1
|
Tian Y, Dong D, Wang Z, Wu L, Park JY, Wei GH, Wang L. Combined CRISPRi and proteomics screening reveal a cohesin-CTCF-bound allele contributing to increased expression of RUVBL1 and prostate cancer progression. Am J Hum Genet 2023; 110:1289-1303. [PMID: 37541187 PMCID: PMC10432188 DOI: 10.1016/j.ajhg.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023] Open
Abstract
Genome-wide association studies along with expression quantitative trait locus (eQTL) mapping have identified hundreds of single-nucleotide polymorphisms (SNPs) and their target genes in prostate cancer (PCa), yet functional characterization of these risk loci remains challenging. To screen for potential regulatory SNPs, we designed a CRISPRi library containing 9,133 guide RNAs (gRNAs) to cover 2,166 candidate SNP loci implicated in PCa and identified 117 SNPs that could regulate 90 genes for PCa cell growth advantage. Among these, rs60464856 was covered by multiple gRNAs significantly depleted in screening (FDR < 0.05). Pooled SNP association analysis in the PRACTICAL and FinnGen cohorts showed significantly higher PCa risk for the rs60464856 G allele (p value = 1.2 × 10-16 and 3.2 × 10-7, respectively). Subsequent eQTL analysis revealed that the G allele is associated with increased RUVBL1 expression in multiple datasets. Further CRISPRi and xCas9 base editing confirmed that the rs60464856 G allele leads to elevated RUVBL1 expression. Furthermore, SILAC-based proteomic analysis demonstrated allelic binding of cohesin subunits at the rs60464856 region, where the HiC dataset showed consistent chromatin interactions in prostate cell lines. RUVBL1 depletion inhibited PCa cell proliferation and tumor growth in a xenograft mouse model. Gene-set enrichment analysis suggested an association of RUVBL1 expression with cell-cycle-related pathways. Increased expression of RUVBL1 and activation of cell-cycle pathways were correlated with poor PCa survival in TCGA datasets. Our CRISPRi screening prioritized about one hundred regulatory SNPs essential for prostate cell proliferation. In combination with proteomics and functional studies, we characterized the mechanistic role of rs60464856 and RUVBL1 in PCa progression.
Collapse
Affiliation(s)
- Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Dandan Dong
- MOE Key Laboratory of Metabolism and Molecular Medicine, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Shanghai Medical College of Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lang Wu
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine, Shanghai Medical College of Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China; Disease Networks Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Tian Y, Dong D, Wang Z, Wu L, Park JY, Wei GH, Wang L. Combined CRISPRi and proteomics screening reveal a cohesin-CTCF-bound allele contributing to increased expression of RUVBL1 and prostate cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524405. [PMID: 36711639 PMCID: PMC9882314 DOI: 10.1101/2023.01.18.524405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Genome-wide association studies along with expression quantitative trait loci (eQTL) mapping have identified hundreds of single nucleotide polymorphisms (SNPs) and their target genes in prostate cancer (PCa), yet functional characterization of these risk loci remains challenging. To screen for potential regulatory SNPs, we designed a CRISPRi library containing 9133 guide RNAs (gRNAs) to target 2,166 candidate SNP sites implicated in PCa and identified 117 SNPs that could regulate 90 genes for PCa cell growth advantage. Among these, rs60464856 was covered by multiple gRNAs significantly depleted in the screening (FDR<0.05). Pooled SNP association analysis in the PRACTICAL and FinnGen cohorts showed significantly higher PCa risk for the rs60464856 G allele (pvalue=1.2E-16 and 3.2E-7). Subsequent eQTL analysis revealed that the G allele is associated with increased RUVBL1 expression in multiple datasets. Further CRISPRi and xCas9 base editing proved the rs60464856 G allele leading to an elevated RUVBL1 expression. Furthermore, SILAC-based proteomic analysis demonstrated allelic binding of cohesin subunits at the rs60464856 region, where HiC dataset showed consistent chromatin interactions in prostate cell lines. RUVBL1 depletion inhibited PCa cell proliferation and tumor growth in xenograft mouse model. Gene set enrichment analysis suggested an association of RUVBL1 expression with cell-cycle-related pathways. An increased expression of RUVBL1 and activations of cell-cycle pathways were correlated with poor PCa survival in TCGA datasets. Together, our CRISPRi screening prioritized about one hundred regulatory SNPs essential for prostate cell proliferation. In combination with proteomics and functional studies, we characterized the mechanistic role of rs60464856 and RUVBL1 in PCa progression.
Collapse
|
3
|
Dupont WD, Breyer JP, Plummer WD, Chang SS, Cookson MS, Smith JA, Blue EE, Bamshad MJ, Smith JR. 8q24 genetic variation and comprehensive haplotypes altering familial risk of prostate cancer. Nat Commun 2020; 11:1523. [PMID: 32251286 PMCID: PMC7089954 DOI: 10.1038/s41467-020-15122-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 02/18/2020] [Indexed: 01/09/2023] Open
Abstract
The 8q24 genomic locus is tied to the origin of numerous cancers. We investigate its contribution to hereditary prostate cancer (HPC) in independent study populations of the Nashville Familial Prostate Cancer Study and International Consortium for Prostate Cancer Genetics (combined: 2,836 HPC cases, 2,206 controls of European ancestry). Here we report 433 variants concordantly associated with HPC in both study populations, accounting for 9% of heritability and modifying age of diagnosis as well as aggressiveness; 183 reach genome-wide significance. The variants comprehensively distinguish independent risk-altering haplotypes overlapping the 648 kb locus (three protective, and four risk (peak odds ratios: 1.5, 4, 5, and 22)). Sequence of the near-Mendelian haplotype reveals eleven causal mutation candidates. We introduce a linkage disequilibrium-based algorithm discerning eight independent sentinel variants, carrying considerable risk prediction ability (AUC = 0.625) for a single locus. These findings elucidate 8q24 locus structure and correlates for clinical prediction of prostate cancer risk.
Collapse
Affiliation(s)
- William D Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN, 37203, USA
| | - Joan P Breyer
- Department of Medicine, Division of Genetic Medicine, Vanderbilt-Ingram Cancer Center, and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, 507 Light Hall, 2215 Garland Avenue, Nashville, TN, 37232, USA
- Medical Research Service, Tennessee Valley Healthcare System, Veterans Administration, 1310 24th Avenue South, Nashville, TN, 37212, USA
| | - W Dale Plummer
- Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN, 37203, USA
| | - Sam S Chang
- Department of Urology, Vanderbilt University Medical Center, A-1302 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Michael S Cookson
- Department of Urology, University of Oklahoma Health Sciences Center, Suite 3150, 920 SL Young Boulevard, Oklahoma City, OK, 73104, USA
| | - Joseph A Smith
- Department of Urology, Vanderbilt University Medical Center, A-1302 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Elizabeth E Blue
- Department of Medicine, Division of Medical Genetics, University of Washington, HSB H132, Seattle, WA, 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, Division of Genetic Medicine, and Center for Mendelian Genomics, University of Washington, HSB RR349, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Jeffrey R Smith
- Department of Medicine, Division of Genetic Medicine, Vanderbilt-Ingram Cancer Center, and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, 507 Light Hall, 2215 Garland Avenue, Nashville, TN, 37232, USA.
- Medical Research Service, Tennessee Valley Healthcare System, Veterans Administration, 1310 24th Avenue South, Nashville, TN, 37212, USA.
| |
Collapse
|
4
|
Schaid DJ, McDonnell SK, Thibodeau SN. Familial recurrence risk with varying amount of family history. Genet Epidemiol 2019; 43:440-448. [PMID: 30740785 DOI: 10.1002/gepi.22193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/13/2018] [Accepted: 01/24/2019] [Indexed: 11/09/2022]
Abstract
The familial recurrence risk is the probability a person will have disease, given a reported family history. When family histories are obtained as simple counts of disease among family members, as often obtained in cancer registries or surveys, we propose methods to estimate recurrence risks based on truncated binomial distributions. By this approach, we are able to obtain unbiased estimates of risk for a person with at least k-affected relatives, where k can be specified to determine how risk varies with k. We also derive robust variances of the recurrence risk estimate, to account for correlations within families, such as those induced by shared genes or shared environment, without explicitly modeling the factors that cause familial correlations. Furthermore, we illustrate how mixture models can be used to account for a sample composed of low- and high-risk families. Using simulations, we illustrate the properties of the proposed methods. Application of our methods to a family history survey of prostate cancer shows that the recurrence risk for prostate cancer increased from 16%, when there was at least one affected relative, to 52%, when there was at least five affected relatives.
Collapse
Affiliation(s)
- Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Fantus RJ, Helfand BT. Germline Genetics of Prostate Cancer: Time to Incorporate Genetics into Early Detection Tools. Clin Chem 2018; 65:74-79. [PMID: 30459162 DOI: 10.1373/clinchem.2018.286658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prostate cancer (PCa) remains the most common solid malignancy in men, and its prevalence makes understanding its heritability of paramount importance. To date, the most common factors used to estimate a man's risk of developing PCa are age, race, and family history. Despite recent advances in its utility in multiple malignancies (e.g., breast and colon cancer), genetic testing is still relatively underutilized in PCa. CONTENT Multiple highly penetrant genes (HPGs) and single-nucleotide polymorphisms (SNPs) have been show to increase a patient's risk of developing PCa. Mutations in the former, like DNA damage repair genes, can confer a 2- to 3-fold increased risk of developing PCa and can increase the risk of aggressive disease. Similarly, PCa-risk SNPs can be used to create risk scores (e.g., genetic or polygenic risk scores) that can be used to further stratify an individual's disease susceptibility. Specifically, these genetic risk scores can provide more specific estimates of a man's lifetime risk ranging up to >6-fold higher risk of PCa. SUMMARY It is becoming increasingly evident that in addition to the standard family history and race information, it is necessary to obtain genetic testing (including an assessment of HPG mutation status and genetic risk score) to provide a full risk assessment. The additional information derived thereby will improve current practices in PCa screening by risk-stratifying patients before initial prostate-specific antigen testing, determining a patient's frequency of visits, and even help identify potentially at-risk family members.
