1
|
Wisniewski BT, Lackner LL. Significantly reduced, but balanced, rates of mitochondrial fission and fusion are sufficient to maintain the integrity of yeast mitochondrial DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604121. [PMID: 39071310 PMCID: PMC11275889 DOI: 10.1101/2024.07.18.604121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Mitochondria exist as dynamic tubular networks and the morphology of these networks impacts organelle function and cell health. Mitochondrial morphology is maintained in part by the opposing activities of mitochondrial fission and fusion. Mitochondrial fission and fusion are also required to maintain mitochondrial DNA (mtDNA) integrity. In Saccharomyces cerevisiae , the simultaneous inhibition of mitochondrial fission and fusion results in increased mtDNA mutation and the consequent loss of respiratory competence. The mechanism by which fission and fusion maintain mtDNA integrity is not fully understood. Previous work demonstrates that mtDNA is spatially linked to mitochondrial fission sites. Here, we extend this finding using live-cell imaging to localize mtDNA to mitochondrial fusion sites. While mtDNA is present at sites of mitochondrial fission and fusion, mitochondrial fission and fusion rates are not altered in cells lacking mtDNA. Using alleles that alter mitochondrial fission and fusion rates, we find that mtDNA integrity can be maintained in cells with significantly reduced, but balanced, rates of fission and fusion. In addition, we find that increasing mtDNA copy number reduces the loss of respiratory competence in double mitochondrial fission-fusion mutants. Our findings add novel insights into the relationship between mitochondrial dynamics and mtDNA integrity.
Collapse
|
2
|
Alfatah M, Lim JJJ, Zhang Y, Naaz A, Cheng TYN, Yogasundaram S, Faidzinn NA, Lin JJ, Eisenhaber B, Eisenhaber F. Uncharacterized yeast gene YBR238C, an effector of TORC1 signaling in a mitochondrial feedback loop, accelerates cellular aging via HAP4- and RMD9-dependent mechanisms. eLife 2024; 12:RP92178. [PMID: 38713053 PMCID: PMC11076046 DOI: 10.7554/elife.92178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jolyn Jia Jia Lim
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Sonia Yogasundaram
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nashrul Afiq Faidzinn
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jovian Jing Lin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
- School of Biological Sciences (SBS), Nanyang Technological University (NTU)SingaporeSingapore
| |
Collapse
|
3
|
Tu X, Wang F, Liti G, Breitenbach M, Yue JX, Li J. Spontaneous Mutation Rates and Spectra of Respiratory-Deficient Yeast. Biomolecules 2023; 13:501. [PMID: 36979436 PMCID: PMC10046086 DOI: 10.3390/biom13030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The yeast petite mutant was first discovered in the yeast Saccharomyces cerevisiae, which shows growth stress due to defects in genes encoding the respiratory chain. In a previous study, we described that deletion of the nuclear-encoded gene MRPL25 leads to mitochondrial genome (mtDNA) loss and the petite phenotype, which can be rescued by acquiring ATP3 mutations. The mrpl25Δ strain showed an elevated SNV (single nucleotide variant) rate, suggesting genome instability occurred during the crisis of mtDNA loss. However, the genome-wide mutation landscape and mutational signatures of mitochondrial dysfunction are unknown. In this study we profiled the mutation spectra in yeast strains with the genotype combination of MRPL25 and ATP3 in their wildtype and mutated status, along with the wildtype and cytoplasmic petite rho0 strains as controls. In addition to the previously described elevated SNV rate, we found the INDEL (insertion/deletion) rate also increased in the mrpl25Δ strain, reinforcing the occurrence of genome instability. Notably, although both are petites, the mrpl25Δ and rho0 strains exhibited different INDEL rates and transition/transversion ratios, suggesting differences in the mutational signatures underlying these two types of petites. Interestingly, the petite-related mutagenesis effect disappeared when ATP3 suppressor mutations were acquired, suggesting a cost-effective mechanism for restoring both fitness and genome stability. Taken together, we present an unbiased genome-wide characterization of the mutation rates and spectra of yeast strains with respiratory deficiency, which provides valuable insights into the impact of respiratory deficiency on genome instability.
Collapse
Affiliation(s)
- Xinyu Tu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Gianni Liti
- IRCAN, INSERM, Université Côte d’Azur, 06107 Nice, France
| | | | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
4
|
Taskin AA, Moretti DN, Vögtle FN, Meisinger C. Isolation and Quality Control of Yeast Mitochondria. Methods Mol Biol 2023; 2615:41-55. [PMID: 36807783 DOI: 10.1007/978-1-0716-2922-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The isolation of organelles devoid of other cellular compartments is crucial for studying organellar proteomes and the localization of newly identified proteins, as well as for assessing specific organellar functions. Here, we describe a protocol for the isolation of crude and highly pure mitochondria from Saccharomyces cerevisiae and provide methods for testing the functional integrity of the isolated organelles.
Collapse
Affiliation(s)
- Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daiana Nerina Moretti
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - F Nora Vögtle
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Galeota-Sprung B, Fernandez A, Sniegowski P. Changes to the mtDNA copy number during yeast culture growth. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211842. [PMID: 35814911 PMCID: PMC9257595 DOI: 10.1098/rsos.211842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
We show that the mitochondrial DNA (mtDNA) copy number in growing cultures of the yeast Saccharomyces cerevisiae increases by a factor of up to 4, being lowest (approx. 10 per haploid genome) and stable during rapid fermentative growth, and highest at the end of the respiratory phase. When yeast are grown on glucose, the onset of the mtDNA copy number increase coincides with the early stages of the diauxic shift, and the increase continues through respiration. A lesser yet still substantial copy number increase occurs when yeast are grown on a nonfermentable carbon source, i.e. when there is no diauxic shift. The mtDNA copy number increase during and for some time after the diauxic shift is not driven by an increase in cell size. The copy number increase occurs in both haploid and diploid strains but is markedly attenuated in a diploid wild isolate that is a ready sporulator. Strain-to-strain differences in mtDNA copy number are least apparent in fermentation and most apparent in late respiration or stationary phase. While changes in mitochondrial morphology and function were previously known to accompany changes in physiological state, it had not been previously shown that the mtDNA copy number changes substantially over time in a clonal growing culture. The mtDNA copy number in yeast is therefore a highly dynamic phenotype.
Collapse
Affiliation(s)
- Ben Galeota-Sprung
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Fernandez
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Schell R, Hale JJ, Mullis MN, Matsui T, Foree R, Ehrenreich IM. Genetic basis of a spontaneous mutation’s expressivity. Genetics 2022; 220:6515283. [PMID: 35078232 PMCID: PMC8893249 DOI: 10.1093/genetics/iyac013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Genetic background often influences the phenotypic consequences of mutations, resulting in variable expressivity. How standing genetic variants collectively cause this phenomenon is not fully understood. Here, we comprehensively identify loci in a budding yeast cross that impact the growth of individuals carrying a spontaneous missense mutation in the nuclear-encoded mitochondrial ribosomal gene MRP20. Initial results suggested that a single large effect locus influences the mutation’s expressivity, with one allele causing inviability in mutants. However, further experiments revealed this simplicity was an illusion. In fact, many additional loci shape the mutation’s expressivity, collectively leading to a wide spectrum of mutational responses. These results exemplify how complex combinations of alleles can produce a diversity of qualitative and quantitative responses to the same mutation.
