1
|
Hernández-Ramírez LC, Perez-Rivas LG, Theodoropoulou M, Korbonits M. An Update on the Genetic Drivers of Corticotroph Tumorigenesis. Exp Clin Endocrinol Diabetes 2024; 132:678-696. [PMID: 38830604 DOI: 10.1055/a-2337-2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The genetic landscape of corticotroph tumours of the pituitary gland has dramatically changed over the last 10 years. Somatic changes in the USP8 gene account for the most common genetic defect in corticotrophinomas, especially in females, while variants in TP53 or ATRX are associated with a subset of aggressive tumours. Germline defects have also been identified in patients with Cushing's disease: some are well-established (MEN1, CDKN1B, DICER1), while others are rare and could represent coincidences. In this review, we summarise the current knowledge on the genetic drivers of corticotroph tumorigenesis, their molecular consequences, and their impact on the clinical presentation and prognosis.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
2
|
Alassiri AH, Alfayea TM, Aljared TI, Alenezi KR. Sporadic subependymal giant cell astrocytoma with somatic TSC2 mutation: A case report. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2024; 29:139-143. [PMID: 38740392 PMCID: PMC11305366 DOI: 10.17712/nsj.2024.2.20230089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Subependymal giant cell astrocytoma (SEGA) is a rare circumscribed astrocytic glioma that occurs in approximately 25% of all tuberous sclerosis (TSC) cases. Herein, we discuss an atypical presentation of SEGA, including the genetic alterations, impact on clinical presentation, and the determinants of each medical and surgical treatment option. A 14-year-old girl presented with intermittent headache and a right intraventricular mass originating near the foramen of Monro. The tumor's proximity to critical structures necessitated maximum safe resection, which improved her symptoms. Histological findings indicated SEGA, and genetic sequencing revealed a TSC2 mutation. However, complete clinical and radiological evaluations failed to reveal TSC. Two months later, a new subependymal nodule was incidentally found. She had a recurrent left occipital horn lesion and diffuse smooth leptomeningeal enhancement with no spine drop metastases. She was administered everolimus as the tumor was considered unresectable. Subsequent imaging revealed a reduction in both residual and new lesions.
Collapse
Affiliation(s)
- Ali H. Alassiri
- From the College of Medicine (Alassiri, Alfayea), King Saud bin Abdulaziz University for Health Sciences, from the Department of Pathology and Laboratory Medicine (Alassiri), Department of Oncology (Alfayea), Department of Surgery (Aljared), Department of Medical Imaging (Alenezi), King Abdulaziz Medical City, and from the King Abdullah International Medical Research Center (Alassiri, Alfayea), Riyadh, Kingdom of Saudi Arabia
| | - Turki M. Alfayea
- From the College of Medicine (Alassiri, Alfayea), King Saud bin Abdulaziz University for Health Sciences, from the Department of Pathology and Laboratory Medicine (Alassiri), Department of Oncology (Alfayea), Department of Surgery (Aljared), Department of Medical Imaging (Alenezi), King Abdulaziz Medical City, and from the King Abdullah International Medical Research Center (Alassiri, Alfayea), Riyadh, Kingdom of Saudi Arabia
| | - Tariq I. Aljared
- From the College of Medicine (Alassiri, Alfayea), King Saud bin Abdulaziz University for Health Sciences, from the Department of Pathology and Laboratory Medicine (Alassiri), Department of Oncology (Alfayea), Department of Surgery (Aljared), Department of Medical Imaging (Alenezi), King Abdulaziz Medical City, and from the King Abdullah International Medical Research Center (Alassiri, Alfayea), Riyadh, Kingdom of Saudi Arabia
| | - Khaled R. Alenezi
- From the College of Medicine (Alassiri, Alfayea), King Saud bin Abdulaziz University for Health Sciences, from the Department of Pathology and Laboratory Medicine (Alassiri), Department of Oncology (Alfayea), Department of Surgery (Aljared), Department of Medical Imaging (Alenezi), King Abdulaziz Medical City, and from the King Abdullah International Medical Research Center (Alassiri, Alfayea), Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
4
|
Thakkar K, Raveena F, Kumar A, Mal D, Kumar D, Ahuja N, Mandhan R, Baig A, Singh M, Shah H, Sajjad T, Singh M. Giant Retinal Astrocytoma: A Case Report of an Uncommon Presentation of Tuberous Sclerosis in a Young Female. Case Rep Neurol Med 2024; 2024:5559615. [PMID: 38694182 PMCID: PMC11062765 DOI: 10.1155/2024/5559615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024] Open
Abstract
Tuberous sclerosis (TS) is a rare multisystem autosomal dominant genetic disorder with characteristic pathognomonic genetic mutations involving the TSC (tuberous sclerosis complex) group of genes. Ocular signs are fairly common and include an achromic patch and retinal astrocytic hamartomas, which usually have a maximum size of between 0.5 and 5 mm. The incidence of tuberous sclerosis is estimated to be 1 in 5000-10,000 individuals, with both familial and sporadic cases reported. The diagnostic criteria for tuberous sclerosis include the presence of major and/or minor clinical features as well as genetic mutations. We present the case of a 15-year-old girl, presented with a history of seizures and blurred vision. Physical examination revealed angiofibroma on the face. Further evaluation, including contrast-enhanced MRI of the brain and ophthalmological consultation, led to the diagnosis of tuberous sclerosis. Additional imaging studies confirmed the presence of subependymal giant cell astrocytoma, retinal astrocytoma, lymphangioleiomyomatosis in the lungs, and renal angiomyolipoma. This case highlights the importance of considering tuberous sclerosis in patients presenting with seizures and ocular symptoms. This case sheds light on early diagnosis and appropriate management which are crucial in preventing complications and improving patient outcomes.
Collapse
Affiliation(s)
| | - Fnu Raveena
- Ghulam Muhammad Mahar Medical College, Sukkur University, Larkana, Pakistan
| | - Aakash Kumar
- Liaquat National Medical College, Karachi, Pakistan
| | - Doongro Mal
- Dow University of Health Sciences, Karachi, Pakistan
| | - Dileep Kumar
- Liaquat University of Medical & Health Sciences, Karachi, Pakistan
| | - Neha Ahuja
- Chandka Medical College, Larkana, Pakistan
| | | | - Aqsa Baig
- Liaquat National Medical College, Karachi, Pakistan
| | | | - Heeya Shah
- University of South Carolina, Lancaster, PA, USA
| | - Taha Sajjad
- Mountain Vista Medical Center, Phoenix, AZ, USA
| | - Mansi Singh
- Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
5
|
Ye Z, Lin S, Zhao X, Wallis M, Gao X, Sun L, Wu J, Duan J, Yao Y, Li L, Chen L, Cao D, Hu Z, Zhang VW, Berkovic SF, Scheffer IE, Liao J, Hildebrand MS. Are Germline Mosaic TSC1/2 Variants Present in Controls? Implications for Diagnosis. Pediatr Neurol 2024; 150:37-39. [PMID: 37951160 DOI: 10.1016/j.pediatrneurol.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Affiliation(s)
- Zimeng Ye
- Department of Medicine, Epilepsy Research Centre, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Sufang Lin
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Xia Zhao
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Mathew Wallis
- Tasmania Clinical Genetics Service, Royal Hobart Hospital, Hobart, Tasmania, Australia; School of Medicine, University of Tasmania, Hobart, Tasmania, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Austin Health, Heidelberg, Victoria, Australia
| | - Xinyi Gao
- AmCare Genomics Laboratory, Guangzhou, Guangdong Province, China
| | - Li Sun
- AmCare Genomics Laboratory, Guangzhou, Guangdong Province, China
| | - Jiarui Wu
- AmCare Genomics Laboratory, Guangzhou, Guangdong Province, China
| | - Jing Duan
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Yi Yao
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Lin Li
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Li Chen
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Dezhi Cao
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Zhanqi Hu
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Victor W Zhang
- AmCare Genomics Laboratory, Guangzhou, Guangdong Province, China
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, The University of Melbourne, Heidelberg, Victoria, Australia; Austin Health, Heidelberg, Victoria, Australia
| | - Ingrid E Scheffer
- Department of Medicine, Epilepsy Research Centre, The University of Melbourne, Heidelberg, Victoria, Australia; Austin Health, Heidelberg, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia; The Florey Institute, Parkville, Victoria, Australia.
| | - Jianxiang Liao
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.
| | - Michael S Hildebrand
- Department of Medicine, Epilepsy Research Centre, The University of Melbourne, Heidelberg, Victoria, Australia; Austin Health, Heidelberg, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Elbeltagy M, Abbassy M. Neurofibromatosis type1, type 2, tuberous sclerosis and Von Hippel-Lindau disease. Childs Nerv Syst 2023; 39:2791-2806. [PMID: 37819506 DOI: 10.1007/s00381-023-06160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023]
Abstract
Neurocutaneous syndromes (also known as phakomatoses) are heterogenous group of disorders that involve derivatives of the neuroectoderm. Each disease has diagnostic and pathognomonic criteria, once identified, thorough clinical examination to the patient and the family members should be done. Magnetic resonance imaging (MRI) is used to study the pathognomonic findings withing the CNS (Evans et al. in Am J Med Genet A 152A:327-332, 2010). This chapter includes the 4 most common syndromes faced by neurosurgeons and neurologists; neurofibromatosis types 1 and 2, tuberous sclerosis and Von Hippel-Lindau disease. Each syndrome has specific genetic anomaly that involves a tumor suppressor gene and the loss of inhibition of specific pathways. The result is a spectrum of cutaneous manifestations and neoplasms.
Collapse
Affiliation(s)
- M Elbeltagy
- Department of Neurosurgery, Cairo University, 1 University Street, Giza Governorate, 12613, Egypt.
