1
|
Sequeira JJ, Vinuthalakshmi K, Das R, van Driem G, Mustak MS. The maternal U1 haplogroup in the Koraga tribe as a correlate of their North Dravidian linguistic affinity. Front Genet 2024; 14:1303628. [PMID: 38384360 PMCID: PMC10880486 DOI: 10.3389/fgene.2023.1303628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/31/2023] [Indexed: 02/23/2024] Open
Abstract
Introduction: The Koraga tribe are an isolated endogamous tribal group found in the southwest coastal region of India. The Koraga language shares inherited grammatical features with North Dravidian languages. To seek a possible genetic basis for this exceptionality and understand the maternal lineage pattern, we have aimed to reconstruct the inter-population and intra-population relationships of the Koraga tribal population by using mtDNA markers for the hypervariable regions along with a partial coding region sequence analysis. Methods and Results: Amongst the 96 individuals studied, we observe 11 haplogroups, of which a few are shared and others are unique to the clans Soppu, Oṇṭi and Kuṇṭu. In addition to several deep rooted Indian-specific lineages of macrohaplogroups M and U, we observe a high frequency of the U1 lineage (∼38%), unique to the Koraga. A Bayesian analysis of the U1 clade shows that the Koraga tribe share their maternal lineage with ancestral populations of the Caucasus at the cusp of the Last Glacial Maximum. Discussion: Our study suggests that the U1 lineage found in the Indian subcontinent represents a remnant of a post-glacial dispersal. The presence of West Asian U1 when viewed along with historical linguistics leads us to hypothesise that Koraga represents a mother tongue retained by a vanquished population group that fled southward at the demise of the Indus civilisation as opposed to a father tongue, associated with a particular paternal lineage.
Collapse
Affiliation(s)
| | | | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - George van Driem
- Institut für Sprachwissenschaft, Universität Bern, Bern, Switzerland
| | - Mohammed S. Mustak
- Department of Applied Zoology, Mangalore University, Mangalore, Karnataka, India
| |
Collapse
|
2
|
Quilodrán CS, Currat M, Montoya-Burgos JI. Benchmarking the Mantel test and derived methods for testing association between distance matrices. Mol Ecol Resour 2023. [PMID: 38041538 DOI: 10.1111/1755-0998.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023]
Abstract
Testing the association between objects is central in ecology, evolution, and quantitative sciences in general. Two types of variables can describe the relationships between objects: point variables (measured on individual objects), and distance variables (measured between pairs of objects). The Mantel test and derived methods have been extensively used for distance variables. Yet, these methods have been criticized due to low statistical power and inflated type I error when spatial autocorrelation is present. Here, we assessed the statistical power between different types of tested variables and the type I error rate over a wider range of autocorrelation intensities than previously assessed, both on univariate and multivariate data. We also illustrated the performance of distance matrix statistics through computational simulations of genetic diversity. We show that the Mantel test and derived methods are not affected by inflated type I error when spatial autocorrelation affects only one variable when investigating correlations, or when either the response or the explanatory variable(s) is affected by spatial autocorrelation while investigating causal relationships. As previously noted, with autocorrelation affecting more variables, inflated type I error could be reduced by modifying the significance threshold. Additionally, the Mantel test has no problem of statistical power when the hypothesis is formulated in terms of distance variables. We highlight that transformation of variable types should be avoided because of the potential information loss and modification of the tested hypothesis. We propose a set of guidelines to help choose the appropriate method according to the type of variables and defined hypothesis.
Collapse
Affiliation(s)
- Claudio S Quilodrán
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Mathias Currat
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| | - Juan I Montoya-Burgos
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Tagore D, Aghakhanian F, Naidu R, Phipps ME, Basu A. Insights into the demographic history of Asia from common ancestry and admixture in the genomic landscape of present-day Austroasiatic speakers. BMC Biol 2021; 19:61. [PMID: 33781248 PMCID: PMC8008685 DOI: 10.1186/s12915-021-00981-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/12/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The demographic history of South and Southeast Asia (S&SEA) is complex and contentious, with multiple waves of human migration. Some of the earliest footfalls were of the ancestors of modern Austroasiatic (AA) language speakers. Understanding the history of the AA language family, comprising of over 150 languages and their speakers distributed across broad geographical region in isolated small populations of various sizes, can help shed light on the peopling of S&SEA. Here we investigated the genetic relatedness of two AA groups, their relationship with other ethno-linguistically distinct populations, and the relationship of these groups with ancient genomes of individuals living in S&SEA at different time periods, to infer about the demographic history of this region. RESULTS We analyzed 1451 extant genomes, 189 AAs from India and Malaysia, and 43 ancient genomes from S&SEA. Population structure analysis reveals neither language nor geography appropriately correlates with genetic diversity. The inconsistency between "language and genetics" or "geography and genetics" can largely be attributed to ancient admixture with East Asian populations. We estimated a pre-Neolithic origin of AA language speakers, with shared ancestry between Indian and Malaysian populations until about 470 generations ago, contesting the existing model of Neolithic expansion of the AA culture. We observed a spatio-temporal transition in the genetic ancestry of SEA with genetic contribution from East Asia significantly increasing in the post-Neolithic period. CONCLUSION Our study shows that contrary to assumptions in many previous studies and despite having linguistic commonality, Indian AAs have a distinct genomic structure compared to Malaysian AAs. This linguistic-genetic discordance is reflective of the complex history of population migration and admixture shaping the genomic landscape of S&SEA. We postulate that pre-Neolithic ancestors of today's AAs were widespread in S&SEA, and the fragmentation and dissipation of the population have largely been a resultant of multiple migrations of East Asian farmers during the Neolithic period. It also highlights the resilience of AAs in continuing to speak their language in spite of checkered population distribution and possible dominance from other linguistic groups.
Collapse
Affiliation(s)
- Debashree Tagore
- National Institute of Biomedical Genomics, Kalyani, 741251, India
| | - Farhang Aghakhanian
- Oklahoma Medical Research Foundation, Genes and Human Disease Program, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Genomics Facility, School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, 741251, India.
| |
Collapse
|
4
|
Santos P, Gonzàlez-Fortes G, Trucchi E, Ceolin A, Cordoni G, Guardiano C, Longobardi G, Barbujani G. More Rule than Exception: Parallel Evidence of Ancient Migrations in Grammars and Genomes of Finno-Ugric Speakers. Genes (Basel) 2020; 11:E1491. [PMID: 33322364 PMCID: PMC7763979 DOI: 10.3390/genes11121491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022] Open
Abstract
To reconstruct aspects of human demographic history, linguistics and genetics complement each other, reciprocally suggesting testable hypotheses on population relationships and interactions. Relying on a linguistic comparative method based on syntactic data, here we focus on the non-straightforward relation of genes and languages among Finno-Ugric (FU) speakers, in comparison to their Indo-European (IE) and Altaic (AL) neighbors. Syntactic analysis, in agreement with the indications of more traditional linguistic levels, supports at least three distinct clusters, corresponding to these three Eurasian families; yet, the outliers of the FU group show linguistic convergence with their geographical neighbors. By analyzing genome-wide data in both ancient and contemporary populations, we uncovered remarkably matching patterns, with north-western FU speakers linguistically and genetically closer in parallel degrees to their IE-speaking neighbors, and eastern FU speakers to AL speakers. Therefore, our analysis indicates that plausible cross-family linguistic interference effects were accompanied, and possibly caused, by recognizable demographic processes. In particular, based on the comparison of modern and ancient genomes, our study identified the Pontic-Caspian steppes as the possible origin of the demographic processes that led to the expansion of FU languages into Europe.
Collapse
Affiliation(s)
- Patrícia Santos
- CNRS, UMR 5199—PACEA, Université de Bordeaux, Bâtiment B8, Allée Geoffroy Saint Hilaire, 33615 Pessac, France;
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy;
| | - Gloria Gonzàlez-Fortes
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy;
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy;
| | - Andrea Ceolin
- Dipartimento di Comunicazione ed Economia, Università di Modena e Reggio Emilia, 42121 Reggio Emilia, Italy; (A.C.); (C.G.)
| | - Guido Cordoni
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK;
| | - Cristina Guardiano
- Dipartimento di Comunicazione ed Economia, Università di Modena e Reggio Emilia, 42121 Reggio Emilia, Italy; (A.C.); (C.G.)
| | - Giuseppe Longobardi
- Department of Language and Linguistic Science, University of York, York YO10 5DD, UK;
| | - Guido Barbujani
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
5
|
Abstract
In this special collection, we address the origin and dispersal of the Transeurasian languages, i.e. Japonic, Koreanic, Tungusic, Mongolic and Turkic, from an interdisciplinary perspective. Our key objective is to effectively synthesize linguistic, archaeological and genetic evidence in a single approach, for which we use the term 'triangulation'. The 10 articles collected in this volume contribute to the question of whether and to what extent the early spread of Transeurasian languages was driven by agriculture in general, and by economic reliance on millet cultivation in particular.
