic markers located in the PDB3 region in an extended American family, indicating the involvement of the PDB3 locus. Here, we report the identification of a novel mutation (G1205C) in the SQSTM1 gene in this family. The G1205C mutation is located in the splice donor site of intron 7 and reverse-transcription polymerase chain reaction experiments showed that the presence of the C allele results in the production of two abnormal mRNA transcripts. Translation of the first transcript would result in a protein that lacks amino acids 351-388, including 26 amino acids of the second PEST domain in addition to two amino acids of the UBA domain. The second mutant mRNA transcript could result in a truncated protein (390X) that lacks almost the complete UBA domain. PDB mutations that disrupt the function of the PEST domain of SQSTM1 have not been reported before, so probably the pathogenic effect of both transcripts resides in the disruption of the ubiquitin-binding properties of the protein.
Collapse
Affiliation(s)
- G Beyens
- Department of Medical Genetics, University and University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Poór G, Donáth J, Fornet B, Cooper C. Epidemiology of Paget's disease in Europe: the prevalence is decreasing. J Bone Miner Res 2006; 21:1545-9. [PMID: 16995808 DOI: 10.1359/jbmr.060704] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED This study estimated changes in the age- and sex-specific prevalence of Paget's disease of bone in six European towns over a 20-year period. Declines in prevalence were observed in this disorder, occurring among both men and women. INTRODUCTION To estimate secular changes in the age-and sex-specific prevalence of Paget's disease of bone in Europe, we conducted a second radiographic survey using identical sampling and methods in six European towns where a baseline study was performed in 1978-1979. In addition to these towns, the survey was carried out in two Hungarian centers not included in the initial study. MATERIALS AND METHODS In each center, a sample of abdominal radiographs of people >or=55 years of age was taken from stored films within the radiology department of the principal general hospital. Radiographs showing the entire pelvis, sacrum, femoral heads, and lumbar vertebrae were studied for the period of 2000-2001. The films were evaluated by a trained observer and a consultant radiologist. RESULTS A total of 6935 radiographs (3512 women and 3423 men) were assessed in the eight towns. The overall age- and sex-standardized prevalence rate of Paget's disease was 0.3% with a male/female ratio of 1.5. Prevalence increased with age among men and women rising to 0.8% of men and 0.9% of women >/=85 years of age. The differences in prevalence rate among the European centers were relatively small, especially in women. There was a decline in rates between 1978/79 and 2000/01. CONCLUSIONS These European data confirm the decrease in frequency of Paget's disease observed in Britain. These declines favor an environmental contribution to the causation of the disease that requires further research.
Collapse
Affiliation(s)
- Gyula Poór
- National Institute of Rheumatology and Physiotherapy, Budapest, Hungary
| | | | | | | |
Collapse
|
34
|
Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TRA, Long JE, Searle MS, Layfield R. Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget's disease of bone. Calcif Tissue Int 2006; 78:271-7. [PMID: 16691492 DOI: 10.1007/s00223-005-1299-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Ubiquitin-associated (UBA) domain mutations of SQSTM1 are an important cause of Paget's disease of bone (PDB), which is a human skeletal disorder characterized by abnormal bone turnover. We previously showed that, when introduced into the full-length SQSTM1 protein, the disease-causing P392L, M404V, G411S, and G425R missense mutations and the E396X truncating mutation (representative of all of the SQSTM1 truncating mutations) cause a generalized loss of monoubiquitin binding and impaired K48-linked polyubiquitin binding at physiological temperature. Here, we show that the remaining three known PDB missense mutations, P387L, S399P, and M404T, have similar deleterious effects on monoubiquitin binding and K48-linked polyubiquitin binding by SQSTM1. The P387L mutation affects an apparently unstructured region at the N terminus of the UBA domain, some five residues from the start of the first helix, which is dispensable for polyubiquitin binding by the isolated UBA domain. Our findings support the proposal that the disease mechanism in PDB with SQSTM1 mutations involves a common loss of ubiquitin binding function of SQSTM1 and implicate a sequence extrinsic to the compact globular region of the UBA domain as a critical determinant of ubiquitin recognition by the full-length SQSTM1 protein.