- Department of Neurosurgery, Children's Cancer Hospital Egypt, Sekat Hadid Al Mahger, Zeinhom, El Sayeda Zeinab, Cairo Governorate, 4260102, Egypt.
| | - M Abbassy
- Department of Neurosurgery, Children's Cancer Hospital Egypt, Sekat Hadid Al Mahger, Zeinhom, El Sayeda Zeinab, Cairo Governorate, 4260102, Egypt
- Department of Neurosurgery, Alexandria University, 22 El-Gaish Rd, Al Azaritah WA Ash Shatebi, Bab Sharqi, Alexandria Governorate, 5424041, Egypt
| |
Collapse
|
7
|
Pietrobon A, Stanford WL. Tuberous Sclerosis Complex Kidney Lesion Pathogenesis: A Developmental Perspective. J Am Soc Nephrol 2023; 34:1135-1149. [PMID: 37060140 PMCID: PMC10356159 DOI: 10.1681/asn.0000000000000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
The phenotypic diversity of tuberous sclerosis complex (TSC) kidney pathology is enigmatic. Despite a well-established monogenic etiology, an incomplete understanding of lesion pathogenesis persists. In this review, we explore the question: How do TSC kidney lesions arise? We appraise literature findings in the context of mutational timing and cell-of-origin. Through a developmental lens, we integrate the critical results from clinical studies, human specimens, and genetic animal models. We also review novel insights gleaned from emerging organoid and single-cell sequencing technologies. We present a new model of pathogenesis which posits a phenotypic continuum, whereby lesions arise by mutagenesis during development from variably timed second-hit events. This model can serve as a conceptual framework for testing hypotheses of TSC lesion pathogenesis, both in the kidney and in other affected tissues.
Collapse
Affiliation(s)
- Adam Pietrobon
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Giannikou K, Martin KR, Abdel-Azim AG, Pamir KJ, Hougard TR, Bagwe S, Tang Y, MacKeigan JP, Kwiatkowski DJ, Henske EP, Lam HC. Spectrum of germline and somatic mitochondrial DNA variants in Tuberous Sclerosis Complex. Front Genet 2023; 13:917993. [PMID: 36793390 PMCID: PMC9923026 DOI: 10.3389/fgene.2022.917993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/23/2022] [Indexed: 02/03/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) is caused by loss of function variants in either TSC1 or TSC2 and is characterized by broad phenotypic heterogeneity. Currently, there is limited knowledge regarding the role of the mitochondrial genome (mtDNA) in TSC pathogenesis. In this study, we aimed to determine the prevalence and spectrum of germline and somatic mtDNA variants in TSC and identify potential disease modifiers. Analysis of mtDNA amplicon massively parallel sequencing (aMPS) data, off-target mtDNA from whole-exome sequencing (WES), and/or qPCR, revealed mtDNA alterations in 270 diverse tissues (139 TSC-associated tumors and 131 normal tissue samples) from 199 patients and six healthy individuals. Correlation of clinical features to mtDNA variants and haplogroup analysis was done in 102 buccal swabs (age: 20-71 years). No correlation was found between clinical features and either mtDNA variants or haplogroups. No pathogenic variants were identified in the buccal swab samples. Using in silico analysis, we identified three predicted pathogenic variants in tumor samples: MT-ND4 (m.11742G>A, p. Cys328Tyr, VAF: 43%, kidney angiomyolipoma), MT-CYB (m.14775T>C, p. Leu10Pro, VAF: 43%, LAM abdominal tumor) and MT-CYB (m.15555C>T, p. Pro270Leu, VAF: 7%, renal cell carcinoma). Large deletions of the mitochondrial genome were not detected. Analysis of tumors from 23 patients with corresponding normal tissue did not reveal any recurrent tumor-associated somatic variants. The mtDNA/gDNA ratio between tumors and corresponding normal tissue was also unchanged. Overall, our findings demonstrate that the mitochondrial genome is highly stable across tissues and within TSC-associated tumors.
Collapse
Affiliation(s)
- Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Hematology/Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Katie R. Martin
- Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ahmad G. Abdel-Azim
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Kaila J. Pamir
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Thomas R. Hougard
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Shefali Bagwe
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Yan Tang
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeffrey P. MacKeigan
- Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - David J. Kwiatkowski
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Elizabeth P. Henske
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Hilaire C. Lam
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Ye Z, Lin S, Zhao X, Bennett MF, Brown NJ, Wallis M, Gao X, Sun L, Wu J, Vedururu R, Witkowski T, Gardiner F, Stutterd C, Duan J, Mullen SA, McGillivray G, Bodek S, Valente G, Reagan M, Yao Y, Li L, Chen L, Boys A, Adikari TN, Cao D, Hu Z, Beshay V, Zhang VW, Berkovic SF, Scheffer IE, Liao J, Hildebrand MS. Mosaicism in tuberous sclerosis complex: Lowering the threshold for clinical reporting. Hum Mutat 2022; 43:1956-1969. [PMID: 36030538 DOI: 10.1002/humu.24454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/20/2022] [Accepted: 08/21/2022] [Indexed: 01/25/2023]
Abstract
Tuberous sclerosis complex (TSC) is a multi-system genetic disorder. Most patients have germline mutations in TSC1 or TSC2 but, 10%-15% patients do not have TSC1/TSC2 mutations detected on routine clinical genetic testing. We investigated the contribution of low-level mosaic TSC1/TSC2 mutations in unsolved sporadic patients and families with TSC. Thirty-one sporadic TSC patients negative on routine testing and eight families with suspected parental mosaicism were sequenced using deep panel sequencing followed by droplet digital polymerase chain reaction. Pathogenic variants were found in 22/31 (71%) unsolved sporadic patients, 16 were mosaic (median variant allele fraction [VAF] 6.8% in blood) and 6 had missed germline mutations. Parental mosaicism was detected in 5/8 families (median VAF 1% in blood). Clinical testing laboratories typically only report pathogenic variants with allele fractions above 10%. Our findings highlight the critical need to change laboratory practice by implementing higher sensitivity assays to improve diagnostic yield, inform patient management and guide reproductive counseling.
Collapse
Affiliation(s)
- Zimeng Ye
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Sufang Lin
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Xia Zhao
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Mark F Bennett
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Natasha J Brown
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Mathew Wallis
- Austin Health, Heidelberg, Victoria, Australia
- Tasmania Clinical Genetics Service, Royal Hobart Hospital, Tasmania, Australia
- School of Medicine, University of Tasmania, Tasmania, Australia
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Xinyi Gao
- AmCare Genomics Laboratory, Guangzhou, Guangdong Province, China
| | - Li Sun
- AmCare Genomics Laboratory, Guangzhou, Guangdong Province, China
| | - Jiarui Wu
- AmCare Genomics Laboratory, Guangzhou, Guangdong Province, China
| | - Ravikiran Vedururu
- Molecular Diagnostic Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tom Witkowski
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Fiona Gardiner
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Chloe Stutterd
- Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria, Australia
- Austin Health, Heidelberg, Victoria, Australia
| | - Jing Duan
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Saul A Mullen
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
- Austin Health, Heidelberg, Victoria, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Simon Bodek
- Austin Health, Heidelberg, Victoria, Australia
| | | | - Matthew Reagan
- Department of Medicine, Peninsula Health, Monash University, Frankston, Victoria, Australia
| | - Yi Yao
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Lin Li
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Li Chen
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Amber Boys
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Thiuni N Adikari
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
- School of Medicine, University of Tasmania, Tasmania, Australia
| | - Dezhi Cao
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Zhanqi Hu
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Victoria Beshay
- Molecular Diagnostic Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Victor W Zhang
- AmCare Genomics Laboratory, Guangzhou, Guangdong Province, China
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
- Austin Health, Heidelberg, Victoria, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Austin Health, Heidelberg, Victoria, Australia
- The Florey Institute, Parkville, Victoria, Australia
| | - Jianxiang Liao
- Department of Neurology, Epilepsy Centre, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
10
|
Litwa K. Shared mechanisms of neural circuit disruption in tuberous sclerosis across lifespan: Bridging neurodevelopmental and neurodegenerative pathology. Front Genet 2022; 13:997461. [PMID: 36506334 PMCID: PMC9732432 DOI: 10.3389/fgene.2022.997461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
Tuberous Sclerosis (TS) is a rare genetic disorder manifesting with multiple benign tumors impacting the function of vital organs. In TS patients, dominant negative mutations in TSC1 or TSC2 increase mTORC1 activity. Increased mTORC1 activity drives tumor formation, but also severely impacts central nervous system function, resulting in infantile seizures, intractable epilepsy, and TS-associated neuropsychiatric disorders, including autism, attention deficits, intellectual disability, and mood disorders. More recently, TS has also been linked with frontotemporal dementia. In addition to TS, accumulating evidence implicates increased mTORC1 activity in the pathology of other neurodevelopmental and neurodegenerative disorders. Thus, TS provides a unique disease model to address whether developmental neural circuit abnormalities promote age-related neurodegeneration, while also providing insight into the therapeutic potential of mTORC1 inhibitors for both developing and degenerating neural circuits. In the following review, we explore the ability of both mouse and human brain organoid models to capture TS pathology, elucidate disease mechanisms, and shed light on how neurodevelopmental alterations may later contribute to age-related neurodegeneration.
Collapse
Affiliation(s)
- Karen Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| |
Collapse
|
11
|
Chen JL, Miller DT, Schmidt LS, Malkin D, Korf BR, Eng C, Kwiatkowski DJ, Giannikou K. Mosaicism in Tumor Suppressor Gene Syndromes: Prevalence, Diagnostic Strategies, and Transmission Risk. Annu Rev Genomics Hum Genet 2022; 23:331-361. [PMID: 36044908 DOI: 10.1146/annurev-genom-120121-105450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A mosaic state arises when pathogenic variants are acquired in certain cell lineages during postzygotic development, and mosaic individuals may present with a generalized or localized phenotype. Here, we review the current state of knowledge regarding mosaicism for eight common tumor suppressor genes-NF1, NF2, TSC1, TSC2, PTEN, VHL, RB1, and TP53-and their related genetic syndromes/entities. We compare and discuss approaches for comprehensive diagnostic genetic testing, the spectrum of variant allele frequency, and disease severity. We also review affected individuals who have no mutation identified after conventional genetic analysis, as well as genotype-phenotype correlations and transmission risk for each tumor suppressor gene in full heterozygous and mosaic patients. This review provides new insight into similarities as well as marked differences regarding the appreciation of mosaicism in these tumor suppressor syndromes.