Collapse
Affiliation(s)
- Rachel Schell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph J Hale
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin N Mullis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Takeshi Matsui
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryan Foree
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295:18406-18425. [PMID: 33127643 PMCID: PMC7939475 DOI: 10.1074/jbc.rev120.011202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| |
Collapse
|
8
|
Tsuboi T, Leff J, Zid BM. Post-transcriptional control of mitochondrial protein composition in changing environmental conditions. Biochem Soc Trans 2020; 48:2565-2578. [PMID: 33245320 PMCID: PMC8108647 DOI: 10.1042/bst20200250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
In fluctuating environmental conditions, organisms must modulate their bioenergetic production in order to maintain cellular homeostasis for optimal fitness. Mitochondria are hubs for metabolite and energy generation. Mitochondria are also highly dynamic in their function: modulating their composition, size, density, and the network-like architecture in relation to the metabolic demands of the cell. Here, we review the recent research on the post-transcriptional regulation of mitochondrial composition focusing on mRNA localization, mRNA translation, protein import, and the role that dynamic mitochondrial structure may have on these gene expression processes. As mitochondrial structure and function has been shown to be very important for age-related processes, including cancer, metabolic disorders, and neurodegeneration, understanding how mitochondrial composition can be affected in fluctuating conditions can lead to new therapeutic directions to pursue.
Collapse
Affiliation(s)
- Tatsuhisa Tsuboi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| | - Jordan Leff
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| | - Brian M. Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| |
Collapse
|
9
|
Rolling-Circle Replication in Mitochondrial DNA Inheritance: Scientific Evidence and Significance from Yeast to Human Cells. Genes (Basel) 2020; 11:genes11050514. [PMID: 32384722 PMCID: PMC7288456 DOI: 10.3390/genes11050514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
Studies of mitochondrial (mt)DNA replication, which forms the basis of mitochondrial inheritance, have demonstrated that a rolling-circle replication mode exists in yeasts and human cells. In yeast, rolling-circle mtDNA replication mediated by homologous recombination is the predominant pathway for replication of wild-type mtDNA. In human cells, reactive oxygen species (ROS) induce rolling-circle replication to produce concatemers, linear tandem multimers linked by head-to-tail unit-sized mtDNA that promote restoration of homoplasmy from heteroplasmy. The event occurs ahead of mtDNA replication mechanisms observed in mammalian cells, especially under higher ROS load, as newly synthesized mtDNA is concatemeric in hydrogen peroxide-treated human cells. Rolling-circle replication holds promise for treatment of mtDNA heteroplasmy-attributed diseases, which are regarded as incurable. This review highlights the potential therapeutic value of rolling-circle mtDNA replication.
Collapse
|
10
|
Kuszak AJ, Espey MG, Falk MJ, Holmbeck MA, Manfredi G, Shadel GS, Vernon HJ, Zolkipli-Cunningham Z. Nutritional Interventions for Mitochondrial OXPHOS Deficiencies: Mechanisms and Model Systems. ANNUAL REVIEW OF PATHOLOGY 2018; 13:163-191. [PMID: 29099651 PMCID: PMC5911915 DOI: 10.1146/annurev-pathol-020117-043644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multisystem metabolic disorders caused by defects in oxidative phosphorylation (OXPHOS) are severe, often lethal, conditions. Inborn errors of OXPHOS function are termed primary mitochondrial disorders (PMDs), and the use of nutritional interventions is routine in their supportive management. However, detailed mechanistic understanding and evidence for efficacy and safety of these interventions are limited. Preclinical cellular and animal model systems are important tools to investigate PMD metabolic mechanisms and therapeutic strategies. This review assesses the mechanistic rationale and experimental evidence for nutritional interventions commonly used in PMDs, including micronutrients, metabolic agents, signaling modifiers, and dietary regulation, while highlighting important knowledge gaps and impediments for randomized controlled trials. Cellular and animal model systems that recapitulate mutations and clinical manifestations of specific PMDs are evaluated for their potential in determining pathological mechanisms, elucidating therapeutic health outcomes, and investigating the value of nutritional interventions for mitochondrial disease conditions.
Collapse
Affiliation(s)
- Adam J Kuszak
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland 20852, USA;
| | - Michael Graham Espey
- Division of Cancer Biology, National Cancer Institute, Rockville, Maryland 20850, USA;
| | - Marni J Falk
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marissa A Holmbeck
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Gerald S Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8023, USA;
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| | - Zarazuela Zolkipli-Cunningham
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
11
|
Ravoitytė B, Wellinger RE. Non-Canonical Replication Initiation: You're Fired! Genes (Basel) 2017; 8:genes8020054. [PMID: 28134821 PMCID: PMC5333043 DOI: 10.3390/genes8020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis-acting DNA sequences, the so-called origins of replication (ori), with trans-acting factors involved in the onset of DNA synthesis. The interplay of cis-acting elements and trans-acting factors ensures that cells initiate replication at sequence-specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause break-induced (BIR) or transcription-initiated replication (TIR), respectively. These non-canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non-canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.
Collapse
Affiliation(s)
- Bazilė Ravoitytė
- Nature Research Centre, Akademijos g. 2, LT-08412 Vilnius, Lithuania.
| | - Ralf Erik Wellinger
- CABIMER-Universidad de Sevilla, Avd Americo Vespucio sn, 41092 Sevilla, Spain.
| |
Collapse
|
12
|
Kowalec P, Grynberg M, Pająk B, Socha A, Winiarska K, Fronk J, Kurlandzka A. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fov048. [PMID: 26091838 DOI: 10.1093/femsyr/fov048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/25/2022] Open
Abstract
Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level.