Collapse
Affiliation(s)
- J R Cavey
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Daroszewska A, Ralston SH. Mechanisms of Disease: genetics of Paget's disease of bone and related disorders. ACTA ACUST UNITED AC 2006; 2:270-7. [PMID: 16932700 DOI: 10.1038/ncprheum0172] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 12/12/2005] [Indexed: 11/10/2022]
Abstract
Paget's disease of bone (PDB) is a common disorder in which focal abnormalities of increased bone turnover lead to complications such as bone pain, deformity, pathological fractures, and deafness. PDB has a strong genetic component and several susceptibility loci for the disease have been identified by genome-wide scans. Mutations that predispose individuals to PDB and related disorders have been identified in four genes. The rare PDB-like syndromes of familial expansile osteolysis, early-onset familial PDB, and expansile skeletal hyperphosphatasia are caused by insertion mutations in TNFRSF11A, which encodes receptor activator of nuclear factor (NF)kappaB (RANK)-a critical regulator of osteoclast function. Inactivating mutations in TNFRSF11B, which encodes osteoprotegerin (a decoy receptor for RANK ligand) cause idiopathic hyperphosphatasia, and polymorphisms in this gene seem to increase the risk for classical PDB. Mutations of the sequestosome 1 gene (SQSTM1), which encodes an important scaffold protein in the NFkappaB pathway, are a common cause of classical PDB. The rare syndrome of hereditary inclusion body myopathy, PDB, and fronto-temporal dementia is caused by mutations in the valosin-containing protein (VCP) gene. This gene encodes VCP, which has a role in targeting the inhibitor of NFkappaB for degradation by the proteasome. Several additional genes for PDB remain to be discovered, and it seems likely that they will also involve the RANK-NFkappaB signaling pathway or components of the proteasomal processing of this pathway, underscoring the critical importance of this signaling pathway in bone metabolism and bone disease.
Collapse
|
36
|
Kimonis VE, Watts GDJ. Autosomal dominant inclusion body myopathy, Paget disease of bone, and frontotemporal dementia. Alzheimer Dis Assoc Disord 2006; 19 Suppl 1:S44-7. [PMID: 16317258 DOI: 10.1097/01.wad.0000183081.76820.5a] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autosomal dominant proximal limb girdle or inclusion body myopathy, associated with Paget disease of bone and frontotemporal dementia (IBMPFD) is a recently described disorder that maps to chromosome 9p21.1-p12. We refined the critical locus and identified the gene as the Valosin Containing Protein (VCP) gene, a member of the AAA-ATPase superfamily using a candidate gene approach. Six missense mutations were found to co-segregate with affected individuals only, two of these representing mutation hot spots. We report the clinical and molecular findings in 99 individuals in 13 families. VCP is associated with a variety of cellular activities, including the control of cell cycle, membrane fusion, and the ubiquitin-proteasome degradation pathway. Previous studies have associated VCP mutants in cell lines with vacuole formation and aggregate formation. Identification of VCP as the gene causing IBMPFD has important implications for understanding the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Virginia E Kimonis
- Division of Genetics, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
37
|
Whyte MP. Paget's Disease of Bone and Genetic Disorders of RANKL/OPG/RANK/NF- B Signaling. Ann N Y Acad Sci 2006; 1068:143-64. [PMID: 16831914 DOI: 10.1196/annals.1346.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Identification of the RANKL/OPG/RANK/NF-kB (receptor activator of nuclear factor kappa-B ligand / osteoprotegerin) signaling pathway as the major regulatory system for osteoclastogenesis began with discovery of these ligands and receptors in the tumor necrosis factor (TNF) superfamily. Subsequently, genetically altered mice revealed physiologic roles for these proteins in bone biology. However, full appreciation of their significance for the human skeleton came from clinical characterization of several extremely rare, heritable disorders followed by discovery of their genetic bases. Familial expansile osteolysis (FEO) is an autosomal dominant disorder featuring constitutive activation of RANK due to an 18-bp tandem duplication in its gene (TNFRSF11A). A similar, 27-bp duplication causes what has been called a familial form of early-onset Paget's disease of bone (PDB2). Expansile skeletal hyperphosphatasia (ESH) is allelic to FEO and PDB2 and involves a 15-bp tandem duplication in TNFRSF11A. Autosomal recessive inheritance of deactivating mutations of the gene encoding OPG (TNFRSF11B) causes most cases of juvenile Paget disease. These disorders feature high bone turnover, deafness during early childhood, "idiopathic external lysis" of adult teeth, and sometimes focal lesions in appendicular bones that mimic active PDB. Biochemical markers indicate rapid skeletal remodeling. In FEO, osteolysis progresses to fat-filled bone rather than to osteosclerosis. Antiresorptive therapy with bisphosphonates can be effective for each disorder.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, 2001 South Lindbergh Boulevard, St. Louis, MO 63131, USA.