Collapse
Affiliation(s)
- Jillian L Chen
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; .,Boston University School of Medicine, Boston, Massachusetts, USA
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - David J Kwiatkowski
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; .,Division of Hematology and Oncology, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California, USA;
| |
Collapse
|
12
|
Renal organoid modeling of tuberous sclerosis complex reveals lesion features arise from diverse developmental processes. Cell Rep 2022; 40:111048. [PMID: 35793620 DOI: 10.1016/j.celrep.2022.111048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a multisystem tumor-forming disorder caused by loss of TSC1 or TSC2. Renal manifestations predominately include cysts and angiomyolipomas. Despite a well-described monogenic etiology, the cellular pathogenesis remains elusive. We report a genetically engineered human renal organoid model that recapitulates pleiotropic features of TSC kidney disease in vitro and upon orthotopic xenotransplantation. Time course single-cell RNA sequencing demonstrates that loss of TSC1 or TSC2 affects multiple developmental processes in the renal epithelial, stromal, and glial compartments. First, TSC1 or TSC2 ablation induces transitional upregulation of stromal-associated genes. Second, epithelial cells in the TSC1-/- and TSC2-/- organoids exhibit a rapamycin-insensitive epithelial-to-mesenchymal transition. Third, a melanocytic population forms exclusively in TSC1-/- and TSC2-/- organoids, branching from MITF+ Schwann cell precursors. Together, these results illustrate the pleiotropic developmental consequences of biallelic inactivation of TSC1 or TSC2 and offer insight into TSC kidney lesion pathogenesis.
Collapse
|
13
|
Yang XY, Meng Y, Wang YY, Lu YP, Wang QH, You YQ, Xie XX, Bai L, Fang N, Zou LP. Noninvasive prenatal diagnosis based on cell-free DNA for tuberous sclerosis: A pilot study. Mol Genet Genomic Med 2022; 10:e1952. [PMID: 35429229 PMCID: PMC9266619 DOI: 10.1002/mgg3.1952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Noninvasive prenatal diagnosis (NIPD) based on cell-free DNA (cfDNA) has been introduced into the clinical application for some monogenic disorders but not for tuberous sclerosis (TSC) yet, which is an autosomal dominant disease caused by various variations in TSC1 or TSC2 gene. We aimed to explore the feasibility of NIPD on TSC. METHODS We recruited singleton pregnancies at risk of TSC from 14 families with a proband child. Definitive NIPD for TSC was performed using targeted next-generation sequencing of cfDNA in parallel with maternal white blood cell DNA (wbcDNA). The NIPD results were validated by amniocentesis or postnatal gene testing and follow-up of the born children. RESULTS Missense mutations, nonsense mutations, frameshift mutations, and splice-site variants which were obtained through de-novo, maternal, or paternal inheritance were included. The mean and minimum gestational weeks of NIPD were 17.18 ± 5.83 and 8 weeks, respectively. The NIPD results were 100% consistent with the amniocentesis or postnatal gene testing and follow-up of the born children. CONCLUSION This study demonstrates that NIPD based on cfDNA is feasible for TSC, but required to be confirmed with more samples. Studies on TSC can contribute to the application and promotion of NIPD for monogenic disorders.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Medical School of Chinese PLA General Hospital, Beijing, China.,Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Meng
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang-Yang Wang
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Ping Lu
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiu-Hong Wang
- Medical School of Chinese PLA General Hospital, Beijing, China.,Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Qin You
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Xiao Xie
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ling Bai
- Beijing Scisoon Biotechnology Co., Ltd, Beijing, China
| | - Nan Fang
- Beijing Scisoon Biotechnology Co., Ltd, Beijing, China
| | - Li-Ping Zou
- Medical School of Chinese PLA General Hospital, Beijing, China.,Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
The Genetics and Diagnosis of Pediatric Neurocutaneous Disorders: Neurofibromatosis and Tuberous Sclerosis Complex. Clin Dermatol 2022; 40:374-382. [PMID: 35248688 DOI: 10.1016/j.clindermatol.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurofibromatosis (NF) and tuberous sclerosis complex (TSC) are the two most common neurocutaneous disorders, both transmitted as autosomal dominant or, in the case of NF, also as a mosaic condition. The causative genetic mutations in these neurocutaneous disorders can lead to benign skin changes or uninhibited growth and proliferation in multiple organ systems due to the loss of tumor suppression in mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. Common clinical features in NF include pigmented lesions, known as café au lait patches, neurofibromas, intertriginous freckles (Crowe's sign), and benign fibrous growths, such as hamartomas in multiple organ systems. Common clinical features in TSC include hypopigmented macules, known as ash leaf spots, in addition to neurologic sequelae, such as autism, seizures, and developmental delays. Advances in genetic sequencing technologies have allowed an exponential expansion in the understanding of NF and TSC. Consensus criteria have been established for both diagnoses that can be confirmed in most cases through gene testing. Once diagnosed, the clinical and diagnostic value of disease-specific surveillance include early identification of benign and malignant tumors. Genetic counseling is important for informed reproductive decision-making for patients and at-risk family members. The improvement in understanding of pathways of pathogenic disease development and oncogenesis in both conditions have produced a new series of therapeutic options that can be used to control seizures and tumor growth. Tremendous advances in life expectancy and quality of life are now a reality due to early introduction of seizure control and novel medications. While we lack cures, early institution of interventions, such as seizure control in tuberous sclerosis, appears to be disease-modifying and holds immense promise to offer patients better lives.
Collapse
|
15
|
Pareja F, Ptashkin RN, Brown DN, Derakhshan F, Selenica P, da Silva EM, Gazzo AM, Da Cruz Paula A, Breen K, Shen R, Marra A, Zehir A, Benayed R, Berger MF, Ceyhan-Birsoy O, Jairam S, Sheehan M, Patel U, Kemel Y, Casanova-Murphy J, Schwartz CJ, Vahdatinia M, Comen E, Borsu L, Pei X, Riaz N, Abramson DH, Weigelt B, Walsh MF, Hadjantonakis AK, Ladanyi M, Offit K, Stadler ZK, Robson ME, Reis-Filho JS, Mandelker D. Cancer Causative Mutations Occurring in Early Embryogenesis. Cancer Discov 2021; 12:949-957. [DOI: 10.1158/2159-8290.cd-21-1110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/21/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
|
16
|
Ganapathy A, Diaz EJ, Coleman JT, Mackey KA. Tumor Syndromes: Neurosurgical Evaluation and Management. Neurosurg Clin N Am 2021; 33:91-104. [PMID: 34801146 DOI: 10.1016/j.nec.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are multiple syndromes associated with tumors of the central nervous system (CNS). The most common CNS tumor syndrome is neurofibromatosis-1, with well-defined major and minor criteria needed for diagnosis. Other syndromes with variable degree of CNS and extra-CNS involvement that the neurosurgeon should be aware of include neurofibromatosis-2; Turcot syndrome; Cowden syndrome; Gorlin syndrome; Li-Fraumeni syndrome; ataxia-telangiectasia; multiple endocrine neoplasia type 1; von Hippel-Lindau syndrome; and tuberous sclerosis complex. Although most CNS tumor syndromes follow an autosomal dominant pattern of inheritance, the genetic underpinnings of each disease are complex and increasingly better understood.
Collapse
Affiliation(s)
- Aravinda Ganapathy
- Washington University School of Medicine, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | - Elizabeth Juarez Diaz
- Washington University School of Medicine, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | - Justin T Coleman
- South Georgia Medical Center, 2409 North Patterson Street, Suite 210, Valdosta, GA 31605, USA
| | - Kimberly A Mackey
- South Georgia Medical Center, 2409 North Patterson Street, Suite 210, Valdosta, GA 31605, USA; Department of Neurosurgery, Children's Hospital of the King's Daughters, 601 Children's Ln, Norfolk, VA 23507, USA.
| |
Collapse
|
17
|
Somatic Mosaicism and Autism Spectrum Disorder. Genes (Basel) 2021; 12:genes12111699. [PMID: 34828306 PMCID: PMC8619103 DOI: 10.3390/genes12111699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a genetically heterogenous neurodevelopmental disorder. In the early years of next-generation sequencing, de novo germline variants were shown to contribute to ASD risk. These germline mutations are present in all of the cells of an affected individual and can be detected in any tissue, including clinically accessible DNA sources such as blood or saliva. In recent years, studies have also implicated de novo somatic variants in ASD risk. These somatic mutations arise postzygotically and are present in only a subset of the cells of an affected individual. Depending on the developmental time and progenitor cell in which a somatic mutation occurs, it may be detectable in some tissues and not in others. Somatic mutations detectable at relatively low sequencing coverage in clinically accessible tissues are suggested to contribute to 3-5% of simplex ASD diagnoses, and "brain limited" somatic mutations have been identified in postmortem ASD brain tissue. Somatic mutations likely represent the genetic diagnosis in a proportion of otherwise unexplained individuals with ASD, and brain limited somatic mutations can be used as markers to discover risk genes, cell types, brain regions, and cellular pathways important for ASD pathogenesis and to potentially target for therapeutics.
Collapse
|
18
|
Ikeda KM, House AA, Connaughton DM, Pautler SE, Siu VM, Jones ML. Potential Pitfalls in Pre-implantation Genetic Diagnosis in a Patient with Tuberous Sclerosis and Isolated Mosaicism for a TSC2 Variant in Renal Tissue. Mol Syndromol 2021; 12:154-158. [PMID: 34177431 DOI: 10.1159/000513326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that displays a wide spectrum of clinical manifestations, often affecting multiple organs including the kidneys, brain, lungs, and skin. A pathogenic mutation in either the TSC1 or TSC2 gene can be detected in almost 85% of the cases, with mosaicism accounting for about half of the remaining cases. We report a case of TSC diagnosed clinically, requesting genetic counselling regarding reproductive risks. No mutation was identified on initial testing of peripheral blood; however, mosaicism for a likely pathogenic frameshift variant in TSC2 was detected at a level of 15% in renal angiomyolipoma tissue. Despite widespread clinical manifestations of TCS, this variant was not detected in skin fibroblasts or saliva, raising the possibility this is an isolated somatic mutation in renal tissue with the underlying germline mutation not yet identified. This case highlights the difficulties when counselling patients with mosaicism regarding their reproductive risks and prenatal diagnostic options.
