1
|
Jiang CS, Schrader M. Modelling Peroxisomal Disorders in Zebrafish. Cells 2025; 14:147. [PMID: 39851575 PMCID: PMC11764017 DOI: 10.3390/cells14020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded by PEX genes), which mediate matrix protein import, membrane assembly, and peroxisome multiplication. Defects in peroxins or peroxisomal enzymes can result in severe disorders, including developmental and neurological abnormalities. The drive to understand the role of peroxisomes in human health and disease, as well as their functions in tissues and organs or during development, has led to the establishment of vertebrate models. The zebrafish (Danio rerio) has become an attractive vertebrate model organism to investigate peroxisomal functions. Here, we provide an overview of the visualisation of peroxisomes in zebrafish, as well as the peroxisomal metabolic functions and peroxisomal protein inventory in comparison to human peroxisomes. We then present zebrafish models which have been established to investigate peroxisomal disorders. These include model zebrafish for peroxisome biogenesis disorders/Zellweger Spectrum disorders, and single enzyme deficiencies, particularly adrenoleukodystrophy and fatty acid beta-oxidation abnormalities. Finally, we highlight zebrafish models for deficiencies of dually targeted peroxisomal/mitochondrial proteins. Advantages for the investigation of peroxisomes during development and approaches to the application of zebrafish models for drug screening are discussed.
Collapse
Affiliation(s)
| | - Michael Schrader
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK;
| |
Collapse
|
2
|
Gaussmann S, Peschel R, Ott J, Zak KM, Sastre J, Delhommel F, Popowicz GM, Boekhoven J, Schliebs W, Erdmann R, Sattler M. Modulation of peroxisomal import by the PEX13 SH3 domain and a proximal FxxxF binding motif. Nat Commun 2024; 15:3317. [PMID: 38632234 PMCID: PMC11024197 DOI: 10.1038/s41467-024-47605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Import of proteins into peroxisomes depends on PEX5, PEX13 and PEX14. By combining biochemical methods and structural biology, we show that the C-terminal SH3 domain of PEX13 mediates intramolecular interactions with a proximal FxxxF motif. The SH3 domain also binds WxxxF peptide motifs in the import receptor PEX5, demonstrating evolutionary conservation of such interactions from yeast to human. Strikingly, intramolecular interaction of the PEX13 FxxxF motif regulates binding of PEX5 WxxxF/Y motifs to the PEX13 SH3 domain. Crystal structures reveal how FxxxF and WxxxF/Y motifs are recognized by a non-canonical surface on the SH3 domain. The PEX13 FxxxF motif also mediates binding to PEX14. Surprisingly, the potential PxxP binding surface of the SH3 domain does not recognize PEX14 PxxP motifs, distinct from its yeast ortholog. Our data show that the dynamic network of PEX13 interactions with PEX5 and PEX14, mediated by diaromatic peptide motifs, modulates peroxisomal matrix import.
Collapse
Affiliation(s)
- Stefan Gaussmann
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Rebecca Peschel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Julia Ott
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Krzysztof M Zak
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Judit Sastre
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Florent Delhommel
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Grzegorz M Popowicz
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Job Boekhoven
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany.
| | - Michael Sattler
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany.
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
3
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
4
|
Borgia P, Baldassari S, Pedemonte N, Alkhunaizi E, D'Onofrio G, Tortora D, Calì E, Scudieri P, Balagura G, Musante I, Diana MC, Pedemonte M, Vari MS, Iacomino M, Riva A, Chimenz R, Mangano GD, Mohammadi MH, Toosi MB, Ashrafzadeh F, Imannezhad S, Karimiani EG, Accogli A, Schiaffino MC, Maghnie M, Soler MA, Echiverri K, Abrams CK, Striano P, Fortuna S, Maroofian R, Houlden H, Zara F, Fiorillo C, Salpietro V. Genotype-phenotype correlations and disease mechanisms in PEX13-related Zellweger spectrum disorders. Orphanet J Rare Dis 2022; 17:286. [PMID: 35854306 PMCID: PMC9295491 DOI: 10.1186/s13023-022-02415-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Pathogenic variants in PEX-genes can affect peroxisome assembly and function and cause Zellweger spectrum disorders (ZSDs), characterized by variable phenotypes in terms of disease severity, age of onset and clinical presentations. So far, defects in at least 15 PEX-genes have been implicated in Mendelian diseases, but in some of the ultra-rare ZSD subtypes genotype–phenotype correlations and disease mechanisms remain elusive. Methods We report five families carrying biallelic variants in PEX13. The identified variants were initially evaluated by using a combination of computational approaches. Immunofluorescence and complementation studies on patient-derived fibroblasts were performed in two patients to investigate the cellular impact of the identified mutations. Results Three out of five families carried a recurrent p.Arg294Trp non-synonymous variant. Individuals affected with PEX13-related ZSD presented heterogeneous clinical features, including hypotonia, developmental regression, hearing/vision impairment, progressive spasticity and brain leukodystrophy. Computational predictions highlighted the involvement of the Arg294 residue in PEX13 homodimerization, and the analysis of blind docking predicted that the p.Arg294Trp variant alters the formation of dimers, impairing the stability of the PEX13/PEX14 translocation module. Studies on muscle tissues and patient-derived fibroblasts revealed biochemical alterations of mitochondrial function and identified mislocalized mitochondria and a reduced number of peroxisomes with abnormal PEX13 concentration. Conclusions This study expands the phenotypic and mutational spectrum of PEX13-related ZSDs and also highlight a variety of disease mechanisms contributing to PEX13-related clinical phenotypes, including the emerging contribution of secondary mitochondrial dysfunction to the pathophysiology of ZSDs.
Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02415-5.
Collapse
Affiliation(s)
- Paola Borgia
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Nicoletta Pedemonte
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Ebba Alkhunaizi
- Department of Genetics, North York General Hospital, University of Toronto, Toronto, ON, Canada
| | - Gianluca D'Onofrio
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Elisa Calì
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Maria Cristina Diana
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Marina Pedemonte
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Roberto Chimenz
- Unit of Pediatric Nephrology and Dialysis, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Giuseppe D Mangano
- Department Pro.M.I.S.E. "G. D'Alessandro", University of Palermo, Palermo, Italy
| | | | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farah Ashrafzadeh
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Imannezhad
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, SW170RE, UK.,Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Maria Cristina Schiaffino
- Pediatric Clinic and Endocrinology Unit, Department of General and Specialist Pediatric Sciences, University of Genoa, 16147, Genoa, Italy
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy.,Pediatric Clinic and Endocrinology Unit, Department of General and Specialist Pediatric Sciences, University of Genoa, 16147, Genoa, Italy
| | - Miguel Angel Soler
- Computational Modelling of Nanoscale and Biophysical Systems Laboratory, Italian Institute of Technology, 16163, Genoa, Italy
| | - Karl Echiverri
- Departments of Neurology and Ophthalmology, University of Kentucky, Lexington, 40506, USA
| | - Charles K Abrams
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Sara Fortuna
- Computational Modelling of Nanoscale and Biophysical Systems Laboratory, Italian Institute of Technology, 16163, Genoa, Italy.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34134, Trieste, Italy
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy.,Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy. .,Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy.
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK. .,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
5
|
An Z, Chiang WC, Fernández ÁF, Franco LH, He C, Huang SY, Lee E, Liu Y, Sebti S, Shoji-Kawata S, Sirasanagandla S, Wang RC, Wei Y, Zhao Y, Vega-Rubin-de-Celis S. Beth Levine’s Legacy: From the Discovery of BECN1 to Therapies. A Mentees’ Perspective. Front Cell Dev Biol 2022; 10:891332. [PMID: 35832792 PMCID: PMC9273008 DOI: 10.3389/fcell.2022.891332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
With great sadness, the scientific community received the news of the loss of Beth Levine on 15 June 2020. Dr. Levine was a pioneer in the autophagy field and work in her lab led not only to a better understanding of the molecular mechanisms regulating the pathway, but also its implications in multiple physiological and pathological conditions, including its role in development, host defense, tumorigenesis, aging or metabolism. This review does not aim to provide a comprehensive view of autophagy, but rather an outline of some of the discoveries made by the group of Beth Levine, from the perspective of some of her own mentees, hoping to honor her legacy in science.