Collapse
Affiliation(s)
- Richard J Fantus
- Section of Urology, Department of Surgery, University of Chicago Medicine, Chicago, IL
| | - Brian T Helfand
- Division of Urology, Department of Surgery, NorthShore University Health System, Evanston, IL.
| |
Collapse
|
6
|
Filippou P, Ferguson JE, Nielsen ME. Epidemiology of Prostate and Testicular Cancer. Semin Intervent Radiol 2016; 33:182-5. [PMID: 27582605 DOI: 10.1055/s-0036-1586146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate and testicular cancers account for a large percentage of cancer morbidity in men in the United States and worldwide due to high prevalence rates that continue to grow. Patterns of incidence and mortality vary greatly in both cancers among men of different age groups, ethnicities, and geographic locations. This article summarizes the incidence, prognosis, and risk factors of both prostate and testicular cancers, globally and in the United States.
Collapse
Affiliation(s)
- Pauline Filippou
- Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James E Ferguson
- Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew E Nielsen
- Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Lynch HT, Kosoko‐Lasaki O, Leslie SW, Rendell M, Shaw T, Snyder C, D'Amico AV, Buxbaum S, Isaacs WB, Loeb S, Moul JW, Powell I. Screening for familial and hereditary prostate cancer. Int J Cancer 2016; 138:2579-91. [DOI: 10.1002/ijc.29949] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Henry T. Lynch
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Omofolasade Kosoko‐Lasaki
- Departments of Surgery, Preventive Medicine & Public HealthCreighton University2500 California PlazaOmaha NE
| | - Stephen W. Leslie
- Department of Surgery (Urology)Creighton University Medical Center601 North 30th Street, Suite 3700Omaha NE
| | - Marc Rendell
- Department of Internal MedicineCreighton University Medical Center601 North 30th Street, Suite 3700Omaha NE
| | - Trudy Shaw
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Carrie Snyder
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Anthony V. D'Amico
- Department of Radiation OncologyBrigham and Women's Hospital and Dana Farber Cancer Institute, Harvard Medical SchoolBoston MA
| | - Sarah Buxbaum
- Jackson State University School of Health Sciences350 W. Woodrow Wilson DriveJackson MS
| | - William B. Isaacs
- Departments of Urology and OncologyJohns Hopkins University School of Medicine, Marburg 115, Johns Hopkins Hospital600 N. Wolfe StBaltimore MD
| | - Stacy Loeb
- Department of Urology and Population HealthNew York University550 1st Ave VZ30 (#612)New York NY
| | - Judd W. Moul
- Duke Prostate Center, Division of Urologic Surgery, DUMC 3707‐Room 1562 Duke SouthDuke University Medical CenterDurham NC
| | - Isaac Powell
- Department of UrologyWayne State University, Karmanos Cancer Institute, University Health Center 7‐CDetroit MI
| |
Collapse
|
8
|
Abstract
Genetic heterogeneity explains variation in predisposition for cancer. Whole-genome analysis allows risk to be quantified, giving better targeted screening and quantification of the personalized risk posed by environmental factors. Array-based approaches to whole-genome analysis are rapidly being overtaken by next-generation sequencing (NGS). In this review the different platforms currently available for NGS are compared and the opportunities and risks of this approach are discussed: including the informatics packages required and the ethical issues. Methods applicable to the personal genome machine (PGM) are given as an example of workflows.
Collapse
Affiliation(s)
- Victoria Shaw
- NIHR Pancreatic Biomedical Research Unit, Molecular and Clinical Cancer Medicine, Royal Liverpool University Hospital, 5th Floor UCD Block, Daulby Street, Liverpool, L69 3GA, UK
| | - Katie Bullock
- NIHR Pancreatic Biomedical Research Unit, Molecular and Clinical Cancer Medicine, Royal Liverpool University Hospital, 5th Floor UCD Block, Daulby Street, Liverpool, L69 3GA, UK
| | - William Greenhalf
- NIHR Pancreatic Biomedical Research Unit, Molecular and Clinical Cancer Medicine, Royal Liverpool University Hospital, 5th Floor UCD Block, Daulby Street, Liverpool, L69 3GA, UK.
| |
Collapse
|
9
|
|
10
|
Hunter SM, Rowley SM, Clouston D, Li J, Lupat R, Krishnananthan N, Risbridger G, Taylor R, Bolton D, Campbell IG, Thorne H. Searching for candidate genes in familial BRCAX mutation carriers with prostate cancer. Urol Oncol 2015; 34:120.e9-16. [PMID: 26585945 DOI: 10.1016/j.urolonc.2015.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE A family history of prostate cancer (PC) is a well-recognized high-risk factor for the development of clinically significant PC. To date, traditional linkage and association studies have identified only a limited number of genes and specific gene variants that account for only a small proportion of PC risk. To identify novel PC predisposition genes we performed whole-exome sequencing of PC-affected men from families with a significant history of PC. METHODS AND MATERIALS Exome sequencing was performed on 5 PC-affected men from 3 families where there were multiple cases of PCs and where diagnostic testing returned a negative result for BRCA1 and BRCA2 mutations. Genotyping was performed for all potentially predisposing variants detected within each family on the affected and unaffected male participants. RESULTS Essential splice site, missense, and stop-lost variants were filtered against a recently published candidate gene list. A total of 19 truncating variants and 17 missense variants were identified for genotyping in all prostate-affected and unaffected male participants. In all, 3 missense variants, PCTP, MCRS1, and ATRIP, demonstrated complete segregation and 1 missense variant, PARP2, demonstrated partial segregation with PC. In addition, 3 truncating variants, CYP3A43, DOK3, and PLEKHH3, demonstrated complete segregation and 3 truncation mutations, HEATR5B, GPR124, and HKR1, demonstrated partial segregation with PC. No segregating variants between the 3 families were shared. CONCLUSIONS In all, 10 truncating or missense variants showed either complete or partial segregation with PC in the relevant families. CYP3A43 and PARP2 variants have been shown to occur in other familial PCs and our findings add to the contribution that these variants potentially have in the risk and development of PC in BRCAX cases.
Collapse
Affiliation(s)
- Sally M Hunter
- Centre for Cancer Genomics and Predictive Medicine, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Simone M Rowley
- Centre for Cancer Genomics and Predictive Medicine, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | | | - Jason Li
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Richard Lupat
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Nishanth Krishnananthan
- kConFab Research Department, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Urology, Austin Hospital, University of Melbourne, Heidelberg, Australia
| | - Gail Risbridger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Renea Taylor
- Department of Physiology, Monash University, Clayton, Australia
| | - Damien Bolton
- Department of Urology, Austin Hospital, University of Melbourne, Heidelberg, Australia
| | - Ian G Campbell
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Heather Thorne
- kConFab Research Department, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
11
|
Pan J, Xue W, Sha J, Yang H, Xu F, Xuan H, Li D, Huang Y. Incidental prostate cancer at the time of cystectomy: the incidence and clinicopathological features in Chinese patients. PLoS One 2014; 9:e94490. [PMID: 24722643 PMCID: PMC3983210 DOI: 10.1371/journal.pone.0094490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/17/2014] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES To evaluate the incidence and the clinicopathological features of incidental prostate cancer detected in radical cystoprostatectomy (RCP) specimens in Chinese men and to estimate the oncological risk of prostate apex-sparing surgery for such patients. METHODS The clinical data and pathological feature of 504 patients who underwent RCP for bladder cancer from January 1999 to March 2013 were retrospectively reviewed. Whole mount serial section of the RCP specimens were cut transversely at 3-4 mm intervals and examined in same pathological institution. RESULTS Thirty-four out of 504 patients (6.8%) had incidental prostate cancer with a mean age of 70.3 years. 12 cases (35.2%) were diagnosed as significant disease. 4 cases were found to have apex involvement of adenocarcinoma of the prostate while in 5 cases the prostate stroma invasion by urothelial carcinoma were identified (one involved prostate apex). The mean follow-up time was 46.4±33.8 months. Biochemical recurrence occurred in 3 patients but no prostate cancer-related death during the follow-up. There was no statistical significance in cancer specific survival between the clinically significant and insignificant cancer group. CONCLUSIONS The prevalence of incidental prostate cancer in RCP specimens in Chinese patients was remarkably lower than in western people. Most of the incidental prostate cancer was clinically insignificant and patient's prognosis was mainly related to the bladder cancer. Sparing the prostate apex was potentially associated with a 1.0% risk of leaving significant cancer of the prostate or urothelial carcinoma.