Collapse
Affiliation(s)
- Kristin M Ikeda
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, Ontario, Canada.,Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Andrew A House
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Dervla M Connaughton
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Stephen E Pautler
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Surgery, London Health Sciences Centre, London, Ontario, Canada
| | - Victoria Mok Siu
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Division of Medical Genetics, Department of Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - Michelle-Lee Jones
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, Ontario, Canada.,Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Zhen L, Guo J, Jiang F, Xu LL, Zhang VW, Li DZ. Prenatal phenotypic discordance in monozygotic twins due to a postzygotic TSC2 variant. Prenat Diagn 2020; 41:207-209. [PMID: 33074564 DOI: 10.1002/pd.5850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Jie Guo
- AmCare Genomics Laboratory, Guangzhou, China
| | - Fan Jiang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Li-Li Xu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | | | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Jansen AML, Goel A. Mosaicism in Patients With Colorectal Cancer or Polyposis Syndromes: A Systematic Review. Clin Gastroenterol Hepatol 2020; 18:1949-1960. [PMID: 32147591 PMCID: PMC7725418 DOI: 10.1016/j.cgh.2020.02.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Somatic mosaicism, in which variants arise post-zygotically and are therefore not present in all cells in the body, may be an underestimated cause of colorectal cancer (CRC) and polyposis syndromes. We performed a systematic review to provide a comprehensive overview of somatic mosaicism in patients with CRC and polyposis syndromes. METHODS We searched PubMed through March 2018 to identify reports of mosaicism in patients with CRC or polyposis syndromes. We divided the final set of studies into 3 subgroups describing APC mosaicism, mosaicism in other CRC susceptibility genes, and epigenetic mosaicism. RESULTS Of the 232 articles identified in our systematic search, 46 met the criteria for further analysis. Of these, 35 studies described mosaic variants or epimutations in patients with CRC or polyposis syndromes. Nineteen studies described APC mosaicism, comprising a total of 57 patients. Six described mosaicism in genes associated with familial CRC syndromes, such as Lynch and Cowden syndromes. Ten studies described epigenetic mosaicism, sometimes resulting from a germline variant (such as deletion of EPCAM). CONCLUSIONS We found that somatic mosaicism is underdiagnosed but critical for determining the clinical management of patients with de novo polyposis who possibly carry mosaic APC variants, and present a decision tree for the clinical management of these patients. Mosaicism in genes associated with susceptibility to CRC contributes to development of other familial CRC syndromes. Heritable epigenetic mosaicism is likely underestimated and could have a dominant pattern of inheritance. However, the inheritance of primary mosaic epimutations, without an underlying genetic cause, is complex and not fully understood.
Collapse
Affiliation(s)
- Anne Maria Lucia Jansen
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Dallas, Texas
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Dallas, Texas; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California.
| |
Collapse
|
21
|
Feliciano DM. The Neurodevelopmental Pathogenesis of Tuberous Sclerosis Complex (TSC). Front Neuroanat 2020; 14:39. [PMID: 32765227 PMCID: PMC7381175 DOI: 10.3389/fnana.2020.00039] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a model disorder for understanding brain development because the genes that cause TSC are known, many downstream molecular pathways have been identified, and the resulting perturbations of cellular events are established. TSC, therefore, provides an intellectual framework to understand the molecular and biochemical pathways that orchestrate normal brain development. The TSC1 and TSC2 genes encode Hamartin and Tuberin which form a GTPase activating protein (GAP) complex. Inactivating mutations in TSC genes (TSC1/TSC2) cause sustained Ras homologue enriched in brain (RHEB) activation of the mammalian isoform of the target of rapamycin complex 1 (mTORC1). TOR is a protein kinase that regulates cell size in many organisms throughout nature. mTORC1 inhibits catabolic processes including autophagy and activates anabolic processes including mRNA translation. mTORC1 regulation is achieved through two main upstream mechanisms. The first mechanism is regulation by growth factor signaling. The second mechanism is regulation by amino acids. Gene mutations that cause too much or too little mTORC1 activity lead to a spectrum of neuroanatomical changes ranging from altered brain size (micro and macrocephaly) to cortical malformations to Type I neoplasias. Because somatic mutations often underlie these changes, the timing, and location of mutation results in focal brain malformations. These mutations, therefore, provide gain-of-function and loss-of-function changes that are a powerful tool to assess the events that have gone awry during development and to determine their functional physiological consequences. Knowledge about the TSC-mTORC1 pathway has allowed scientists to predict which upstream and downstream mutations should cause commensurate neuroanatomical changes. Indeed, many of these predictions have now been clinically validated. A description of clinical imaging and histochemical findings is provided in relation to laboratory models of TSC that will allow the reader to appreciate how human pathology can provide an understanding of the fundamental mechanisms of development.
Collapse
Affiliation(s)
- David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
22
|
Pfirmann P, Aupy J, Jambon E, Idier L, Prezelin-Reydit M, Fermis M, Devillard R, Grenier N, Combe C, Rigothier C. Description of a multidisciplinary model of care in a French cohort of adult patients with tuberous sclerosis complex. J Med Genet 2020; 58:25-31. [PMID: 32409510 DOI: 10.1136/jmedgenet-2019-106607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/07/2020] [Accepted: 03/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a rare autosomal dominant genetic disorder. Due to the various manifestations of TSC and their potential complications, a multidisciplinary care approach is recommended by consensus guidelines. OBJECTIVES Our study aimed to give a complete description of our TSC adult cohort and to evaluate the multidisciplinary and interdisciplinary management model. METHODS Data on each adult patient diagnosed with TSC, including disease manifestations, interventions and outcomes, were collected at baseline and updated annually. A multidisciplinary TSC approach with all the recommended explorations was carried out annually. RESULTS 90 patients were enrolled in Centre Hospitalier Universitaire de Bordeaux, between January 2000 and September 2018. Median age of patients at inclusion was 37 years (range, 27-47) and 20 years old at diagnosis of TSC. Regarding the occurrence of TSC manifestations, 97% of the patients had cutaneous lesions, 89% had neurological manifestations, 83% had renal manifestations and 100% had dental lesions with pits. More than half the patients had sclerotic bone lesions (68%), TSC-associated neuropsychiatric disorders (64%) and lymphangioleiomyomatosis (59%). A TSC multidisciplinary approach was developed including a global follow-up and an evaluation of TSC targeting organs, according to the recommendations. A satisfaction survey revealed global and entire satisfaction of patients with TSC. CONCLUSION We obtained an accurate description of a cohort of adult patients with TSC. Our multidisciplinary approach model allowed us to provide optimal management of patients with TSC with a high level of patient satisfaction.
Collapse
Affiliation(s)
- Pierre Pfirmann
- Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France .,Tissue Bioengineering, BioTis, U1026, INSERM DR Aquitaine Poitou-Charentes, Bordeaux, France
| | - Jerome Aupy
- Service de Neurologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Eva Jambon
- Service d'Imagerie Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Laetitia Idier
- Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Association pour l'Utilisation du Rein Artificiel a Domicile en Aquitaine, Gradignan, France
| | - Mathilde Prezelin-Reydit
- Association pour l'Utilisation du Rein Artificiel a Domicile en Aquitaine, Gradignan, France.,ISPED, INSERM, Bordeaux Population Health Research Center, Bordeaux, France
| | - Marine Fermis
- Service de Médecine Bucco-Dentaire, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Raphael Devillard
- Tissue Bioengineering, BioTis, U1026, INSERM DR Aquitaine Poitou-Charentes, Bordeaux, France.,Service de Médecine Bucco-Dentaire, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Nicolas Grenier
- Service d'Imagerie Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Christian Combe
- Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Tissue Bioengineering, BioTis, U1026, INSERM DR Aquitaine Poitou-Charentes, Bordeaux, France
| | - Claire Rigothier
- Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Tissue Bioengineering, BioTis, U1026, INSERM DR Aquitaine Poitou-Charentes, Bordeaux, France
| |
Collapse
|
23
|
Fohlen M, Harzallah I, Polivka M, Giuliano F, Pons L, Streichenberger N, Dorfmüller G, Touraine R. Identification of TSC1 or TSC2 mutation limited to the tumor in three cases of solitary subependymal giant cell astrocytoma using next-generation sequencing technology. Childs Nerv Syst 2020; 36:961-965. [PMID: 32103336 DOI: 10.1007/s00381-020-04551-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/19/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE Subependymal giant-cell astrocytomas (SEGAs) are low grade intraventricular tumors typically found in patients with tuberous sclerosis complex (TSC). The occurrence of SEGA in non TSC patients is very rare and from a genetic point of view these so-called solitary SEGA are thought to result either from somatic mutations in one of the TSC genes (TSC1 or TSC2) limited to the tumor, or be part of a "forme fruste" of TSC with somatic mosaicism. We report on three new cases of solitary SEGA with germline and somatic mutation analysis. METHODS We retrospectively analyzed TSC genes in three patients with a solitary SEGA using next-generation sequencing technique. RESULTS In the three patients, a somatic mutation of TSC1 or TSC2 was found only in the tumor cells: one patient had a TSC1 heterozygote mutation, involving the natural acceptor splicing site of intron 15 (c.1998-1G > A (p.?). Two patients had a TSC2 mutation located in the canonical splicing donor site of intron 5 (c.599 + 1G > A) in 70% of the alleles in one patient and in exon 9: c.949_955dup7 (p.V319DfxX21) in 25 of the alleles in the second patient. No other TSC mutations were found in patient's blood or tumor and those identified mutations were absent in blood DNA from parents and siblings. CONCLUSION We therefore conclude that solitary SEGA can occur with a TSC1 or TSC2 mutation limited to the tumor in patients without TSC.