Collapse
Affiliation(s)
- Piotr Kowalec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Pająk
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland
| | - Anna Socha
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Jan Fronk
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Chang YL, Hsieh MH, Chang WW, Wang HY, Lin MC, Wang CP, Lou PJ, Teng SC. Instability of succinate dehydrogenase in SDHD polymorphism connects reactive oxygen species production to nuclear and mitochondrial genomic mutations in yeast. Antioxid Redox Signal 2015; 22:587-602. [PMID: 25328978 PMCID: PMC4334101 DOI: 10.1089/ars.2014.5966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS Mitochondrial succinate dehydrogenase (SDH) is an essential complex of the electron transport chain and tricarboxylic acid cycle. Mutations in the human SDH subunit D frequently lead to paraganglioma (PGL), but the mechanistic consequences of the majority of SDHD polymorphisms have yet to be unraveled. In addition to the originally discovered yeast SDHD subunit Sdh4, a conserved homolog, Shh4, has recently been identified in budding yeast. To assess the pathogenic significance of SDHD mutations in PGL patients, we performed functional studies in yeast. RESULTS SDHD protein expression was reduced in SDHD-related carotid body tumor tissues. A BLAST search of SDHD to the yeast protein database revealed a novel protein, Shh4, that may have a function similar to human SDHD and yeast Sdh4. The missense SDHD mutations identified in PGL patients were created in Sdh4 and Shh4, and, surprisingly, a severe respiratory incompetence and reduced expression of the mutant protein was observed in the sdh4Δ strain expressing shh4. Although shh4Δ cells showed no respiratory-deficient phenotypes, deletion of SHH4 in sdh4Δ cells further abolished mitochondrial function. Remarkably, sdh4Δ shh4Δ strains exhibited increased reactive oxygen species (ROS) production, nuclear DNA instability, mtDNA mutability, and decreased chronological lifespan. INNOVATION AND CONCLUSION SDHD mutations are associated with protein and nuclear and mitochondrial genomic instability and increase ROS production in our yeast model. These findings reinforce our understanding of the mechanisms underlying PGL tumorigenesis and point to the yeast Shh4 as a good model to investigate the possible pathogenic relevance of SDHD in PGL polymorphisms.
Collapse
Affiliation(s)
- Ya-Lan Chang
- 1 Department of Microbiology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion. Proc Natl Acad Sci U S A 2015; 112:E947-56. [PMID: 25730886 DOI: 10.1073/pnas.1501737112] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin-dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome.
Collapse
|
15
|
Qian Y, Kachroo AH, Yellman CM, Marcotte EM, Johnson KA. Yeast cells expressing the human mitochondrial DNA polymerase reveal correlations between polymerase fidelity and human disease progression. J Biol Chem 2014; 289:5970-85. [PMID: 24398692 DOI: 10.1074/jbc.m113.526418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the human mitochondrial polymerase (polymerase-γ (Pol-γ)) are associated with various mitochondrial disorders, including mitochondrial DNA (mtDNA) depletion syndrome, Alpers syndrome, and progressive external opthamalplegia. To correlate biochemically quantifiable defects resulting from point mutations in Pol-γ with their physiological consequences, we created "humanized" yeast, replacing the yeast mtDNA polymerase (MIP1) with human Pol-γ. Despite differences in the replication and repair mechanism, we show that the human polymerase efficiently complements the yeast mip1 knockouts, suggesting common fundamental mechanisms of replication and conserved interactions between the human polymerase and other components of the replisome. We also examined the effects of four disease-related point mutations (S305R, H932Y, Y951N, and Y955C) and an exonuclease-deficient mutant (D198A/E200A). In haploid cells, each mutant results in rapid mtDNA depletion, increased mutation frequency, and mitochondrial dysfunction. Mutation frequencies measured in vivo equal those measured with purified enzyme in vitro. In heterozygous diploid cells, wild-type Pol-γ suppresses mutation-associated growth defects, but continuous growth eventually leads to aerobic respiration defects, reduced mtDNA content, and depolarized mitochondrial membranes. The severity of the Pol-γ mutant phenotype in heterozygous diploid humanized yeast correlates with the approximate age of disease onset and the severity of symptoms observed in humans.
Collapse
Affiliation(s)
- Yufeng Qian
- From the Institute for Cellular and Molecular Biology
| | | | | | | | | |
Collapse
|
16
|
Chen C, Samuel TK, Krause M, Dailey HA, Hamza I. Heme utilization in the Caenorhabditis elegans hypodermal cells is facilitated by heme-responsive gene-2. J Biol Chem 2012; 287:9601-12. [PMID: 22303006 DOI: 10.1074/jbc.m111.307694] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roundworm Caenorhabditis elegans is a heme auxotroph that requires the coordinated actions of HRG-1 heme permeases to transport environmental heme into the intestine and HRG-3, a secreted protein, to deliver intestinal heme to other tissues including the embryo. Here we show that heme homeostasis in the extraintestinal hypodermal tissue was facilitated by the transmembrane protein HRG-2. Systemic heme deficiency up-regulated hrg-2 mRNA expression over 200-fold in the main body hypodermal syncytium, hyp 7. HRG-2 is a type I membrane protein that binds heme and localizes to the endoplasmic reticulum and apical plasma membrane. Cytochrome heme profiles are aberrant in HRG-2-deficient worms, a phenotype that was partially suppressed by heme supplementation. A heme-deficient yeast strain, ectopically expressing worm HRG-2, revealed significantly improved growth at submicromolar concentrations of exogenous heme. Taken together, our results implicate HRG-2 as a facilitator of heme utilization in the Caenorhabditis elegans hypodermis and provide a mechanism for the regulation of heme homeostasis in an extraintestinal tissue.
Collapse
Affiliation(s)
- Caiyong Chen
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
17
|
Yoon YG, Koob MD, Yoo YH. Mitochondrial genome-maintaining activity of mouse mitochondrial transcription factor A and its transcript isoform in Saccharomyces cerevisiae. Gene 2011; 484:52-60. [PMID: 21683127 PMCID: PMC3150443 DOI: 10.1016/j.gene.2011.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 01/27/2023]
Abstract
Mitochondrial transcription factor A (Tfam) binds to and organizes mitochondrial DNA (mtDNA) genome into a mitochondrial nucleoid (mt-nucleoid) structure, which is necessary for mtDNA transcription and maintenance. Here, we demonstrate the mtDNA-organizing activity of mouse Tfam and its transcript isoform (Tfam(iso)), which has a smaller high-mobility group (HMG)-box1 domain, using a yeast model system that contains a deletion of the yeast homolog of mouse Tfam protein, Abf2p. When the mouse Tfam genes were introduced into the ABF2 locus of yeast genome, the corresponding mouse proteins, Tfam and Tfam(iso), can functionally replace the yeast Abf2p and support mtDNA maintenance and mitochondrial biogenesis in yeast. Growth properties, mtDNA content and mitochondrial protein levels of genes encoded in the mtDNA were comparable in the strains expressing mouse proteins and the wild-type yeast strain, indicating that the proteins have robust mtDNA-maintaining and -expressing function in yeast mitochondria. These results imply that the mtDNA-organizing activities of the mouse mt-nucleoid proteins are structurally and evolutionary conserved, thus they can maintain the mtDNA of distantly related and distinctively different species, such as yeast.