Collapse
Affiliation(s)
- Jiahua Pan
- Department of Urology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jianjun Sha
- Department of Urology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hu Yang
- Department of Urology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fan Xu
- Department of Urology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hanqing Xuan
- Department of Urology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Dong Li
- Department of Urology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Prostate cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
Mazaris E, Tsiotras A. Molecular pathways in prostate cancer. Nephrourol Mon 2013; 5:792-800. [PMID: 24282788 PMCID: PMC3830904 DOI: 10.5812/numonthly.9430] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/17/2012] [Indexed: 01/02/2023] Open
Abstract
Objectives Prostate cancer is a prevalent disease with a high impact on patients’ morbidity and mortality. Despite efforts to profile prostate cancer, the genetic alterations and biological processes that correlate with disease progression remain partially elusive. The purpose of this study is to review the recent evidence relating to the initiation and progression of prostate cancer in relation to the familial correlation of the disease, the genetic aberrations resulting in prostate cancer and the new molecular biology data regarding prostate cancer. Materials and Methods A Medline database search identified all the existing publications on the molecular events associated with the pathogenesis and evolution of prostate cancer. Particular emphasis was given on the specific genetic phenomena associated with prostate cancer. Results Like other cancers, prostate cancer is caused by an accumulation of genetic alterations in a cell that drives it to malignant growth. Specific genes and gene alterations have been suggested to play a role in its development and progression. Aneuploidy, loss of heterozygosity, gene mutations, hypermethylation and inactivation of specific tumour suppressor genes such as GSTpi, APC, MDR1, GPX3 and others have been detected in prostate cancers, but generally only at a low or moderate frequency. The androgen receptor (AR) signalling pathway may play a crucial role in the early development of prostate cancer, as well as in the development of androgen-independent disease that fails to respond to hormone deprivation therapies. Other alterations linked to the transition to hormone-independence include amplification of MYC and increased expression of ERBB2 and BCL2. Inflammatory changes may also contribute to the development of prostate cancer. Conclusion The identification of specific molecular markers for prostate cancer may lead to its earliest detection and better prediction of its behavior. The better understanding of the molecular events affecting prostate cancer progression may result in the introduction of new drugs to target these events thus providing a potential cure and a tool for prevention of this very common disease.
Collapse
Affiliation(s)
| | - Alexios Tsiotras
- Urology Department, Lister Hospital, Stevenage, United Kingdom
- Corresponding author: Alexios Tsiotras, Urology Department, Lister Hospital, Stevenage, United Kingdom. Tel: +44-7580348549, Fax: +44-1438515601, E-mail:
| |
Collapse
|
14
|
Xu J, Sun J, Zheng SL. Prostate cancer risk-associated genetic markers and their potential clinical utility. Asian J Androl 2013; 15:314-22. [PMID: 23564047 PMCID: PMC3739659 DOI: 10.1038/aja.2013.42] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers among men in Western developed countries and its incidence has increased considerably in many other parts of the world, including China. The etiology of PCa is largely unknown but is thought to be multifactorial, where inherited genetics plays an important role. In this article, we first briefly review results from studies of familial aggregation and genetic susceptibility to PCa. We then recap key findings of rare and high-penetrance PCa susceptibility genes from linkage studies in PCa families. We devote a significant portion of this article to summarizing discoveries of common and low-penetrance PCa risk-associated single-nucleotide polymorphisms (SNPs) from genetic association studies in PCa cases and controls, especially those from genome-wide association studies (GWASs). A strong focus of this article is to review the literature on the potential clinical utility of these implicated genetic markers. Most of these published studies described PCa risk estimation using a genetic score derived from multiple risk-associated SNPs and its utility in determining the need for prostate biopsy. Finally, we comment on the newly proposed concept of genetic score; the notion is to treat it as a marker for genetic predisposition, similar to family history, rather than a diagnostic marker to discriminate PCa patients from non-cancer patients. Available evidence to date suggests that genetic score is an objective and better measurement of inherited risk of PCa than family history. Another unique feature of this article is the inclusion of genetic association studies of PCa in Chinese and Japanese populations.
Collapse
Affiliation(s)
- Jianfeng Xu
- Fudan Institute of Urology, Huashan Hospital, Fudan UniversityFudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | | | | |
Collapse
|
15
|
Identification of a novel NBN truncating mutation in a family with hereditary prostate cancer. Fam Cancer 2013; 11:595-600. [PMID: 22864661 DOI: 10.1007/s10689-012-9555-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nibrin (NBN), located on chromosome 8q21 is a gene involved in DNA double-strand break repair that has been implicated in the rare autosomal recessive chromosomal instability syndrome known as Nijmegen Breakage Syndrome (NBS). NBS is characterized by specific physical characteristics (microcephaly and dysmorphic facies), immunodeficiency, and increased risk of malignancy. Individuals who are heterozygous for NBN mutations are clinically asymptomatic, but may display an elevated risk for certain cancers including, but not limited to, ovarian and prostate cancer as well as various lymphoid malignancies. In this study, 94 unrelated familial prostate cancer cases from the University of Michigan Prostate Cancer Genetics Project (n = 54) and Johns Hopkins University (n = 40) were subjected to targeted next-generation sequencing of the exons, including UTRs, of NBN. One individual of European descent, diagnosed with prostate cancer at age 52, was identified to have a heterozygous 2117 C > G mutation in exon 14 of the gene, that results in a premature stop at codon 706 (S706X). Sequencing of germline DNA from additional male relatives showed partial co-segregation of the NBN S706X mutation with prostate cancer. This NBN mutation was not observed among 2768 unrelated European men (1859 with prostate cancer and 909 controls). NBN is involved in double-strand break repair as a component of the MRE11 (meiotic recombination 11)/RAD50/NBN genomic stability complex. The S706X mutation truncates the protein in a highly conserved region of NBN near the MRE11 binding site, thus suggesting a role for rare NBN mutations in prostate cancer susceptibility.
Collapse
|
16
|
Zhou CH, Wang JY, Cao SY, Shi XH, Zhang YG, Liu M, Wang X, Huang J, Yang YG, Wei D, Yang Z. Association between single nucleotide polymorphisms on chromosome 17q and the risk of prostate cancer in a Chinese population. CHINESE JOURNAL OF CANCER 2013; 30:721-30. [PMID: 21959049 PMCID: PMC4012272 DOI: 10.5732/cjc.011.10070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In European populations, 7 single nucleotide polymorphisms (SNPs) on chromosome 17q, 3 SNPs on 17q12, and 4 SNPs on 17q24.3 were recently identified to be closely related to the risk of prostate cancer by a genome-wide association study. In Japanese populations, the correlation between 2 SNPs on 17q and the risk of prostate cancer and tumor aggressiveness was also confirmed by a large-scale experiment. However, whether 17q is associated with prostate cancer and its clinical manifestations in Chinese populations is still unknown. Therefore, we conducted a case-control study in a northern Chinese population and tested 2 SNPs, rs4430796 and rs1859962, on 17q in 124 prostate cancer patients and 111 controls using polymerase chain reaction-high resolution melting curve (PCR-HRM) combined with sequencing. We analyzed the association of the 2 SNPs with the risk of prostate cancer as well as patients' lifestyles, onset ages, Gleason scores, PSA levels, and pathologic stages. We found a significant difference in the G allele of SNP rs1859962 (P = 0.035, OR = 1.51, 95% CI = 1.03-2.21) but not in the rs4430796 genotype frequency or allele frequency distribution between prostate cancer patients and the controls (P > 0.05). Neither of the SNPs was significantly associated with the onset age, Gleason score, PSA level, pathologic stage, or other clinical indicators of patients with prostate cancer (P > 0.05). Our results show that polymorphism of the G allele of SNP rs1859962 is associated with the risk of prostate cancer in a Chinese population.
Collapse
Affiliation(s)
- Chang-Hu Zhou
- The Fifth School of Clinical Medicine, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Taherian N, Hamel N, Bégin LR, Bismar TA, Goldgar DE, Feng BJ, Foulkes WD. Familial prostate cancer: the damage done and lessons learnt. Nat Rev Urol 2013; 10:116-22. [PMID: 23318356 DOI: 10.1038/nrurol.2012.257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND A 51-year-old French Canadian man presented to his family physician owing to an extensive family history of prostate cancer in five brothers, his father and two paternal uncles. His serum PSA level was 4.9 ng/ml and a six-core biopsy revealed the presence of a prostate adenocarcinoma with a Gleason score of 7 (3+4). He was treated with radical prostatectomy. Repeat PSA tests revealed a gradual rise in PSA levels despite androgen deprivation therapy with bicalutamide and goserelin over the course of 3 years. Genetic evaluation was undertaken in view of his personal and family history. The proband died at the age of 58 years of widespread metastasis. INVESTIGATIONS PSA testing, six-core biopsy, genetic counselling and mutation analysis for French Canadian founder mutations in the BRCA1 and BRCA2 genes, histopathological review of tumour tissue from family members, examination of loss of heterozygosity at the BRCA2 gene locus, immunohistochemistry to determine the expression of the ERG nuclear oncoprotein in prostate tumours, genotyping with eight selected risk-associated single nucleotide polymorphisms, Doppler ultrasonography of the leg, CT of the abdomen and pelvis with intravenous and oral contrast, chest CT with intravenous contrast for the assessment of metastatic prostate cancer, genetic testing for the G84E variant in the HOXB13 gene. DIAGNOSIS Early-onset and aggressive prostate cancer associated with a nonsense French Canadian BRCA2 founder mutation, c.5857G>T (p.Glu1953(*)). MANAGEMENT Radical prostatectomy, hormone therapy with bicalutamide and goserelin, palliative chemotherapy initially with docetaxel plus prednisone then with mitoxantrone plus prednisone, as well as genetic counselling and testing for the proband and his family members.