Collapse
Affiliation(s)
- Martine Robbeets
- Eurasia3angle Research group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen361005, China
| |
Collapse
|
6
|
Chaubey G, van Driem G. Munda languages are father tongues, but Japanese and Korean are not. EVOLUTIONARY HUMAN SCIENCES 2020; 2:e19. [PMID: 37588351 PMCID: PMC10427457 DOI: 10.1017/ehs.2020.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Over two decades ago, it was observed that the linguistic affinity of the language spoken by a particular population tended to correlate with the predominant paternal, i.e. Y-chromosomal, lineage found in that population. Such correlations were found to be ubiquitous but not universal, and the striking exceptions to such conspicuous patterns of correlation between linguistic and genetic phylogeography elicit particular interest and beg for clarification. Within the Austroasiatic language family, the Munda languages are a clear-cut case of father tongues, whereas Japanese and Korean are manifestly not. In this study, the cases of Munda and Japanese are juxtaposed. A holistic understanding of these contrasting cases of ethnolinguistic prehistory with respect to the father tongue correlation will first necessitate a brief exposition of the phylogeography of the Y chromosomal lineage O. Then triangulation discloses some contours and particulars of both long lost episodes of ethnolinguistic prehistory.
Collapse
Affiliation(s)
- Gyaneshwer Chaubey
- Department of Zoology, Benaras Hindu University, Varanasi, Uttar Pradesh221005, India
| | - George van Driem
- Linguistics Institute, University of Bern, Länggassstrasse 49, CH 3012Bern, Switzerland
| |
Collapse
|
7
|
Distinct genetic variation and heterogeneity of the Iranian population. PLoS Genet 2019; 15:e1008385. [PMID: 31550250 PMCID: PMC6759149 DOI: 10.1371/journal.pgen.1008385] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Iran, despite its size, geographic location and past cultural influence, has largely been a blind spot for human population genetic studies. With only sparse genetic information on the Iranian population available, we pursued its genome-wide and geographic characterization based on 1021 samples from eleven ethnic groups. We show that Iranians, while close to neighboring populations, present distinct genetic variation consistent with long-standing genetic continuity, harbor high heterogeneity and different levels of consanguinity, fall apart into a cluster of similar groups and several admixed ones and have experienced numerous language adoption events in the past. Our findings render Iran an important source for human genetic variation in Western and Central Asia, will guide adequate study sampling and assist the interpretation of putative disease-implicated genetic variation. Given Iran's internal genetic heterogeneity, future studies will have to consider ethnic affiliations and possible admixture.
Collapse
|
8
|
Graur D. Mother tongue? Muttersprache? Lingua mater? Not so fast! Natl Sci Rev 2019; 6:301. [PMID: 34691869 PMCID: PMC8291631 DOI: 10.1093/nsr/nwy114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Dan Graur
- Department of Biology and Biochemistry, University of Houston, USA
- Reviewer of NSR
| |
Collapse
|
9
|
Zhang M, Zheng HX, Yan S, Jin L. Reconciling the father tongue and mother tongue hypotheses in Indo-European populations. Natl Sci Rev 2019; 6:293-300. [PMID: 34691868 PMCID: PMC8291526 DOI: 10.1093/nsr/nwy083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/04/2022] Open
Abstract
In opposition to the mother tongue hypothesis, the father tongue hypothesis states that humans tend to speak their fathers’ language, based on a stronger correlation of languages to paternal lineages (Y-chromosome) than to maternal lineages (mitochondria). To reassess these two competing hypotheses, we conducted a genetic–linguistic study of 34 modern Indo-European (IE) populations. In this study, genetic histories of paternal and maternal migrations in these IE populations were elucidated using phylogenetic networks of Y-chromosomal and mitochondrial DNA haplogroups, respectively. Unlike previous studies, we quantitatively characterized the languages based on lexical and phonemic systems separately. We showed that genetic and linguistic distances are significantly correlated with each other and that both are correlated with geographical distances among these populations. However, when controlling for geographical factors, only the correlation between the distances of paternal and lexical characteristics, and between those of maternal and phonemic characteristics, remained. These unbalanced correlations reconciled the two seemingly conflicting hypotheses.
Collapse
Affiliation(s)
- Menghan Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Hong-Xiang Zheng
- Human Phenome Institute, Fudan University, Shanghai 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shi Yan
- Human Phenome Institute, Fudan University, Shanghai 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Shanghai 200438, China
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai 200031, China
| |
Collapse
|
10
|
Černý V, Čížková M, Poloni ES, Al‐Meeri A, Mulligan CJ. Comprehensive view of the population history of
A
rabia as inferred by mt
DNA
variation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:607-16. [DOI: 10.1002/ajpa.22920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Viktor Černý
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Czech Republic
| | - Martina Čížková
- Department of Anthropology and Human GeneticsFaculty of Science, Charles University in Prague Czech Republic
| | - Estella S. Poloni
- Department of Genetics and EvolutionAnthropology Unit, Laboratory of Anthropology, Genetics and Peopling History, University of GenevaGeneva Switzerland
| | - Ali Al‐Meeri
- Department of Clinical BiochemistryFaculty of Medicine and Health Sciences, University of Sana'aSana'a Yemen
| | | |
Collapse
|
11
|
Longobardi G, Ghirotto S, Guardiano C, Tassi F, Benazzo A, Ceolin A, Barbujani G. Across language families: Genome diversity mirrors linguistic variation within Europe. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:630-40. [PMID: 26059462 PMCID: PMC5095809 DOI: 10.1002/ajpa.22758] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/02/2015] [Accepted: 04/14/2015] [Indexed: 01/23/2023]
Abstract
Objectives: The notion that patterns of linguistic and biological variation may cast light on each other and on population histories dates back to Darwin's times; yet, turning this intuition into a proper research program has met with serious methodological difficulties, especially affecting language comparisons. This article takes advantage of two new tools of comparative linguistics: a refined list of Indo‐European cognate words, and a novel method of language comparison estimating linguistic diversity from a universal inventory of grammatical polymorphisms, and hence enabling comparison even across different families. We corroborated the method and used it to compare patterns of linguistic and genomic variation in Europe. Materials and Methods: Two sets of linguistic distances, lexical and syntactic, were inferred from these data and compared with measures of geographic and genomic distance through a series of matrix correlation tests. Linguistic and genomic trees were also estimated and compared. A method (Treemix) was used to infer migration episodes after the main population splits. Results: We observed significant correlations between genomic and linguistic diversity, the latter inferred from data on both Indo‐European and non‐Indo‐European languages. Contrary to previous observations, on the European scale, language proved a better predictor of genomic differences than geography. Inferred episodes of genetic admixture following the main population splits found convincing correlates also in the linguistic realm. Discussion: These results pave the ground for previously unfeasible cross‐disciplinary analyses at the worldwide scale, encompassing populations of distant language families. Am J Phys Anthropol 157:630–640, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giuseppe Longobardi
- Department of Language and Linguistic Science, University of York, York, UK.,Department of Humanities, University of Trieste, Trieste, Italy
| | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristina Guardiano
- Department of Communication and Economics, University of Modena-Reggio Emilia, Modena, Italy
| | - Francesca Tassi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Andrea Ceolin
- Department of Language and Linguistic Science, University of York, York, UK
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Isen J, McGue M, Iacono W. Genetic influences on the development of grip strength in adolescence. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 154:189-200. [PMID: 24936605 DOI: 10.1002/ajpa.22492] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enhanced physical strength is a secondary sex characteristic in males. Sexual dimorphism in physical strength far exceeds sex differences in stature or total body mass, suggesting a legacy of intense sexual selection. Upper-body strength is a particularly promising marker of intrasexual competitiveness in young men. Consequently, it is assumed that sex-influenced gene expression contributes to the development of physical strength. It is unclear, however, whether the underlying sources of individual differences in strength development are comparable across sex. We obtained three measurements of hand-grip strength (HGS) over a six-year period spanning adolescence in male and female same-sex twins (N = 2,513). Biometrical latent growth models were used to partition the HGS variance at age 11 (intercept) and its growth over time (slope) into genetic and environmental components. Results demonstrated that variance around the intercept was highly heritable in both males and females (88% and 79%, respectively). In males, variance around the slope exceeded that of the intercept, while the reverse held for females. Additive genetic effects accounted for most (80%) of the variance around the slope in males, but were of less importance in females (heritability = 28%). Absolute genetic variance around the slope was nearly nine-fold higher in males. This striking disparity suggests that the developmental processes shaping HGS growth are different between the sexes. We propose that this might account for the sex-specific pattern of associations between HGS and external measures (e.g., digit ratio and physical aggression) typically reported in the literature. Our results underscore the role of endogenous androgenic influences in the development of physical strength.