| |
Collapse
|
38
|
Kurihara N, Zhou H, Reddy SV, Garcia Palacios V, Subler MA, Dempster DW, Windle JJ, Roodman GD. Expression of measles virus nucleocapsid protein in osteoclasts induces Paget's disease-like bone lesions in mice. J Bone Miner Res 2006; 21:446-55. [PMID: 16491293 DOI: 10.1359/jbmr.051108] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 11/17/2005] [Accepted: 11/21/2005] [Indexed: 01/23/2023]
Abstract
UNLABELLED We targeted the MVNP gene to the OCL lineage in transgenic mice. These mice developed abnormal OCLs and bone lesions similar to those found in Paget's patients. These results show that persistent expression of MVNP in OCLs can induce pagetic-like bone lesions in vivo. INTRODUCTION Paget's disease (PD) of bone is the second most common bone disease. Both genetic and viral factors have been implicated in its pathogenesis, but their exact roles in vivo are unclear. We previously reported that transfection of normal human osteoclast (OCL) precursors with the measles virus nucleocapsid (MVNP) or measles virus (MV) infection of bone marrow cells from transgenic mice expressing a MV receptor results in formation of pagetic-like OCLs. MATERIALS AND METHODS Based on these in vitro studies, we determined if the MVNP gene from either an Edmonston-related strain of MV or a MVNP gene sequence derived from a patient with PD (P-MVNP), when targeted to cells in the OCL lineage of transgenic mice with the TRACP promoter (TRACP/MVNP mice), induced changes in bone similar to those found in PD. RESULTS Bone marrow culture studies and histomorphometric analysis of bones from these mice showed that their OCLs displayed many of the features of pagetic OCLs and that they developed bone lesions that were similar to those in patients with PD. Furthermore, IL-6 seemed to be required for the development of the pagetic phenotype in OCLs from TRACP/MVNP mice. CONCLUSIONS These results show that persistent expression of the MVNP gene in cells of the OCL lineage can induce pagetic-like bone lesions in vivo.
Collapse
Affiliation(s)
- Noriyoshi Kurihara
- Medicine/Hem-Onc, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mehta SG, Watts GDJ, McGillivray B, Mumm S, Hamilton SJ, Ramdeen S, Novack D, Briggs C, Whyte MP, Kimonis VE. Manifestations in a family with autosomal dominant bone fragility and limb-girdle myopathy. Am J Med Genet A 2006; 140:322-30. [PMID: 16419137 DOI: 10.1002/ajmg.a.31008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report on an unusual family with an autosomal dominant limb-girdle type of myopathy and bone fragility. This family was previously reported by Henry et al. [1958] as autosomal dominant progressive limb girdle "muscular dystrophy" with propensity to fractures and defective healing of long bones. Clinical, biochemical, and radiological aspects were evaluated in eight living relatives in this family (three males and five females) and in eight deceased individuals. The average age-of-onset of the limb-girdle myopathy was 31 years occurring in 87% of affected individuals. The average age of onset of fractures was 24 years occurring in 88% of affected individuals. Biochemical analysis showed a mean alkaline phosphatase (ALP) of 64 U/L (normal 30-120) and borderline high creatine kinase (CK) of 213 U/L (normal 4-220). Radiographs revealed coarse trabeculation, patchy sclerosis, cortical thickening, and narrowing of the medullary cavity with an appearance not considered typical of Paget disease of bone (PDB) or of fibrous dysplasia. Results of nerve conduction studies were normal, and electromyograms and muscle biopsies documented non-specific myopathic changes. There is premature graying with thin hair, thin skin, hernias and the affected individuals appear older than their chronological age, and three members had a clotting disorder. Linkage analysis for markers for the chromosome 9p22.3-q12 locus indicated that the disorder in this family does not segregate with markers in the critical region of limb-girdle/inclusion body myopathy, PDB, and frontotemporal dementia (FTD) [IBMPFD, OMIM #605382]. Sequencing of Valosin-containing protein (VCP), the gene associated with IBMPFD, did not identify mutations. We have excluded linkage to the known loci for limb-girdle type of myopathy and bone disease and excluded several candidate genes. Elucidation of the novel molecular basis of this disorder may provide valuable links between bone, collagen and muscle, and targeted therapeutic options.