Collapse
Affiliation(s)
- Zhenyi An
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Álvaro F. Fernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis H. Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - CongCong He
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Eunmyong Lee
- InnoCure Therapeutics Inc., Gyeonggi-do, South Korea
| | - Yang Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Salwa Sebti
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Richard C. Wang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yongjie Wei
- Cancer Research Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuting Zhao
- Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Silvia Vega-Rubin-de-Celis
- Institute for Cell Biology (Cancer Research), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Silvia Vega-Rubin-de-Celis, ,
| |
Collapse
|
6
|
Wen X, Yang Y, Klionsky DJ. Moments in autophagy and disease: Past and present. Mol Aspects Med 2021; 82:100966. [PMID: 33931245 PMCID: PMC8548407 DOI: 10.1016/j.mam.2021.100966] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
Over the past several decades, research on autophagy, a highly conserved lysosomal degradation pathway, has been advanced by studies in different model organisms, especially in the field of its molecular mechanism and regulation. The malfunction of autophagy is linked to various diseases, among which cancer and neurodegenerative diseases are the major focus. In this review, we cover some other important diseases, including cardiovascular diseases, infectious and inflammatory diseases, and metabolic disorders, as well as rare diseases, with a hope of providing a more complete understanding of the spectrum of autophagy's role in human health.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ying Yang
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Park WY, Park J, Lee S, Song G, Nam IK, Ahn KS, Choe SK, Um JY. PEX13 is required for thermogenesis of white adipose tissue in cold-exposed mice. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159046. [PMID: 34517131 DOI: 10.1016/j.bbalip.2021.159046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
Non-shivering thermogenesis (NST) is a heat generating process controlled by the mitochondria of brown adipose tissue (BAT). In the recent decade, 'functionally' acting brown adipocytes in white adipose tissue (WAT) has been identified as well: the so-called process of the 'browning' of WAT. While the importance of uncoupling protein 1 (UCP1)-oriented mitochondrial activation has been intensely studied, the role of peroxisomes during the browning of white adipocytes is poorly understood. Here, we assess the change in peroxisomal membrane proteins, or peroxins (PEXs), during cold stimulation and importantly, the role of PEX13 in the cold-induced remodeling of white adipocytes. PEX13, a protein that originally functions as a docking factor and is involved in protein import into peroxisome matrix, was highly increased during cold-induced recruitment of beige adipocytes within the inguinal WAT of C57BL/6 mice. Moreover, beige-induced 3 T3-L1 adipocytes and stromal vascular fraction (SVF) cells by exposure to the peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone showed a significant increase in mitochondrial thermogenic factors along with peroxisomal proteins including PEX13, and these were confirmed in SVF cells with the beta 3 adrenergic receptor (β3AR)-selective agonist CL316,243. To verify the relevance of PEX13, we used the RNA silencing method targeting the Pex13 gene and evaluated the subsequent beige development in SVF cells. Interestingly, siPex13 treatment suppressed expression of thermogenic proteins such as UCP1 and PPARγ coactivator 1 alpha (PGC1α). Overall, our data provide evidence supporting the role of peroxisomal proteins, in particular PEX13, during beige remodeling of white adipocytes.
Collapse
Affiliation(s)
- Woo Yong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation and Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sujin Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Gahee Song
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - In-Koo Nam
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation and Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Jae-Young Um
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation and Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Korea..
| |
Collapse
|
8
|
Hepatocyte-specific deletion of peroxisomal protein PEX13 results in disrupted iron homeostasis. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165882. [PMID: 32565019 DOI: 10.1016/j.bbadis.2020.165882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/11/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Peroxisomes are organelles, abundant in the liver, involved in a variety of cellular functions, including fatty acid metabolism, plasmalogen synthesis and metabolism of reactive oxygen species. Several inherited disorders are associated with peroxisomal dysfunction; increasingly many are associated with hepatic pathologies. The liver plays a principal role in regulation of iron metabolism. In this study we examined the possibility of a relationship between iron homeostasis and peroxisomal integrity. We examined the effect of deleting Pex13 in mouse liver on systemic iron homeostasis. We also used siRNA-mediated knock-down of PEX13 in a human hepatoma cell line (HepG2/C3A) to elucidate the mechanisms of PEX13-mediated regulation of hepcidin. We demonstrate that transgenic mice lacking hepatocyte Pex13 have defects in systemic iron homeostasis. The ablation of Pex13 expression in hepatocytes leads to a significant reduction in hepatic hepcidin levels. Our results also demonstrate that a deficiency of PEX13 gene expression in HepG2/C3A cells leads to decreased hepcidin expression, which is mediated through an increase in the signalling protein SMAD7, and endoplasmic reticulum (ER) stress. This study identifies a novel role for a protein involved in maintaining peroxisomal integrity and function in iron homeostasis. Loss of Pex13, a protein important for peroxisomal function, in hepatocytes leads to a significant increase in ER stress, which if unresolved, can affect liver function. The results from this study have implications for the management of patients with peroxisomal disorders and the liver-related complications they may develop.
Collapse
|
9
|
Stamatakou E, Wróbel L, Hill SM, Puri C, Son SM, Fujimaki M, Zhu Y, Siddiqi F, Fernandez-Estevez M, Manni MM, Park SJ, Villeneuve J, Rubinsztein DC. Mendelian neurodegenerative disease genes involved in autophagy. Cell Discov 2020; 6:24. [PMID: 32377374 PMCID: PMC7198619 DOI: 10.1038/s41421-020-0158-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
The lysosomal degradation pathway of macroautophagy (herein referred to as autophagy) plays a crucial role in cellular physiology by regulating the removal of unwanted cargoes such as protein aggregates and damaged organelles. Over the last five decades, significant progress has been made in understanding the molecular mechanisms that regulate autophagy and its roles in human physiology and diseases. These advances, together with discoveries in human genetics linking autophagy-related gene mutations to specific diseases, provide a better understanding of the mechanisms by which autophagy-dependent pathways can be potentially targeted for treating human diseases. Here, we review mutations that have been identified in genes involved in autophagy and their associations with neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanna Stamatakou
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Lidia Wróbel
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sandra Malmgren Hill
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sung Min Son
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Motoki Fujimaki
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Ye Zhu
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Farah Siddiqi
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marian Fernandez-Estevez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marco M. Manni
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - So Jung Park
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Julien Villeneuve
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - David Chaim Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
10
|
Cho DH, Kim YS, Jo DS, Choe SK, Jo EK. Pexophagy: Molecular Mechanisms and Implications for Health and Diseases. Mol Cells 2018; 41:55-64. [PMID: 29370694 PMCID: PMC5792714 DOI: 10.14348/molcells.2018.2245] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an intracellular degradation pathway for large protein aggregates and damaged organelles. Recent studies have indicated that autophagy targets cargoes through a selective degradation pathway called selective autophagy. Peroxisomes are dynamic organelles that are crucial for health and development. Pexophagy is selective autophagy that targets peroxisomes and is essential for the maintenance of homeostasis of peroxisomes, which is necessary in the prevention of various peroxisome-related disorders. However, the mechanisms by which pexophagy is regulated and the key players that induce and modulate pexophagy are largely unknown. In this review, we focus on our current understanding of how pexophagy is induced and regulated, and the selective adaptors involved in mediating pexophagy. Furthermore, we discuss current findings on the roles of pexophagy in physiological and pathological responses, which provide insight into the clinical relevance of pexophagy regulation. Understanding how pexophagy interacts with various biological functions will provide fundamental insights into the function of pexophagy and facilitate the development of novel therapeutics against peroxisomal dysfunction-related diseases.
Collapse
Affiliation(s)
- Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104,
Korea
| | - Yi Sak Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015,
Korea
| | - Doo Sin Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104,
Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan 54538,
Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015,
Korea
| |
Collapse
|
11
|
Rahim RS, St John JA, Crane DI, Meedeniya ACB. Impaired neurogenesis and associated gliosis in mouse brain with PEX13 deficiency. Mol Cell Neurosci 2017; 88:16-32. [PMID: 29187321 DOI: 10.1016/j.mcn.2017.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/04/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
Zellweger syndrome (ZS), a neonatal lethal disorder arising from defective peroxisome biogenesis, features profound neuroanatomical abnormalities and brain dysfunction. Here we used mice with brain-restricted inactivation of the peroxisome biogenesis gene PEX13 to model the pathophysiological features of ZS, and determine the impact of peroxisome dysfunction on neurogenesis and cell maturation in ZS. In the embryonic and postnatal PEX13 mutant brain, we demonstrate key regions with altered brain anatomy, including enlarged lateral ventricles and aberrant cortical, hippocampal and hypothalamic organization. To characterize the underlying mechanisms, we show a significant reduction in proliferation, migration, differentiation, and maturation of neural progenitors in embryonic E12.5 through to P3 animals. An increasing reactive gliosis in the PEX13 mutant brain started at E14.5 in association with the pathology. Together with impaired neurogenesis and associated gliosis, our data demonstrate increased cell death contributing to the hallmark brain anatomy of ZS. We provide unique data where impaired neurogenesis and migration are shown as critical events underlying the neuropathology and altered brain function of mice with peroxisome deficiency.