Collapse
Affiliation(s)
- Martine Fohlen
- Service de neurochirurgie pediatrique, Foundation Rothschild Hospital, Paris, France.
| | - Ines Harzallah
- Service de Génétique Clinique, Chromosomique et Moléculaire, Centre de Compétence des Epilepsies rares (CReER), CHU-Hôpital Nord, Saint Etienne, France
| | - Marc Polivka
- Service d'anatomie et cytologie pathologiques, Hôpital Lariboisière, Paris, France
| | - Fabienne Giuliano
- Service de génétique, Centre Hospitalier Universitaire, Nice, France
| | - Linda Pons
- Service de Génétique, Centre de Référence des Épilepsies Rares (CReER), Hôpital Femme Mère Enfant, Bron, France
| | - Nathalie Streichenberger
- Centre de Pathologie et Neuropathologie Est, Hospices Civils de Lyon; Université Claude Bernard Lyon1, Lyon, France
- Institut NeuroMyogène, CNRS UMR 5310-INSERM U1217, Villeurbanne, France
| | - Georg Dorfmüller
- Service de neurochirurgie pediatrique, Foundation Rothschild Hospital, Paris, France
| | - Renaud Touraine
- Service de Génétique Clinique, Chromosomique et Moléculaire, Centre de Compétence des Epilepsies rares (CReER), CHU-Hôpital Nord, Saint Etienne, France
| |
Collapse
|
24
|
Lannoy N, Hermans C. Genetic mosaicism in haemophilia: A practical review to help evaluate the risk of transmitting the disease. Haemophilia 2020; 26:375-383. [PMID: 32267612 DOI: 10.1111/hae.13975] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/29/2022]
Abstract
Approximately 70% of patients with haemophilia exhibit a clear inheritance pattern, while for the remaining 30%, patients are the first to be diagnosed in their family and are considered sporadic cases. In such a setting, the determination of carrier status and the risk estimation of disease transmission to another child are major challenges for genetic counselling. Large studies have suggested that genetic testing reveals 70% of sporadic patients' mothers are carriers. In the remaining 30%, in some apparently non-carrier mothers, the pathogenic variant can be detected as low somatic and gonosomal mosaicism. The significance of mosaic pathogenic variants has thus far been underestimated, since conventional Sanger sequencing and other technology are not sufficiently sensitive. The study of various tissue samples and recent extra-sensitive molecular methods have now made it easier to detect both single-nucleotide variants (SNVs) and copy-number variants (CNVs), at a mosaic level in parents, and to predict the probability of disease recurrence. This review seeks to examine various kinds of mosaicism in haemophilia, including the mechanisms by which they arise and the risk of passing these variants on to the next generation. In addition, we focus on the selection of cell tissues and methods to detect these mosaic variants in the haemophilia setting. Taking into account the high rate of mosaicism in mothers of sporadic cases, we propose a diagnostic flow chart that could facilitate better evaluation of the risk of transmitting haemophilia in genetic and prenatal counselling.
Collapse
Affiliation(s)
- Nathalie Lannoy
- Division of Adult Haematology, Haemophilia Center, Saint-Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Cedric Hermans
- Division of Adult Haematology, Haemophilia Center, Saint-Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
25
|
Low-level mosaicism in tuberous sclerosis complex: prevalence, clinical features, and risk of disease transmission. Genet Med 2019; 21:2639-2643. [PMID: 31160751 DOI: 10.1038/s41436-019-0562-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To examine the prevalence and spectrum of mosaic variant allele frequency (MVAF) in tuberous sclerosis complex (TSC) patients with low-level mosaicism and correlate genetic findings with clinical features and transmission risk. METHODS Massively parallel sequencing was performed on 39 mosaic TSC patients with 170 different tissue samples. RESULTS TSC mosaic patients (MVAF: 0-10%, median 1.7% in blood DNA) had a milder and distinct clinical phenotype in comparison with other TSC series, with similar facial angiofibromas (92%) and kidney angiomyolipomas (83%), and fewer seizures, cortical tubers, and multiple other manifestations (p < 0.0001 for six features). MVAF of TSC1/TSC2 pathogenic variants was highly variable in different tissue samples. Remarkably, skin lesions were the most reliable tissue for variant identification, and 6 of 39 (15%) patients showed no evidence of the variant in blood. Semen analysis showed absence of the variant in 3 of 5 mosaic men. The expected distribution of MVAF in comparison with that observed here suggests that there is a considerable number of individuals with low-level mosaicism for a TSC2 pathogenic variant who are not recognized clinically. CONCLUSION Our findings provide information on variability in MVAF and risk of transmission that has broad implications for other mosaic genetic disorders.
Collapse
|
26
|
Salussolia CL, Klonowska K, Kwiatkowski DJ, Sahin M. Genetic Etiologies, Diagnosis, and Treatment of Tuberous Sclerosis Complex. Annu Rev Genomics Hum Genet 2019; 20:217-240. [PMID: 31018109 DOI: 10.1146/annurev-genom-083118-015354] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that affects multiple organ systems due to an inactivating variant in either TSC1 or TSC2, resulting in the hyperactivation of the mechanistic target of rapamycin (mTOR) pathway. Dysregulated mTOR signaling results in increased cell growth and proliferation. Clinically, TSC patients exhibit great phenotypic variability, but the neurologic and neuropsychiatric manifestations of the disease have the greatest morbidity and mortality. TSC-associated epilepsy occurs in nearly all patients and is often difficult to treat because it is refractory to multiple antiseizure medications. The advent of mTOR inhibitors offers great promise in the treatment of TSC-associated epilepsy and other neurodevelopmental manifestations of the disease; however, the optimal timing of therapeutic intervention is not yet fully understood.
Collapse
Affiliation(s)
- Catherine L Salussolia
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Katarzyna Klonowska
- Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
27
|
Genomic mosaicism: A neglected factor that promotes variability in asthma diagnosis. Med Hypotheses 2019; 127:112-115. [PMID: 31088633 DOI: 10.1016/j.mehy.2019.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 11/22/2022]
Abstract
To elucidate the genetic architecture of asthma continues to be a challenge for molecular biologists and medical researchers. However, powerful genomic technologies are at disposal to help decipher complete human genomes; the genetic variability in asthma hinders the discovery of common molecular markers for this disease. In this context, we purpose to explore genomic mosaicism on asthma cells' biology as a strategy to discover key mechanisms, which can complement or re-define asthma diagnosis. Recent evidences showed that genomic mosaicism could be a normal event. In brains, each neuron may harbor hundreds of genetic alterations, which may contribute to neuronal diversity. Thus, can mosaicism be a natural motor of diversity in asthma? Why this genetic event is little described in scientific literature? To discuss these questions, we perform a critical review about the normality of genomic mosaicism; moreover, we examine the difficulty of current experimental approaches to detect different genotypes in cell populations of one individual.
Collapse
|
28
|
Volpi A, Sala G, Lesma E, Labriola F, Righetti M, Alfano RM, Cozzolino M. Tuberous sclerosis complex: new insights into clinical and therapeutic approach. J Nephrol 2018; 32:355-363. [PMID: 30406604 DOI: 10.1007/s40620-018-0547-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Tuberous sclerosis complex (TSC) is a complex disease with many different clinical manifestations. Despite the common opinion that TSC is a rare condition, with a mean incidence of 1/6000 live births and a prevalence of 1/20,000, it is increasingly evident that in reality this is not true. Its clinical sequelae span a range of multiple organ systems, in particular the central nervous system, kidneys, skin and lungs. The management of TSC patients is heavily burdensome in terms of time and healthcare costs both for the families and for the healthcare system. Management options include conservative approaches, surgery, pharmacotherapy with mammalian target of rapamycin inhibitors and recently proposed options such as therapy with anti-EGFR antibody and ultrasound-guided percutaneous microwaves. So far, however, no systematically accepted strategy has been found that is both clinically and economically efficient. Thus, decisions are tailored to patients' characteristics, resource availability and clinical and technical expertise of each single center. This paper reviews the pathophysiology and the clinical (diagnostic-therapeutic) management of TSC.
Collapse
Affiliation(s)
- Angela Volpi
- Laboratory of Experimental Nephrology, Renal Division, Dipartimento di Scienze della Salute, San Paolo Hospital, Università di Milano, Via A. di Rudinì, 8, 20142, Milan, Italy
| | - Gabriele Sala
- Laboratory of Experimental Nephrology, Renal Division, Dipartimento di Scienze della Salute, San Paolo Hospital, Università di Milano, Via A. di Rudinì, 8, 20142, Milan, Italy
| | - Elena Lesma
- Clinical Pharmacology Unit, San Paolo Hospital, Milan, Italy
| | | | | | | | - Mario Cozzolino
- Laboratory of Experimental Nephrology, Renal Division, Dipartimento di Scienze della Salute, San Paolo Hospital, Università di Milano, Via A. di Rudinì, 8, 20142, Milan, Italy.
| |
Collapse
|
29
|
Jónsson H, Sulem P, Arnadottir GA, Pálsson G, Eggertsson HP, Kristmundsdottir S, Zink F, Kehr B, Hjorleifsson KE, Jensson BÖ, Jonsdottir I, Marelsson SE, Gudjonsson SA, Gylfason A, Jonasdottir A, Jonasdottir A, Stacey SN, Magnusson OT, Thorsteinsdottir U, Masson G, Kong A, Halldorsson BV, Helgason A, Gudbjartsson DF, Stefansson K. Multiple transmissions of de novo mutations in families. Nat Genet 2018; 50:1674-1680. [DOI: 10.1038/s41588-018-0259-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/19/2018] [Indexed: 11/09/2022]
|
30
|
Somatic mosaicism and neurodevelopmental disease. Nat Neurosci 2018; 21:1504-1514. [PMID: 30349109 DOI: 10.1038/s41593-018-0257-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022]
Abstract
Traditionally, we have considered genetic mutations that cause neurodevelopmental diseases to be inherited or de novo germline mutations. Recently, we have come to appreciate the importance of de novo somatic mutations, which occur postzygotically and are thus present in only a subset of the cells of an affected individual. The advent of next-generation sequencing and single-cell sequencing technologies has shown that somatic mutations contribute to normal and abnormal human brain development. Somatic mutations are one important cause of neuronal migration and brain overgrowth disorders, as suggested by visible focal lesions. In addition, somatic mutations contribute to neurodevelopmental diseases without visible lesions, including epileptic encephalopathies, intellectual disability, and autism spectrum disorder, and may contribute to a broad range of neuropsychiatric diseases. Studying somatic mutations provides insight into the mechanisms underlying human brain development and neurodevelopmental diseases and has important implications for diagnosis and treatment.