Collapse
Affiliation(s)
- Sarju G Mehta
- Division of Genetics and Metabolism, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Michou L, Collet C, Laplanche JL, Orcel P, Cornélis F. Genetics of Paget's disease of bone. Joint Bone Spine 2006; 73:243-8. [PMID: 16574459 DOI: 10.1016/j.jbspin.2005.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 05/15/2005] [Indexed: 11/29/2022]
Abstract
Paget's disease of bone is a chronic bone disease that affects up to 3% of Caucasians older than 55 years. The cause of Paget's disease is unknown but involves genetic factors. Familial cases display an autosomal dominant pattern of inheritance with incomplete penetrance. Genetic heterogeneity has been demonstrated and eight potential susceptibility loci identified. There is sound evidence incriminating Sequestosome 1 (SQSTM1) on the long arm of chromosome 5 (5q35-qter), of which nine mutations have been described in Paget's disease of bone. These mutations are located in exons 7 and 8, which encode a highly conserved ubiquitin-binding domain. The prevalence of SQSTM1 mutations is about 10% in France. Tests for SQSTM1 mutations should be done in patients with Paget's disease of bone, even where the family history is negative. Detection of a mutation allows evaluation of family members to ensure early diagnosis of the disease before complications develop.
Collapse
Affiliation(s)
- Laëtitia Michou
- Clinical genetics unit, hôpital Lariboisière, Paris, France.
| | | | | | | | | |
Collapse
|
41
|
Ehrlich LA, Roodman GD. The role of immune cells and inflammatory cytokines in Paget's disease and multiple myeloma. Immunol Rev 2006; 208:252-66. [PMID: 16313353 DOI: 10.1111/j.0105-2896.2005.00323.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The osteoclast (OCL) is the primary cell involved in the pathogenesis of Paget's disease (PD) and the destructive bone process in multiple myeloma (MM). Both of these diseases are characterized by increased numbers of OCLs actively resorbing bone, but they differ in that bone formation is greatly increased in PD and is suppressed in MM. The marrow microenvironment plays a critical role in both disease processes, through the increased expression of inflammatory cytokines that enhance osteoclastogenesis and, in the case of MM, also suppress osteoblast (OBL) activity. In addition, the OCLs in PD are intrinsically abnormal, are markedly increased in number and size, and are hyper-responsive to inflammatory cytokines and 1,25-(OH)2D3. This article discusses the role of immune cells and inflammatory cytokines and chemokines in the increased OCL activity in PD and MM bone disease, as well as the potential role of interleukin-3 in the suppression of OBL activity in MM.
Collapse
Affiliation(s)
- Lori A Ehrlich
- Department of Medicine/Hematology-Oncology, University of Pittsburgh, Pittsburgh, PA 15240, USA
| | | |
Collapse
|
42
|
Abstract
PDB (Paget's disease of bone) is a common condition characterized by focal increases in bone turnover affecting one or more sites throughout the skeleton. Genetic factors are important in the pathogenesis of PDB and many families have been described where PDB is inherited in an autosomal-dominant fashion. Several candidate loci for susceptibility to PDB and related syndromes have been identified by genome-wide scans and recent evidence suggests that mutations in genes that encode components of the RANK [receptor activator of NF-κB (nuclear factor-κB)]/NF-κB signalling pathway play an important role in the pathogenesis of this group of diseases. Insertion mutations in the TNFRSF11A gene encoding RANK have been identified as the cause of familial expansile osteolysis, some cases of early onset PDB and expansile skeletal hyperphosphatasia. Inactivating mutations in the TNFRSF11B gene that encodes OPG (osteoprotegerin) have been found to cause the syndrome of juvenile PDB. Polymorphisms in OPG also appear to increase the risk of developing PDB. The most important causal gene for classical PDB is Sequestosome 1 (SQSTM1), which is a scaffold protein in the NF-κB signalling pathway, and mutations affecting the UBA (ubiquitin-associated) domain of this protein occur in between 20–50% of familial and 10–20% of sporadic PDB cases. The rare syndrome of IBMPFD (inclusion body myopathy, PDB and fronto-temporal dementia) is due to mutations in the VCP gene and these also cluster in the domain of VCP that interacts with ubiquitin, suggesting a common disease mechanism with SQSTM1-mediated PDB.