Collapse
Affiliation(s)
- Rani Sadia Rahim
- Griffith Institute for Drug Discovery, School of Natural Sciences, Griffith University, Qld, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, School of Natural Sciences, Griffith University, Qld, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Australia; Menzies Health Institute Queensland, Griffith University, Qld, Australia
| | - Denis I Crane
- Griffith Institute for Drug Discovery, School of Natural Sciences, Griffith University, Qld, Australia.
| | - Adrian C B Meedeniya
- Menzies Health Institute Queensland, Griffith University, Qld, Australia; Interdisciplinary Centre for Innovations in Biotechnology & Neurosciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
12
|
Lee MY, Sumpter R, Zou Z, Sirasanagandla S, Wei Y, Mishra P, Rosewich H, Crane DI, Levine B. Peroxisomal protein PEX13 functions in selective autophagy. EMBO Rep 2016; 18:48-60. [PMID: 27827795 PMCID: PMC5210156 DOI: 10.15252/embr.201642443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 11/24/2022] Open
Abstract
PEX13 is an integral membrane protein on the peroxisome that regulates peroxisomal matrix protein import during peroxisome biogenesis. Mutations in PEX13 and other peroxin proteins are associated with Zellweger syndrome spectrum (ZSS) disorders, a subtype of peroxisome biogenesis disorder characterized by prominent neurological, hepatic, and renal abnormalities leading to neonatal death. The lack of functional peroxisomes in ZSS patients is widely accepted as the underlying cause of disease; however, our understanding of disease pathogenesis is still incomplete. Here, we demonstrate that PEX13 is required for selective autophagy of Sindbis virus (virophagy) and of damaged mitochondria (mitophagy) and that disease‐associated PEX13 mutants I326T and W313G are defective in mitophagy. The mitophagy function of PEX13 is shared with another peroxin family member PEX3, but not with two other peroxins, PEX14 and PEX19, which are required for general autophagy. Together, our results demonstrate that PEX13 is required for selective autophagy, and suggest that dysregulation of PEX13‐mediated mitophagy may contribute to ZSS pathogenesis.
Collapse
Affiliation(s)
- Ming Y Lee
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhea Sumpter
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhongju Zou
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shyam Sirasanagandla
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yongjie Wei
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prashant Mishra
- Children's Medical Center Research Institute at the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hendrik Rosewich
- Department of Pediatrics and Pediatric Neurology, Georg August University, Göttingen, Germany
| | - Denis I Crane
- Eskitis Institute for Drug Discovery and School of Natural Sciences Griffith University, Nathan, Qld, Australia
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Rahim RS, Chen M, Nourse CC, Meedeniya ACB, Crane DI. Mitochondrial changes and oxidative stress in a mouse model of Zellweger syndrome neuropathogenesis. Neuroscience 2016; 334:201-213. [PMID: 27514574 DOI: 10.1016/j.neuroscience.2016.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
Abstract
Zellweger syndrome (ZS) is a peroxisome biogenesis disorder that involves significant neuropathology, the molecular basis of which is still poorly understood. Using a mouse model of ZS with brain-restricted deficiency of the peroxisome biogenesis protein PEX13, we demonstrated an expanded and morphologically modified brain mitochondrial population. Cultured fibroblasts from PEX13-deficient mouse embryo displayed similar changes, as well as increased levels of mitochondrial superoxide and membrane depolarization; this phenotype was rescued by antioxidant treatment. Significant oxidative damage to neurons in brain was indicated by products of lipid and DNA oxidation. Similar overall changes were observed for glial cells. In toto, these findings suggest that mitochondrial oxidative stress and aberrant mitochondrial dynamics are associated with the neuropathology arising from PEX13 deficiency.
Collapse
Affiliation(s)
- Rani Sadia Rahim
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - Mo Chen
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - C Cathrin Nourse
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - Adrian C B Meedeniya
- Griffith Health Institute, School of Medical Science, Griffith University, Qld, Australia
| | - Denis I Crane
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia.
| |
Collapse
|
14
|
Berger J, Dorninger F, Forss-Petter S, Kunze M. Peroxisomes in brain development and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:934-55. [PMID: 26686055 PMCID: PMC4880039 DOI: 10.1016/j.bbamcr.2015.12.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022]
Abstract
Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann.
Collapse
Affiliation(s)
- Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Woodward AW, Fleming WA, Burkhart SE, Ratzel SE, Bjornson M, Bartel B. A viable Arabidopsis pex13 missense allele confers severe peroxisomal defects and decreases PEX5 association with peroxisomes. PLANT MOLECULAR BIOLOGY 2014; 86:201-214. [PMID: 25008153 PMCID: PMC4142595 DOI: 10.1007/s11103-014-0223-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/01/2014] [Indexed: 05/29/2023]
Abstract
Peroxisomes are organelles that catabolize fatty acids and compartmentalize other oxidative metabolic processes in eukaryotes. Using a forward-genetic screen designed to recover severe peroxisome-defective mutants, we isolated a viable allele of the peroxisome biogenesis gene PEX13 with striking peroxisomal defects. The pex13-4 mutant requires an exogenous source of fixed carbon for pre-photosynthetic development and is resistant to the protoauxin indole-3-butyric acid. Delivery of peroxisome-targeted matrix proteins depends on the PEX5 receptor docking with PEX13 at the peroxisomal membrane, and we found severely reduced import of matrix proteins and less organelle-associated PEX5 in pex13-4 seedlings. Moreover, pex13-4 physiological and molecular defects were partially ameliorated when PEX5 was overexpressed, suggesting that PEX5 docking is partially compromised in this mutant and can be improved by increasing PEX5 levels. Because previously described Arabidopsis pex13 alleles either are lethal or confer only subtle defects, the pex13-4 mutant provides valuable insight into plant peroxisome receptor docking and matrix protein import.
Collapse
Affiliation(s)
- Andrew W. Woodward
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA. Department of Biology, University of Mary Hardin-Baylor, Belton, TX 76513, USA
| | - Wendell A. Fleming
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Sarah E. Burkhart
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Sarah E. Ratzel
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Marta Bjornson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Bonnie Bartel
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| |
Collapse
|
16
|
Central serotonergic neuron deficiency in a mouse model of Zellweger syndrome. Neuroscience 2014; 274:229-41. [PMID: 24881576 DOI: 10.1016/j.neuroscience.2014.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 11/21/2022]
Abstract
Zellweger syndrome (ZS) is a severe peroxisomal disorder caused by mutations in peroxisome biogenesis, or PEX, genes. A central hallmark of ZS is abnormal neuronal migration and neurodegeneration, which manifests as widespread neurological dysfunction. The molecular basis of ZS neuropathology is not well understood. Here we present findings using a mouse model of ZS neuropathology with conditional brain inactivation of the PEX13 gene. We demonstrate that PEX13 brain mutants display changes that reflect an abnormal serotonergic system - decreased levels of tryptophan hydroxylase-2, the rate-limiting enzyme of serotonin (5-hydroxytryptamine, 5-HT) synthesis, dysmorphic 5-HT-positive neurons, abnormal distribution of 5-HT neurons, and dystrophic serotonergic axons. The raphe nuclei region of PEX13 brain mutants also display increased levels of apoptotic cells and reactive, inflammatory gliosis. Given the role of the serotonergic system in brain development and motor control, dysfunction of this system would account in part for the observed neurological changes of PEX13 brain mutants.