Collapse
|
13
|
Pakendorf B. Coevolution of languages and genes. Curr Opin Genet Dev 2014; 29:39-44. [PMID: 25170984 DOI: 10.1016/j.gde.2014.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/08/2014] [Accepted: 07/25/2014] [Indexed: 02/05/2023]
Abstract
The evolution of languages shares certain characteristics with that of genes, such as the predominantly vertical line of transmission and the retention of traces of past events such as contact. Thus, studies of language phylogenies and their correlations with genetic phylogenies can enrich our understanding of human prehistory, while insights gained from genetic studies of past population contact can help shed light on the processes underlying language contact and change. As demonstrated by recent research, these evolutionary processes are more complex than simple models of gene-language coevolution predict, with linguistic boundaries only occasionally functioning as barriers to gene flow. More frequently, admixture takes place irrespective of linguistic differences, but with a detectable impact of contact-induced changes in the languages concerned.
Collapse
Affiliation(s)
- Brigitte Pakendorf
- Laboratoire Dynamique du Langage, UMR5596, CNRS & Université Lyon Lumière 2, Lyon, France.
| |
Collapse
|
14
|
Saslis-Lagoudakis CH, Hawkins JA, Greenhill SJ, Pendry CA, Watson MF, Tuladhar-Douglas W, Baral SR, Savolainen V. The evolution of traditional knowledge: environment shapes medicinal plant use in Nepal. Proc Biol Sci 2014; 281:20132768. [PMID: 24523269 DOI: 10.1098/rspb.2013.2768] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traditional knowledge is influenced by ancestry, inter-cultural diffusion and interaction with the natural environment. It is problematic to assess the contributions of these influences independently because closely related ethnic groups may also be geographically close, exposed to similar environments and able to exchange knowledge readily. Medicinal plant use is one of the most important components of traditional knowledge, since plants provide healthcare for up to 80% of the world's population. Here, we assess the significance of ancestry, geographical proximity of cultures and the environment in determining medicinal plant use for 12 ethnic groups in Nepal. Incorporating phylogenetic information to account for plant evolutionary relatedness, we calculate pairwise distances that describe differences in the ethnic groups' medicinal floras and floristic environments. We also determine linguistic relatedness and geographical separation for all pairs of ethnic groups. We show that medicinal uses are most similar when cultures are found in similar floristic environments. The correlation between medicinal flora and floristic environment was positive and strongly significant, in contrast to the effects of shared ancestry and geographical proximity. These findings demonstrate the importance of adaptation to local environments, even at small spatial scale, in shaping traditional knowledge during human cultural evolution.
Collapse
Affiliation(s)
- C Haris Saslis-Lagoudakis
- School of Biological Sciences, University of Reading, , Reading RG6 6BX, UK, Imperial College London, , Silwood Park, Ascot, Berkshire SL5 7PY, UK, Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, , Canberra, Australian Capital Territory 0200, Australia, School of Culture, History and Language, ANU College of Asia and the Pacific, Australian National University, , Canberra, Australian Capital Territory, Australia, Royal Botanic Garden Edinburgh, , Edinburgh EH3 5LR, UK, School of Divinity, History and Philosophy, King's College, University of Aberdeen, , Aberdeen AB24 3UB, UK, Department of Plant Resources, National Herbarium and Plant Laboratories, , PO Box 3708, Godawari, Lalitpur, Nepal, Royal Botanic Gardens, Kew TW9 3DS, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wegmann D, Currat M. Recipient of the 2013 Molecular Ecology Prize: Laurent Excoffier. Mol Ecol 2013; 23:16-9. [PMID: 24283664 DOI: 10.1111/mec.12604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Wegmann
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | | |
Collapse
|
16
|
Roewer L, Nothnagel M, Gusmão L, Gomes V, González M, Corach D, Sala A, Alechine E, Palha T, Santos N, Ribeiro-Dos-Santos A, Geppert M, Willuweit S, Nagy M, Zweynert S, Baeta M, Núñez C, Martínez-Jarreta B, González-Andrade F, Fagundes de Carvalho E, da Silva DA, Builes JJ, Turbón D, Lopez Parra AM, Arroyo-Pardo E, Toscanini U, Borjas L, Barletta C, Ewart E, Santos S, Krawczak M. Continent-wide decoupling of Y-chromosomal genetic variation from language and geography in native South Americans. PLoS Genet 2013; 9:e1003460. [PMID: 23593040 PMCID: PMC3623769 DOI: 10.1371/journal.pgen.1003460] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/04/2013] [Indexed: 01/07/2023] Open
Abstract
Numerous studies of human populations in Europe and Asia have revealed a concordance between their extant genetic structure and the prevailing regional pattern of geography and language. For native South Americans, however, such evidence has been lacking so far. Therefore, we examined the relationship between Y-chromosomal genotype on the one hand, and male geographic origin and linguistic affiliation on the other, in the largest study of South American natives to date in terms of sampled individuals and populations. A total of 1,011 individuals, representing 50 tribal populations from 81 settlements, were genotyped for up to 17 short tandem repeat (STR) markers and 16 single nucleotide polymorphisms (Y-SNPs), the latter resolving phylogenetic lineages Q and C. Virtually no structure became apparent for the extant Y-chromosomal genetic variation of South American males that could sensibly be related to their inter-tribal geographic and linguistic relationships. This continent-wide decoupling is consistent with a rapid peopling of the continent followed by long periods of isolation in small groups. Furthermore, for the first time, we identified a distinct geographical cluster of Y-SNP lineages C-M217 (C3*) in South America. Such haplotypes are virtually absent from North and Central America, but occur at high frequency in Asia. Together with the locally confined Y-STR autocorrelation observed in our study as a whole, the available data therefore suggest a late introduction of C3* into South America no more than 6,000 years ago, perhaps via coastal or trans-Pacific routes. Extensive simulations revealed that the observed lack of haplogroup C3* among extant North and Central American natives is only compatible with low levels of migration between the ancestor populations of C3* carriers and non-carriers. In summary, our data highlight the fact that a pronounced correlation between genetic and geographic/cultural structure can only be expected under very specific conditions, most of which are likely not to have been met by the ancestors of native South Americans. In the largest population genetic study of South Americans to date, we analyzed the Y-chromosomal makeup of more than 1,000 male natives. We found that the male-specific genetic variation of Native Americans lacks any clear structure that could sensibly be related to their geographic and/or linguistic relationships. This finding is consistent with a rapid initial peopling of South America, followed by long periods of isolation in small tribal groups. The observed continent-wide decoupling of geography, spoken language, and genetics contrasts strikingly with previous reports of such correlation from many parts of Europe and Asia. Moreover, we identified a cluster of Native American founding lineages of Y chromosomes, called C-M217 (C3*), within a restricted area of Ecuador in North-Western South America. The same haplogroup occurs at high frequency in Central, East, and North East Asia, but is virtually absent from North (except Alaska) and Central America. Possible scenarios for the introduction of C-M217 (C3*) into Ecuador may thus include a coastal or trans-Pacific route, an idea also supported by occasional archeological evidence and the recent coalescence of the C3* haplotypes, estimated from our data to have occurred some 6,000 years ago.
Collapse
Affiliation(s)
- Lutz Roewer
- Institute of Legal Medicine and Forensic Sciences, Department of Forensic Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The forensic genetics field is generating extensive population data on polymorphism of short tandem repeats (STR) markers in globally distributed samples. In this study we explored and quantified the informative power of these datasets to address issues related to human evolution and diversity, by using two online resources: an allele frequency dataset representing 141 populations summing up to almost 26 thousand individuals; a genotype dataset consisting of 42 populations and more than 11 thousand individuals. We show that the genetic relationships between populations based on forensic STRs are best explained by geography, as observed when analysing other worldwide datasets generated specifically to study human diversity. However, the global level of genetic differentiation between populations (as measured by a fixation index) is about half the value estimated with those other datasets, which contain a much higher number of markers but much less individuals. We suggest that the main factor explaining this difference is an ascertainment bias in forensics data resulting from the choice of markers for individual identification. We show that this choice results in average low variance of heterozygosity across world regions, and hence in low differentiation among populations. Thus, the forensic genetic markers currently produced for the purpose of individual assignment and identification allow the detection of the patterns of neutral genetic structure that characterize the human population but they do underestimate the levels of this genetic structure compared to the datasets of STRs (or other kinds of markers) generated specifically to study the diversity of human populations.