Collapse
Affiliation(s)
- Nassim Taherian
- Department of Medical Genetics, Research Institute of McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Genetic heterogeneity in Finnish hereditary prostate cancer using ordered subset analysis. Eur J Hum Genet 2012; 21:437-43. [PMID: 22948022 DOI: 10.1038/ejhg.2012.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Prostate cancer (PrCa) is the most common male cancer in developed countries and the second most common cause of cancer death after lung cancer. We recently reported a genome-wide linkage scan in 69 Finnish hereditary PrCa (HPC) families, which replicated the HPC9 locus on 17q21-q22 and identified a locus on 2q37. The aim of this study was to identify and to detect other loci linked to HPC. Here we used ordered subset analysis (OSA), conditioned on nonparametric linkage to these loci to detect other loci linked to HPC in subsets of families, but not the overall sample. We analyzed the families based on their evidence for linkage to chromosome 2, chromosome 17 and a maximum score using the strongest evidence of linkage from either of the two loci. Significant linkage to a 5-cM linkage interval with a peak OSA nonparametric allele-sharing LOD score of 4.876 on Xq26.3-q27 (ΔLOD=3.193, empirical P=0.009) was observed in a subset of 41 families weakly linked to 2q37, overlapping the HPCX1 locus. Two peaks that were novel to the analysis combining linkage evidence from both primary loci were identified; 18q12.1-q12.2 (OSA LOD=2.541, ΔLOD=1.651, P=0.03) and 22q11.1-q11.21 (OSA LOD=2.395, ΔLOD=2.36, P=0.006), which is close to HPC6. Using OSA allows us to find additional loci linked to HPC in subsets of families, and underlines the complex genetic heterogeneity of HPC even in highly aggregated families.
Collapse
|
19
|
Hasstedt SJ, Thomas A. Detecting pleiotropy and epistasis using variance components linkage analysis in jPAP. Hum Hered 2011; 72:258-63. [PMID: 22189468 PMCID: PMC3267992 DOI: 10.1159/000331690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
jPAP (Java Pedigree Analysis Package) performs variance components linkage analysis of either quantitative or discrete traits. Multivariate linkage analysis of two or more traits (all quantitative, all discrete, or any combination) allows the inference of pleiotropy between the traits. The inclusion of multiple quantitative trait loci in linkage analysis allows the inference of epistasis between loci. A user-friendly graphical user interface facilitates the usage of jPAP.
Collapse
Affiliation(s)
- Sandra J Hasstedt
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
20
|
Gunderson K, Wang CY, Wang R. Global prostate cancer incidence and the migration, settlement, and admixture history of the Northern Europeans. Cancer Epidemiol 2011; 35:320-7. [PMID: 21167803 PMCID: PMC3309613 DOI: 10.1016/j.canep.2010.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 12/22/2022]
Abstract
The most salient feature of prostate cancer is its striking ethnic disparity. High incidences of the disease are documented in two ethnic groups: descendents of the Northern Europeans and African Americans. Other groups, including native Africans, are much less susceptible to the disease. Given that many risk factors may contribute to carcinogenesis, an etiological cause for the ethnic disparity remains to be defined. By analyzing the global prostate cancer incidence data, we found that distribution of prostate cancer incidence coincides with the migration and settlement history of Northern Europeans. The incidences in other ethnic groups correlate to the settlement history and extent of admixture of the Europeans. This study suggests that prostate cancer has been spread by the transmission of a genetic susceptibility that resides in the Northern European genome.
Collapse
Affiliation(s)
- Kristin Gunderson
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30322
| | - Christopher Y. Wang
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30322
| | - Ruoxiang Wang
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30322
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
21
|
Abstract
For decades, physicians and researchers have recognized that family history is a significant risk factor for prostate cancer. The identification of the genes responsible for inherited risk, however, proved difficult. With the sequencing of the human genome and the completion of the initial phases of the International HapMap Project, the tools are available to scan the entire genome and find genetic markers for disease. Since 2006, more than 30 inherited variants strongly associated with prostate cancer have been reported. As the inherited component of the disease is revealed, efforts are ongoing to translate genetic findings into the clinic.
Collapse
Affiliation(s)
- Mark M Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
22
|
Kral M, Rosinska V, Student V, Grepl M, Hrabec M, Bouchal J. GENETIC DETERMINANTS OF PROSTATE CANCER: A REVIEW. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011; 155:3-9. [DOI: 10.5507/bp.155.2011.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
|
24
|
Park K, Kim JH, Jeon HG, Byun SS, Lee E. Influence of IGFBP3 Gene Polymorphisms on IGFBP3 Serum Levels and the Risk of Prostate Cancer in Low-risk Korean Men. Urology 2010; 75:1516.e1-7. [DOI: 10.1016/j.urology.2009.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 10/19/2022]
|
25
|
MacInnis RJ, Antoniou AC, Eeles RA, Severi G, Guy M, McGuffog L, Hall AL, O'Brien LT, Wilkinson RA, Dearnaley DP, Ardern-Jones AT, Horwich A, Khoo VS, Parker CC, Huddart RA, McCredie MR, Smith C, Southey MC, Staples MP, English DR, Hopper JL, Giles GG, Easton DF. Prostate cancer segregation analyses using 4390 families from UK and Australian population-based studies. Genet Epidemiol 2010; 34:42-50. [PMID: 19492347 DOI: 10.1002/gepi.20433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Familial aggregation of prostate cancer is likely to be due to multiple susceptibility loci, perhaps acting in conjunction with shared lifestyle risk factors. Models that assume a single mode of inheritance may be unrealistic. We analyzed genetic models of susceptibility to prostate cancer using segregation analysis of occurrence in families ascertained through population-based series totaling 4390 incident cases. We investigated major gene models (dominant, recessive, general, X-linked), polygenic models, and mixed models of susceptibility using the pedigree analysis software MENDEL. The hypergeometric model was used to approximate polygenic inheritance. The best-fitting model for the familial aggregation of prostate cancer was the mixed recessive model. The frequency of the susceptibility allele in the population was estimated to be 0.15 (95% confidence interval (CI) 0.11-0.20), with a relative risk for homozygote carriers of 94 (95% CI 46-192), and a polygenic standard deviation of 2.01 (95% CI 1.72-2.34). These analyses suggest that one or more genes having a strong recessively inherited effect on risk, as well as a number of genes with variants having small multiplicative effects on risk, may account for the genetic susceptibility to prostate cancer. The recessive component would predict the observed higher familial risk for siblings of cases than for fathers, but this could also be due to other factors such as shared lifestyle by siblings, targeted screening effects, and/or non-additive effects of one or more genes.
Collapse
Affiliation(s)
- Robert J MacInnis
- Cancer Research UK Genetic Epidemiology Unit, Strangeways Laboratory, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Baglietto L, Lindor NM, Dowty JG, White DM, Wagner A, Gomez Garcia EB, Vriends AHJT, Cartwright NR, Barnetson RA, Farrington SM, Tenesa A, Hampel H, Buchanan D, Arnold S, Young J, Walsh MD, Jass J, Macrae F, Antill Y, Winship IM, Giles GG, Goldblatt J, Parry S, Suthers G, Leggett B, Butz M, Aronson M, Poynter JN, Baron JA, Le Marchand L, Haile R, Gallinger S, Hopper JL, Potter J, de la Chapelle A, Vasen HF, Dunlop MG, Thibodeau SN, Jenkins MA. Risks of Lynch syndrome cancers for MSH6 mutation carriers. J Natl Cancer Inst 2010; 102:193-201. [PMID: 20028993 PMCID: PMC2815724 DOI: 10.1093/jnci/djp473] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Germline mutations in MSH6 account for 10%-20% of Lynch syndrome colorectal cancers caused by hereditary DNA mismatch repair gene mutations. Because there have been only a few studies of mutation carriers, their cancer risks are uncertain. METHODS We identified 113 families of MSH6 mutation carriers from five countries that we ascertained through family cancer clinics and population-based cancer registries. Mutation status, sex, age, and histories of cancer, polypectomy, and hysterectomy were sought from 3104 of their relatives. Age-specific cumulative risks for carriers and hazard ratios (HRs) for cancer risks of carriers, compared with those of the general population of the same country, were estimated by use of a modified segregation analysis with appropriate conditioning depending on ascertainment. RESULTS For MSH6 mutation carriers, the estimated cumulative risks to ages 70 and 80 years, respectively, were as follows: for colorectal cancer, 22% (95% confidence interval [CI] = 14% to 32%) and 44% (95% CI = 28% to 62%) for men and 10% (95% CI = 5% to 17%) and 20% (95% CI = 11% to 35%) for women; for endometrial cancer, 26% (95% CI = 18% to 36%) and 44% (95% CI = 30% to 58%); and for any cancer associated with Lynch syndrome, 24% (95% CI = 16% to 37%) and 47% (95% CI = 32% to 66%) for men and 40% (95% CI = 32% to 52%) and 65% (95% CI = 53% to 78%) for women. Compared with incidence for the general population, MSH6 mutation carriers had an eightfold increased incidence of colorectal cancer (HR = 7.6, 95% CI = 5.4 to 10.8), which was independent of sex and age. Women who were MSH6 mutation carriers had a 26-fold increased incidence of endometrial cancer (HR = 25.5, 95% CI = 16.8 to 38.7) and a sixfold increased incidence of other cancers associated with Lynch syndrome (HR = 6.0, 95% CI = 3.4 to 10.7). CONCLUSION We have obtained precise and accurate estimates of both absolute and relative cancer risks for MSH6 mutation carriers.