Collapse
|
17
|
Revisiting the neuropathogenesis of Zellweger syndrome. Neurochem Int 2014; 69:1-8. [DOI: 10.1016/j.neuint.2014.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 01/27/2023]
|
18
|
The biogenesis protein PEX14 is an optimal marker for the identification and localization of peroxisomes in different cell types, tissues, and species in morphological studies. Histochem Cell Biol 2013; 140:423-42. [DOI: 10.1007/s00418-013-1133-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 01/09/2023]
|
19
|
Krause C, Rosewich H, Woehler A, Gärtner J. Functional analysis of PEX13 mutation in a Zellweger syndrome spectrum patient reveals novel homooligomerization of PEX13 and its role in human peroxisome biogenesis. Hum Mol Genet 2013; 22:3844-57. [PMID: 23716570 DOI: 10.1093/hmg/ddt238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In humans, the concerted action of at least 13 different peroxisomal PEX proteins is needed for proper peroxisome biogenesis. Mutations in any of these PEX genes can lead to lethal neurometabolic disorders of the Zellweger syndrome spectrum (ZSS). Previously, we identified the W313G mutation located within the SH3 domain of the peroxisomal protein, PEX13. As this tryptophan residue is highly conserved in almost all known SH3 proteins, we investigated the pathogenic mechanism of the W313G mutation and its role in PEX13 interactions and functions in peroxisome biogenesis. Here, we report for the first time that human PEX13 interacts with itself in peroxisomes in living cells. We demonstrate that the import of PTS1 (peroxisomal targeting signal 1) proteins is specifically disrupted when homooligomerization of PEX13 is interrupted. Live cell FRET microscopy in living cells as well as co-immunoprecipitation experiments reveal that the highly conserved W313 residue is important for self-association of PEX13 but is not required for interaction with PEX14, a well-established interaction partner at the peroxisomal membrane. Experiments with truncated constructs indicate that although the W313G mutation resides in the C-terminal SH3 domain, the N-terminal half is necessary for peroxisomal localization, which in turn appears to be crucial for homooligomerization. Furthermore, rescue of homooligomerization in the W313G mutant cells through complementation with truncation constructs restores import of peroxisomal matrix proteins. Taken together, the thorough analyses of a ZSS patient mutation unraveled the general cell biological function of PEX13 and its mechanism in the import of peroxisomal matrix PTS1 proteins.
Collapse
|
20
|
Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1430-41. [PMID: 22871920 DOI: 10.1016/j.bbadis.2012.04.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/30/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
Human peroxisome biogenesis disorders (PBDs) are a heterogeneous group of autosomal recessive disorders comprised of two clinically distinct subtypes: the Zellweger syndrome spectrum (ZSS) disorders and rhizomelic chondrodysplasia punctata (RCDP) type 1. PBDs are caused by defects in any of at least 14 different PEX genes, which encode proteins involved in peroxisome assembly and proliferation. Thirteen of these genes are associated with ZSS disorders. The genetic heterogeneity among PBDs and the inability to predict from the biochemical and clinical phenotype of a patient with ZSS which of the currently known 13 PEX genes is defective, has fostered the development of different strategies to identify the causative gene defects. These include PEX cDNA transfection complementation assays followed by sequencing of the thus identified PEX genes, and a PEX gene screen in which the most frequently mutated exons of the different PEX genes are analyzed. The benefits of DNA testing for PBDs include carrier testing of relatives, early prenatal testing or preimplantation genetic diagnosis in families with a recurrence risk for ZSS disorders, and insight in genotype-phenotype correlations, which may eventually assist to improve patient management. In this review we describe the current status of genetic analysis and the molecular basis of PBDs.
Collapse
|
21
|
Ebberink MS, Mooijer PAW, Gootjes J, Koster J, Wanders RJA, Waterham HR. Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder. Hum Mutat 2011; 32:59-69. [PMID: 21031596 DOI: 10.1002/humu.21388] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The autosomal recessive Zellweger syndrome spectrum (ZSS) disorders comprise a main subgroup of the peroxisome biogenesis disorders and can be caused by mutations in any of 12 different currently identified PEX genes resulting in severe multisystemic disorders. To get insight into the spectrum of PEX gene defects among ZSS disorders and to investigate if additional human PEX genes are required for functional peroxisome biogenesis, we assigned over 600 ZSS fibroblast cell lines to different genetic complementation groups. These fibroblast cell lines were subjected to a complementation assay involving fusion by means of polyethylene glycol or a PEX cDNA transfection assay specifically developed for this purpose. In a majority of the cell lines we subsequently determined the underlying mutations by sequence analysis of the implicated PEX genes. The PEX cDNA transfection assay allows for the rapid identification of PEX genes defective in ZSS patients. The assignment of over 600 fibroblast cell lines to different genetic complementation groups provides the most comprehensive and representative overview of the frequency distribution of the different PEX gene defects. We did not identify any novel genetic complementation group, suggesting that all PEX gene defects resulting in peroxisome deficiency are currently known.
Collapse
Affiliation(s)
- Merel S Ebberink
- Academic Medical Centre at the University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Müller CC, Nguyen TH, Ahlemeyer B, Meshram M, Santrampurwala N, Cao S, Sharp P, Fietz PB, Baumgart-Vogt E, Crane DI. PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress. Dis Model Mech 2010; 4:104-19. [PMID: 20959636 PMCID: PMC3014351 DOI: 10.1242/dmm.004622] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Delayed cerebellar development is a hallmark of Zellweger syndrome (ZS), a severe neonatal neurodegenerative disorder. ZS is caused by mutations in PEX genes, such as PEX13, which encodes a protein required for import of proteins into the peroxisome. The molecular basis of ZS pathogenesis is not known. We have created a conditional mouse mutant with brain-restricted deficiency of PEX13 that exhibits cerebellar morphological defects. PEX13 brain mutants survive into the postnatal period, with the majority dying by 35 days, and with survival inversely related to litter size and weaning body weight. The impact on peroxisomal metabolism in the mutant brain is mixed: plasmalogen content is reduced, but very-long-chain fatty acids are normal. PEX13 brain mutants exhibit defects in reflex and motor development that correlate with impaired cerebellar fissure and cortical layer formation, granule cell migration and Purkinje cell layer development. Astrogliosis and microgliosis are prominent features of the mutant cerebellum. At the molecular level, cultured cerebellar neurons from E19 PEX13-null mice exhibit elevated levels of reactive oxygen species and mitochondrial superoxide dismutase-2 (MnSOD), and show enhanced apoptosis together with mitochondrial dysfunction. PEX13 brain mutants show increased levels of MnSOD in cerebellum. Our findings suggest that PEX13 deficiency leads to mitochondria-mediated oxidative stress, neuronal cell death and impairment of cerebellar development. Thus, PEX13-deficient mice provide a valuable animal model for investigating the molecular basis and treatment of ZS cerebellar pathology.
Collapse
Affiliation(s)
- C Catharina Müller
- Eskitis Institute for Cell and Molecular Therapies, and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Peroxisomes in zebrafish: distribution pattern and knockdown studies. Histochem Cell Biol 2010; 134:39-51. [PMID: 20556416 DOI: 10.1007/s00418-010-0712-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2010] [Indexed: 12/12/2022]
Abstract
Peroxisomes are organelles that are essential for normal development in men and mice. In order to explore whether zebrafish could be used as a model system to study the role of peroxisomes, we examined their distribution pattern in developing and adult zebrafish and we tested different approaches to eliminate them during the first days after fertilization. In 4-day-old embryos, catalase-containing peroxisomes were obvious in the liver, the pronephric duct and the wall of the yolk sac, but transcripts for peroxisomal matrix and membrane proteins were also detected in the head region from 24 h post-fertilization. In adult zebrafish, catalase-containing peroxisomes remained prominent in the hepatocytes, the renal proximal tubules and the intestinal epithelium. Several peroxins, essential proteins for the biogenesis of peroxisomes, were targeted using knockdown approaches. Two morpholinos, blocking, respectively, splice sites in pex3 and pex13, only induced a short in frame deletion or insertion in the transcripts and did not result in the elimination of peroxisomes after injection into one-cell embryos. A morpholino blocking translation of pex13 was able to reduce the number of peroxisomes to variable extents. Finally, overexpression of a potential dominant negative fragment of Pex3p did not result in deletion of peroxisomes from developing zebrafish. We conclude that in zebrafish (1) peroxisomes, as visualized by DAB cytochemistry for catalase activity, are most conspicuous in the liver and renal tubular epithelium; this pattern is reminiscent of peroxisome occurrence in mammalian organs, (2) our approaches to eliminate these organelles during development by targeting peroxins were not successful.
Collapse
|
24
|
Yakunin E, Moser A, Loeb V, Saada A, Faust P, Crane DI, Baes M, Sharon R. alpha-Synuclein abnormalities in mouse models of peroxisome biogenesis disorders. J Neurosci Res 2010; 88:866-76. [PMID: 19830841 DOI: 10.1002/jnr.22246] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
alpha-Synuclein (alphaS) is a presynaptic protein implicated in Parkinson's disease (PD). Growing evidence implicates mitochondrial dysfunction, oxidative stress, and alphaS-lipid interactions in the gradual accumulation of alphaS in pathogenic forms and its deposition in Lewy bodies, the pathological hallmark of PD and related synucleinopathies. The peroxisomal biogenesis disorders (PBD), with Zellweger syndrome serving as the prototype of this group, are characterized by malformed and functionally impaired peroxisomes. Here we utilized the PBD mouse models Pex2-/-, Pex5-/-, and Pex13-/- to study the potential effects of peroxisomal dysfunction on alphaS-related pathogenesis. We found increased alphaS oligomerization and phosphorylation and its increased deposition in cytoplasmic inclusions in these PBD mouse models. Furthermore, we show that alphaS abnormalities correlate with the altered lipid metabolism and, specifically, with accumulation of long chain, n-6 polyunsaturated fatty acids that occurs in the PBD models.