Collapse
Affiliation(s)
- Nuno M. Silva
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Universidade do Porto, Porto, Portugal
| | - Luísa Pereira
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Estella S. Poloni
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
18
|
|
19
|
Evidence of high genetic variation among linguistically diverse populations on a micro-geographic scale: a case study of the Italian Alps. J Hum Genet 2012; 57:254-60. [PMID: 22418692 DOI: 10.1038/jhg.2012.14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although essential for the fine-scale reconstruction of genetic structure, only a few micro-geographic studies have been carried out in European populations. This study analyzes mitochondrial variation (651 bp of the hypervariable region plus 17 single-nucleotide polymorphisms) in 393 samples from nine populations from Trentino (Eastern Italian Alps), a small area characterized by a complex geography and high linguistic diversity. A high level of genetic variation, comparable to geographically dispersed European groups, was observed. We found a difference in the intensity of peopling processes between two longitudinal areas, as populations from the west-central part of the region show stronger signatures of expansion, whereas those from the eastern area are closer to the expectations of a stationary demographic state. This may be explained by geomorphological factors and is also supported by archeological data. Finally, our results reveal a striking difference in the way in which the two linguistically isolated populations are genetically related to the neighboring groups. The Ladin speakers were found to be genetically close to the Italian-speaking populations and differentiated from the other Dolomitic Ladins, whereas the German-speaking Cimbri behave as an outlier, showing signatures of founder effects and low growth rate.
Collapse
|
20
|
Abstract
Mitochondrial DNA (mtDNA) and Y-chromosome variation has been studied in Bou Omrane and Bou Saâd, two Tunisian Berber populations. In spite of their close geographic proximity, genetic distances between them were high and significant with both uniparental markers. A global analysis, including all previously studied Tunisian samples, confirmed the existence of a high female and male population structure in this country. Analyses of molecular variance analysis evidenced that this differentiation was not attributable to ethnic differences. Mantel test showed that, in all cases, Y-chromosome haplotypic distances correlated poorly with geography, whereas after excluding the more isolated samples of Bou Omrane and Bou Saâd, the mtDNA pattern of variation is significantly correlated with geography. Congruently, the N(m) ratio of males versus females pointed to a significant excess of female migration rate across localities, which could be explained by patrilocality, a common marriage system in rural Tunisia. In addition, it has been observed that cultural isolation in rural communities promotes, by the effect of genetic drift, stronger loss of diversity and larger genetic differentiation levels than those observed in urban areas as deduced from comparisons of their respective mean genetic diversity and their respective mean genetic distances among populations. It is likely that the permanent exodus from rural to urban areas will have important repercussions in the future genetic structure of this country.
Collapse
|
21
|
Hu SP, Li H, Zhang FH, Huang LQ, Lu Y. Dominant contribution of northern chinese to the paternal genetic structure of Chaoshanese in South China. Biochem Genet 2011; 49:483-98. [PMID: 21360052 DOI: 10.1007/s10528-011-9424-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 11/22/2010] [Indexed: 02/05/2023]
Abstract
We investigated the Y chromosome of various Chinese populations to determine the patrilineal origin of the Chaoshanese population. Admixture analysis of six specific Y short tandem repeat (STR) loci in 6,292 individual samples taken from 51 populations, including Chaoshanese and Minnanese of our earlier studies, showed that over 85% of the Chaoshanese Y chromosomes were derived from the Central China Han (M (RH): 0.8614; M (BE): 1.1868 ± 0.2054), and a very small portion were from the southern aborigines. These results support a Central China Han origin of the Chaoshanese and additionally reveal that males from the Central China Han were the predominant contributor to the patrilineal genetics of the Chaoshanese. A phylogenetic tree and analysis of molecular variance signified a strong association between Y chromosomes of Chinese populations and their linguistic affiliations, revealing a coevolution of Y chromosome diversity and languages in East Asia.
Collapse
Affiliation(s)
- Sheng-Ping Hu
- Molecular Biology Laboratory, Shantou University Medical College, Guangdong, China.
| | | | | | | | | |
Collapse
|
22
|
Gourjon G, Boëtsch G, Degioanni A. Gender and population history: Sex bias revealed by studying genetic admixture of Ngazidja population (Comoro Archipelago). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 144:653-60. [PMID: 21312182 DOI: 10.1002/ajpa.21474] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/22/2010] [Indexed: 11/09/2022]
Affiliation(s)
- Géraud Gourjon
- UMR 6578 Anthropologie bioculturelle, Université de la Méditerranée/CNRS/EFS, Faculté de Médecine-Secteur Nord Université de la Méditerranée, Bd. Pierre Dramard, Marseille Cedex 15, France
| | | | | |
Collapse
|
23
|
Moreau C, Vézina H, Jomphe M, Lavoie EM, Roy-Gagnon MH, Labuda D. When genetics and genealogies tell different stories-maternal lineages in Gaspesia. Ann Hum Genet 2010; 75:247-54. [PMID: 21058944 DOI: 10.1111/j.1469-1809.2010.00617.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Data from uniparentally inherited genetic systems were used to trace evolution of human populations. Reconstruction of the past primarily relies on variation in present-day populations, limiting historical inference to lineages that are found among living subjects. Our analysis of four population groups in the Gaspé Peninsula, demonstrates how this may occasionally lead to erroneous interpretations. Mitochondrial DNA analysis of Gaspesians revealed an important admixture with Native Americans. The most likely scenario links this admixture to French-Canadians from the St. Lawrence Valley who moved to Gaspesia in the 19th century. However, in contrast to genetic data, analysis of genealogical record shows that Native American maternal lineages were brought to Gaspesia in the 18th century by Acadians who settled on the south-western coast of the peninsula. Intriguingly, within three generations, virtually all Métis Acadian families separated from their nonadmixed relatives and moved eastward mixing in with other Gaspesian groups, in which Native American maternal lines are present in relatively high frequencies. Over time, the carriers of these lines eventually lost memory of their mixed Amerindian-Acadian origin. Our results show that a reliable reconstruction of population history requires cross-verification of different data sources for consistency, thus favouring multidisciplinary approaches.
Collapse
Affiliation(s)
- Claudia Moreau
- Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Côte Sainte-Catherine, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Lambert CA, Tishkoff SA. Genetic structure in African populations: implications for human demographic history. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2010; 74:395-402. [PMID: 20453204 DOI: 10.1101/sqb.2009.74.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The continent of Africa is the source of all anatomically modern humans that dispersed across the planet during the past 100,000 years. As such, African populations are characterized by high genetic diversity and low levels of linkage disequilibrium (LD) among loci, as compared to populations from other continents. African populations also possess a number of genetic adaptations that have evolved in response to the diverse climates, diets, geographic environments, and infectious agents that characterize the African continent. Recently, Tishkoff et al. (2009) performed a genome-wide analysis of substructure based on DNA from 2432 Africans from 121 geographically diverse populations. The authors analyzed patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers and identified 14 ancestral population clusters that correlate well with self-described ethnicity and shared cultural or linguistic properties. The results suggest that African populations may have maintained a large and subdivided population structure throughout much of their evolutionary history. In this chapter, we synthesize recent work documenting evidence of African population structure and discuss the implications for inferences about evolutionary history in both African populations and anatomically modern humans as a whole.
Collapse
Affiliation(s)
- C A Lambert
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
25
|
A multi-perspective view of genetic variation in Cameroon. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 140:454-64. [DOI: 10.1002/ajpa.21088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Flegontova OV, Khrunin AV, Lylova OI, Tarskaia LA, Spitsyn VA, Mikulich AI, Limborska SA. Haplotype frequencies at the DRD2 locus in populations of the East European Plain. BMC Genet 2009; 10:62. [PMID: 19793394 PMCID: PMC2765450 DOI: 10.1186/1471-2156-10-62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 09/30/2009] [Indexed: 11/18/2022] Open
Abstract
Background It was demonstrated previously that the three-locus RFLP haplotype, TaqI B-TaqI D-TaqI A (B-D-A), at the DRD2 locus constitutes a powerful genetic marker and probably reflects the most ancient dispersal of anatomically modern humans. Results We investigated TaqI B, BclI, MboI, TaqI D, and TaqI A RFLPs in 17 contemporary populations of the East European Plain and Siberia. Most of these populations belong to the Indo-European or Uralic language families. We identified three common haplotypes, which occurred in more than 90% of chromosomes investigated. The frequencies of the haplotypes differed according to linguistic and geographical affiliation. Conclusion Populations in the northwestern (Byelorussians from Mjadel'), northern (Russians from Mezen' and Oshevensk), and eastern (Russians from Puchezh) parts of the East European Plain had relatively high frequencies of haplotype B2-D2-A2, which may reflect admixture with Uralic-speaking populations that inhabited all of these regions in the Early Middle Ages.