Collapse
Affiliation(s)
- Young Geol Yoon
- Mitochondria Hub Regulation Center and Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan 602–714, Republic of Korea
| | - Michael D. Koob
- Institute of Human Genetics and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN55455, USA
| | - Young Hyun Yoo
- Mitochondria Hub Regulation Center and Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan 602–714, Republic of Korea
| |
Collapse
|
18
|
Bailey CM, Anderson KS. A mechanistic view of human mitochondrial DNA polymerase gamma: providing insight into drug toxicity and mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1213-22. [PMID: 20083238 DOI: 10.1016/j.bbapap.2010.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 02/08/2023]
Abstract
Mitochondrial DNA polymerase gamma (Pol gamma) is the sole polymerase responsible for replication of the mitochondrial genome. The study of human Pol gamma is of key importance to clinically relevant issues such as nucleoside analog toxicity and mitochondrial disorders such as progressive external ophthalmoplegia. The development of a recombinant form of the human Pol gamma holoenzyme provided an essential tool in understanding the mechanism of these clinically relevant phenomena using kinetic methodologies. This review will provide a brief history on the discovery and characterization of human mitochondrial DNA polymerase gamma, focusing on kinetic analyses of the polymerase and mechanistic data illustrating structure-function relationships to explain drug toxicity and mitochondrial disease.
Collapse
Affiliation(s)
- Christopher M Bailey
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
19
|
Callegari S, McKinnon RA, Andrews S, de Barros Lopes MA. Atorvastatin-induced cell toxicity in yeast is linked to disruption of protein isoprenylation. FEMS Yeast Res 2009; 10:188-98. [PMID: 20002195 DOI: 10.1111/j.1567-1364.2009.00593.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Statins, used to treat hypercholesterolemia, are one of the most frequently prescribed drug classes in the developed world. However, a significant proportion of users suffer symptoms of myotoxicity, and currently, the molecular mechanisms underlying myotoxicity remain ambiguous. In this study, Saccharomyces cerevisiae was exploited as a model system to gain further insight into the molecular mechanisms of atorvastatin toxicity. Atorvastatin-treated yeast cells display marked morphological deformities, have reduced cell viability and are highly vulnerable to perturbed mitochondrial function. Supplementation assays of atorvastatin-treated cells reveal that both loss of viability and mitochondrial dysfunction occur as a consequence of perturbation of the sterol synthesis pathway. This was further investigated by supplementing statin-treated cells with various metabolites of the sterol synthesis pathway that are believed to be essential for cell function. Ergosterol, coenzyme Q and a heme precursor were all ineffective in the prevention of statin-induced mitochondrial disruption and cell death. However, the addition of geranylgeranyl pyrophosphate and farnesyl pyrophosphate significantly restored cell viability, although these did not overcome petite induction. This highlights the pleiotropic nature of statin toxicity, but has established protein prenylation disruption as one of the principal mechanisms underlying statin-induced cell death in yeast.
Collapse
Affiliation(s)
- Sylvie Callegari
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
20
|
Young MJ, Court DA. Effects of the S288c genetic background and common auxotrophic markers on mitochondrial DNA function in Saccharomyces cerevisiae. Yeast 2009; 25:903-12. [PMID: 19160453 DOI: 10.1002/yea.1644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Saccharomyces cerevisiae is a valuable model organism for the study of eukaryotic processes. Throughout its development as a research tool, several strain backgrounds have been utilized and different combinations of auxotrophic marker genes have been introduced into them, creating a useful but non-homogeneous set of strains. The ade2 allele was used as an auxotrophic marker, and for 'red-white' screening for respiratory competence. his3 alleles that influence the expression of MRM1 have been used as selectable markers, and the MIP1[S] allele, found in the commonly used S228c strain, is associated with mitochondrial DNA defects. The focus of the current work was to examine the effects of these alleles, singly and in combination, on the maintenance of mitochondrial function. The combination of the ade2 and MIP1[S] alleles is associated with a slight increase in point mutations in mitochondrial DNA. The deletion in the his3Delta200 allele, which removes the promoter for MRM1, is associated with loss of respiratory competence at 37 degrees C in the presence of either MIP1 allele. Thus, multiple factors can contribute to the maintenance of mitochondrial function, reinforcing the concept that strain background is an important consideration in both designing experiments and comparing results obtained by different research groups.
Collapse
Affiliation(s)
- M J Young
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
21
|
Griffiths LM, Doudican NA, Shadel GS, Doetsch PW. Mitochondrial DNA oxidative damage and mutagenesis in Saccharomyces cerevisiae. Methods Mol Biol 2009; 554:267-86. [PMID: 19513680 DOI: 10.1007/978-1-59745-521-3_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutation of human mitochondrial DNA (mtDNA) has been linked to maternally inherited neuromuscular disorders and is implicated in more common diseases such as cancer, diabetes, and Parkinson's disease. Mutations in mtDNA also accumulate with age and are therefore believed to contribute to aging and age-related pathology. Housed within the mitochondrial matrix, mtDNA encodes several of the proteins involved in the production of ATP via the process of oxidative phosphorylation, which involves the flow of high-energy electrons through the electron transport chain (ETC). Because of its proximity to the ETC, mtDNA is highly vulnerable to oxidative damage mediated by reactive oxygen species (ROS) such as hydrogen peroxide, superoxide, and hydroxyl radicals that are constantly produced by this system. Therefore, it is important to be able to measure oxidative mtDNA damage under normal physiologic conditions and during environmental or disease-associated stress. The budding yeast, Saccharomyces cerevisiae, is a facile and informative model system in which to study such mtDNA oxidative damage because it is a unicellular eukaryotic facultative anaerobe that is conditionally dependent on mitochondrial oxidative phosphorylation for viability. Here, we describe methods for quantifying oxidative mtDNA damage and mutagenesis in S. cerevisiae, several of which could be applied to the development of similar assays in mammalian cells and tissues. These methods include measuring the number of point mutations that occur in mtDNA with the erythromycin resistance assay, quantifying the amount of oxidative DNA damage utilizing a modified Southern blot assay, and measuring mtDNA integrity with the "petite induction" assay.
Collapse
|
22
|
Hori A, Yoshida M, Shibata T, Ling F. Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication. Nucleic Acids Res 2008; 37:749-61. [PMID: 19074198 PMCID: PMC2647299 DOI: 10.1093/nar/gkn993] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes proteins that are essential for cellular ATP production. Reactive oxygen species (ROS) are respiratory byproducts that damage mtDNA and other cellular components. In Saccharomyces cerevisiae, the oxidized base excision-repair enzyme Ntg1 introduces a double-stranded break (DSB) at the mtDNA replication origin ori5; this DSB initiates the rolling-circle mtDNA replication mediated by the homologous DNA pairing protein Mhr1. Thus, ROS may play a role in the regulation of mtDNA copy number. Here, we show that the treatment of isolated mitochondria with low concentrations of hydrogen peroxide increased mtDNA copy number in an Ntg1- and Mhr1-dependent manner. This treatment elevated the DSB levels at ori5 of hypersuppressive [rho–] mtDNA only if Ntg1 was active. In vitro Ntg1-treatment of hypersuppressive [rho–] mtDNA extracted from hydrogen peroxide-treated mitochondria revealed increased oxidative modifications at ori5 loci. We also observed that purified Ntg1 created breaks in single-stranded DNA harboring oxidized bases, and that ori5 loci have single-stranded character. Furthermore, chronic low levels of hydrogen peroxide increased in vivo mtDNA copy number. We therefore propose that ROS act as a regulator of mtDNA copy number, acting through the Mhr1-dependent initiation of rolling-circle replication promoted by Ntg1-induced DSB in the single-stranded regions at ori5.