Collapse
Affiliation(s)
- Eugenia Yakunin
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel Canada, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen H, Liu Z, Huang X. Drosophila models of peroxisomal biogenesis disorder: peroxins are required for spermatogenesis and very-long-chain fatty acid metabolism. Hum Mol Genet 2009; 19:494-505. [DOI: 10.1093/hmg/ddp518] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Al-Dirbashi OY, Shaheen R, Al-Sayed M, Al-Dosari M, Makhseed N, Abu Safieh L, Santa T, Meyer BF, Shimozawa N, Alkuraya FS. Zellweger syndrome caused by PEX13 deficiency: report of two novel mutations. Am J Med Genet A 2009; 149A:1219-23. [PMID: 19449432 DOI: 10.1002/ajmg.a.32874] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peroxisomal biogenesis disorders represent a group of genetically heterogeneous conditions that have in common failure of proper peroxisomal assembly. Clinically, they are characterized by a spectrum of dysmorphia, neurological, liver, and other organ involvement. To date, mutations in 13 PEX genes encoding peroxins have been identified in patients with peroxisomal biogenesis disorders. Mutations in PEX13, which encodes peroxisomal membrane protein PEX13, are among the least common causes of peroxisomal biogenesis disorders with only three mutations reported so far. Here, we report on two infants whose clinical and biochemical profile was consistent with classical Zellweger syndrome and whose complementation analysis assigned them both to group H of peroxisomal biogenesis disorders. We show that they harbor two novel mutations in PEX13. One patient had a genomic rearrangement resulting in a 147 kb deletion that spans the whole of PEX13, while the other had an out-of-frame deletion of 14 bp. This represents the first report of a PEX13 deletion and suggests that further work is needed to examine the frequency of PEX13 mutations among Arab patients with peroxisomal biogenesis disorders.
Collapse
Affiliation(s)
- O Y Al-Dirbashi
- National Laboratory for Newborn Screening, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pham TD, Müller CC, Crane DI. Fuzzy scaling analysis of a mouse mutant with brain morphological changes. ACTA ACUST UNITED AC 2009; 13:629-35. [PMID: 19369166 DOI: 10.1109/titb.2009.2019638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Scaling behavior inherently exists in fundamental biological structures, and the measure of such an attribute can only be known at a given scale of observation. Thus, the properties of fractals and power-law scaling have become attractive for research in biology and medicine because of their potential for discovering patterns and characteristics of complex biological morphologies. Despite the successful applications of fractals for the life sciences, the quantitative measure of the scale invariance expressed by fractal dimensions is limited in more complex situations, such as for histopathological analysis of tissue changes in disease. In this paper, we introduce the concept of fuzzy scaling and its analysis of a mouse mutant with postnatal brain morphological changes.
Collapse
Affiliation(s)
- Tuan D Pham
- School of Information Technology and Electrical Engineering, The University of New SouthWales, Canberra, A.C.T. 2600, Australia.
| | | | | |
Collapse
|
28
|
Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1733-48. [PMID: 17055079 DOI: 10.1016/j.bbamcr.2006.09.010] [Citation(s) in RCA: 343] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 01/02/2023]
Abstract
Defects in PEX genes impair peroxisome assembly and multiple metabolic pathways confined to this organelle, thus providing the biochemical and molecular bases of the peroxisome biogenesis disorders (PBD). PBD are divided into two types--Zellweger syndrome spectrum (ZSS) and rhizomelic chondrodysplasia punctata (RCDP). Biochemical studies performed in blood and urine are used to screen for the PBD. DNA testing is possible for all of the disorders, but is more challenging for the ZSS since 12 PEX genes are known to be associated with this spectrum of PBD. In contrast, PBD-RCDP is associated with defects in the PEX7 gene alone. Studies of the cellular and molecular defects in PBD patients have contributed significantly to our understanding of the role of each PEX gene in peroxisome assembly.
Collapse
Affiliation(s)
- Steven J Steinberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Weller S, Cajigas I, Morrell J, Obie C, Steel G, Gould SJ, Valle D. Alternative splicing suggests extended function of PEX26 in peroxisome biogenesis. Am J Hum Genet 2005; 76:987-1007. [PMID: 15858711 PMCID: PMC1196456 DOI: 10.1086/430637] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 03/29/2005] [Indexed: 12/22/2022] Open
Abstract
Matsumoto and colleagues recently identified PEX26 as the gene responsible for complementation group 8 of the peroxisome biogenesis disorders and showed that it encodes an integral peroxisomal membrane protein with a single C-terminal transmembrane domain and a cytosolic N-terminus that interacts with the PEX1/PEX6 heterodimer through direct binding to the latter. They proposed that PEX26 functions as the peroxisomal docking factor for the PEX1/PEX6 heterodimer. Here, we identify new PEX26 disease alleles, localize the PEX6-binding domain to the N-terminal half of the protein (aa 29-174), and show that, at the cellular level, PEX26 deficiency impairs peroxisomal import of both PTS1- and PTS2-targeted matrix proteins. Also, we find that PEX26 undergoes alternative splicing to produce several splice forms--including one, PEX26- delta ex5, that maintains frame and encodes an isoform lacking the transmembrane domain of full-length PEX26 (PEX26-FL). Despite its cytosolic location, PEX26- delta ex5 rescues peroxisome biogenesis in PEX26-deficient cells as efficiently as does PEX26-FL. To test our observation that a peroxisomal location is not required for PEX26 function, we made a chimeric protein (PEX26-Mito) with PEX26 as its N-terminus and the targeting segment of a mitochondrial outer membrane protein (OMP25) at its C-terminus. We found PEX26-Mito localized to the mitochondria and directed all detectable PEX6 and a fraction of PEX1 to this extraperoxisomal location; yet PEX26-Mito retains the full ability to rescue peroxisome biogenesis in PEX26-deficient cells. On the basis of these observations, we suggest that a peroxisomal localization of PEX26 and PEX6 is not required for their function and that the interaction of PEX6 with PEX1 is dynamic. This model predicts that, once activated in an extraperoxisomal location, PEX1 moves to the peroxisome and completes the function of the PEX1/6 heterodimer.
Collapse
Affiliation(s)
- Sabine Weller
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - Ivelisse Cajigas
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - James Morrell
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - Cassandra Obie
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - Gary Steel
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - Stephen J. Gould
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
30
|
Abstract
The peroxisome biogenesis disorders (PBDs) comprise 12 autosomal recessive complementation groups (CGs). The multisystem clinical phenotype varies widely in severity and results from disturbances in both development and metabolic homeostasis. Progress over the last several years has lead to identification of the genes responsible for all of these disorders and to a much improved understanding of the biogenesis and function of the peroxisome. Increasing availability of mouse models for these disorders offers hope for a better understanding of their pathophysiology and for development of therapies that might especially benefit patients at the milder end of the clinical phenotype.
Collapse
Affiliation(s)
- Sabine Weller
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
31
|
Maxwell M, Bjorkman J, Nguyen T, Sharp P, Finnie J, Paterson C, Tonks I, Paton BC, Kay GF, Crane DI. Pex13 inactivation in the mouse disrupts peroxisome biogenesis and leads to a Zellweger syndrome phenotype. Mol Cell Biol 2003; 23:5947-57. [PMID: 12897163 PMCID: PMC166343 DOI: 10.1128/mcb.23.16.5947-5957.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zellweger syndrome is the archetypical peroxisome biogenesis disorder and is characterized by defective import of proteins into the peroxisome, leading to peroxisomal metabolic dysfunction and widespread tissue pathology. In humans, mutations in the PEX13 gene, which encodes a peroxisomal membrane protein necessary for peroxisomal protein import, can lead to a Zellweger phenotype. To develop mouse models for this disorder, we have generated a targeted mouse with a loxP-modified Pex13 gene to enable conditional Cre recombinase-mediated inactivation of Pex13. In the studies reported here, we crossed these mice with transgenic mice that express Cre recombinase in all cells to generate progeny with ubiquitous disruption of Pex13. The mutant pups exhibited many of the clinical features of Zellweger syndrome patients, including intrauterine growth retardation, severe hypotonia, failure to feed, and neonatal death. These animals lacked morphologically intact peroxisomes and showed deficient import of matrix proteins containing either type 1 or type 2 targeting signals. Biochemical analyses of tissue and cultured skin fibroblasts from these animals indicated severe impairment of peroxisomal fatty acid oxidation and plasmalogen synthesis. The brains of these animals showed disordered lamination in the cerebral cortex, consistent with a neuronal migration defect. Thus, Pex13(-/-) mice reproduce many of the features of Zellweger syndrome and PEX13 deficiency in humans.