Collapse
|
31
|
Byers HM, Jensen DM, Glass IA, Bennett JT. Minimal mosaicism, maximal phenotype: Discordance between clinical and molecular findings in two patients with tuberous sclerosis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:374-378. [DOI: 10.1002/ajmg.c.31656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Heather M. Byers
- Division of Medical Genetics, Department of PediatricsStanford University School of Medicine Stanford California
| | - Dana M. Jensen
- Center for Developmental Biology and Regenerative MedicineSeattle Children's Research Institute Seattle Washington
| | - Ian A. Glass
- Department of Pediatrics, Division of Genetic MedicineUniversity of Washington School of Medicine Seattle Washington
| | - James T. Bennett
- Center for Developmental Biology and Regenerative MedicineSeattle Children's Research Institute Seattle Washington
- Department of Pediatrics, Division of Genetic MedicineUniversity of Washington School of Medicine Seattle Washington
| |
Collapse
|
32
|
Happle R. The concept of type 2 segmental mosaicism, expanding from dermatology to general medicine. J Eur Acad Dermatol Venereol 2018; 32:1075-1088. [PMID: 29405433 DOI: 10.1111/jdv.14838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
In autosomal dominant skin disorders, the well-known type 1 segmental mosaicism reflects heterozygosity for a postzygotic new mutation. By contrast, type 2 segmental mosaicism originates in a heterozygous embryo from an early postzygotic mutational event giving rise to loss of the corresponding wild-type allele, which results in a pronounced segmental involvement being superimposed on the ordinary, non-segmental phenotype. Today, this concept has been proven by molecular analysis in many cutaneous traits. The purpose of this review was to seek publications of cases suggesting an extracutaneous manifestation of type 2 segmental mosaicism. Case reports documenting a pronounced extracutaneous segmental involvement were collected from the literature available in PubMed and from personal communications to the author. Pertinent cases are compared to the description of cutaneous segmental mosaicism of type 1 or type 2 as reported in a given trait. In total, reports suggesting extracutaneous type 2 segmental mosaicism were found in 14 different autosomal dominant skin disorders. In this way, clinical evidence is accumulated that extracutaneous type 2 segmental mosaicism does likewise occur in many autosomal dominant skin disorders. So far, however, molecular proof of this particular form of mosaicism is lacking. The present review may stimulate readers to inform colleagues of other specialties on this new concept, in order to initiate further research in this particular field of knowledge that has important implications for diagnosis, treatment and genetic counselling.
Collapse
Affiliation(s)
- R Happle
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Abstract
Tuberous sclerosis complex (TSC) is an autosomal-dominant or sporadic multisystem disorder that results from mutations in either TSC1 or TSC2. The primary organs affected include the brain, skin, lung, kidney, and heart, all with variable frequency, penetrance, and severity. There are over 2000 known allelic variants for TSC, including nonsense and misssense mutation, and all pathogenic mutations are inactivating, leading to loss-of-function effects on the encoded proteins, TSC1 and TSC2. These proteins form a complex to constitutively inhibit the mammalian target of rapamycin (mTOR) signaling cascade, and as a consequence, mTOR signaling is constitutively active within all TSC-associated lesions. The mTOR inhibitors rapamycin (sirolimus) and everolimus have been shown to reduce renal and brain lesion size, and improve pulmonary function in TSC, and these compounds may also decrease seizure frequency. The clinical application of mTOR inhibitors in TSC has provided one of the first examples of precision medicine in a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Daphne M Hasbani
- Section of Neurology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
34
|
Martin KR, Zhou W, Bowman MJ, Shih J, Au KS, Dittenhafer-Reed KE, Sisson KA, Koeman J, Weisenberger DJ, Cottingham SL, DeRoos ST, Devinsky O, Winn ME, Cherniack AD, Shen H, Northrup H, Krueger DA, MacKeigan JP. The genomic landscape of tuberous sclerosis complex. Nat Commun 2017. [PMID: 28643795 PMCID: PMC5481739 DOI: 10.1038/ncomms15816] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disease causing multisystem growth of benign tumours and other hamartomatous lesions, which leads to diverse and debilitating clinical symptoms. Patients are born with TSC1 or TSC2 mutations, and somatic inactivation of wild-type alleles drives MTOR activation; however, second hits to TSC1/TSC2 are not always observed. Here, we present the genomic landscape of TSC hamartomas. We determine that TSC lesions contain a low somatic mutational burden relative to carcinomas, a subset feature large-scale chromosomal aberrations, and highly conserved molecular signatures for each type exist. Analysis of the molecular signatures coupled with computational approaches reveals unique aspects of cellular heterogeneity and cell origin. Using immune data sets, we identify significant neuroinflammation in TSC-associated brain tumours. Taken together, this molecular catalogue of TSC serves as a resource into the origin of these hamartomas and provides a framework that unifies genomic and transcriptomic dimensions for complex tumours.
Collapse
Affiliation(s)
- Katie R Martin
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, USA
| | - Wanding Zhou
- Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, USA
| | - Megan J Bowman
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, USA
| | - Juliann Shih
- Cancer Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Kit Sing Au
- Department of Pediatrics, University of Texas Health Science Center at Houston-McGovern Medical School, 6431 Fannin, Houston, Texas 77030, USA
| | - Kristin E Dittenhafer-Reed
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, USA
| | - Kellie A Sisson
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, USA
| | - Julie Koeman
- Cytogenetics and Pathology Core, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, USA
| | - Daniel J Weisenberger
- Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, California 90033, USA
| | - Sandra L Cottingham
- Department of Pathology, Spectrum Health System, 100 Michigan Street NE, Grand Rapids, Michigan 49503, USA
| | - Steven T DeRoos
- Division of Pediatric Neurology, Helen DeVos Children's Hospital, Spectrum Health System, 100 Michigan Street NE, Grand Rapids, Michigan 49503, USA
| | - Orrin Devinsky
- Department of Neurology, New York University School of Medicine, 223 E 34 Street, New York, New York 10016, USA
| | - Mary E Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, USA
| | - Andrew D Cherniack
- Cancer Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Hui Shen
- Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, USA
| | - Hope Northrup
- Department of Pediatrics, University of Texas Health Science Center at Houston-McGovern Medical School, 6431 Fannin, Houston, Texas 77030, USA
| | - Darcy A Krueger
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Jeffrey P MacKeigan
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, USA.,College of Human Medicine, Michigan State University, 220 Trowbridge Road, East Lansing, Michigan 48824, USA
| |
Collapse
|
35
|
Kennedy RA, Thavaraj S, Diaz-Cano S. An Overview of Autosomal Dominant Tumour Syndromes with Prominent Features in the Oral and Maxillofacial Region. Head Neck Pathol 2017; 11:364-376. [PMID: 28110467 PMCID: PMC5550396 DOI: 10.1007/s12105-017-0778-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/07/2017] [Indexed: 12/16/2022]
Abstract
Several autosomal dominant inherited tumour syndromes demonstrate prominent features in the oral and maxillofacial region. Although multiple organ systems are frequently involved, the target organs more frequently affected are the skin (nevoid basal cell carcinoma syndrome, Brooke-Spiegler syndrome, Birt-Hogg-Dube syndrome and Muir-Torre syndrome), gastrointestinal tract (Peutz-Jegher syndrome and Gardner syndrome) or endocrine system (multiple endocrine neoplasia type 2b and hyperparathyroidism-jaw tumour syndrome). In some syndromes, the disease is multisystem with skin index lesions presenting in the head and neck (Cowden syndrome and tuberous sclerosis complex). The pertinent features of these syndromes are reviewed with a systems-based approach, emphasising their clinical impact and diagnosis.
Collapse
Affiliation(s)
- Robert A. Kennedy
- Head and Neck Pathology, King’s College London Dental Institute, Guy’s & St, NHS Foundation Trust, London, SE1 9RT UK ,Head and Neck Pathology, Guy’s Hospital, Floor 4, Tower Wing, Great Maze Pond, London, SE1 9RT UK
| | - Selvam Thavaraj
- Head and Neck Pathology, King’s College London Dental Institute, Guy’s & St, NHS Foundation Trust, London, SE1 9RT UK
| | - Salvador Diaz-Cano
- Department of Histopathology, King’s College Hospital, London, SE5 9R UK
| |
Collapse
|
36
|
Nathan N, Keppler-Noreuil KM, Biesecker LG, Moss J, Darling TN. Mosaic Disorders of the PI3K/PTEN/AKT/TSC/mTORC1 Signaling Pathway. Dermatol Clin 2017; 35:51-60. [PMID: 27890237 PMCID: PMC5130114 DOI: 10.1016/j.det.2016.07.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Somatic mutations in genes of the PI3K/PTEN/AKT/TSC/mTORC1 signaling pathway cause segmental overgrowth, hamartomas, and malignant tumors. Mosaicism for activating mutations in AKT1 or PIK3CA cause Proteus syndrome and PIK3CA-Related Overgrowth Spectrum, respectively. Postzygotic mutations in PTEN or TSC1/TSC2 cause mosaic forms of PTEN hamartoma tumor syndrome or tuberous sclerosis complex, respectively. Distinct features observed in these mosaic conditions in part reflect differences in embryological timing or tissue type harboring the mutant cells. Deep sequencing of affected tissue is useful for diagnosis. Drugs targeting mTORC1 or other points along this signaling pathway are in clinical trials to treat these disorders.