Collapse
Affiliation(s)
- Anna Daroszewska
- Institute of Medical Sciences, University of Aberdeen Medical School, Aberdeen AB25 2ZD, UK
| | | |
Collapse
|
43
|
Merlotti D, Gennari L, Galli B, Martini G, Calabrò A, De Paola V, Ceccarelli E, Nardi P, Avanzati A, Nuti R. Characteristics and familial aggregation of Paget's disease of bone in Italy. J Bone Miner Res 2005; 20:1356-64. [PMID: 16007333 DOI: 10.1359/jbmr.050322] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/24/2005] [Accepted: 03/22/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED This study examined the characteristics of 147 PDB cases from Italy. Our data showed a reduced clinical severity of PDB with respect to other populations and provided further support of the importance of environmental factors (rural area of residence and animal contact) in the pathogenesis of PDB. Familial aggregation was observed in 15% of cases. INTRODUCTION The etiology of Paget's disease of bone (PDB) remains unknown. Current evidence suggests that interactions among genetic or exogenous factors seem to be necessary for disease expression. Major epidemiological studies were performed in the United Kingdom and in other populations of British descent. To date, there are no reliable data on PDB characteristics among the Italian population, and its frequency in different areas of the country remains unknown. MATERIALS AND METHODS In an attempt to evaluate clinical characteristics, the proportion of familial cases and the influence of environmental features on the occurrence of the disease, we studied 147 consecutive PDB patients. For all subjects, a detailed medical history was obtained, and constitutional features were recorded. Characteristics of PDB patients were compared with those obtained from 323 consecutive non-Pagetic outpatient control subjects. RESULTS AND CONCLUSIONS Of the 147 PDB patients, 22 (15%) had at least one other family member affected, 19 (13%) reported one family member with suspected features of PDB, and 106 (72%) were classified as sporadic PDB. Even though we observed a reduced clinical severity of PDB with respect to other populations (mean number of affected sites, 2.2 +/- 1.6), we did not find any evidence of a decreased severity of the disease over time. We also found an association of PDB with animal contact (odds ratio [OR], 2.22; p < 0.0005) and a significant prevalence of PDB in rural versus urban districts (OR, 2.42; p < 0.0005). Osteoarthritis (45%), fractures (14%), hearing loss (14%), and valvular calcifications (15%) were the most observed complications. Interestingly, the geographical distribution of PDB showed a concentration of cases in rural areas of Campania and Tuscany. These areas may indicate local clustering of PDB cases in Italy, similar to that observed in other countries.
Collapse
Affiliation(s)
- Daniela Merlotti
- Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, University of Siena, Siena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang WC, Cheng YSL, Chen CH, Lin YJ, Chen YK, Lin LM. Paget's disease of bone in a Chinese patient: A case report and review of the literature. ACTA ACUST UNITED AC 2005; 99:727-33. [PMID: 15897860 DOI: 10.1016/j.tripleo.2004.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although it is fairly common in the Western countries, Paget's disease of bone is very rare in Chinese individuals. Through an extensive literature search, only 8 Chinese Paget's disease cases were found in the English language literature and all were reported in local medical journals of Asia that may not be accessible to international readers. To enhance the awareness of the rarity of Paget's disease in Chinese individuals to pathologists worldwide, we present a case of Paget's disease in a 54-year-old Chinese male. We also compare the clinical features of Paget's disease reported in Chinese patients to Paget's disease reported in the Western countries. No familial cases and no malignant transformation are found in the reported cases of Paget's disease in Chinese patients. In addition, more often skull involvement, higher frequency of monostotic cases, and symptomatic cases are observed in this limited number of Paget's disease cases reported in Chinese individuals.