Collapse
Affiliation(s)
- Laura Baglietto
- Cancer Epidemiology Centre, Victorian Cancer Registry, Carlton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Identification of hereditary factors that predispose to cancer allows targeted cancer screening and better quantification of environmental risk factors. The ability to identify which single nucleotide polymorphisms (SNPs) are associated with cancer or segregate with disease in families allows high-risk loci to be identified. In this chapter, two platforms for analysing SNPs are discussed, the Affymetrix and Illumina systems. Application of both platforms requires the same principles of good laboratory practice but there are important differences in materials and methods, which will be discussed.
Collapse
Affiliation(s)
- Julie Earl
- Division of Surgery and Oncology, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
28
|
Humbert L, Chevrette M. Somatic Molecular Genetics of Prostate Cancer. MALE REPRODUCTIVE CANCERS 2010:143-180. [DOI: 10.1007/978-1-4419-0449-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
29
|
Hasstedt SJ, Bezemer ID, Callas PW, Vossen CY, Trotman W, Hebbel RP, Demers C, Rosendaal FR, Bovill EG. Cell adhesion molecule 1: a novel risk factor for venous thrombosis. Blood 2009; 114:3084-91. [PMID: 19643986 PMCID: PMC2756210 DOI: 10.1182/blood-2009-05-219485] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 06/19/2009] [Indexed: 01/03/2023] Open
Abstract
Protein C (PC) deficiency increases the risk of venous thrombosis (VT) among members of Kindred Vermont II but fails to fully account for the inheritance pattern. A genome scan of the pedigree supported the presence of a prothrombotic gene on chromosome 11q23 (nominal P < .0001), with weaker support on chromosomes 10p12 (P < .0003) and 18p11.2-q11 (P < .0007). Resequencing of 109 genes in the linkage regions identified 5030 variants in a sample of 20 kindred members. Of 16 single nucleotide polymorphisms in 6 genes tested in the larger family set, only single nucleotide polymorphisms in cell adhesion molecule 1 (CADM1) associated with VT. Among the 8 CADM1 single nucleotide polymorphisms genotyped in the complete sample, rs6589488 was most strongly supported (P < .000007), but the association was limited to the PC-deficient subset of the sample (P < .000001). Haplotype analysis narrowed the region containing the causative variant to the coding region of the CADM1 gene. CADM1 gene expression analyzed in blood outgrowth endothelial cells cultured from family members was decreased compared with control subjects, lending phenotypic support to this conclusion. Finally, we have for the first time demonstrated CADM1 in endothelial cells, where it appears to be selectively involved in endothelial cell migration, suggesting a role in endothelial barrier repair.
Collapse
MESH Headings
- Adult
- Cell Adhesion Molecule-1
- Cell Adhesion Molecules
- Cells, Cultured
- Chromosome Mapping
- Chromosomes, Human, Pair 10/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 18/genetics
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Female
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Genetic Linkage
- Genetic Predisposition to Disease
- Genome, Human
- Genotype
- Haplotypes/genetics
- Humans
- Immunoenzyme Techniques
- Immunoglobulins/genetics
- Male
- Membrane Proteins/genetics
- Pedigree
- Phenotype
- Polymorphism, Single Nucleotide/genetics
- Protein C Deficiency
- Risk Factors
- Tumor Suppressor Proteins/genetics
- Umbilical Veins/cytology
- Umbilical Veins/metabolism
- Venous Thrombosis/genetics
- Venous Thrombosis/pathology
Collapse
Affiliation(s)
- Sandra J Hasstedt
- Department of Human Genetics, University of Utah, Salt Lake City, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
FitzGerald LM, Patterson B, Thomson R, Polanowski A, Quinn S, Brohede J, Thornton T, Challis D, Mackey DA, Dwyer T, Foote S, Hannan GN, Stankovich J, McKay JD, Dickinson JL. Identification of a prostate cancer susceptibility gene on chromosome 5p13q12 associated with risk of both familial and sporadic disease. Eur J Hum Genet 2008; 17:368-77. [PMID: 18830231 DOI: 10.1038/ejhg.2008.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genetic heterogeneity is a difficulty frequently encountered in the search for genes conferring susceptibility to prostate cancer. To circumvent this issue, we selected a large prostate cancer pedigree for genome-wide linkage analysis from a population that is genetically homogeneous. Selected cases and first-degree relatives were genotyped with Affymetrix 10K SNP arrays, identifying a 14 Mb haplotype on chromosome 5 (5p13-q12) inherited identical-by-descent (IBD) by multiple cases. Microsatellite genotyping of additional deceased case samples confirmed that a total of eight cases inherited the common haplotype (P=0.0017). Re-sequencing of eight prioritised candidate genes in the region in six selected individuals identified 15 SNPs segregating with the IBD haplotype, located within the ITGA2 gene. Three of these polymorphisms were selected for genotyping in an independent Tasmanian data set comprising 127 cases with familial prostate cancer, 412 sporadic cases and 319 unaffected controls. Two were associated with prostate cancer risk: rs3212649 (OR=1.67 (1.07-2.6), P=0.0009) and rs1126643 (OR=1.52 (1.01-2.28), P=0.0088). Significant association was observed in both familial and sporadic prostate cancer. Although the functional SNP remains to be identified, considerable circumstantial evidence, provided by in vivo and in vitro studies, supports a role for ITGA2 in tumour development.
Collapse
Affiliation(s)
- Liesel M FitzGerald
- Genetics Unit, Menzies Research Institute, University of Tasmania, Hobart, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hasstedt SJ, Chu WS, Das SK, Wang H, Elbein SC. Type 2 diabetes susceptibility genes on chromosome 1q21-24. Ann Hum Genet 2008; 72:163-9. [PMID: 18269685 DOI: 10.1111/j.1469-1809.2007.00416.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type 2 diabetes (T2D) has been linked to chromosome 1q21-24 in multiple samples, including a Utah family sample. Variants in 13 of the numerous candidate genes in the 1q region were tested for association with T2D in a Utah case-control sample. The most promising, 19 variants in 6 candidates, were genotyped on the Utah family sample. Herein, we tested the 19 variants individually and in pairs for an effect on T2D risk in family members using a logistic regression model that accounted for gender, age, and BMI and attributed residual genetic effects to a polygenic component. Seven variants increased risk significantly through 5 pairs of interactions. The significant variant pairs were apolipoprotein A-II (APOA2) rs6413453 interacting with calsequestrin 1 (CASQ1) rs617698, dual specificity phosphatase 12 (DUSP12) rs1503814, and retinoid X receptor gamma (RXRG) rs10918169, a poly-T insertion-deletion polymorphism in liver pyruvate kinase (PKLR) interacting with APOA2 rs12143180, and DUSP12 rs1027702 interacting with RXRG rs10918169. Genotypes of these 5 variant pairs accounted for 25.8% of the genetic variance in T2D in these pedigrees.
Collapse
Affiliation(s)
- S J Hasstedt
- Department of Human Genetics, University of Utah, 15 N. 2030 E., Salt Lake City, UT 84112, USA.
| | | | | | | | | |
Collapse
|
32
|
Gallus S, Foschi R, Talamini R, Altieri A, Negri E, Franceschi S, Montella M, Dal Maso L, Ramazzotti V, La Vecchia C. Risk factors for prostate cancer in men aged less than 60 years: a case-control study from Italy. Urology 2008; 70:1121-6. [PMID: 18158031 DOI: 10.1016/j.urology.2007.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/02/2007] [Accepted: 07/03/2007] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To analyze the relationship between selected risk factors and prostate cancer risk in men younger than 60 years, using data from a large, multicenter, case-control study conducted in Italy. METHODS Cases were 219 patients, aged 45 to 59 years, with histologically confirmed prostate cancer, and controls were 431 men of the same age group, admitted in hospital for acute, non-neoplastic diseases. RESULTS A family history of prostate cancer (odds ratio [OR] = 5.5), brain cancer (OR = 3.7), and leukemia (OR = 6.2) were associated with prostate cancer risk. A significantly increased risk was found for high education level (OR = 3.3 for 12 or more years versus less than 7 years) and a decreased risk for physical activity (OR = 0.5 for active versus inactive). Coffee consumption was directly associated with risk of prostate cancer (OR = 1.9 for the third versus the first tertile). Bread consumption was directly related (OR = 1.6) and consumption of raw and total vegetables inversely related (OR = 0.6) to prostate cancer risk, although these associations were of borderline significance. No association emerged with marital status, body mass index, history of diabetes, alcohol drinking, and other considered foods. CONCLUSIONS This study confirms that some recognized risk factors, including family history of prostate cancer, high level of education, and low physical activity, are associated with prostate cancer risk in middle-aged men.
Collapse
Affiliation(s)
- Silvano Gallus
- Department of Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ostrander EA, Johannesson B. Prostate cancer susceptibility loci: finding the genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 617:179-90. [PMID: 18497042 DOI: 10.1007/978-0-387-69080-3_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Studies to date suggest that PC is a genetically very heterogeneous disease. High-risk families, in which multiple men are affected likely, reflect the contributions of a number of genes, some that are rare and highly penetrant, while others are more common and weakly penetrant. In this review, we have discussed only the first type of loci, and found that the identification of such genomic regions is a formidable problem. Replication between seemingly similar data sets is weak, likely reflecting the older age of onset associated with the disease, the inability to collect affected individuals from more than two generations in a family, and the variation seen in disease presentation, in addition to the underlying locus heterogeneity. Indeed, the definition of PC is ever changing, as diagnostic criteria and tools for pinpointing early lesions improve. Are we making progress? Clearly the answer is yes. The ability to divide large data sets into homogenous subset of families likely to share common genetic under-pinnings has improved power to identify loci and reproducibility between loci is now more common. Indeed, several groups report linkage to loci on chromosomes 1, 17, 19, and 22. Key to our continued success is our ever increasing ability to understand the disease. Identifying the subset of men who are likely to get clinically significant disease is the goal of genetic studies like these, and identifying the underlying loci is the key for developing diagnostics. The willingness of the community to work together has been an important factor in the successes the community has enjoyed to date, and will likely be as important as we move forward to untangle the genetics of this complex and common disorder.