Collapse
Affiliation(s)
- Akiko Hori
- Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
23
|
Bonawitz ND, Chatenay-Lapointe M, Wearn CM, Shadel GS. Expression of the rDNA-encoded mitochondrial protein Tar1p is stringently controlled and responds differentially to mitochondrial respiratory demand and dysfunction. Curr Genet 2008; 54:83-94. [PMID: 18622616 PMCID: PMC2799293 DOI: 10.1007/s00294-008-0203-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 11/25/2022]
Abstract
The novel yeast protein Tar1p is encoded on the anti-sense strand of the multi-copy nuclear 25S rRNA gene, localizes to mitochondria, and partially suppresses the mitochondrial RNA polymerase mutant, rpo41-R129D. However, the function of Tar1p in mitochondria and how its expression is regulated are currently unknown. Here we report that Tar1p is subject to glucose repression and is up-regulated during post-diauxic shift in glucose medium and in glycerol medium, conditions requiring elevated mitochondrial respiration. However, Tar1p expression is down-regulated in response to mitochondrial dysfunction caused by the rpo41-R129D mutation or in strains lacking respiration. Furthermore, in contrast to the previously reported beneficial effects of moderate over-expression of Tar1p in the rpo41-R129D strain, higher-level over-expression exacerbates the ROS-derived phenotypes of this mutant, including decreased respiration and life span. Finally, two-hybrid screening and in vitro-binding studies revealed a physical interaction between Tar1p and Coq5p, an enzyme involved in synthesizing the mitochondrial electron carrier and antioxidant, coenzyme Q. We propose that Tar1p expression is induced under respiratory conditions to maintain oxidative phosphorylation capacity, but that its levels in mitochondria are typically low and stringently controlled. Furthermore, we speculate that Tar1p is down-regulated when respiration is defective to prevent deleterious ROS-dependent consequences of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Nicholas D. Bonawitz
- Department of Pathology and Genetics, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT 06520-8023, USA. Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Altanta, GA, USA
| | - Marc Chatenay-Lapointe
- Department of Pathology and Genetics, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT 06520-8023, USA. Graduate Program in Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher M. Wearn
- Department of Biochemistry, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | - Gerald S. Shadel
- Department of Pathology and Genetics, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT 06520-8023, USA
| |
Collapse
|
24
|
Lebedeva MA, Shadel GS. Cell cycle- and ribonucleotide reductase-driven changes in mtDNA copy number influence mtDNA Inheritance without compromising mitochondrial gene expression. Cell Cycle 2007; 6:2048-57. [PMID: 17721079 PMCID: PMC2606055 DOI: 10.4161/cc.6.16.4572] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most eukaryotes maintain multiple copies of mtDNA, ranging from 20-50 in yeast to as many as 10,000 in mammalian cells. The mitochondrial genome encodes essential subunits of the respiratory chain, but the number of mtDNA molecules is apparently in excess of that needed to sustain adequate respiration, as evidenced by the "threshold effect" in mitochondrial diseases. Thus, other selective pressures apparently have contributed to the universal maintenance of multiple mtDNA molecules/cell. Here we analyzed the interplay between the two pathways proposed to regulate mtDNA copy number in Saccharomyces cerevisiae, and the requirement of normal mtDNA copy number for mitochondrial gene expression, respiration, and inheritance. We provide the first direct evidence that upregulation of mtDNA can be achieved by increasing ribonucleotide reductase (RNR) activity via derepression of nuclear RNR gene transcription or elimination of allosteric-feedback regulation. Analysis of rad53 mutant strains also revealed upregulation of mtDNA copy number independent of that resulting from elevated RNR activity. We present evidence that a prolonged cell cycle allows accumulation of mtDNA in these strains. Analysis of multiple strains with increased or decreased mtDNA revealed that mechanisms are in place to prevent significant changes in mitochondrial gene expression and respiration in the face of approximately two-fold alterations in mtDNA copy number. However, depletion of mtDNA in abf2 null strains leads to defective mtDNA inheritance that is partially rescued by replenishing mtDNA via overexpression of RNR1. These results indicate that one role for multiple mtDNA copies is to ensure optimal inheritance of mtDNA during cell division.
Collapse
Affiliation(s)
- Maria A. Lebedeva
- Department of Pathology; Yale University School of Medicine; New Haven, Connecticut USA
- Graduate Program in Genetics; Yale University School of Medicine; New Haven, Connecticut USA
| | - Gerald S. Shadel
- Department of Pathology; Yale University School of Medicine; New Haven, Connecticut USA
| |
Collapse
|
25
|
Shadel GS, Seidel-Rogol BL. Diagnostic assays for defects in mtDNA replication and transcription in yeast and humans. Methods Cell Biol 2007; 80:465-79. [PMID: 17445709 DOI: 10.1016/s0091-679x(06)80023-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Gerald S Shadel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
26
|
Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 2007; 5:265-77. [PMID: 17403371 PMCID: PMC3460550 DOI: 10.1016/j.cmet.2007.02.009] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/05/2007] [Accepted: 02/27/2007] [Indexed: 12/15/2022]
Abstract
The relationships between mitochondrial respiration, reactive oxygen species (ROS), and life span are complex and remain controversial. Inhibition of the target of rapamycin (TOR) signaling pathway extends life span in several model organisms. We show here that deletion of the TOR1 gene extends chronological life span in Saccharomyces cerevisiae, primarily by increasing mitochondrial respiration via enhanced translation of mtDNA-encoded oxidative phosphorylation complex subunits. Unlike previously reported pathways regulating chronological life span, we demonstrate that deletion of TOR1 delays aging independently of the antioxidant gene SOD2. Furthermore, wild-type and tor1 null strains differ in life span only when respiration competent and grown in normoxia in the presence of glucose. We propose that inhibition of TOR signaling causes derepression of respiration during growth in glucose and that the subsequent increase in mitochondrial oxygen consumption limits intracellular oxygen and ROS-mediated damage during glycolytic growth, leading to lower cellular ROS and extension of chronological life span.
Collapse
Affiliation(s)
- Nicholas D. Bonawitz
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Yong Pan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Graduate Program in Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence:
| |
Collapse
|
27
|
Bonawitz ND, Rodeheffer MS, Shadel GS. Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span. Mol Cell Biol 2006; 26:4818-29. [PMID: 16782871 PMCID: PMC1489155 DOI: 10.1128/mcb.02360-05] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction causes numerous human diseases and is widely believed to be involved in aging. However, mechanisms through which compromised mitochondrial gene expression elicits the reported variety of cellular defects remain unclear. The amino-terminal domain (ATD) of yeast mitochondrial RNA polymerase is required to couple transcription to translation during expression of mitochondrial DNA-encoded oxidative phosphorylation subunits. Here we report that several ATD mutants exhibit reduced chronological life span. The most severe of these (harboring the rpo41-R129D mutation) displays imbalanced mitochondrial translation, conditional inactivation of respiration, elevated production of reactive oxygen species (ROS), and increased oxidative stress. Reduction of ROS, via overexpression of superoxide dismutase (SOD1 or SOD2 product), not only greatly extends the life span of this mutant but also increases its ability to respire. Another ATD mutant with similarly reduced respiration (rpo41-D152A/D154A) accumulates only intermediate levels of ROS and has a less severe life span defect that is not rescued by SOD. Altogether, our results provide compelling evidence for the "vicious cycle" of mitochondrial ROS production and lead us to propose that the amount of ROS generated depends on the precise nature of the mitochondrial gene expression defect and initiates a downward spiral of oxidative stress only if a critical threshold is crossed.