Collapse
Affiliation(s)
- Wen-Chen Wang
- Oral Pathology Department, School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Paget disease of bone (PD) is characterized by excessive bone resorption in focal areas followed by abundant new bone formation, with eventual replacement of the normal bone marrow by vascular and fibrous tissue. The etiology of PD is not well understood, but one PD-linked gene and several other susceptibility loci have been identified, and paramyxoviral gene products have been detected in pagetic osteoclasts. In this review, the pathophysiology of PD and evidence for both a genetic and a viral etiology for PD will be discussed.
Collapse
Affiliation(s)
- G David Roodman
- Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15240, USA.
| | | |
Collapse
|
46
|
Font N. [Familial expansive osteolysis otological and dental manifestations of genetic origin]. ACTA ACUST UNITED AC 2005; 121:360-72. [PMID: 15711475 DOI: 10.1016/s0003-438x(04)95534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Familial Expansive Osteolysis (FEO) ist a rare autosomal dominant bone dysplasia. The disease can show general and focal skeletal alterations, the latter having a predominantly peripheral distribution. Onset occurs after the second decade of life. PATIENTS AND METHODS We present the study, of 30 years, of a family consisting of 49 members covering five generations. RESULTS Among the 35 members studied, 18 have familial expansive osteolysis (FEO). The first clinical sign of the condition is transmission deafness at an early age. The features of the teeth has a unique and characteristic appearance. Thinning of the cortical bone leads to severe, painful, disabling deformities. Serum alkaline phosphatase, and urinary hydroxyproline and deoxipyridinoline are elevated. Calcium and parathyroid hormone are normal. Treatment with diphosphonates, calcitonin and vitamin D has been unsuccessful. We present the surgical technology and the results to short and long term of 13 interventions on 8 patients. CONCLUSION Progressive osteoclastic reabsorption accompanied by weak osteoblastic activity results in medullary expansion characterized by rarefaction of the bone marrow, which is replaced by fibrous tissue and fat. FEO is histologically similar to Paget disease, but the age of onset, the distribution of the bone lesions, the dental and middle ear alterations, and the clinical progression are different. These features also differentiate FEO from fibrous dysplasia, fibrocystic osteitis and imperfect osteogenesis. The gene responsible for FEO is located in the 18q21-22 chromosome region. Mutations in TNFRSF11A, the gene encoding receptor activator of nuclear factor-kappa-B (RANK), has been recently identified as the cause of FEO. A duplication of 18 base pairs in exon 1 of the TNFRSF11A gene suggests that this corresponds to the site of the anomaly and can be considered a "hot spot" for mutations.
Collapse
Affiliation(s)
- N Font
- Service d'ORL et de Chirurgie Cervico-Faciale, Hôpital Universitaire Vall d'Hebron, Barcelone, Espagne.