Collapse
Affiliation(s)
- Olga V Flegontova
- Department of Human Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Poloni ES, Naciri Y, Bucho R, Niba R, Kervaire B, Excoffier L, Langaney A, Sanchez-Mazas A. Genetic evidence for complexity in ethnic differentiation and history in East Africa. Ann Hum Genet 2009; 73:582-600. [PMID: 19706029 DOI: 10.1111/j.1469-1809.2009.00541.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Afro-Asiatic and Nilo-Saharan language families come into contact in Western Ethiopia. Ethnic diversity is particularly high in the South, where the Nilo-Saharan Nyangatom and the Afro-Asiatic Daasanach dwell. Despite their linguistic differentiation, both populations rely on a similar agripastoralist mode of subsistence. Analysis of mitochondrial DNA extracted from Nyangatom and Daasanach archival sera revealed high levels of diversity, with most sequences belonging to the L haplogroups, the basal branches of the mitochondrial phylogeny. However, in sharp contrast with other Ethiopian populations, only 5% of the Nyangatom and Daasanach sequences belong to haplogroups M and N. The Nyangatom and Daasanach were found to be significantly differentiated, while each of them displays close affinities with some Tanzanian populations. The strong genetic structure found over East Africa was neither associated with geography nor with language, a result confirmed by the analysis of 6711 HVS-I sequences of 136 populations mainly from Africa. Processes of migration, language shift and group absorption are documented by linguists and ethnographers for the Nyangatom and Daasanach, thus pointing to the probably transient and plastic nature of these ethnic groups. These processes, associated with periods of isolation, could explain the high diversity and strong genetic structure found in East Africa.
Collapse
Affiliation(s)
- Estella S Poloni
- Département d'Anthropologie et d'Ecologie, Université de Genève, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hunley K, Dunn M, Lindström E, Reesink G, Terrill A, Healy ME, Koki G, Friedlaender FR, Friedlaender JS. Genetic and linguistic coevolution in Northern Island Melanesia. PLoS Genet 2008; 4:e1000239. [PMID: 18974871 PMCID: PMC2570610 DOI: 10.1371/journal.pgen.1000239] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 09/25/2008] [Indexed: 11/25/2022] Open
Abstract
Recent studies have detailed a remarkable degree of genetic and linguistic diversity in Northern Island Melanesia. Here we utilize that diversity to examine two models of genetic and linguistic coevolution. The first model predicts that genetic and linguistic correspondences formed following population splits and isolation at the time of early range expansions into the region. The second is analogous to the genetic model of isolation by distance, and it predicts that genetic and linguistic correspondences formed through continuing genetic and linguistic exchange between neighboring populations. We tested the predictions of the two models by comparing observed and simulated patterns of genetic variation, genetic and linguistic trees, and matrices of genetic, linguistic, and geographic distances. The data consist of 751 autosomal microsatellites and 108 structural linguistic features collected from 33 Northern Island Melanesian populations. The results of the tests indicate that linguistic and genetic exchange have erased any evidence of a splitting and isolation process that might have occurred early in the settlement history of the region. The correlation patterns are also inconsistent with the predictions of the isolation by distance coevolutionary process in the larger Northern Island Melanesian region, but there is strong evidence for the process in the rugged interior of the largest island in the region (New Britain). There we found some of the strongest recorded correlations between genetic, linguistic, and geographic distances. We also found that, throughout the region, linguistic features have generally been less likely to diffuse across population boundaries than genes. The results from our study, based on exceptionally fine-grained data, show that local genetic and linguistic exchange are likely to obscure evidence of the early history of a region, and that language barriers do not particularly hinder genetic exchange. In contrast, global patterns may emphasize more ancient demographic events, including population splits associated with the early colonization of major world regions.
Collapse
Affiliation(s)
- Keith Hunley
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dediu D. The role of genetic biases in shaping the correlations between languages and genes. J Theor Biol 2008; 254:400-7. [PMID: 18599088 DOI: 10.1016/j.jtbi.2008.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 01/01/2023]
Abstract
It has recently been proposed [Dediu, D., Ladd, D.R., 2007. Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin. Proc. Natl Acad. Sci. USA 104(26), 10944-10949] that genetically coded linguistic biases can influence the trajectory of language change. However, the nature of such biases and the conditions under which they can become manifest have remained vague. The present paper explores computationally two plausible types of linguistic acquisition biases in a population of agents implementing realistic genetic, linguistic and demographic processes. One type of bias represents an innate asymmetric initial state (initial expectation bias) while the other an innate asymmetric facility of acquisition (rate of learning bias). It was found that only the second type of bias produces detectable effects on language through cultural transmission across generations and that such effects are produced even by weak biases present at low frequencies in the population. This suggests that learning preference asymmetries, very small at the individual level and not very frequent at the population level, can bias the trajectory of language change through the process of cultural transmission.
Collapse
Affiliation(s)
- Dan Dediu
- School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, 14 Buccleuch Place, Edinburgh EH89LN, UK.
| |
Collapse
|
30
|
Gibert M, Touinssi M, Reviron D, Mercier P, Boëtsch G, Chiaroni J. HLA-DRB1 frequencies of the Comorian population and their genetic affinities with Sub-Saharan African and Indian Oceanian populations. Ann Hum Biol 2007; 33:265-78. [PMID: 17092866 DOI: 10.1080/03014460600578599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Ethnic-historic sources have considered the Comorian population to be the result of an amalgamation of African, Arabian and Southeast Asian groups. AIM This study seeks to determine the genetic relationships and contributions from Sub-Saharan Africa and Indian Oceania and to reconstruct past migration events. SUBJECTS AND METHODS The human leukocyte antigen (HLA) polymorphism of a Comorian population was described and analysed. RESULTS Genetic distances and multidimensional scaling analyses showed complex patterns of genetic differentiation in the Indian Oceanian area as a result of continuous gene flow occurring within the past approximately 2500 years. Nevertheless, the Comorian genetic pool appears to be a mix of Bantu-speaking and Arab populations as testified to by admixture estimations of almost 50-60% and 27-33%, respectively. CONCLUSION The Comorian population may represent the eastern limit of the recent and massive eastward Bantu expansion. In contrast to the population from Madagascar (Merina), only a restricted influence of Austronesian populations was found.
Collapse
Affiliation(s)
- M Gibert
- Centre d'Anthropologie, UMR 8555, CNRS, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
31
|
Belle EMS, Barbujani G. Worldwide analysis of multiple microsatellites: Language diversity has a detectable influence on DNA diversity. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2007; 133:1137-46. [PMID: 17506490 DOI: 10.1002/ajpa.20622] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies of the correlations between the languages spoken by human populations and the genes carried by the members of those populations have been limited by the small amount of genetic markers available and by approximations in the treatment of linguistic data. In this study we analyzed a large collection of polymorphic microsatellite loci (377), distributed on all autosomes, and used Ruhlen's linguistic classification, to investigate the relative roles of geography and language in shaping the distribution of human DNA diversity at a worldwide scale. For this purpose, we performed three different kinds of analysis: (i) we partitioned genetic variances at three hierarchical levels of population subdivision according to language group by means of a molecular analysis of variance (AMOVA); (ii) we quantified by a series of Mantel's tests the correlation between measures of genetic and linguistic differentiation; and (iii) we tested whether linguistic differences are increased across known zones of increased genetic change between populations. Genetic differences appear to more closely reflect geographic than linguistic differentiation. However, our analyses show that language differences also have a detectable effect on DNA diversity at the genomic level, above and beyond the effects of geographic distance.
Collapse
Affiliation(s)
- Elise M S Belle
- Dipartimento di Biologia ed Evoluzione, Università di Ferrara, Via Borsari, 46, 44100 Ferrara, Italy
| | | |
Collapse
|
32
|
Hünemeier T, Carvalho C, Marrero AR, Salzano FM, Pena SDJ, Bortolini MC. Niger-Congo speaking populations and the formation of the Brazilian gene pool: mtDNA and Y-chromosome data. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2007; 133:854-67. [PMID: 17427922 DOI: 10.1002/ajpa.20604] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We analyzed sequence variation in the mitochondrial DNA (mtDNA) hypervariable segment I (HVS-I) from 201 Black individuals from two Brazilian cities (Rio de Janeiro and Porto Alegre), and compared these data with published information from 21 African populations. A subset of 187 males of the sample was also characterized for 30 Y-chromosome biallelic polymorphisms, and the data were compared with those from 48 African populations. The mtDNA data indicated that respectively 69% and 82% of the matrilineages found in Rio de Janeiro and Porto Alegre originated from West-Central/Southeast Africa. These estimates are in close agreement with historical records which indicated that most of the Brazilian slaves who arrived in Rio de Janeiro were from West-Central Africa. In contrast to mtDNA, Y-chromosome haplogroup analysis did not allow discrimination between places of origin in West or West-Central Africa. Thus, when comparing these two major African regions, there seems to be higher genetic structure with mtDNA than with Y-chromosome data.