Collapse
Affiliation(s)
- Nicholas D Bonawitz
- Department of Pathology, Yale University School of Medicine, 310 Cedar St., P.O. Box 208023, New Haven, CT 06520-8023, USA
| | | | | |
Collapse
|
28
|
Monroe DS, Leitzel AK, Klein HL, Matson SW. Biochemical and genetic characterization of Hmi1p, a yeast DNA helicase involved in the maintenance of mitochondrial DNA. Yeast 2006; 22:1269-86. [PMID: 16358299 DOI: 10.1002/yea.1313] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The HMI1 gene encodes a DNA helicase that localizes to the mitochondria and is required for maintenance of the mitochondrial DNA (mtDNA) genome of Saccharomyces cerevisiae. Identified based on its homology with E. coli uvrD, the HMI1 gene product, Hmi1p, has been presumed to be involved in the replication of the 80 kb linear S. cerevisiae mtDNA genome. Here we report the purification of Hmi1p to apparent homogeneity and provide a characterization of the helicase reaction and the ATPase reaction with regard to NTP preference, divalent cation preference and the stimulatory effects of different nucleic acids on Hmi1p-catalysed ATPase activity. Genetic complementation assays indicate that mitochondrial localization of Hmi1p is essential for its role in mtDNA metabolism. The helicase activity, however, is not essential. Point mutants that lack ATPase/helicase activity partially complement a strain lacking Hmi1p. We suggest several possible roles for Hmi1p in mtDNA metabolism.
Collapse
Affiliation(s)
- Danny S Monroe
- Department of Biology, University of North Carolina at Chapel Hill, NC 27599-2380, USA
| | | | | | | |
Collapse
|
29
|
Stuart GR, Santos JH, Strand MK, Van Houten B, Copeland WC. Mitochondrial and nuclear DNA defects in Saccharomyces cerevisiae with mutations in DNA polymerase gamma associated with progressive external ophthalmoplegia. Hum Mol Genet 2005; 15:363-74. [PMID: 16368709 DOI: 10.1093/hmg/ddi454] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A number of nuclear mutations have been identified in a variety of mitochondrial diseases including progressive external ophthalmoplegia (PEO), Alpers syndrome and other neuromuscular and oxidative phosphorylation defects. More than 50 mutations have been identified in POLG, which encodes the human mitochondrial DNA (mtDNA) polymerase gamma, PEO and Alpers patients. To rapidly characterize the effects of these mutations, we have developed a versatile system that enables the consequences of homologous mutations, introduced in situ into the yeast mtDNA polymerase gene MIP1, to be evaluated in vivo in haploid and diploid cells. Overall, distinct phenotypes for expression of each of the mip1-PEO mutations were observed, including respiration-defective cells with decreased viability, dominant-negative mutant polymerases, elevated levels of mitochondrial and nuclear DNA damage and chromosomal mutations. Mutations in the polymerase domain caused the most severe phenotype accompanied by loss of mtDNA and cell viability, whereas the mutation in the exonuclease domain showed mild dominance with loss of mtDNA. Interestingly, the linker region mutation caused elevated mitochondrial and nuclear DNA damage. The cellular processes contributing to these observations in the mutant yeast cells are potentially relevant to understanding the pathologies observed in human mitochondrial disease patients.
Collapse
Affiliation(s)
- Gregory R Stuart
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
30
|
O'Rourke TW, Doudican NA, Zhang H, Eaton JS, Doetsch PW, Shadel GS. Differential involvement of the related DNA helicases Pif1p and Rrm3p in mtDNA point mutagenesis and stability. Gene 2005; 354:86-92. [PMID: 15907372 DOI: 10.1016/j.gene.2005.03.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 12/21/2004] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
With the exception of base excision repair, conserved pathways and mechanisms that maintain mitochondrial genome stability have remained largely undelineated. In the budding yeast, Saccharomyces cerevisiae, Pif1p is a unique DNA helicase that is localized both to the nucleus and mitochondria, where it is involved in maintaining DNA integrity. We previously elucidated a role for Pif1p in oxidative mtDNA damage resistance that appears to be distinct from its postulated function in mtDNA recombination. Strains lacking Pif1p (pif1Delta) exhibit an increased rate of formation of petite mutants (an indicator of mtDNA instability) and elevated mtDNA point mutagenesis. Here we show that deletion of the RRM3 gene, which encodes a DNA helicase closely related to Pif1p, significantly rescues the petite-induction phenotype of a pif1Delta strain. However, suppression of this phenotype was not accompanied by a corresponding decrease in mtDNA point mutagenesis. Instead, deletion of RRM3 alone resulted in an increase in mtDNA point mutagenesis that was synergistic with that caused by a pif1Delta mutation. In addition, we found that over-expression of RNR1, encoding a large subunit of ribonucleotide reductase (RNR), rescued the petite-induction phenotype of a pif1Delta mutation to a similar extent as deletion of RRM3. This, coupled to our finding that the Rad53p protein kinase is phosphorylated in the rrm3Delta pif1Delta double-mutant strain, leads us to conclude that one mechanism whereby deletion of RRM3 influences mtDNA stability is by modulating mitochondrial deoxynucleoside triphosphate pools. We propose that this is accomplished by signaling through the conserved Mec1/Rad53, S-phase checkpoint pathway to induce the expression and activity of RNR. Altogether, our results define a novel role for Rrm3p in mitochondrial function and indicate that Pif1p and Rrm3p influence a common process (or processes) involved in mtDNA replication, repair, or stability.
Collapse
Affiliation(s)
- Thomas W O'Rourke
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050, USA
| | | | | | | | | | | |
Collapse
|
31
|
Shadel GS. Mitochondrial DNA, aconitase 'wraps' it up. Trends Biochem Sci 2005; 30:294-6. [PMID: 15950872 DOI: 10.1016/j.tibs.2005.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/30/2005] [Accepted: 04/22/2005] [Indexed: 11/26/2022]
Abstract
Mitochondria are the sites of many essential biochemical reactions, an important subset of which require proteins encoded in the mitochondrial DNA (mtDNA). How mtDNA is regulated in response to changing cellular demands is largely unknown. A recent study documents that the mitochondrial TCA-cycle enzyme aconitase is associated with protein-mtDNA complexes called nucleoids. In this novel context, aconitase functions to stabilize mtDNA, perhaps by reversibly remodeling nucleoids to directly influence mitochondrial gene expression in response to changing cellular metabolism.