| |
Collapse
|
47
|
Lucas GJA, Hocking LJ, Daroszewska A, Cundy T, Nicholson GC, Walsh JP, Fraser WD, Meier C, Hooper MJ, Ralston SH. Ubiquitin-associated domain mutations of SQSTM1 in Paget's disease of bone: evidence for a founder effect in patients of British descent. J Bone Miner Res 2005; 20:227-31. [PMID: 15647816 DOI: 10.1359/jbmr.041106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/11/2004] [Accepted: 08/31/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED Mutations in the UBA domain of SQSTM1 are a common cause of Paget's disease of bone. Here we show that the most common disease-causing mutation (P392L) is carried on a shared haplotype, consistent with a founder effect and a common ancestral origin. INTRODUCTION Paget's disease of bone (PDB) is a common condition with a strong genetic component. Mutations affecting the ubiquitin-associated (UBA) domain of sequestosome 1 (SQSTM1) have recently been shown to be an important cause of PDB. The most common mutation results in a proline to leucine amino acid change at codon 392 (P392L), and evidence has been presented to suggest that there may be a recurrent mutation rather than a founder mutation on an ancestral chromosome. Because marked geographical differences exist in the prevalence of PDB, we have investigated the frequency of SQSTM1 mutations in different populations and looked for a founder effect on chromosomes bearing SQSTM1 UBA domain mutations. MATERIALS AND METHODS We conducted mutation screening of SQSTM1 and performed haplotype analysis using the PHASE software program in 83 kindreds with familial PDB, recruited mainly through clinic referrals in the United Kingdom, Australia, and New Zealand. Similar studies were conducted in 311 individuals with PDB who did not have a family history and 375 age- and sex-matched controls from the United Kingdom. RESULTS The proportion of patients with familial PDB who had SQSTM1 UBA domain mutations varied somewhat between referral centers from 7.1% (Sydney, Australia) to 50% (Perth, Australia), but the difference between centers was not statistically significant. Haplotype analysis in 311 British patients with PDB who did not have a family history and 375 age- and sex-matched British controls showed that two common haplotypes accounted for about 90% of alleles at the SQSTM1 locus, as defined by common single nucleotide polymorphisms (SNPs) in exon 6 (C916T, G976A) and the 3'UTR (C2503T, T2687G). These were H1 (916T-976A-2503C-2687T) and H2 (916C-976G-2503T-2687G). There was no significant difference in haplotype distribution in PDB cases and controls, but the P392L mutation was found on the H2 haplotype in 25/27 cases (93%), which is significantly more often than expected given the allele frequencies in the normal population (odds ratio, 13.2; 95% CI, 3.1-56.4; p < 0.0001). Similar findings were observed in familial PDB, where 12/13 (92%) of P392L mutations were carried on H2 (odds ratio 17.2; 95% CI, 2.2-138; p = 0.001). CONCLUSIONS These results provide strong evidence for a founder effect of the SQSTM1 P392L mutation in PDB patients of British descent, irrespective of family history. Our results imply that these individuals share a common ancestor and that the true rate of de novo mutations may be lower than previously suspected.
Collapse
Affiliation(s)
- Gavin J A Lucas
- Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Mutations in the Sequestosome 1 gene ( SQSTM1; also known as p62) have recently been identified as the cause of 5q35-linked Paget's disease of bone (PDB). All of the mutations identified to date affect the ubiquitin-associated (UBA) domain of SQSTM1, a region of the protein that binds noncovalently to ubiquitin. In this review we consider the possible functional significance of the SQSTM1-ubiquitin interaction, and consequences of the SQSTM1 UBA domain mutations. Clarification of the in vivo roles of SQSTM1 in bone-cell function will be central to improving our understanding of the molecular pathogenesis of PDB and related conditions.
Collapse
Affiliation(s)
- R Layfield
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
49
|
Daroszewska A, Hocking LJ, McGuigan FEA, Langdahl B, Stone MD, Cundy T, Nicholson GC, Fraser WD, Ralston SH. Susceptibility to Paget's disease of bone is influenced by a common polymorphic variant of osteoprotegerin. J Bone Miner Res 2004; 19:1506-11. [PMID: 15312251 DOI: 10.1359/jbmr.040602] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 03/08/2004] [Accepted: 05/07/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED To clarify the role of the TNFRSF11B gene encoding osteoprotegerin (OPG), in Paget's disease of bone (PDB) we studied TNFRSF11B polymorphisms in an association study of 690 UK subjects and in a worldwide familial study of 66 kindreds. We found that the G1181 allele of TNFRSF11B, encoding lysine at codon 3 of the OPG protein, predisposes to both sporadic and familial PDB. INTRODUCTION Paget's disease of bone (PDB) is a common disorder