Collapse
Affiliation(s)
- Megan Maxwell
- School of Biomolecular and Biomedical Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang Y, Ito R, Miura S, Yokota S, Oda T, Ito M. Altered antigenic disposition of peroxisomal urate oxidase in PEX5-defective Chinese hamster ovary cells. Biochem Biophys Res Commun 2003; 302:703-9. [PMID: 12646226 DOI: 10.1016/s0006-291x(03)00260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since Chinese hamster ovary (CHO) cells never express urate oxidase (UO), we tried to establish cell lines stably producing UO in order to elucidate the peroxisomal import process. The enzyme is a peroxisome targeting signal 1 (PTS1) protein harboring SKL motif at the carboxy-terminus [Biochem. Biophys. Res. Commun. 158 (1989) 991] and PEX5 protein (Pex5p) is supposed to be involved in the import process [Nat. Genet. 9 (1995) 115; J. Cell Biol. 130 (1995) 51]. We transfected a cDNA encoding rat UO into both wild type and PEX5-defective CHO cells to isolate each cell line stably producing the enzyme. While we examined the import process of UO in mutant cells, we noticed an interesting observation by using polyclonal antibody U1 or U2, which separately recognizes epitopes of UO. U1 antibody mainly interacts with epitopes in the amino-terminal region of UO. On the other hand, U2 antibody reacts with many epitopes distributed in the broad region of UO molecule. When UO produced in cultured cells was stained with U2 antibody, the enzyme was detected in peroxisomes of both wild type and PEX5-mutant cells. Whereas, U1 antibody stained the peroxisomal UO in wild type cells, but not in PEX5-mutant cells. These immunocytochemical observations suggest that the epitopes at the amino-terminal region of UO will be concealed in mutant cells. When the mutant cells were transfected with wild type PEX5 cDNA, U1 antibody came to react with UO in peroxisomes of mutant cells. The restoration indicates that the exposure of N-terminal epitopes of UO will depend upon the functional Pex5p. Immunoelectron microscopic observation showed that the peroxisomal import of UO was partially retarded in PEX5 mutant cells. The observation also supported the fact that UO was mainly localized in the peroxisomal matrix of wild type cells but in the membrane of mutant cells.
Collapse
Affiliation(s)
- Yuang Huang
- Division of Molecular Cell Biology, Saga Medical School, Nabeshima, Saga 849-8501, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Huang Y, Ito R, Imanaka T, Usuda N, Ito M. Different accumulations of 3-ketoacyl-CoA thiolase precursor in peroxisomes of Chinese hamster ovary cells harboring a dysfunction in the PEX2 protein. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:273-84. [PMID: 12031794 DOI: 10.1016/s0167-4889(02)00180-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The peroxisomal localization of 3-ketoacyl-CoA thiolase (hereafter referred to as thiolase) was characterized in five Chinese hamster ovary (CHO) mutant cell lines each harboring a dysfunction in the PEX2 protein. PT54 (Pex2pN100) cells carry a nonsense mutation that results in the PEX2 protein truncated at amino acid position 100. SK24 (Pex2pC258Y) cells carry a missense mutation resulting in the amino acid substitution of a cysteine residue by a tyrosine residue at amino acid position 258 of the PEX2 protein. The WSK24 (Pex2pC258Y/+wild) cell line is a stable transformant of SK24 (Pex2pC258Y) cells transfected with wild-type rat PEX2 cDNA. The SPT54 (Pex2pN100/+Pex2pC258Y) and WPT54 (Pex2pN100/+wild) cell lines are stable transformants of PT54 (Pex2pN100) cells transfected with the mutant PEX2 cDNA from SK24 (Pex2pC258Y) cells and wild-type rat PEX2 cDNA, respectively. In these cell lines, except PT54 (Pex2pN100), thiolase appeared to be localized in peroxisomes, as it is in the wild-type cells. When the molecular size of the enzyme was examined on SDS-polyacrylamide gel electrophoresis, the peroxisome-localized enzyme exhibited a larger precursor form in these mutant cells. The characterizations with salt wash, sodium carbonate extraction and proteinase K digestion indicated that the precursor forms of the enzyme were accumulated at different states in peroxisomes of these mutant cells. The dispositions on the peroxisomal membrane were further sustained by differential permeabilization using digitonin, followed by immunocytochemical fluorescence. These results suggest that PEX2 protein functions differently on two processes of the maturation and the disposition in the import pathway of thiolase.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Biology, Saga Medical School, Nabeshima, Japan
| | | | | | | | | |
Collapse
|
34
|
Bjorkman J, Tonks I, Maxwell MA, Paterson C, Kay GF, Crane DI. Conditional inactivation of the peroxisome biogenesis Pex13 gene by Cre-loxP excision. Genesis 2002; 32:179-80. [PMID: 11857814 DOI: 10.1002/gene.10044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jonas Bjorkman
- School of Biomolecular and Biomedical Science, Griffith University, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Björkman J, Gould SJ, Crane DI. Pex13, the mouse ortholog of the human peroxisome biogenesis disorder PEX13 gene: gene structure, tissue expression, and localization of the protein to peroxisomes. Genomics 2002; 79:162-8. [PMID: 11829486 DOI: 10.1006/geno.2002.6697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pex13 encodes an SH3-containing peroxisomal membrane protein required for the import of proteins into peroxisomes. In humans, mutations in PEX13 can disrupt peroxisome biogenesis and lead to peroxisomal metabolic dysfunction and neurodegenerative disease. We report here on the mouse gene Pex13 and its encoded protein. Mouse Pex13 spans 18 kb and consists of four exons. We detected Pex13 transcripts in all mouse tissues tested, with highest levels in liver and testis. The Pex13 open reading frame predicts a 44.5-kDa protein that displays 91% sequence identity to the human PEX13 protein. We have localized PEX13 protein to peroxisomes in mouse liver and show that this protein also sorts to peroxisomes in human skin fibroblasts. These data indicate that the structure and properties of the mouse and human PEX13 proteins are almost identical. We infer from these findings that targeted disruption of mouse Pex13 would provide an appropriate model for the study of PEX13 dysfunction in humans.
Collapse
Affiliation(s)
- Jonas Björkman
- School of Biomolecular and Biomedical Science, Griffith University, Nathan, QLD 4111, Australia
| | | | | |
Collapse
|
36
|
Reguenga C, Oliveira ME, Gouveia AM, Sá-Miranda C, Azevedo JE. Characterization of the mammalian peroxisomal import machinery: Pex2p, Pex5p, Pex12p, and Pex14p are subunits of the same protein assembly. J Biol Chem 2001; 276:29935-42. [PMID: 11397814 DOI: 10.1074/jbc.m104114200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although many of the proteins involved in the biogenesis of the mammalian peroxisome have already been identified, our knowledge of the architecture of all this machinery is still very limited. In this work we used native gel electrophoresis and sucrose gradient sedimentation analysis in combination with immunoprecipitation experiments to address this issue. After solubilization of rat liver peroxisomes with the mild detergent digitonin, comigration of Pex5p, Pex14p, and a fraction of Pex12p was observed upon native electrophoresis and sucrose gradient sedimentation. The existence of a complex comprising Pex2p, Pex5p, Pex12p, and Pex14p was demonstrated by preparative coimmunoprecipitation experiments using an antibody directed to Pex14p. No stoichiometric amounts of Pex13p were detected in the Pex2p-Pex5p-Pex12p-Pex14p complex, although the presence of a small fraction of Pex13p in this complex could be demonstrated by Western blot analysis. Pex13p is also a component of a high molecular mass complex. Strikingly, partial purification of this Pex13p-containing complex revealed Pex13p as the major (if not the only) component. Taken together, our data indicate that Pex2p, Pex5p, Pex12p, and Pex14p, on one side, and Pex13p, on the other, are subunits of two stable protein complexes that probably interact with each other in the peroxisomal membrane.