Collapse
Affiliation(s)
- Elanie A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
34
|
Abstract
Definition of the phenotype is crucial in designing any genetic study, especially an association study, intended to detect the disease predisposing genes. In this chapter, we review the different types of phenotypes such as discrete or continuous and discuss the issues impacting on the phenotype definition related to study design, specifically, the impact of diagnostic error (misclassification) in case-control studies and measurement error in continuous traits. We show that the power of a study depends heavily on the phenotype measured and that misclassification or measurement error can dramatically reduce the power. We also suggest some possible responses to these challenges.
Collapse
Affiliation(s)
- Mary K Wojczynski
- Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
35
|
Fine mapping of familial prostate cancer families narrows the interval for a susceptibility locus on chromosome 22q12.3 to 1.36 Mb. Hum Genet 2007; 123:65-75. [PMID: 18066601 DOI: 10.1007/s00439-007-0451-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 12/02/2007] [Indexed: 10/22/2022]
Abstract
Genetic studies suggest that hereditary prostate cancer is a genetically heterogeneous disease with multiple contributing loci. Studies of high-risk prostate cancer families selected for aggressive disease, analysis of large multigenerational families, and a meta-analysis from the International Consortium for Prostate Cancer Genetics (ICPCG), all highlight chromosome 22q12.3 as a susceptibility locus with strong statistical significance. Recently, two publications have narrowed the 22q12.3 locus to a 2.18 Mb interval using 54 high-risk families from the ICPCG collaboration, as defined by three recombination events on either side of the locus. In this paper, we present the results from fine mapping studies at 22q12.3 using both haplotype and recombination data from 42 high-risk families contributed from the Mayo Clinic and the Prostate Cancer Genetic Research Study (PROGRESS) mapping studies. No clear consensus interval is present when all families are used. However, in the subset of 14 families with >/=5 affected men per family, a 2.53-Mb shared consensus segment that overlaps with the previously published interval is identified. Combining these results with data from the earlier ICPCG study reduces the three-recombination interval at 22q12.3 to approximately 1.36 Mb.
Collapse
|
36
|
Sun J, Turner A, Xu J, Grönberg H, Isaacs W. Genetic variability in inflammation pathways and prostate cancer risk. Urol Oncol 2007; 25:250-9. [PMID: 17483024 DOI: 10.1016/j.urolonc.2006.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genetic susceptibility to prostate cancer has been consistently observed by a large number of studies. Recently, several pieces of evidence obtained from epidemiological and pathological studies support that chronic inflammation in prostate tissues may play a role in prostate cancer development. Multiple genes that play critical roles in inflammatory pathways have been associated with prostate cancer risk. In this article we review the key genetic findings of the associated genes. This includes 2 genes identified through family studies, ribonuclease L (RNASEL) and macrophage scavenger receptor 1 (MSR1), as well as a number of genes suggested by case-control studies, such as macrophage inhibitory cytokine-1 (MIC-1), interleukins (IL-8, IL-10), vascular endothelial growth factor (VEGF), intercellular adhesion molecule (ICAM), and Toll-like receptors (TLR-4, TLR-1-6-10 gene cluster). Overall, recent studies seem to suggest multiple genes work together to increase prostate risk, and this is consistent with the reality that inflammation is a very complex process. Thus, future studies are expected to place an emphasis on the study of gene-gene interactions. Advances in high throughput genotyping, data mining, and algorithm development are needed in order to produce interpretable results.
Collapse
Affiliation(s)
- Jielin Sun
- Center for Human Genomics, Wake Forest University, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
37
|
Suuriniemi M, Agalliu I, Schaid DJ, Johanneson B, McDonnell SK, Iwasaki L, Stanford JL, Ostrander EA. Confirmation of a positive association between prostate cancer risk and a locus at chromosome 8q24. Cancer Epidemiol Biomarkers Prev 2007; 16:809-14. [PMID: 17416775 DOI: 10.1158/1055-9965.epi-06-1049] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Family-based linkage studies, association studies, and studies of tumors have highlighted human chromosome 8q as a genomic region of interest for prostate cancer susceptibility loci. Recently, a locus at 8q24, characterized by both a single nucleotide polymorphism (SNP) and a microsatellite marker, was shown to be associated with prostate cancer risk in Icelandic, Swedish, and U.S. samples. Although the data were provocative, the U.S. samples were not population based, which precludes assessment of the potential contribution of this locus to prostate cancer incidence in the United States. METHODS We analyzed both markers in a population-based, case-control study of middle-aged men from King County, Washington. RESULTS Overall, there was a significant positive association between the A allele of the SNP rs1447295 and prostate cancer risk [odds ratio, 1.4; 95% confidence interval (95% CI), 1.1-2.0] but no significant association with the microsatellite DG8S737. However, significant associations were observed for both markers in men with high Gleason scores. Adjusting for age, first-degree family history of prostate cancer, and prostate cancer screening history, the adjusted odds ratios were 1.4 (95% CI, 1.1-1.8) for the A allele of the SNP and 1.9 (95% CI, 1.2-2.8) for the -10 allele of the microsatellite. CONCLUSIONS These data suggest that the locus on chromosome 8q24 harbors a genetic variant associated with prostate cancer and that the microsatellite marker is a stronger risk factor for aggressive prostate cancers defined by poorly differentiated tumor morphology.
Collapse
Affiliation(s)
- Miia Suuriniemi
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Johanneson B, Deutsch K, McIntosh L, Friedrichsen-Karyadi DM, Janer M, Kwon EM, Iwasaki L, Hood L, Ostrander EA, Stanford JL. Suggestive genetic linkage to chromosome 11p11.2-q12.2 in hereditary prostate cancer families with primary kidney cancer. Prostate 2007; 67:732-42. [PMID: 17372923 DOI: 10.1002/pros.20528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The Seattle-based PROGRESS study was started in 1995 to ascertain hereditary prostate cancer (HPC) families for studies of genetic susceptibility. Subsequent studies by several research groups, including our own, suggest that HPC is a genetically heterogeneous disease. To be successful in mapping loci for such a complex disease, one must consider ways of grouping families into subsets that likely share the same genetic origin. Towards that end, we analyzed a genome-wide scan of HPC families with primary kidney cancer. METHODS An 8.1 cM genome-wide scan including 441 microsatellite markers was analyzed by both parametric and non-parametric linkage approaches in fifteen HPC families with the co-occurrence of kidney cancer. RESULTS There was no evidence for significant linkage in the initial findings. However, two regions of suggestive linkage were observed at 11q12 and 4q21, with HLOD scores of 2.59 and 2.10, respectively. The primary result on chromosome 11 was strengthened after excluding two families with members who had rare transitional cell carcinoma (TCC). Specifically, we observed a non-parametric Kong and Cox P-value of 0.004 for marker D11S1290 at 11p11.2. The 8 cM region between 11p11.2 and 11q12.2 was refined by the addition of 16 new markers. The subset of HPC families with a median age of diagnosis >65 years demonstrated the strongest evidence for linkage, with an HLOD = 2.50. The P-values associated with non-parametric analysis ranged from 0.004 to 0.05 across five contiguous markers. CONCLUSIONS Analysis of HPC families with members diagnosed with primary renal cell carcinoma demonstrates suggestive linkage to chromosome 11p11.2-q12.2.
Collapse
Affiliation(s)
- Bo Johanneson
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang L, McDonnell SK, Slusser JP, Hebbring SJ, Cunningham JM, Jacobsen SJ, Cerhan JR, Blute ML, Schaid DJ, Thibodeau SN. Two common chromosome 8q24 variants are associated with increased risk for prostate cancer. Cancer Res 2007; 67:2944-50. [PMID: 17409399 DOI: 10.1158/0008-5472.can-06-3186] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two variants (rs1447295/DG8S737) of chromosome 8q24 were recently reported to be associated with increased risk of prostate cancer (PC). To confirm this finding, we genotyped and compared the frequencies of these polymorphisms among 1,121 Caucasian men with PC (435 men with familial PC, 491 men with sporadic PC, and 195 men with aggressive PC) to 545 population-based controls. For the single nucleotide polymorphism marker rs1447295, frequencies of the minor allele (A) were 10.3% in controls, 11.9% in sporadic cases, 16.7% in familial cases, and 17.2% in aggressive cases. Compared with controls, the A allele was significantly more common in both familial PC [odds ratios (OR), 1.93; 95% confidence intervals (95% CI), 1.37-2.72; P = 0.0004] and aggressive PC (OR, 1.87; 95% CI, 1.28-2.74; P = 0.0005) but not for sporadic PC (OR, 1.16; 95% CI, 0.85-1.58; P = 0.25). Although the A allele was more frequent in aggressive PC cases when compared with controls, the allele frequencies were similar among cases with high- and low-grade PC (Gleason grades <7 and >/=7, respectively). For the microsatellite marker DG8S737, the -8 allele was significantly more frequent in familial PC (OR, 1.68; 95% CI, 1.09-2.60; P = 0.031), whereas the -10 allele was more frequent in aggressive PC (OR, 2.85; 95% CI, 1.52-5.36; P = 0.0004). Haplotype analysis showed significant differences in haplotype frequencies between the familial PC (P = 0.006) and aggressive PC (P = 0.005) cases versus controls. The -8/A haplotype showed the strongest association with familial PC (P = 0.008), whereas the -10/A haplotype was most strongly associated with aggressive PC (P = 0.00005). These results further confirm the importance of these two polymorphic variants (rs1447295 and DG8S737) as risk factors for PC. However, the mechanism explaining this increased risk has not yet been established.