Collapse
Affiliation(s)
- Gerald S Shadel
- Department of Pathology, Yale University School of Medicine, P.O. Box 208023, New Haven, CT 06520-8023, USA.
| |
Collapse
|
32
|
Doudican NA, Song B, Shadel GS, Doetsch PW. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:5196-204. [PMID: 15923634 PMCID: PMC1140570 DOI: 10.1128/mcb.25.12.5196-5204.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.
Collapse
Affiliation(s)
- Nicole A Doudican
- Department of Biochemistry, Graduate Program in Genetic and Molecular Biology, Emory University School of Medicine, 4013 Rollins Research Center, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
33
|
Taylor SD, Zhang H, Eaton JS, Rodeheffer MS, Lebedeva MA, O'rourke TW, Siede W, Shadel GS. The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae. Mol Biol Cell 2005; 16:3010-8. [PMID: 15829566 PMCID: PMC1142443 DOI: 10.1091/mbc.e05-01-0053] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
How mitochondrial DNA (mtDNA) copy number is determined and modulated according to cellular demands is largely unknown. Our previous investigations of the related DNA helicases Pif1p and Rrm3p uncovered a role for these factors and the conserved Mec1/Rad53 nuclear checkpoint pathway in mtDNA mutagenesis and stability in Saccharomyces cerevisiae. Here, we demonstrate another novel function of this pathway in the regulation of mtDNA copy number. Deletion of RRM3 or SML1, or overexpression of RNR1, which recapitulates Mec1/Rad53 pathway activation, resulted in an approximately twofold increase in mtDNA content relative to the corresponding wild-type yeast strains. In addition, deletion of RRM3 or SML1 fully rescued the approximately 50% depletion of mtDNA observed in a pif1 null strain. Furthermore, deletion of SML1 was shown to be epistatic to both a rad53 and an rrm3 null mutation, placing these three genes in the same genetic pathway of mtDNA copy number regulation. Finally, increased mtDNA copy number via the Mec1/Rad53 pathway could occur independently of Abf2p, an mtDNA-binding protein that, like its metazoan homologues, is implicated in mtDNA copy number control. Together, these results indicate that signaling through the Mec1/Rad53 pathway increases mtDNA copy number by altering deoxyribonucleoside triphosphate pools through the activity of ribonucleotide reductase. This comprises the first linkage of a conserved signaling pathway to the regulation of mitochondrial genome copy number and suggests that homologous pathways in humans may likewise regulate mtDNA content under physiological conditions.
Collapse
Affiliation(s)
- Sean D Taylor
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
DNA polymerase (pol) gamma is the sole DNA polymerase in animal mitochondria. Biochemical and genetic evidence document a key role for pol gamma in mitochondrial DNA replication, and whereas DNA repair and recombination were thought to be limited or absent in animal mitochondria, both have been demonstrated in recent years. Thus, the mitochondrial replicase is also apparently responsible for the relevant DNA synthetic reactions in these processes. Pol gamma comprises a catalytic core in a heterodimeric complex with an accessory subunit. The two-subunit holoenzyme is an efficient and processive polymerase, which exhibits high fidelity in nucleotide selection and incorporation while proofreading errors with its intrinsic 3' 5' exonuclease. Incorporation of nucleotide analogs followed by proofreading failure leads to mitochondrial toxicity in antiviral therapy, and misincorporation during DNA replication leads to mitochondrial mutagenesis and dysfunction. This review describes our current understanding of pol gamma biochemistry and biology, and it introduces other key proteins that function at the mitochondrial DNA replication fork.
Collapse
Affiliation(s)
- Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| |
Collapse
|
35
|
Rodeheffer MS, Shadel GS. Multiple interactions involving the amino-terminal domain of yeast mtRNA polymerase determine the efficiency of mitochondrial protein synthesis. J Biol Chem 2003; 278:18695-701. [PMID: 12637560 PMCID: PMC2606056 DOI: 10.1074/jbc.m301399200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The amino-terminal domain (ATD) of Saccharomyces cerevisiae mitochondrial RNA polymerase has been shown to provide a functional link between transcription and post-transcriptional events during mitochondrial gene expression. This connection is mediated in large part by its interactions with the matrix protein Nam1p and, based on genetic phenotypes, the mitochondrial membrane protein Sls1p. These observations led us to propose previously that mtRNA polymerase, Nam1p, and Sls1p work together to coordinate transcription and translation of mtDNA-encoded gene products. Here we demonstrate by specific labeling of mitochondrial gene products in vivo that Nam1p and Sls1p indeed work together in a pathway that is required globally for efficient mitochondrial translation. Likewise, mutations in the ATD result in similar global reductions in mitochondrial translation efficiency and sensitivity to the mitochondrial translation inhibitor erythromycin. These data, coupled with the observation that the ATD is required to co-purify Sls1p in association with mtDNA nucleoids, suggest that efficient expression of mtDNA-encoded genes in yeast involves a complex series of interactions that localize active transcription complexes to the inner membrane in order to coordinate translation with transcription.
Collapse
Affiliation(s)
- Matthew S. Rodeheffer
- Department of Biochemistry and the Graduate Program in Biochemistry, Cell and Developmental Biology, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322-3050
| | - Gerald S. Shadel
- To whom correspondence should be addressed. Tel.: 404-727-3798; Fax: 404-727-3954; E-mail:
| |
Collapse
|
36
|
Cerritelli SM, Frolova EG, Feng C, Grinberg A, Love PE, Crouch RJ. Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol Cell 2003; 11:807-15. [PMID: 12667461 DOI: 10.1016/s1097-2765(03)00088-1] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although ribonucleases H (RNases H) have long been implicated in DNA metabolism, they are not required for viability in prokaryotes or unicellular eukaryotes. We generated Rnaseh1(-/-) mice to investigate the role of RNase H1 in mammals and observed developmental arrest at E8.5 in null embryos. A fraction of the mainly nuclear RNase H1 was targeted to mitochondria, and its absence in embryos resulted in a significant decrease in mitochondrial DNA content, leading to apoptotic cell death. This report links RNase H1 to generation of mitochondrial DNA, providing direct support for the strand-coupled mechanism of mitochondrial DNA replication. These findings also have important implications for therapy of mitochondrial dysfunctions and drug development for the structurally related RNase H of HIV.