Collapse
Affiliation(s)
- Tábita Hünemeier
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Mitochondrial DNA and microsatellite sequences are powerful genetic markers for inferring the genealogy and the population genetic structure of animals but they have only limited resolution for organisms that display low genetic variability due to recent strong bottlenecks. An alternative source of data for deciphering migrations and origins in genetically uniform hosts can be provided by some of their microbes, if their evolutionary history correlates closely with that of the host. In this review, we first discuss how a variety of viruses, and the bacterium Helicobacter pylori, can be used as genetic tracers for one of the most intensively studied species, Homo sapiens. Then, we review statistical problems and limitations that affect the calculation of particular population genetic parameters for these microbes, such as mutation rates, with particular emphasis on the effects of recombination, selection and mode of transmission. Finally, we extend the discussion to other host-parasite systems and advocate the adoption of an integrative approach to both sampling and analysis.
Collapse
Affiliation(s)
- Thierry Wirth
- Department of Biology, Lehrstuhl für Zoologie und Evolutionsbiologie, University Konstanz, 78457 Konstanz, Germany.
| | | | | |
Collapse
|
34
|
Salzano F, Hutz M, Salamoni S, Rohr P, Callegari‐Jacques S. Genetic Support for Proposed Patterns of Relationship among Lowland South American Languages. CURRENT ANTHROPOLOGY 2005. [DOI: 10.1086/497667] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Lewis CM, Tito RY, Lizárraga B, Stone AC. Land, language, and loci: mtDNA in Native Americans and the genetic history of Peru. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2005; 127:351-60. [PMID: 15584069 DOI: 10.1002/ajpa.20102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite a long history of complex societies and despite extensive present-day linguistic and ethnic diversity, relatively few populations in Peru have been sampled for population genetic investigations. In order to address questions about the relationships between South American populations and about the extent of correlation between genetic distance, language, and geography in the region, mitochondrial DNA (mtDNA) hypervariable region I sequences and mtDNA haplogroup markers were examined in 33 individuals from the state of Ancash, Peru. These sequences were compared to those from 19 American Indian populations using diversity estimates, AMOVA tests, mismatch distributions, a multidimensional scaling plot, and regressions. The results show correlations between genetics, linguistics, and geographical affinities, with stronger correlations between genetics and language. Additionally, the results suggest a pattern of differential gene flow and drift in western vs. eastern South America, supporting previous mtDNA and Y chromosome investigations.
Collapse
Affiliation(s)
- Cecil M Lewis
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
36
|
Wood ET, Stover DA, Ehret C, Destro-Bisol G, Spedini G, McLeod H, Louie L, Bamshad M, Strassmann BI, Soodyall H, Hammer MF. Contrasting patterns of Y chromosome and mtDNA variation in Africa: evidence for sex-biased demographic processes. Eur J Hum Genet 2005; 13:867-76. [PMID: 15856073 DOI: 10.1038/sj.ejhg.5201408] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To investigate associations between genetic, linguistic, and geographic variation in Africa, we type 50 Y chromosome SNPs in 1122 individuals from 40 populations representing African geographic and linguistic diversity. We compare these patterns of variation with those that emerge from a similar analysis of published mtDNA HVS1 sequences from 1918 individuals from 39 African populations. For the Y chromosome, Mantel tests reveal a strong partial correlation between genetic and linguistic distances (r=0.33, P=0.001) and no correlation between genetic and geographic distances (r=-0.08, P>0.10). In contrast, mtDNA variation is weakly correlated with both language (r=0.16, P=0.046) and geography (r=0.17, P=0.035). AMOVA indicates that the amount of paternal among-group variation is much higher when populations are grouped by linguistics (Phi(CT)=0.21) than by geography (Phi(CT)=0.06). Levels of maternal genetic among-group variation are low for both linguistics and geography (Phi(CT)=0.03 and 0.04, respectively). When Bantu speakers are removed from these analyses, the correlation with linguistic variation disappears for the Y chromosome and strengthens for mtDNA. These data suggest that patterns of differentiation and gene flow in Africa have differed for men and women in the recent evolutionary past. We infer that sex-biased rates of admixture and/or language borrowing between expanding Bantu farmers and local hunter-gatherers played an important role in influencing patterns of genetic variation during the spread of African agriculture in the last 4000 years.
Collapse
Affiliation(s)
- Elizabeth T Wood
- Division of Biotechnology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mateus Pereira LH, Socorro A, Fernandez I, Masleh M, Vidal D, Bianchi NO, Bonatto SL, Salzano FM, Herrera RJ. Phylogenetic information in polymorphic L1 andAlu insertions from East Asians and Native American populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2005; 128:171-84. [PMID: 15761878 DOI: 10.1002/ajpa.10441] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study attempts to ascertain genetic affinities between Native American and East Asian populations by analyzing four polymorphic Alu insertions (PAIs) and three L1 polymorphic loci. These two genetic systems demonstrated strong congruence when levels of diversity and genetic distances were considered. Overall, genetic relatedness within Native American groups does not correlate with geographical and linguistic structure, although strong grouping for Native Americans with East Asians was demonstrated, with clear discrimination from African and European groups. Most of the variation was assigned to differences occurring within groups, but the interpopulation variation found for South Amerindians was recognizably higher in comparison to the other sampled groups of populations. Our data suggest that bottleneck events followed by strong influence of genetic drift in the process of the peopling of the Americas may have been determinant factors in delineating the genetic background of present-day South Amerindians. Since no clear subgroups were detected within Native Americans and East Asians, there is no indication of multiple waves in the early colonization of the New World.
Collapse
Affiliation(s)
- L H Mateus Pereira
- Department of Biological Sciences, Florida International University, University Park, Miami, Florida 33199, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dugoujon JM, Hazout S, Loirat F, Mourrieras B, Crouau-Roy B, Sanchez-Mazas A. GM haplotype diversity of 82 populations over the world suggests a centrifugal model of human migrations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2004; 125:175-92. [PMID: 15365983 DOI: 10.1002/ajpa.10405] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study investigates the GM genetic relationships of 82 human populations, among which 10 represent original data, within and among the main broad geographic areas of the world. Different approaches are used: multidimensional scaling analysis and test for isolation by distance, to assess the correlation between genetic variation and spatial distributions; analysis of variance, to investigate the genetic structure at different hierarchical levels of population subdivision; genetic similarity map (geographic map distorted by available genetic information), to identify regions of high and low genetic variation; and minimal spanning network, to point out possible migration routes across continental areas. The results show that the GM polymorphism is characterized by one of the highest amounts of genetic variation observed so far among populations of different continents (Fct=0.3915, P < 0.0001). GM diversity can be explained by a model of isolation by distance (IBD) at most continental levels, with a particularly significant fit to IBD for the Middle East and Europe. Five peripheral regions of the world (Europe, west and south sub-Saharan Africa, Southeast Asia, and America) exhibit a low level of genetic diversity both within and among populations. By contrast, East and North African, Southwest Asian, and Northeast Asian populations are highly diverse and interconnected genetically by large genetic distances. Therefore, the observed GM variation can be explained by a "centrifugal model" of modern humans peopling history, involving ancient dispersals across a large intercontinental area spanning from East Africa to Northeast Asia, followed by recent migrations in peripheral geographic regions.
Collapse
Affiliation(s)
- Jean-Michel Dugoujon
- Laboratory of Anthropobiology, Anthropology Center, UMR 8555 CNRS, 31000 Toulouse, France
| | | | | | | | | | | |
Collapse
|
39
|
Xiao FX, Yotova V, Zietkiewicz E, Lovell A, Gehl D, Bourgeois S, Moreau C, Spanaki C, Plaitakis A, Moisan JP, Labuda D. Human X-chromosomal lineages in Europe reveal Middle Eastern and Asiatic contacts. Eur J Hum Genet 2004; 12:301-11. [PMID: 14560313 DOI: 10.1038/sj.ejhg.5201097] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Within Europe, classical genetic markers, nuclear autosomal and Y-chromosome DNA polymorphisms display an east-west frequency gradient. This has been taken as evidence for the westward migration of Neolithic farmers from the Middle East. In contrast, most studies of mtDNA variation in Europe and the Middle East have not revealed clinal distributions. Here we report an analysis of dys44 haplotypes, consisting of 35 polymorphisms on an 8 kb segment of the dystrophin gene on Xp21, in a sample of 1203 Eurasian chromosomes. Our results do not show a significant genetic structure in Europe, though when Middle Eastern samples are included a very low but significant genetic structure, rooted in Middle Eastern heterogeneity, is observed. This structure was not correlated to either geography or language, indicating that neither of these factors are a barrier to gene flow within Europe and/or the Middle East. Spatial autocorrelation analysis did not show clinal variation from the Middle East to Europe, though an underlying and ancient east-west cline across the Eurasian continent was detected. Clines provide a strong signal of ancient major population migration(s), and we suggest that the observed cline likely resulted from an ancient, bifurcating migration out of Africa that influenced the colonizing of Europe, Asia and the Americas. Our study reveals that, in addition to settlements from the Near East, Europe has been influenced by other major population movements, such as expansion(s) from Asia, as well as by recent gene flow from within Europe and the Middle East.