Collapse
Affiliation(s)
- Liang Wang
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, and Urology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pakkanen S, Baffoe-Bonnie AB, Matikainen MP, Koivisto PA, Tammela TLJ, Deshmukh S, Ou L, Bailey-Wilson JE, Schleutker J. Segregation analysis of 1,546 prostate cancer families in Finland shows recessive inheritance. Hum Genet 2007; 121:257-67. [PMID: 17203302 PMCID: PMC1945246 DOI: 10.1007/s00439-006-0310-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 11/25/2006] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men worldwide and is likely to be caused by a number of genes with different modes of inheritance, population frequencies and penetrance. The objective of this study was to assess the familial aggregation of PCa in a sample of 1,546 nuclear families ascertained through an affected father and diagnosed during 1988-1993, from the unique, founder population-based resource of the Finnish Cancer Registry. Segregation analysis was performed for two cohorts of 557 early-onset and 989 late-onset families evaluating residual paternal effects and assuming that age at diagnosis followed a logistic distribution after log-transformation. The results did not support an autosomal dominant inheritance as has been reported in many of the hospital-based prostatectomy series. Instead, it confirmed the existence of hereditary PCa in the Finnish population under a complex model that included a major susceptibility locus with Mendelian recessive inheritance and a significant paternal regressive coefficient that is indicative of a polygenic/multifactorial component. The strengths of our study are the homogenous Finnish population, large epidemiological population-based data, histologically confirmed cancer diagnosis done before the PSA-era in Finland and registry based approach. Our results support the evidence that the inheritance of PCa is controlled by major genes and are in line with the previous linkage studies. Moreover, this is the first time a recessive inheritance is suggested to fit PCa in all data even when divided to early and late-onset cohorts.
Collapse
Affiliation(s)
- Sanna Pakkanen
- Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere and Tampere University Hospital, Biokatu 8, 33014 Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang X, Wang F, Taniguchi K, Seelan RS, Wang L, Zarfas KE, McDonnell SK, Qian C, Pan K, Lu Y, Shridhar V, Couch FJ, Tindall DJ, Beebe-Dimmer JL, Cooney KA, Isaacs WB, Jacobsen SJ, Schaid DJ, Thibodeau SN, Liu W. Truncating variants in p53AIP1 disrupting DNA damage-induced apoptosis are associated with prostate cancer risk. Cancer Res 2006; 66:10302-7. [PMID: 17079449 DOI: 10.1158/0008-5472.can-06-0638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Germ line mutations in several genes (BRCA1, BRCA2, and CHEK2) whose products are involved in the DNA damage-signaling pathway have been implicated in prostate cancer risk. To identify additional genes in this pathway that might confer susceptibility to this cancer, we analyzed a recently identified DNA damage-response gene, p53AIP1 (a gene encoding for p53-regulated apoptosis-inducing protein 1), for genetic variants in prostate cancer. Five novel germ line variants were identified. The two truncating variants (Ser(32)Stop and Arg(21)insG) were found in 3% (4 of 132) of unselected prostate tumor samples. Genotyping of the two variants in an additional 393 men with sporadic prostate cancer showed a frequency of 3.1% (12 of 393) in contrast to 0.6% (2 of 327) in 327 unaffected men (Fisher's exact test, P = 0.018), with an odds ratio (OR) of 5.1 [95% confidence interval (95% CI), 1.1-23.0]. In addition, two of six tumors carrying the truncating variants were associated with loss of heterozygosity of the wild-type alleles, suggesting that p53AIP1 may act as a tumor suppressor. We also showed that the truncated p53AIP1 was unable to induce apoptosis and suppress cell growth in HeLa and COS-7 cells. These results suggest that loss-of-function variants in p53AIP1 associated with the risk of sporadic prostate cancer and further support the concept that the genetic defects in the DNA damage-response genes play an important role in the development of prostate cancer.
Collapse
Affiliation(s)
- Xianshu Wang
- Department of Laboratory Medicine, Mayo Clinic/Mayo Clinical Medical College, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lange EM, Ho LA, Beebe-Dimmer JL, Wang Y, Gillanders EM, Trent JM, Lange LA, Wood DP, Cooney KA. Genome-wide linkage scan for prostate cancer susceptibility genes in men with aggressive disease: significant evidence for linkage at chromosome 15q12. Hum Genet 2006; 119:400-7. [PMID: 16508751 DOI: 10.1007/s00439-006-0149-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/23/2006] [Indexed: 01/02/2023]
Abstract
Epidemiological and twin studies have consistently demonstrated a strong genetic component to prostate cancer (PCa) susceptibility. To date, numerous linkage studies have been performed to identify chromosomal regions containing PCa susceptibility genes. Unfortunately, results from these studies have failed to form any obvious consensus regarding which regions are most likely to contain genes that may contribute to PCa predisposition. One plausible explanation for the difficulty in mapping susceptibility loci is the existence of considerable heterogeneity in the phenotype of PCa, with significant variation in clinical stage and grade of disease even among family members. To address this issue, we performed a genome-wide linkage scan on 71 informative families with two or more men with aggressive PCa. When only men with aggressive PCa were coded as affected, statistically significant evidence for linkage at chromosome 15q12 was detected (LOD=3.49; genome-wide p=0.005). Furthermore, the evidence for linkage increased when analyses were restricted to Caucasian-American pedigrees (n=65; LOD=4.05) and pedigrees with two confirmed aggressive cases (n=42, LOD=4.76). Interestingly, a 1-LOD support interval about our peak at 15q12 overlaps a region of suggestive linkage, 15q11, identified by a recent linkage study on 1,233 PCa families by the International Consortium for Prostate Cancer Genetics. Using a more rigid definition of PCa in linkage studies will result in a severe reduction in sample sizes available for study, but may ultimately prove to increase statistical power to detect susceptibility genes for this multigenic trait.
Collapse
Affiliation(s)
- Ethan M Lange
- Department of Genetics, University of North Carolina, 4300D MBRB, CB# 7264, 103 Mason Farm Road, Chapel Hill, NC 27599-7264, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Stanford JL, McDonnell SK, Friedrichsen DM, Carlson EE, Kolb S, Deutsch K, Janer M, Hood L, Ostrander EA, Schaid DJ. Prostate cancer and genetic susceptibility: a genome scan incorporating disease aggressiveness. Prostate 2006; 66:317-25. [PMID: 16245279 DOI: 10.1002/pros.20349] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostate cancer is a heterogeneous disease, both genetically and phenotypically. Linkage studies attempting to map genes for hereditary prostate cancer (HPC) have proved challenging, and one potential problem contributing to this challenge is the variability in disease phenotypes. METHODS We collected clinical data on 784 affected men with prostate cancer from 248 HPC families for whom a genomic screen was performed. Disease characteristics (i.e., Gleason score, stage, prostate-specific antigen (PSA)) were used to classify affected men into categories of clinically insignificant, moderate, or aggressive prostate cancer. To potentially enrich for a genetic etiology, we restricted linkage analyses to only men with aggressive disease, although we used genotype information from all family members; linkage analyses used both dominant and recessive models. In addition, subset analyses considered age at diagnosis, number of affected men per family and other stratifications to try to increase genetic homogeneity. RESULTS Several regions of interest (heterogeneity LOD score, HLOD>1.0) were identified in families (n=123) with >or=2 affecteds with aggressive prostate cancer. "Suggestive" linkage was observed at chromosome 22q11.1 (Dominant model HLOD=2.18) and the result was stronger (Dominant HLOD=2.75) in families with evidence of male-to-male transmission. A second region at 22q12.3-q13.1 was also highlighted (Recessive model HLOD=1.90) among men with aggressive disease, as was a region on chromosome 18. CONCLUSIONS These analyses suggest that using clinically defined phenotypes may be a useful approach for simplifying the locus heterogeneity problems that confound the search for prostate cancer susceptibility genes.
Collapse
Affiliation(s)
- Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, and Department of Epidemiology, School of Public Health and Community Medicine, University of Washington, Seattle, Washington 98109-1024, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chang BL, Lange EM, Dimitrov L, Valis CJ, Gillanders EM, Lange LA, Wiley KE, Isaacs SD, Wiklund F, Baffoe-Bonnie A, Langefeld CD, Zheng SL, Matikainen MP, Ikonen T, Fredriksson H, Tammela T, Walsh PC, Bailey-Wilson JE, Schleutker J, Gronberg H, Cooney KA, Isaacs WB, Suh E, Trent JM, Xu J. Two-locus genome-wide linkage scan for prostate cancer susceptibility genes with an interaction effect. Hum Genet 2005; 118:716-24. [PMID: 16328469 DOI: 10.1007/s00439-005-0099-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Prostate cancer represents a significant worldwide public health burden. Epidemiological and genetic epidemiological studies have consistently provided data supporting the existence of inherited prostate cancer susceptibility genes. Segregation analyses of prostate cancer suggest that a multigene model may best explain familial clustering of this disease. Therefore, modeling gene-gene interactions in linkage analysis may improve the power to detect chromosomal regions harboring these disease susceptibility genes. In this study, we systematically screened for prostate cancer linkage by modeling two-locus gene-gene interactions for all possible pairs of loci across the genome in 426 prostate cancer families from Johns Hopkins Hospital, University of Michigan, University of Umeå, and University of Tampere. We found suggestive evidence for an epistatic interaction for six sets of loci (target chromosome-wide/reference marker-specific P< or =0.0001). Evidence for these interactions was found in two independent subsets from within the 426 families. While the validity of these results requires confirmation from independent studies and the identification of the specific genes underlying this linkage evidence, our approach of systematically assessing gene-gene interactions across the entire genome represents a promising alternative approach for gene identification for prostate cancer.