characterized by focal abnormalities of bone turnover. Genetic factors are important in the pathogenesis of PDB, and studies have shown that inactivating mutations of the TNFRSF11B gene, encoding osteoprotegerin (OPG), cause the rare syndrome of juvenile Paget's disease. In this study, we sought to determine whether polymorphisms of the TNFRSF11B gene contribute to the pathogenesis of classical PDB. MATERIALS AND METHODS We screened for polymorphisms of the TNFRSF11B gene by DNA sequencing of the proximal promoter, coding exons, and intron-exon boundaries in 20 PDB patients and 10 controls. Informative single nucleotide polymorphisms (SNPs), including a G1181C SNP, which predicts a lysine-asparagine substitution at codon 3 of the OPG signal peptide and haplotypes, were related to the presence of PDB in 312 cases compared with 378 controls and to transmission of PDB in 140 affected offspring from 66 kindreds with familial PDB. RESULTS AND CONCLUSIONS The G1181 allele was significantly over-represented in PDB patients (chi(2) = 5.7, df = 1, p = 0.017, adjusted alpha = 0.024), equivalent to an odds ratio for PDB of 1.55 (95% CI: 1.11-2.16). The distribution of TNFRSF11B haplotypes significantly differed in sporadic PDB cases and controls (chi(2) = 30.2, df = 9, p < 0.001) because of over-representation of haplotypes containing the G1181 allele in cases. The family study showed that the most common haplotype containing the G1181 allele was transmitted more frequently than expected to 140 individuals with familial PDB (chi(2) = 7.35, df = 1, p < 0.01), and the transmission disequilibrium was even more pronounced in a subgroup of 78 familial PDB patients who did not carry mutations of the SQSTM1 gene (chi(2) = 8.44, df = 1, p < 0.005). We conclude that the G1181 allele of TNFRSF11B, encoding lysine at codon 3 of the OPG protein, predisposes to the development of sporadic PDB and familial PDB that is not caused by SQSTM1 mutations.
Collapse
Affiliation(s)
- Anna Daroszewska
- Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hocking LJ, Lucas GJA, Daroszewska A, Cundy T, Nicholson GC, Donath J, Walsh JP, Finlayson C, Cavey JR, Ciani B, Sheppard PW, Searle MS, Layfield R, Ralston SH. Novel UBA domain mutations of SQSTM1 in Paget's disease of bone: genotype phenotype correlation, functional analysis, and structural consequences. J Bone Miner Res 2004; 19:1122-7. [PMID: 15176995 DOI: 10.1359/jbmr.0403015] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/31/2003] [Accepted: 03/19/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED Three novel missense mutations of SQSTM1 were identified in familial PDB, all affecting the UBA domain. Functional and structural analysis showed that disease severity was related to the type of mutation but was unrelated to the polyubiquitin-binding properties of the mutant UBA domain peptides. INTRODUCTION Mutations affecting the ubiquitin-associated (UBA) domain of Sequestosome 1 (SQSTM1) gene have recently been identified as a common cause of familial Paget's disease of bone (PDB), but the mechanisms responsible are unclear. We identified three novel SQSTM1 mutations in PDB, conducted functional and structural analyses of all PDB-causing mutations, and studied the relationship between genotype and phenotype. MATERIALS AND METHODS Mutation screening of the SQSTM1 gene was conducted in 70 kindreds with familial PDB. We characterized the effect of the mutations on structure of the UBA domain by protein NMR, studied the effects of the mutant UBA domains on ubiquitin binding, and looked at genotype-phenotype correlations. RESULTS AND CONCLUSIONS Three novel missense mutations affecting the SQSTM1 UBA domain were identified, including a missense mutation at codon 411 (G411S), a missense mutation at codon 404 (M404V), and a missense mutation at codon 425 (G425R). We also identified a deletion leading to a premature stop codon at 394 (L394X). None of the mutations were found in controls. Structural analysis showed that M404V and G425R involved residues on the hydrophobic surface patch implicated in ubiquitin binding, and consistent with this, the G425R and M404V mutants abolished the ability of mutant UBA domains to bind polyubiquitin chains. In contrast, the G411S and P392L mutants bound polyubiquitin chains normally. Genotype-phenotype analysis showed that patients with truncating mutations had more extensive PDB than those with missense mutations (bones involved = 6.05 +/- 2.71 versus 3.45 +/- 2.46; p < 0.0001). This work confirms the importance of UBA domain mutations of SQSTM1 as a cause of PDB but shows that there is no correlation between the ubiquitin-binding properties of the different mutant UBA domains and disease occurrence or extent. This indicates that the mechanism of action most probably involves an interaction between SQSTM1 and a hitherto unidentified protein that modulates bone turnover.
Collapse
Affiliation(s)
- Lynne J Hocking
- Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|