Collapse
Affiliation(s)
- C Reguenga
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
37
|
Jones JM, Morrell JC, Gould SJ. Multiple distinct targeting signals in integral peroxisomal membrane proteins. J Cell Biol 2001; 153:1141-50. [PMID: 11402059 PMCID: PMC2192020 DOI: 10.1083/jcb.153.6.1141] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2000] [Accepted: 04/24/2001] [Indexed: 12/05/2022] Open
Abstract
Peroxisomal proteins are synthesized on free polysomes and then transported from the cytoplasm to peroxisomes. This process is mediated by two short well-defined targeting signals in peroxisomal matrix proteins, but a well-defined targeting signal has not yet been described for peroxisomal membrane proteins (PMPs). One assumption in virtually all prior studies of PMP targeting is that a given protein contains one, and only one, distinct targeting signal. Here, we show that the metabolite transporter PMP34, an integral PMP, contains at least two nonoverlapping sets of targeting information, either of which is sufficient for insertion into the peroxisome membrane. We also show that another integral PMP, the peroxin PEX13, also contains two independent sets of peroxisomal targeting information. These results challenge a major assumption of most PMP targeting studies. In addition, we demonstrate that PEX19, a factor required for peroxisomal membrane biogenesis, interacts with the two minimal targeting regions of PMP34. Together, these results raise the interesting possibility that PMP import may require novel mechanisms to ensure the solubility of integral PMPs before their insertion in the peroxisome membrane, and that PEX19 may play a central role in this process.
Collapse
Affiliation(s)
- Jacob M. Jones
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - James C. Morrell
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Stephen J. Gould
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
38
|
Abstract
The segregation of metabolic functions within discrete organelles is a hallmark of eukaryotic cells. These compartments allow for the concentration of related metabolic functions, the separation of competing metabolic functions, and the formation of unique chemical microenvironments. However, such organization is not spontaneous and requires an array of genes that are dedicated to the assembly and maintenance of these structures. In this review we focus on the genetics of peroxisome biogenesis and on how defects in this process cause human disease.
Collapse
Affiliation(s)
- K A Sacksteder
- Department of Biological Chemistry, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
39
|
Abstract
This review summarizes the progress made in our understanding of peroxisome biogenesis in the last few years, during which the functional roles of many of the 23 peroxins (proteins involved in peroxisomal protein import and peroxisome biogenesis) have become clearer. Previous reviews in the field have focussed on the metabolic functions of peroxisomes, aspects of import/biogenesis the role of peroxins in human disease, and involvement of the endoplasmic reticulum in peroxisome membrane biogenesis as well as the degradation of this organelle. This review refers to some of the earlier work for the sake of introduction and continuity but deals primarily with the more recent progress. The principal areas of progress are the identification of new peroxins, definition of protein-protein interactions among peroxins leading to the recognition of complexes involved in peroxisomal protein import, insight into the biogenesis of peroxisomal membrane proteins, and, of most importance, the elucidation of the role of many conserved peroxins in human disease. Given the rapid progress in the field, this review also highlights some of the unanswered questions that remain to be tackled.
Collapse
Affiliation(s)
- S Subramani
- Department of Biology, University of California, San Diego, La Jolla, California 92093-0322, USA.
| | | | | |
Collapse
|
40
|
Bottger G, Barnett P, Klein AT, Kragt A, Tabak HF, Distel B. Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Mol Biol Cell 2000; 11:3963-76. [PMID: 11071920 PMCID: PMC15050 DOI: 10.1091/mbc.11.11.3963] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A number of peroxisome-associated proteins have been described that are involved in the import of proteins into peroxisomes, among which is the receptor for peroxisomal targeting signal 1 (PTS1) proteins Pex5p, the integral membrane protein Pex13p, which contains an Src homology 3 (SH3) domain, and the peripheral membrane protein Pex14p. In the yeast Saccharomyces cerevisiae, both Pex5p and Pex14p are able to bind Pex13p via its SH3 domain. Pex14p contains the classical SH3 binding motif PXXP, whereas this sequence is absent in Pex5p. Mutation of the conserved tryptophan in the PXXP binding pocket of Pex13-SH3 abolished interaction with Pex14p, but did not affect interaction with Pex5p, suggesting that Pex14p is the classical SH3 domain ligand and that Pex5p binds the SH3 domain in an alternative way. To identify the SH3 binding site in Pex5p, we screened a randomly mutagenized PEX5 library for loss of interaction with Pex13-SH3. Such mutations were all located in a small region in the N-terminal half of Pex5p. One of the altered residues (F208) was part of the sequence W(204)XXQF(208), that is conserved between Pex5 proteins of different species. Site-directed mutagenesis of Trp204 confirmed the essential role of this motif in recognition of the SH3 domain. The Pex5p mutants could only partially restore PTS1-protein import in pex5Delta cells in vivo. In vitro binding studies showed that these Pex5p mutants failed to interact with Pex13-SH3 in the absence of Pex14p, but regained their ability to bind in the presence of Pex14p, suggesting the formation of a heterotrimeric complex consisting of Pex5p, Pex14p, and Pex13-SH3. In vivo, these Pex5p mutants, like wild-type Pex5p, were still found to be associated with peroxisomes. Taken together, this indicates that in the absence of Pex13-SH3 interaction, other protein(s) is able to bind Pex5p at the peroxisome; Pex14p is a likely candidate for this function.
Collapse
Affiliation(s)
- G Bottger
- Department of Biochemistry, University of Amsterdam, Academic Medical Center, Meibergdreef 15 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Imamura A, Shimozawa N, Suzuki Y, Zhang Z, Tsukamoto T, Fujiki Y, Orii T, Osumi T, Wanders RJ, Kondo N. Temperature-sensitive mutation of PEX6 in peroxisome biogenesis disorders in complementation group C (CG-C): comparative study of PEX6 and PEX1. Pediatr Res 2000; 48:541-5. [PMID: 11004248 DOI: 10.1203/00006450-200010000-00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisome biogenesis disorders (PBD), including Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease, are a group of genetically heterogeneous autosomal-recessive diseases caused by mutations in PEX genes that encode peroxins, proteins required for peroxisome biogenesis. Zellweger syndrome patients present the most severe phenotype, whereas neonatal adrenoleukodystrophy patients are intermediate and infantile Refsum disease patients have the mildest features. PEX6 is a causative gene for PBD of complementation group C (CG-C) and encodes the peroxin Pex6p, one of the ATPases associated with diverse cellular activities and a member of the same family of proteins as Pex1p, a causative protein for PBD of CG-E (CG1). Here, we identified the temperature sensitivity of peroxisomes in the fibroblasts of a patient with neonatal adrenoleukodystrophy in CG-C. Peroxisomes were morphologically and biochemically formed at 30 degrees C but not at 37 degrees C. This patient was homozygous for a missense mutation, T-->C at nucleotide 170 resulting in a change from leucine to proline at amino acid 57 (L57P) in Pex6p. CG-C cell mutants (ZP92) in the Chinese hamster ovary transfected with L57P in HsPEX6 revealed the same temperature-sensitive phenotype. However, PEX1-deficient Chinese hamster ovary cell mutants (ZP101) transfected with L111P in PEX1, the counterpart to L57P in PEX6, showed no temperature sensitivity. In addition, ZP92 transfected with G708D in PEX6, the counterpart to the temperature-sensitive mutation G843D in PEX1, revealed no temperature-sensitive phenotype. These results indicate that L57P in Pex6p is a temperature-sensitive mutation causing the milder phenotype in a patient with PBD in CG-C. They also indicate that the amino acid residues responsible for temperature sensitivity do not seem to be conserved between Pex6p and Pex1p.
Collapse
Affiliation(s)
- A Imamura
- Department of Pediatrics, Gifu University School of Medicine, Gifu 500-8705, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Warren DS, Wolfe BD, Gould SJ. Phenotype-genotype relationships in PEX10-deficient peroxisome biogenesis disorder patients. Hum Mutat 2000; 15:509-21. [PMID: 10862081 DOI: 10.1002/1098-1004(200006)15:6<509::aid-humu3>3.0.co;2-#] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The peroxisome biogenesis disorders (PBD) are characterized by neural, hepatic, and renal deficiencies, severe mental retardation, and are often lethal. These disorders are genetically and phenotypically heterogeneous and are caused by defective peroxisomal protein import and decreased peroxisomal metabolic function. Mutations in PEX10 have been identified in patients from complementation group 7 (CG7) of the PBDs and we report here an analysis of the genotypes and phenotypes of PEX10-deficient patients. All four PEX10-deficient Zellweger Syndrome (ZS) patients were found to have nonsense, frameshift, or splice site mutations that remove large portions of the PEX10 coding region. In contrast, a more mildly affected PEX10-deficient neonatal adrenoleukodystrophy patient expressed a PEX10 allele with a missense mutation, H290Q, affecting the C-terminal zinc-binding domain of the PEX10 product. These results support the hypothesis that severe, loss-of-function mutations in PEX genes cause more severe clinical phenotypes, whereas mildly affected PBD patients have PEX gene mutations that retain residual function. To quantitate the effects of the PEX10 mutations identified here and elsewhere we employed a functional complementation assay. Surprisingly, we observed that nonsense and frameshift mutations predicted to delete the C-terminal 2/3 (R125X) or 1/3 (c.704insA) of the protein displayed nearly normal PEX10 activity. Even more surprising, we found that the unexpectedly high PEX10 activity displayed by these cDNAs could be eliminated by removing or mutating segments of the PEX10 cDNA downstream of the mutations. Although these results demonstrate serious flaws in the PEX10 functional complementation assay, they do suggest that the C-terminal zinc-binding domain is critical for PEX10 function.