Collapse
Affiliation(s)
- Neera Nathan
- Department of Dermatology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Kim M Keppler-Noreuil
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Building 49, Room 4A56, 49 Convent Drive, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Building 49, Room 4A56, 49 Convent Drive, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, Building 10, Room 6D05, 10 Center Drive, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | - Thomas N Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
37
|
Keppler-Noreuil KM, Parker VE, Darling TN, Martinez-Agosto JA. Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & therapeutic strategies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2016; 172:402-421. [PMID: 27860216 PMCID: PMC5592089 DOI: 10.1002/ajmg.c.31531] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signaling pathway plays an essential role in regulation of normal cell growth, metabolism, and survival. Somatic activating mutations in the PI3K/AKT/mTOR pathway are among the most common mutations identified in cancer, and have been shown to cause a spectrum of overgrowth syndromes including PIK3CA-Related Overgrowth Spectrum, Proteus syndrome, and brain overgrowth conditions. Clinical findings in these disorders may be isolated or multiple, including sporadic or mosaic overgrowth (adipose, skeletal, muscle, brain, vascular, or lymphatic), and skin abnormalities (including epidermal nevi, hyper-, and hypopigmented lesions), and have the potential risk of tumorigenesis. Key negative regulators of the PI3K-AKT signaling pathway include PTEN and TSC1/TSC2 and germline loss-of function mutations of these genes are established to cause PTEN Hamartoma Tumor Syndrome and Tuberous Sclerosis Complex. Mosaic forms of these conditions lead to increased activation of PI3K and mTOR at affected sites and there is phenotypic overlap between these conditions. All are associated with significant morbidity with limited options for treatment other than symptomatic therapies and surgeries. As dysregulation of the PI3K/AKT/mTOR pathway has been implicated in cancer, several small molecule inhibitors targeting different components of the PI3K/AKT/mTOR signaling pathway are under clinical investigation. The development of these therapies brings closer the prospect of targeting treatment for somatic PI3K/AKT/mTOR-related overgrowth syndromes. This review describes the clinical findings, gene function and pathogenesis of these mosaic overgrowth syndromes, and presents existing and future treatment strategies to reduce or prevent associated complications of these disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kim M. Keppler-Noreuil
- National Human Genome Research institute, National Institutes of Health, Bethesda, Maryland
| | - Victoria E.R. Parker
- The University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, UK
| | - Thomas N. Darling
- Department of Dermatology, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Julian A. Martinez-Agosto
- Department of Human Genetics, Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
38
|
Overwater IE, Swenker R, van der Ende EL, Hanemaayer KB, Hoogeveen-Westerveld M, van Eeghen AM, Lequin MH, van den Ouweland AM, Moll HA, Nellist M, de Wit MCY. Genotype and brain pathology phenotype in children with tuberous sclerosis complex. Eur J Hum Genet 2016; 24:1688-1695. [PMID: 27406250 DOI: 10.1038/ejhg.2016.85] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/04/2016] [Accepted: 06/14/2016] [Indexed: 01/24/2023] Open
Abstract
Structural brain malformations associated with Tuberous Sclerosis Complex (TSC) are related to the severity of the clinical symptoms and can be visualized by magnetic resonance imaging (MRI). Tuberous Sclerosis Complex is caused by inactivating TSC1 or TSC2 mutations. We investigated associations between TSC brain pathology and different inactivating TSC1 and TSC2 variants, and examined the potential prognostic value of subdivision of TSC2 variants based on their predicted effects on TSC2 expression. We performed genotype-phenotype associations of TSC-related brain pathology on a cohort of 64 children aged 1.4-17.9 years. Brain abnormalities were assessed using MRI. Individuals were grouped into those with an inactivating TSC1 variant and those with an inactivating TSC2 variant. The TSC2 group was subdivided into changes predicted to result in TSC2 protein expression (TSC2p) and changes predicted to prevent expression (TSC2x). The TSC2 group was associated with more and larger tubers, more radial migration lines, and more subependymal nodules than the TSC1 group. Subependymal nodules were also more likely to be calcified. Subdivision of the TSC2 group did not reveal additional, substantial differences, except for a larger number of tubers in the temporal lobe and a larger fraction of cystic tubers in the TSC2x subgroup. The severity of TSC-related brain pathology was related to the presence of an inactivating TSC2 variant. Although larger studies might find specific TSC2 variants that have prognostic value, in our cohort, subdivision of the TSC2 group did not lead to better prediction.
Collapse
Affiliation(s)
- Iris E Overwater
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.,ENCORE-TSC Expertise Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rob Swenker
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | - Agnies M van Eeghen
- ENCORE-TSC Expertise Center, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten H Lequin
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Henriëtte A Moll
- ENCORE-TSC Expertise Center, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marie-Claire Y de Wit
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.,ENCORE-TSC Expertise Center, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Sahin M, Henske EP, Manning BD, Ess KC, Bissler JJ, Klann E, Kwiatkowski DJ, Roberds SL, Silva AJ, Hillaire-Clarke CS, Young LR, Zervas M, Mamounas LA. Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatr Neurol 2016; 60:1-12. [PMID: 27267556 PMCID: PMC4921275 DOI: 10.1016/j.pediatrneurol.2016.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 11/17/2022]
Abstract
On March 10 to March 12, 2015, the National Institute of Neurological Disorders and Stroke and the Tuberous Sclerosis Alliance sponsored a workshop in Bethesda, Maryland, to assess progress and new opportunities for research in tuberous sclerosis complex with the goal of updating the 2003 Research Plan for Tuberous Sclerosis (http://www.ninds.nih.gov/about_ninds/plans/tscler_research_plan.htm). In addition to the National Institute of Neurological Disorders and Stroke and Tuberous Sclerosis Alliance, participants in the strategic planning effort and workshop included representatives from six other Institutes of the National Institutes of Health, the Department of Defense Tuberous Sclerosis Complex Research Program, and a broad cross-section of basic scientists and clinicians with expertise in tuberous sclerosis complex along with representatives from the pharmaceutical industry. Here we summarize the outcomes from the extensive premeeting deliberations and final workshop recommendations, including (1) progress in the field since publication of the initial 2003 research plan for tuberous sclerosis complex, (2) the key gaps, needs, and challenges that hinder progress in tuberous sclerosis complex research, and (3) a new set of research priorities along with specific recommendations for addressing the major challenges in each priority area. The new research plan is organized around both short-term and long-term goals with the expectation that progress toward specific objectives can be achieved within a five to ten year time frame.
Collapse
Affiliation(s)
- Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kevin C Ess
- Vanderbilt Kennedy Center for Research on Human Development, Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - John J Bissler
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital and St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California at Los Angeles, Los Angeles, California
| | - Coryse St Hillaire-Clarke
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Lisa R Young
- Division of Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee; Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mark Zervas
- Department of Neuroscience, Amgen Inc, Cambridge, Massachusetts
| | - Laura A Mamounas
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
40
|
Obermannova B, Sumnik Z, Dusatkova P, Cinek O, Grant M, Lebl J, Hendy GN. Novel calcium-sensing receptor cytoplasmic tail deletion mutation causing autosomal dominant hypocalcemia: molecular and clinical study. Eur J Endocrinol 2016; 174:K1-K11. [PMID: 26764418 DOI: 10.1530/eje-15-1216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Autosomal dominant hypocalcemia (ADH) is a rare disorder caused by activating mutations of the calcium-sensing receptor (CASR). The treatment of ADH patients with 1α-hydroxylated vitamin D derivatives can cause hypercalciuria leading to nephrocalcinosis. DESIGN AND METHODS We studied a girl who presented with hypoparathyroidism and asymptomatic hypocalcemia at age 2.5 years. Mutations of CASR were investigated by DNA sequencing. Functional analyses of mutant and WT CASRs were done in transiently transfected human embryonic kidney (HEK293) cells. RESULTS The proband and her father are heterozygous for an eight-nucleotide deletion c.2703_2710delCCTTGGAG in the CASR encoding the intracellular domain of the protein. Transient expression of CASR constructs in kidney cells in vitro suggested greater cell surface expression of the mutant receptor with a left-shifted extracellular calcium dose-response curve relative to that of the WT receptor consistent with gain of function. Initial treatment of the patient with calcitriol led to increased urinary calcium excretion. Evaluation for mosaicism in the paternal grandparents of the proband was negative. CONCLUSIONS We describe a novel naturally occurring deletion mutation within the CASR that apparently arose de novo in the father of the ADH proband. Functional analysis suggests that the cytoplasmic tail of the CASR contains determinants that regulate the attenuation of signal transduction. Early molecular analysis of the CASR gene in patients with isolated idiopathic hypoparathyroidism is recommended because of its relevance to clinical outcome and treatment choice. In ADH patients, calcium supplementation and low-dose cholecalciferol avoids hypocalcemic symptoms without compromising renal function.
Collapse
Affiliation(s)
- Barbora Obermannova
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Zdenek Sumnik
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Petra Dusatkova
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Ondrej Cinek
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Michael Grant
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Jan Lebl
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Geoffrey N Hendy
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1 Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| |
Collapse
|
41
|
Curatolo P, Moavero R, Roberto D, Graziola F. Genotype/Phenotype Correlations in Tuberous Sclerosis Complex. Semin Pediatr Neurol 2015; 22:259-73. [PMID: 26706013 DOI: 10.1016/j.spen.2015.10.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the development of widespread hamartomatous lesions in various organs, including brain, skin, kidneys, heart, and eyes. Central nervous system is almost invariably involved, with up to 85% of patients presenting with epilepsy, and at least half of patients having intellectual disability or other neuropsychiatric disorders including autism spectrum disorder. TSC is caused by the mutation in one of the 2 genes TSC1, at 9q34, and TSC2, at 16p13.3. They respectively encode for hamartin and tuberin, which form an intracellular complex inhibiting the mammalian target of rapamycin. Mammalian target of rapamycin overactivation following the genetic defect determines the cell growth and proliferation responsible for TSC-related lesions, as well as the alterations in neuronal excitability and synaptogenesis leading to epilepsy and neuropsychiatric disorders. A causative mutation for the disorder is identified in about 85% of patients with a clinical diagnosis of TSC. Mosaicism and technology limits likely explain most of the no mutation identified cases. This review confirms that patients with TSC2 mutations considered as a group usually present a more severe phenotype, characterized by higher number of tubers, earlier age at seizure onset and higher prevalence of intellectual disability. However, the clinical phenotype of the disease presents a high variability, thus making the prediction of the phenotype on an individual basis still challenging. The increasing application of new molecular techniques to subjects with TSC has the potential to significantly reduce the rate of patients with no mutation demonstrated and to identify an increasing higher number of mutations. This would hopefully allow a better characterization of higher risk mutations, which might help clinicians to plan individualized surveillance plans. Furthermore, the increasing availability of disease registries to collect clinical and genetics data of patients help to define more valid and clinically oriented genotype or phenotype correlations.