Collapse
Affiliation(s)
- Feng-Xia Xiao
- Centre de Recherche, Hôpital Sainte-Justine, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wade MJ, Shuster SM. Estimating the strength of sexual selection from Y-chromosome and mitochondrial DNA diversity. Evolution 2004; 58:1613-6. [PMID: 15341163 DOI: 10.1111/j.0014-3820.2004.tb01741.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We show that a sex difference in the opportunity for selection results in sex differences in the strength of random genetic drift and thus creates different patterns of genetic diversity for maternally and paternally inherited haploid genes. We derive the effective population size Ne for a male-limited or female-limited haploid gene in terms of I, the "opportunity for selection" or the variance in relative fitness. Because the variance in relative fitness of males can be an order of magnitude larger than that of females, the Ne is much smaller for males than it is for females. We derive both nonequilibrium and equilibrium expressions for F(ST) in terms of I and show how the portion of I owing to sexual selection, Imates, that is, the variation among males in mate numbers, is a simple function of the F's for cytoplasmic (female inherited) and Y-linked (male inherited) genes. Because multiple, transgenerational data are lacking to apply the nonequilibrium expression, we apply only the equilibrium model to published data on Y chromosome and mitochondrial sequence divergence in Homo sapiens to quantify the opportunity for sexual selection. The estimate suggests that sexual selection in humans represents a minimum of 54.8% of total selection, supporting Darwin's proposal that sexual selection has played a significant role in human evolution and the recent proposal regarding a shift from polygamy to monogamy in humans.
Collapse
Affiliation(s)
- Michael J Wade
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
41
|
Rootsi S, Magri C, Kivisild T, Benuzzi G, Help H, Bermisheva M, Kutuev I, Barać L, Pericić M, Balanovsky O, Pshenichnov A, Dion D, Grobei M, Zhivotovsky LA, Battaglia V, Achilli A, Al-Zahery N, Parik J, King R, Cinnioğlu C, Khusnutdinova E, Rudan P, Balanovska E, Scheffrahn W, Simonescu M, Brehm A, Goncalves R, Rosa A, Moisan JP, Chaventre A, Ferak V, Füredi S, Oefner PJ, Shen P, Beckman L, Mikerezi I, Terzić R, Primorac D, Cambon-Thomsen A, Krumina A, Torroni A, Underhill PA, Santachiara-Benerecetti AS, Villems R, Semino O. Phylogeography of Y-chromosome haplogroup I reveals distinct domains of prehistoric gene flow in europe. Am J Hum Genet 2004; 75:128-37. [PMID: 15162323 PMCID: PMC1181996 DOI: 10.1086/422196] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 04/26/2004] [Indexed: 11/03/2022] Open
Abstract
To investigate which aspects of contemporary human Y-chromosome variation in Europe are characteristic of primary colonization, late-glacial expansions from refuge areas, Neolithic dispersals, or more recent events of gene flow, we have analyzed, in detail, haplogroup I (Hg I), the only major clade of the Y phylogeny that is widespread over Europe but virtually absent elsewhere. The analysis of 1,104 Hg I Y chromosomes, which were identified in the survey of 7,574 males from 60 population samples, revealed several subclades with distinct geographic distributions. Subclade I1a accounts for most of Hg I in Scandinavia, with a rapidly decreasing frequency toward both the East European Plain and the Atlantic fringe, but microsatellite diversity reveals that France could be the source region of the early spread of both I1a and the less common I1c. Also, I1b*, which extends from the eastern Adriatic to eastern Europe and declines noticeably toward the southern Balkans and abruptly toward the periphery of northern Italy, probably diffused after the Last Glacial Maximum from a homeland in eastern Europe or the Balkans. In contrast, I1b2 most likely arose in southern France/Iberia. Similarly to the other subclades, it underwent a postglacial expansion and marked the human colonization of Sardinia approximately 9,000 years ago.
Collapse
Affiliation(s)
- Siiri Rootsi
- Department of Evolutionary Biology, University of Tartu and Estonian Biocentre, Riia, Tartu, Estonia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Destro-Bisol G, Donati F, Coia V, Boschi I, Verginelli F, Caglià A, Tofanelli S, Spedini G, Capelli C. Variation of female and male lineages in sub-Saharan populations: the importance of sociocultural factors. Mol Biol Evol 2004; 21:1673-82. [PMID: 15190128 DOI: 10.1093/molbev/msh186] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this paper, we present a study of genetic variation in sub-Saharan Africa, which is based on published and unpublished data on fast-evolving (hypervariable region 1 of mitochondrial DNA and six microsatellites of Y chromosome) and slow-evolving (haplogroup frequencies) polymorphisms of mtDNA and Y chromosome. Our study reveals a striking difference in the genetic structure of food-producer (Bantu and Sudanic speakers) and hunter-gatherer populations (Pygmies, Kung, and Hadza). In fact, the ratio of mtDNA to Y-chromosome Nupsilon is substantially higher in food producers than in hunter-gatherers as determined by fast-evolving polymorphisms (1.76 versus 0.11). This finding indicates that the two population groups differ substantially in female and male migration rate and/or effective size. The difference also persists when linguistically homogeneous populations are used and outlier populations are eliminated (1.78 vs 0.19) or when the jacknife procedure is applied to a paired population data set (1.32 to 7.84 versus 0.14 to 0.66). The higher ratio of mtDNA to Y-chromosome Nnu in food producers than in hunter-gatherers is further confirmed by the use of slow-evolving polymorphisms (1.59 to 7.91 versus 0.12 to 0.35). To explain these results, we propose a model that integrates demographic and genetic aspects and incorporates ethnographic knowledge. In such a model, the asymmetric gene flow, polyginy, and patrilocality play an important role in differentiating the genetic structure of sub-Saharan populations. The existence of an asymmetric gene flow is supported by the phylogeographic features of mtDNA and Y-chromosome haplogroups found in the two population groups. The role of polyginy and patrilocality is sustained by the evidence of a differential pressure of genetic drift and gene flow on maternal and paternal lineages of food producers and hunter-gatherers that is revealed through the analysis of mitochondrial and Y-chromosomal intrapopulational variation.
Collapse
|
43
|
Wirth T, Wang X, Linz B, Novick RP, Lum JK, Blaser M, Morelli G, Falush D, Achtman M. Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh. Proc Natl Acad Sci U S A 2004; 101:4746-51. [PMID: 15051885 PMCID: PMC387319 DOI: 10.1073/pnas.0306629101] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The history of mankind remains one of the most challenging fields of study. However, the emergence of anatomically modern humans has been so recent that only a few genetically informative polymorphisms have accumulated. Here, we show that DNA sequences from Helicobacter pylori, a bacterium that colonizes the stomachs of most humans and is usually transmitted within families, can distinguish between closely related human populations and are superior in this respect to classical human genetic markers. H. pylori from Buddhists and Muslims, the two major ethnic communities in Ladakh (India), differ in their population-genetic structure. Moreover, the prokaryotic diversity is consistent with the Buddhists having arisen from an introgression of Tibetan speakers into an ancient Ladakhi population. H. pylori from Muslims contain a much stronger ancestral Ladakhi component, except for several isolates with an Indo-European signature, probably reflecting genetic flux from the Near East. These signatures in H. pylori sequences are congruent with the recent history of population movements in Ladakh, whereas similar signatures in human microsatellites or mtDNA were only marginally significant. H. pylori sequence analysis has the potential to become an important tool for unraveling short-term genetic changes in human populations.