Collapse
Affiliation(s)
- Bao-Li Chang
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Maier C, Herkommer K, Hoegel J, Vogel W, Paiss T. A genomewide linkage analysis for prostate cancer susceptibility genes in families from Germany. Eur J Hum Genet 2005; 13:352-60. [PMID: 15536476 DOI: 10.1038/sj.ejhg.5201333] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is a complex disease with a substantial genetic contribution involved in the disease risk. Several genomewide linkage studies conducted so far have demonstrated a strong heterogeneity of susceptibility. In order to assess candidate regions that are particularly relevant for the German population, we performed a genomewide linkage search on 139 prostate cancer families. A nonparametric method (Zlr scores), using GENEHUNTERPLUS, was applied at 500 markers (panel P1400, deCODE), with an average spacing of 7.25 cM. In the entire family collection, linkage was most evident at 8p22 (Zlr=2.47, P=0.0068), close to the previously identified susceptibility gene MSR1. Further local maxima with Zlr>2 (P<0.025) were observed at 1q, 5q and 15q. In a subgroup of 47 families, which matched the Johns Hopkins criteria of hereditary prostate cancer, suggestive linkage was found on 1p31 (Zlr=3.37, P=0.00038), a previously not described candidate region. The remaining 92 pedigrees, with no strong disease history, revealed a maximum Zlr=3.15 (P=0.00082) at 8q13, possibly indicating a gene with reduced penetrance or recessive inheritance. Our results suggest pronounced locus heterogeneity of prostate cancer susceptibility in Germany. In the present study population, the MSR1 gene could play a significant role. Other conspicuous loci, like 1p31 and 8q13, need further investigation in order to verify their relevance and to identify candidate genes.
Collapse
|
46
|
Schaid DJ, Chang BL. Description of the International Consortium For Prostate Cancer Genetics, and failure to replicate linkage of hereditary prostate cancer to 20q13. Prostate 2005; 63:276-90. [PMID: 15599943 DOI: 10.1002/pros.20198] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The International Consortium for Prostate Cancer Genetics (ICPCG) is an international collaborative effort to pool pedigrees with hereditary prostate cancer (PC) in order to replicate linkage findings for PC. A strength of the ICPCG is the large number of well-characterized pedigrees, allowing linkage analyses within large subsets. Given the heterogeneity and complexity of PC, the historical difficulties of synthesizing different studies reporting positive and negative linkage replication, and the use of different statistical analysis methods and different stratification criteria, the ICPCG provides a valuable resource to evaluate linkage for hereditary PC. To date, linkage of chromosome 20 (HPC20) to hereditary PC has been one of the strongest linkage signals, yet the efforts to replicate this linkage have been limited. This paper reports a linkage analysis of chromosome 20 markers for 1,234 pedigrees with multiple cases of PC ascertained through the ICPCG, and represents the most thorough attempt to confirm or refute linkage to chromosome 20. From the original 158 Mayo pedigrees in which linkage was detected, the maximum heterogeneity LOD (HLOD) score, under a recessive model, was 2.78. In contrast, for the 1,076 pedigrees not included in the original study, the maximum HLOD score (recessive model) was 0.06. Although, a few small linkage signals for chromosome 20 were found in various strata of this pooled analysis, this large study failed to replicate linkage to HPC20. This study illustrates the value of the ICPCG family collection to evaluate reported linkage signals and suggests that the HPC20 region does not make a major contribution to PC susceptibility.
Collapse
Affiliation(s)
- Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | |
Collapse
|
47
|
Chen CF, Lee WC. Case recruitment in genetic association studies: larger sample size or greater homogeneity? Int J Epidemiol 2005; 34:711. [PMID: 15833787 DOI: 10.1093/ije/dyi086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
48
|
Schaid DJ, Guenther JC, Christensen GB, Hebbring S, Rosenow C, Hilker CA, McDonnell SK, Cunningham JM, Slager SL, Blute ML, Thibodeau SN. Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility Loci. Am J Hum Genet 2004; 75:948-65. [PMID: 15514889 PMCID: PMC1182157 DOI: 10.1086/425870] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 09/08/2004] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is one of the most common cancers among men and has long been recognized to occur in familial clusters. Brothers and sons of affected men have a 2-3-fold increased risk of developing prostate cancer. However, identification of genetic susceptibility loci for prostate cancer has been extremely difficult. Although the suggestion of linkage has been reported for many chromosomes, the most promising regions have been difficult to replicate. In this study, we compare genome linkage scans using microsatellites with those using single-nucleotide polymorphisms (SNPs), performed in 467 men with prostate cancer from 167 families. For the microsatellites, the ABI Prism Linkage Mapping Set version 2, with 402 microsatellite markers, was used, and, for the SNPs, the Early Access Affymetrix Mapping 10K array was used. Our results show that the presence of linkage disequilibrium (LD) among SNPs can lead to inflated LOD scores, and this seems to be an artifact due to the assumption of linkage equilibrium that is required by the current genetic-linkage software. After excluding SNPs with high LD, we found a number of new LOD-score peaks with values of at least 2.0 that were not found by the microsatellite markers: chromosome 8, with a maximum model-free LOD score of 2.2; chromosome 2, with a LOD score of 2.1; chromosome 6, with a LOD score of 4.2; and chromosome 12, with a LOD score of 3.9. The LOD scores for chromosomes 6 and 12 are difficult to interpret, because they occurred only at the extreme ends of the chromosomes. The greatest gain provided by the SNP markers was a large increase in the linkage information content, with an average information content of 61% for the SNPs, versus an average of 41% for the microsatellite markers. The strengths and weaknesses of microsatellite versus SNP markers are illustrated by the results of our genome linkage scans.
Collapse
Affiliation(s)
- Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Prostate cancer is a heterogeneous disease with multiple loci contributing to susceptibility. Traditionally, genome-wide scans using high-risk families have utilized stratification by number of affected individuals, family history of other cancers, or family age at diagnosis to improve genetic homogeneity. In addition to locus heterogeneity, for later onset diseases such as prostate cancer, a major limitation to mapping efforts is that key parental DNA samples are rarely available. The lack of available samples from upper generations reduces inheritance information, and as a result, the standard 10-cM genome scan does not provide full power to detect linkage. To increase the ability to find disease-associated loci, much denser genome-wide scans must be undertaken in multiple ethnic groups. In addition, new ways of defining homogenous subsets of families need to be developed.
Collapse
Affiliation(s)
- Elaine A Ostrander
- Division of Clinical Research1, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | |
Collapse
|
50
|
Fournier G, Valeri A, Mangin P, Cussenot O. Cancer de la prostate. Épidémiologie. Facteurs de risques. Anatomopathologie. ACTA ACUST UNITED AC 2004; 38:187-206. [PMID: 15570704 DOI: 10.1016/j.anuro.2004.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer (prostate adenocarcinoma) has become an important concern in terms of public health these past fifteen years; recent French epidemiological data revealed 10,104 deaths due to this disease in 2000. The two main factors involved are the serum prostatic specific antigen (PSA), routinely used since late 1980's and which allows early diagnosis (before symptom onset), and the lengthened duration of life. Such cancer is rare before the age of 50, but its frequency increases with age, making it the most frequent type of cancer in French men. Although the aetiology of this disease is unknown, the ethnic origin, and a familial history of prostate or breast cancer are known risk factors. Predisposing genes to such hereditary types remain to be identified. Other genetic factors (polymorphisms), combined with environmental factors such as nutrition, have been incriminated, which is likely to explain the geographical variations of this affection. At the molecular level, the mechanisms involved in the tumoral initiation and progression remain unclear. Various genetic alterations have been identified among the genome of cancerous cells, at various stages of the affection: intraepithelial neoplasia, localized, locally advanced, metastatic or hormone refractory stage -, hormonal escape). However, the precise sequence and nature of the complex molecular events remain to be determined prior to their routine utilisation in the determination of subjects at risk, or as prognostic factors, and even as therapeutic targets. The anatomopathology is a key for the diagnosis. Intraepithelial neoplasia is the pre-cancerous lesion observed in most adenocarcinomas; these are localized in the peripheral part of the prostate gland in 70% of the cases. Gleason's classification is the current gold standard for the determination of tumoral aggressiveness and categorisation of the adenocarcinomas which are basically heterogeneous (coexistence of tumors cells with different degrees of differenciation in the same tumor). This anatomopathological classification allows distinguishing the tumours in terms of potential progressiveness and prognosis, and hence, to orientate the therapeutic strategy in case of localised or locally advanced prostate cancer.
Collapse
Affiliation(s)
- G Fournier
- Service d'urologie, Centre hospitalier universitaire de Brest, hôpital de la Cavale Blanche, boulevard Tanguy-Prigent, 29609 Brest, France.
| | | | | | | |
Collapse
|