Collapse
Affiliation(s)
- Paolo Curatolo
- (⁎)Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital of Rome, Rome, Italy.
| | - Romina Moavero
- (⁎)Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital of Rome, Rome, Italy; Child Neurology Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Denis Roberto
- (⁎)Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital of Rome, Rome, Italy
| | - Federica Graziola
- (⁎)Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital of Rome, Rome, Italy
| |
Collapse
|
42
|
Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing. PLoS Genet 2015; 11:e1005637. [PMID: 26540169 PMCID: PMC4634999 DOI: 10.1371/journal.pgen.1005637] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor gene syndrome due to germline mutations in either TSC1 or TSC2. 10–15% of TSC individuals have no mutation identified (NMI) after thorough conventional molecular diagnostic assessment. 53 TSC subjects who were NMI were studied using next generation sequencing to search for mutations in these genes. Blood/saliva DNA including parental samples were available from all subjects, and skin tumor biopsy DNA was available from six subjects. We identified mutations in 45 of 53 subjects (85%). Mosaicism was observed in the majority (26 of 45, 58%), and intronic mutations were also unusually common, seen in 18 of 45 subjects (40%). Seventeen (38%) mutations were seen at an allele frequency < 5%, five at an allele frequency < 1%, and two were identified in skin tumor biopsies only, and were not seen at appreciable frequency in blood or saliva DNA. These findings illuminate the extent of mosaicism in TSC, indicate the importance of full gene coverage and next generation sequencing for mutation detection, show that analysis of TSC-related tumors can increase the mutation detection rate, indicate that it is not likely that a third TSC gene exists, and enable provision of genetic counseling to the substantial population of TSC individuals who are currently NMI. Tuberous sclerosis complex (TSC) is a human genetic disorder due to mutations in the TSC1 or TSC2 genes. A mystery for many years has been the fact that with standard genetic testing 10–15% of TSC patients have had no mutation identified (NMI) in either TSC1 or TSC2. We examined the genetic cause of TSC in patients who were ‘NMI’ after previous testing. We found a mutation in TSC1 or TSC2 in the vast majority of the subjects studied: 45 of 53 (85%). The majority of mutations identified were either in introns or mosaic or both. Usually we expect to find mutations causing human disease in exons, coding parts of genes. However, mutations can also be found in introns, the non-coding parts of genes, and we found intronic mutations in 18 of 45 subjects (40%). Mosaic mutations were seen in 26 of 45 subjects (58%). Mosaicism is the situation in which different cells in the body have a different genetic make-up, and in this case the mutations in TSC1/TSC2 were present in only a fraction of the cells from the patient. So these two types of hard-to-find mutations (in introns and/or mosaic) explain the majority of TSC patients who were NMI.
Collapse
|
43
|
Salo-Mullen EE, Shia J, Brownell I, Allen P, Girotra M, Robson ME, Offit K, Guillem JG, Markowitz AJ, Stadler ZK. Mosaic partial deletion of the PTEN gene in a patient with Cowden syndrome. Fam Cancer 2015; 13:459-67. [PMID: 24609522 DOI: 10.1007/s10689-014-9709-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cowden syndrome is an autosomal dominant condition caused by pathogenic mutations in the phosphatase and tensin homolog (PTEN) gene. Only a small proportion of identified pathogenic mutations have been reported to be large deletions and rearrangements. We report on a female patient with a previous history of breast ductal carcinoma in situ who presented to our institution for management of gastrointestinal hamartomatous polyposis. Although several neoplastic predisposition syndromes were considered, genetic evaluation determined that the patient met clinical diagnostic criteria for Cowden syndrome. Array-based comparative genomic hybridization was performed and revealed a mosaic partial deletion of the PTEN gene. Follow-up clinical history including bilateral thyroid nodules, dermatological findings, and a new primary "triple-negative" adenocarcinoma of the contralateral breast are discussed. We highlight the need for recognition and awareness of mosaicism as it may provide an explanation for variable phenotypic presentations and may alter the genetic counseling risk assessment of affected individuals and family members.
Collapse
Affiliation(s)
- Erin E Salo-Mullen
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 295, New York, NY, 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yamaguchi K, Komura M, Yamaguchi R, Imoto S, Shimizu E, Kasuya S, Shibuya T, Hatakeyama S, Takahashi N, Ikenoue T, Hata K, Tsurita G, Shinozaki M, Suzuki Y, Sugano S, Miyano S, Furukawa Y. Detection of APC mosaicism by next-generation sequencing in an FAP patient. J Hum Genet 2015; 60:227-31. [PMID: 25716913 DOI: 10.1038/jhg.2015.14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/15/2014] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
Familial adenomatous polyposis (FAP) of the colon is characterized by multiple polyps in the intestine and extra-colonic manifestations. Most FAP cases are caused by a germline mutation in the tumor-suppressor gene APC, but some cases of adenomatous polyposis result from germline mutations in MUTYH, POLD1 or POLE. Although sequence analysis of APC by the Sanger method is routinely performed for genetic testing, there remain cases whose mutations are not detected by the analysis. Next-generation sequencing has enabled us to analyze the comprehensive human genome, improving the chance of identifying disease causative variants. In this study, we conducted whole-genome sequencing of a sporadic FAP patient in which we did not find any pathogenic APC mutations by the conventional Sanger sequencing. Whole-genome sequencing and subsequent deep sequencing identified a mosaic mutation of c.3175G>T, p.E1059X in ~12% of his peripheral leukocytes. Additional deep sequencing of his buccal mucosa, hair follicles, non-cancerous mucosa of the stomach and colon disclosed that these tissues harbored the APC mutation at different frequencies. Our data implied that genetic analysis by next-generation sequencing is an effective strategy to identify genetic mosaicism in hereditary diseases.
Collapse
Affiliation(s)
- Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Komura
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rui Yamaguchi
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eigo Shimizu
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinichi Kasuya
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Shibuya
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seira Hatakeyama
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Norihiko Takahashi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- Department of Surgery, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Giichiro Tsurita
- Department of Surgery, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaru Shinozaki
- Department of Surgery, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Sumio Sugano
- Laboratory of Functional Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- 1] Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan [2] Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Delaney SP, Julian LM, Stanford WL. The neural crest lineage as a driver of disease heterogeneity in Tuberous Sclerosis Complex and Lymphangioleiomyomatosis. Front Cell Dev Biol 2014; 2:69. [PMID: 25505789 PMCID: PMC4243694 DOI: 10.3389/fcell.2014.00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/02/2014] [Indexed: 12/20/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease, best characterized by the formation of proliferative nodules that express smooth muscle and melanocytic antigens within the lung parenchyma, leading to progressive destruction of lung tissue and function. The pathological basis of LAM is associated with Tuberous Sclerosis Complex (TSC), a multi-system disorder marked by low-grade tumors in the brain, kidneys, heart, eyes, lung and skin, arising from inherited or spontaneous germ-line mutations in either of the TSC1 or TSC2 genes. LAM can develop either in a patient with TSC (TSC-LAM) or spontaneously (S-LAM), and it is clear that the majority of LAM lesions of both forms are characterized by an inactivating mutation in either TSC1 or TSC2, as in TSC. Despite this genetic commonality, there is considerable heterogeneity in the tumor spectrum of TSC and LAM patients, the basis for which is currently unknown. There is extensive clinical evidence to suggest that the cell of origin for LAM, as well as many of the TSC-associated tumors, is a neural crest cell, a highly migratory cell type with extensive multi-lineage potential. Here we explore the hypothesis that the types of tumors that develop and the tissues that are affected in TSC and LAM are dictated by the developmental timing of TSC gene mutations, which determines the identities of the affected cell types and the size of downstream populations that acquire a mutation. We further discuss the evidence to support a neural crest origin for LAM and TSC tumors, and propose approaches for generating humanized models of TSC and LAM that will allow cell of origin theories to be experimentally tested. Identifying the cell of origin and developing appropriate humanized models is necessary to truly understand LAM and TSC pathology and to establish effective and long-lasting therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Sean P Delaney
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada
| | - William L Stanford
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
46
|
Tuberous sclerosis: Clinical characteristics and their relationship to genotype/phenotype. An Pediatr (Barc) 2014. [DOI: 10.1016/j.anpede.2014.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Monteiro T, Garrido C, Pina S, Chorão R, Carrilho I, Figueiroa S, Santos M, Temudo T. Esclerosis tuberosa: caracterización clínica e intento de correlación fenotipo/genotipo. An Pediatr (Barc) 2014; 81:289-96. [DOI: 10.1016/j.anpedi.2014.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/10/2014] [Accepted: 03/25/2014] [Indexed: 11/26/2022] Open
|
48
|
Ismail NFD, Nik Abdul Malik NMA, Mohseni J, Rani AM, Hayati F, Salmi AR, Narazah MY, Zabidi-Hussin ZAMH, Silawati AR, Keng WT, Ngu LH, Sasongko TH. Two novel gross deletions of TSC2 in Malaysian patients with tuberous sclerosis complex and TSC2/PKD1 contiguous deletion syndrome. Jpn J Clin Oncol 2014; 44:506-11. [PMID: 24683199 DOI: 10.1093/jjco/hyu024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tuberous sclerosis complex is an autosomal dominant neurocutaneous disorder affecting multiple organs. Tuberous sclerosis complex is caused by mutation in either one of the two disease-causing genes, TSC1 or TSC2, encoding for hamartin and tuberin, respectively. TSC2/PKD1 contiguous gene deletion syndrome is a very rare condition due to deletion involving both TSC2 and PKD1 genes. Tuberous sclerosis complex cannot be easily diagnosed since there is no pathognomonic feature, although there are consensus diagnostic criteria for that. Mutation analysis is useful and plays important roles. We report here two novel gross deletions of TSC2 gene in Malay patients with tuberous sclerosis complex and TSC2/PKD1 contiguous gene deletion syndrome, respectively.
Collapse
Affiliation(s)
- Nur Farrah Dila Ismail
- *Center for Neuroscience Services and Research, and Human Genome Center, School of Medical Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Feliciano DM, Lin TV, Hartman NW, Bartley CM, Kubera C, Hsieh L, Lafourcade C, O'Keefe RA, Bordey A. A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits. Int J Dev Neurosci 2013; 31:667-78. [PMID: 23485365 DOI: 10.1016/j.ijdevneu.2013.02.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 01/17/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant monogenetic disorder that is characterized by the formation of benign tumors in several organs as well as brain malformations and neuronal defects. TSC is caused by inactivating mutations in one of two genes, TSC1 and TSC2, resulting in increased activity of the mammalian Target of Rapamycin (mTOR). Here, we explore the cytoarchitectural and functional CNS aberrations that may account for the neurological presentations of TSC, notably seizures, hydrocephalus, and cognitive and psychological impairments. In particular, recent mouse models of brain lesions are presented with an emphasis on using electroporation to allow the generation of discrete lesions resulting from loss of heterozygosity during perinatal development. Cortical lesions are thought to contribute to epileptogenesis and worsening of cognitive defects. However, it has recently been suggested that being born with a mutant allele without loss of heterozygosity and associated cortical lesions is sufficient to generate cognitive and neuropsychiatric problems. We will thus discuss the function of mTOR hyperactivity on neuronal circuit formation and the potential consequences of being born heterozygous on neuronal function and the biochemistry of synaptic plasticity, the cellular substrate of learning and memory. Ultimately, a major goal of TSC research is to identify the cellular and molecular mechanisms downstream of mTOR underlying the neurological manifestations observed in TSC patients and identify novel therapeutic targets to prevent the formation of brain lesions and restore neuronal function.
Collapse
Affiliation(s)
- David M Feliciano
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|