Collapse
Affiliation(s)
- Thierry Wirth
- Department of Molecular Biology, Max-Planck-Institut für Infektionsbiologie, Schumannstrasse 21/22, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wade MJ, Shuster SM. ESTIMATING THE STRENGTH OF SEXUAL SELECTION FROM Y-CHROMOSOME AND MITOCHONDRIAL DNA DIVERSITY. Evolution 2004. [DOI: 10.1554/03-451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Tishkoff SA, Verrelli BC. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet 2003; 4:293-340. [PMID: 14527305 DOI: 10.1146/annurev.genom.4.070802.110226] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the completion of the human genome sequencing project, the discovery and characterization of human genetic variation is a principal focus for future research. Comparative studies across ethnically diverse human populations and across human and nonhuman primate species is important for reconstructing human evolutionary history and for understanding the genetic basis of human disease. In this review, we summarize data on patterns of human genetic diversity and the evolutionary forces (mutation, genetic drift, migration, and selection) that have shaped these patterns of variation across both human populations and the genome. African population samples typically have higher levels of genetic diversity, a complex population substructure, and low levels of linkage disequilibrium (LD) relative to non-African populations. We discuss these differences and their implications for mapping disease genes and for understanding how population and genomic diversity have been important in the evolution, differentiation, and adaptation of humans.
Collapse
Affiliation(s)
- Sarah A Tishkoff
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
46
|
Al-Zahery N, Semino O, Benuzzi G, Magri C, Passarino G, Torroni A, Santachiara-Benerecetti AS. Y-chromosome and mtDNA polymorphisms in Iraq, a crossroad of the early human dispersal and of post-Neolithic migrations. Mol Phylogenet Evol 2003; 28:458-72. [PMID: 12927131 DOI: 10.1016/s1055-7903(03)00039-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Analyses of mtDNA and Y-chromosome variation were performed in a sample of Iraqis, a scarcely investigated population of the "Fertile Crescent." A total of 216 mtDNAs were screened for the diagnostic RFLP markers of the main Eurasian and African haplogroups. A subset of these samples, whose HVS-I sequences were previously obtained, was also examined by high-resolution restriction analysis. The Y-chromosome variation was investigated in 139 subjects by using 17 biallelic markers and the 49a,f/Taq I system. For both uniparental systems, the large majority of the haplogroups observed in the Iraqi population are those (H, J, T, and U for the mtDNA, and J(xM172) and J-M172 for the Y chromosome) considered to have originated in the Middle East and to have later spread all over Western Eurasia. However, about 9% of the mtDNAs and 30% of the Y-chromosomes most likely represent arrivals from distant geographic regions. The different proportion of long-range genetic input observed for the mtDNA and the Y chromosome appears to indicate that events of gene flow to this area might have involved mainly males rather than females.
Collapse
Affiliation(s)
- N Al-Zahery
- Dipartimento di Genetica e Microbiologia A. Buzzati Traverso, Università di Pavia, Via Ferrata, 1, 27100 Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Jones D. Kinship and Deep History: Exploring Connections between Culture Areas, Genes, and Languages. AMERICAN ANTHROPOLOGIST 2003. [DOI: 10.1525/aa.2003.105.3.501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Abstract
Despite the remarkable developments in molecular biology over the past three decades, anthropological genetics has had only limited impact on systematics in human evolution. Genetics offers the opportunity to objectively test taxonomies based on morphology and may be used to supplement conventional approaches to hominid systematics. Our analyses, examining chromosomes and 46 estimates of genetic distance, indicate there may have been only around 4 species on the direct line to modern humans and 5 species in total. This contrasts with current taxonomies recognising up to 23 species. The genetic proximity of humans and chimpanzees has been used to suggest these species are congeneric. Our analysis of genetic distances between them is consistent with this proposal. It is time that chimpanzees, living humans and all fossil humans be classified in Homo. The creation of new genera can no longer be a solution to the complexities of fossil morphologies. Published genetic distances between common chimpanzees and bonobos, along with evidence for interbreeding, suggest they should be assigned to a single species. The short distance between humans and chimpanzees also places a strict limit on the number of possible evolutionary 'side branches' that might be recognised on the human lineage. All fossil taxa were genetically very close to each other and likely to have been below congeneric genetic distances seen for many mammals. Our estimates of genetic divergence suggest that periods of around 2 million years are required to produce sufficient genetic distance to represent speciation. Therefore, Neanderthals and so-called H. erectus were genetically so close to contemporary H. sapiens they were unlikely to have been separate species. Thus, it is likely there was only one species of human (H. sapiens) for most of the last 2 million years. We estimate the divergence time of H. sapiens from 16 genetic distances to be around 1.7 Ma which is consistent with evidence for the earliest migration out of Africa. These findings call into question the mitochondrial "African Eve" hypothesis based on a far more recent origin for H. sapiens and show that humans did not go through a bottleneck in their recent evolutionary history. Given the large offset in evolutionary rates of molecules and morphology seen in human evolution, Homo species are likely to be characterised by high levels of morphological variation and low levels of genetic variability. Thus, molecular data suggest the limits for intraspecific morphological variation used by many palaeoanthropologists have been set too low. The role of phenotypic plasticity has been greatly underestimated in human evolution. We call into question the use of mtDNA for studies of human evolution. This DNA is under strong selection, which violates the assumption of selective neutrality. This issue should be addressed by geneticists, including a reassessment of its use for molecular clocks. There is a need for greater cooperation between palaeoanthropologists and anthropological geneticists to better understand human evolution and to bring palaeoanthropology into the mainstream of evolutionary biology.
Collapse
Affiliation(s)
- D Curnoe
- Department of Archaeology and Natural History, Research School of Pacific and Asian Studies, Australian National University, Canberra ACT 0200, Australia.
| | | |
Collapse
|
49
|
Knight A, Underhill PA, Mortensen HM, Zhivotovsky LA, Lin AA, Henn BM, Louis D, Ruhlen M, Mountain JL. African Y chromosome and mtDNA divergence provides insight into the history of click languages. Curr Biol 2003; 13:464-73. [PMID: 12646128 DOI: 10.1016/s0960-9822(03)00130-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND About 30 languages of southern Africa, spoken by Khwe and San, are characterized by a repertoire of click consonants and phonetic accompaniments. The Jumid R:'hoansi (!Kung) San carry multiple deeply coalescing gene lineages. The deep genetic diversity of the San parallels the diversity among the languages they speak. Intriguingly, the language of the Hadzabe of eastern Africa, although not closely related to any other language, shares click consonants and accompaniments with languages of Khwe and San. RESULTS We present original Y chromosome and mtDNA variation of Hadzabe and other ethnic groups of Tanzania and Y chromosome variation of San and peoples of the central African forests: Biaka, Mbuti, and Lisongo. In the context of comparable published data for other African populations, analyses of each of these independently inherited DNA segments indicate that click-speaking Hadzabe and Jumid R:'hoansi are separated by genetic distance as great or greater than that between any other pair of African populations. Phylogenetic tree topology indicates a basal separation of the ancient ancestors of these click-speaking peoples. That genetic divergence does not appear to be the result of recent gene flow from neighboring groups. CONCLUSIONS The deep genetic divergence among click-speaking peoples of Africa and mounting linguistic evidence suggest that click consonants date to early in the history of modern humans. At least two explanations remain viable. Clicks may have persisted for tens of thousands of years, independently in multiple populations, as a neutral trait. Alternatively, clicks may have been retained, because they confer an advantage during hunting in certain environments.
Collapse
Affiliation(s)
- Alec Knight
- Department of Anthropological Sciences, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dupanloup I, Schneider S, Excoffier L. A simulated annealing approach to define the genetic structure of populations. Mol Ecol 2002; 11:2571-81. [PMID: 12453240 DOI: 10.1046/j.1365-294x.2002.01650.x] [Citation(s) in RCA: 1063] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present a new approach for defining groups of populations that are geographically homogeneous and maximally differentiated from each other. As a by-product, it also leads to the identification of genetic barriers between these groups. The method is based on a simulated annealing procedure that aims to maximize the proportion of total genetic variance due to differences between groups of populations (spatial analysis of molecular variance; samova). Monte Carlo simulations were used to study the performance of our approach and, for comparison, the behaviour of the Monmonier algorithm, a procedure commonly used to identify zones of sharp genetic changes in a geographical area. Simulations showed that the samova algorithm indeed finds maximally differentiated groups, which do not always correspond to the simulated group structure in the presence of isolation by distance, especially when data from a single locus are available. In this case, the Monmonier algorithm seems slightly better at finding predefined genetic barriers, but can often lead to the definition of groups of populations not differentiated genetically. The samova algorithm was then applied to a set of European roe deer populations examined for their mitochondrial DNA (mtDNA) HVRI diversity. The inferred genetic structure seemed to confirm the hypothesis that some Italian populations were recently reintroduced from a Balkanic stock, as well as the differentiation of groups of populations possibly due to the postglacial recolonization of Europe or the action of a specific barrier to gene flow.
Collapse
Affiliation(s)
- I Dupanloup
- Dipartimento di Biologia, Università di Ferrara, Via L Borsari 46, 44100 Ferrara, Italy.
| | | | | |
Collapse
|