Collapse
Affiliation(s)
- D S Warren
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
43
|
Abstract
Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum disease and rhizomelic chondrodysplasia punctata are progressive disorders characterized by loss of multiple peroxisomal metabolic functions. These diseases are inherited in an autosomal recessive manner, are caused by defects in the import of peroxisomal matrix proteins and are referred to as the peroxisome biogenesis disorders (PBDs). Recent studies have identified the PEX genes that are mutated in 11 of the 12 known complementation groups of PBD patients. This article reviews these advances in PBD genetics and discusses how studies of human PEX genes, their protein products and PBD cell lines are shaping current models of peroxisome biogenesis.
Collapse
Affiliation(s)
- S J Gould
- Departments of Biological Chemistry and Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
44
|
Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A, Kawai A, Shimizu N, Fujiki Y. The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p.PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem 2000; 275:21703-14. [PMID: 10767286 DOI: 10.1074/jbc.m000720200] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals, two isoforms of the peroxisome targeting signal (PTS) type 1 receptor Pex5p, i.e. Pex5pS and Pex5pL with an internal 37-amino acid insertion, have previously been identified. Expression of either type of Pex5p complements the impaired PTS1 import in Chinese hamster ovary pex5 mutants, but only Pex5pL can rescue the PTS2 import defect noted in a subgroup of pex5 mutants such as ZP105. In this work, we found that Pex5pL directly interacts with the PTS2 receptor Pex7p, carrying its cargo PTS2 protein in the cytosol. Pex5pL, but not Pex5pS, mediated the binding of PTS2 protein to Pex14p by translocating Pex7p, demonstrating that Pex5pL plays a pivotal role in peroxisomal PTS2 import. Pex5p was localized mostly in the cytosol in wild-type CHO-K1 and Pex14p-deficient mutant cells, whereas it accumulated in the peroxisomal remnants in cell mutants defective in Pex13p or the RING family peroxins such as Pex2p and Pex12p. Furthermore, overexpression of Pex14p, but not Pex10p, Pex12p, or Pex13p, caused accumulation of Pex5p in peroxisomal membranes, with concomitant interference with PTS1 and PTS2 import. Therefore, Pex5p carrying the cargoes most likely docks with the initial site (Pex14p) in a putative import machinery, subsequently translocating to other components such as Pex13p, Pex2p, Pex10p, and Pex12p.
Collapse
Affiliation(s)
- H Otera
- Department of Biology, Kyushu University Graduate School of Science, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ghaedi K, Tamura S, Okumoto K, Matsuzono Y, Fujiki Y. The peroxin pex3p initiates membrane assembly in peroxisome biogenesis. Mol Biol Cell 2000; 11:2085-102. [PMID: 10848631 PMCID: PMC14905 DOI: 10.1091/mbc.11.6.2085] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rat cDNA encoding a 372-amino-acid peroxin was isolated, primarily by functional complementation screening, using a peroxisome-deficient Chinese hamster ovary cell mutant, ZPG208, of complementation group 17. The deduced primary sequence showed approximately 25% amino acid identity with the yeast Pex3p, thereby we termed this cDNA rat PEX3 (RnPEX3). Human and Chinese hamster Pex3p showed 96 and 94% identity to rat Pex3p and had 373 amino acids. Pex3p was characterized as an integral membrane protein of peroxisomes, exposing its N- and C-terminal parts to the cytosol. A homozygous, inactivating missense mutation, G to A at position413, in a codon (GGA) for Gly(138) and resulting in a codon (GAA) for Glu was the genetic cause of peroxisome deficiency of complementation group 17 ZPG208. The peroxisome-restoring activity apparently required the full length of Pex3p, whereas its N-terminal part from residues 1 to 40 was sufficient to target a fusion protein to peroxisomes. We also demonstrated that Pex3p binds the farnesylated peroxisomal membrane protein Pex19p. Moreover, upon expression of PEX3 in ZPG208, peroxisomal membrane vesicles were assembled before the import of soluble proteins such as PTS2-tagged green fluorescent protein. Thus, Pex3p assembles membrane vesicles before the matrix proteins are translocated.
Collapse
Affiliation(s)
- K Ghaedi
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
46
|
Abstract
The peroxisome is a ubiquitous, subcellular organelle participating in a diverse array of metabolic pathways. The peroxisomal membrane and its components play a key role in organelle assembly and functions. Disorders related to peroxisomal membranes are the peroxisome biogenesis disorders and X-linked adrenoleukodystrophy. Identification and functional characterization of these disease genes is proceeding at rapid pace helped immeasurably by work in various yeast model systems. The ultimate goal is to elucidate how the encoded proteins interact to produce apparently normal and functioning peroxisomes. The achievement of this goal will lead to a better understanding of disease pathogenesis and hopefully open therapeutic options.
Collapse
Affiliation(s)
- J Gärtner
- Department of Paediatrics, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
47
|
Chang CC, Warren DS, Sacksteder KA, Gould SJ. PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import. J Cell Biol 1999; 147:761-74. [PMID: 10562279 PMCID: PMC2156163 DOI: 10.1083/jcb.147.4.761] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/1999] [Accepted: 10/12/1999] [Indexed: 11/22/2022] Open
Abstract
Peroxisomal matrix protein import requires PEX12, an integral peroxisomal membrane protein with a zinc ring domain at its carboxy terminus. Mutations in human PEX12 result in Zellweger syndrome, a lethal neurological disorder, and implicate the zinc ring domain in PEX12 function. Using two-hybrid studies, blot overlay assays, and coimmunoprecipitation experiments, we observed that the zinc-binding domain of PEX12 binds both PEX5, the PTS1 receptor, and PEX10, another integral peroxisomal membrane protein required for peroxisomal matrix protein import. Furthermore, we identified a patient with a missense mutation in the PEX12 zinc-binding domain, S320F, and observed that this mutation reduces the binding of PEX12 to PEX5 and PEX10. Overexpression of either PEX5 or PEX10 can suppress this PEX12 mutation, providing genetic evidence that these interactions are biologically relevant. PEX5 is a predominantly cytoplasmic protein and previous PEX5-binding proteins have been implicated in docking PEX5 to the peroxisome surface. However, we find that loss of PEX12 or PEX10 does not reduce the association of PEX5 with peroxisomes, demonstrating that these peroxins are not required for receptor docking. These and other results lead us to propose that PEX12 and PEX10 play direct roles in peroxisomal matrix protein import downstream of the receptor docking event.
Collapse
Affiliation(s)
- Chia-Che Chang
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Daniel S. Warren
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Katherine A. Sacksteder
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Stephen J. Gould
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
48
|
Abstract
Genetically determined human peroxisomal disorders are subdivided into two major categories: disorders of peroxisome biogenesis (PBD), in which the organelle is not formed normally, and those that involve a single peroxisomal enzyme. Twelve PBD have been identified, and the molecular defects have been defined in 10. All involve defects in the import of proteins into the organelle. Factors required for this import are now referred to as peroxins (PEX) and form the basis of a new and preferred classification system. The PBD are associated with four clinical phenotypes, named before their association with the organelle was recognized: Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), infantile Refsum disease (IRD), and rhizomelic chondrodysplasia punctata (RCDP). The first three are associated with 9 of the 10 PEX defects that have been defined so far, and represent a clinical continuum with variant severity, with ZS the most severe, NALD intermediate, and IRD the least severe. RCDP is associated with PEX7. Genotype-phenotype correlations are complicated by the fact that the clinical manifestations of the ZS-NALD-IRD continuum can be mimicked by disorders that affect single enzymes of peroxisomal fatty acid oxidation, and PEX7 by disorders of plasmalogen synthesis enzymes. Furthermore, clinical manifestations of each of the PEX disorders may vary. Phenotypic expression varies with the nature of the mutation, the milder phenotypes being associated with mutations that do not abolish function completely, or with mosaicism. Definition of the molecular defects is of great value for genetic counseling and may be of aid in establishing prognosis.
Collapse
Affiliation(s)
- H W Moser
- Department of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins University, 707 North Broadway, Baltimore, Maryland, 21205, USA
| |
Collapse
|