Collapse
Affiliation(s)
- Susana M Cerritelli
- Laboratory of Molecular Genetics, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
37
|
Birner R, Nebauer R, Schneiter R, Daum G. Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine biosynthetic machinery with the prohibitin complex of Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:370-83. [PMID: 12589040 PMCID: PMC149978 DOI: 10.1091/mbc.e02-05-0263] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The majority of mitochondrial phosphatidylethanolamine (PtdEtn), a phospholipid essential for aerobic growth of yeast cells, is synthesized by phosphatidylserine decarboxylase 1 (Psd1p) in the inner mitochondrial membrane (IMM). To identify components that become essential when the level of mitochondrial PtdEtn is decreased, we screened for mutants that are synthetically lethal with a temperature-sensitive (ts) allele of PSD1. This screen unveiled mutations in PHB1 and PHB2 encoding the two subunits of the prohibitin complex, which is located to the IMM and required for the stability of mitochondrially encoded proteins. Deletion of PHB1 and PHB2 resulted in an increase of mitochondrial PtdEtn at 30 degrees C. On glucose media, phb1Delta psd1Delta and phb2Delta psd1Delta double mutants were rescued only for a limited number of generations by exogenous ethanolamine, indicating that a decrease of the PtdEtn level is detrimental for prohibitin mutants. Similar to phb mutants, deletion of PSD1 destabilizes polypeptides encoded by the mitochondrial genome. In a phb1Delta phb2Delta psd1(ts) strain the destabilizing effect is dramatically enhanced. In addition, the mitochondrial genome is lost in this triple mutant, and nuclear-encoded proteins of the IMM are assembled at a very low rate. At the nonpermissive temperature mitochondria of phb1Delta phb2Delta psd1(ts) were fragmented and aggregated. In conclusion, destabilizing effects triggered by low levels of mitochondrial PtdEtn seem to account for synthetic lethality of psd1Delta with phb mutants.
Collapse
Affiliation(s)
- Ruth Birner
- Institut für Biochemie, Technische Universität Graz, Austria
| | | | | | | |
Collapse
|
38
|
O'Rourke TW, Doudican NA, Mackereth MD, Doetsch PW, Shadel GS. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol Cell Biol 2002; 22:4086-93. [PMID: 12024022 PMCID: PMC133882 DOI: 10.1128/mcb.22.12.4086-4093.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial genome is a significant target of exogenous and endogenous genotoxic agents; however, the determinants that govern this susceptibility and the pathways available to resist mitochondrial DNA (mtDNA) damage are not well characterized. Here we report that oxidative mtDNA damage is elevated in strains lacking Ntg1p, providing the first direct functional evidence that this mitochondrion-localized, base excision repair enzyme functions to protect mtDNA. However, ntg1 null strains did not exhibit a mitochondrial respiration-deficient (petite) phenotype, suggesting that mtDNA damage is negotiated by the cooperative actions of multiple damage resistance pathways. Null mutations in ABF2 or PIF1, two genes implicated in mtDNA maintenance and recombination, exhibit a synthetic-petite phenotype in combination with ntg1 null mutations that is accompanied by enhanced mtDNA point mutagenesis in the corresponding double-mutant strains. This phenotype was partially rescued by malonic acid, indicating that reactive oxygen species generated by the electron transport chain contribute to mitochondrial dysfunction in abf2 Delta strains. In contrast, when two other genes involved in mtDNA recombination, CCE1 and NUC1, were inactivated a strong synthetic-petite phenotype was not observed, suggesting that the effects mediated by Abf2p and Pif1p are due to novel activities of these proteins other than recombination. These results document the existence of recombination-independent mechanisms in addition to base excision repair to cope with oxidative mtDNA damage in Saccharomyces cerevisiae. Such systems are likely relevant to those operating in human cells where mtDNA recombination is less prevalent, validating yeast as a model system in which to study these important issues.
Collapse
Affiliation(s)
- Thomas W O'Rourke
- Department of Biochemistry, Emory University School of Medicine, Rollins Research Center, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
39
|
Seidel-Rogol BL, Shadel GS. Modulation of mitochondrial transcription in response to mtDNA depletion and repletion in HeLa cells. Nucleic Acids Res 2002; 30:1929-34. [PMID: 11972329 PMCID: PMC113853 DOI: 10.1093/nar/30.9.1929] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The steady-state amounts of mitochondrial transcripts and transcription proteins were analyzed during mtDNA depletion and subsequent repletion to gain insight into the regulation of human mitochondrial gene expression. As documented previously, HeLa cells depleted of mtDNA via treatment with ethidium bromide (EB) were found to contain reduced steady-state levels of the mitochondrial transcription factor h-mtTFA. When partially mtDNA-depleted cells were cultured in the absence of EB, h-mtTFA recovered to normal levels at a significantly slower rate than mtDNA. Human mtRNA polymerase exhibited a similar depletion-repletion profile, suggesting that the mitochondrial transcription machinery is coordinately regulated in response to changes in mtDNA copy number. Newly synthesized mitochondrial transcripts were detected early in the recovery phase, despite the fact that mtDNA, h-mtTFA and h-mtRNA polymerase were simultaneously depleted. Although delayed relative to mtDNA, the amounts of h-mtTFA and h-mtRNA polymerase sharply increased during the later stages of the recovery phase, which was accompanied by accelerated rates of transcription and mtDNA replication. Altogether, these data indicate that when mtDNA copy number is low, it is beneficial to prevent accumulation of mitochondrial transcription proteins. In addition, h-mtTFA and h-mtRNA polymerase are either normally present in excess of the amount required for transcription or their activity is up-regulated to ensure continued expression and transcription-dependent replication of the mitochondrial genome during mtDNA-depleted states.
Collapse
Affiliation(s)
- Bonnie L Seidel-Rogol
- Department of Biochemistry, Rollins Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
40
|
Zuo XM, Clark-Walker GD, Chen XJ. The mitochondrial nucleoid protein, Mgm101p, of Saccharomyces cerevisiae is involved in the maintenance of rho(+) and ori/rep-devoid petite genomes but is not required for hypersuppressive rho(-) mtDNA. Genetics 2002; 160:1389-400. [PMID: 11973295 PMCID: PMC1462058 DOI: 10.1093/genetics/160.4.1389] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae MGM101 gene encodes a DNA-binding protein targeted to mitochondrial nucleoids. MGM101 is essential for maintenance of a functional rho(+) genome because meiotic segregants, with a disrupted mgm101 allele, cannot undergo more than 10 divisions on glycerol medium. Quantitative analysis of mtDNA copy number in a rho(+) strain carrying a temperature-sensitive allele, mgm101-1, revealed that the amount of mtDNA is halved each cell division upon a shift to the restrictive temperature. These data suggest that mtDNA replication is rapidly blocked in cells lacking MGM101. However, a small proportion of meiotic segregants, disrupted in MGM101, have rho(-) genomes that are stably maintained. Interestingly, all surviving rho(-) mtDNAs contain an ori/rep sequence. Disruption of MGM101 in hypersuppressive (HS) strains does not have a significant effect on the propagation of HS rho(-) mtDNA. However, in petites lacking an ori/rep, disruption of MGM101 leads to either a complete loss or a dramatically decreased stability of mtDNA. This discriminatory effect of MGM101 suggests that replication of rho(+) and ori/rep-devoid rho(-) mtDNAs is carried out by the same process. By contrast, the persistence of ori/rep-containing mtDNA in HS petites lacking MGM101 identifies a distinct replication pathway. The alternative mtDNA replication mechanism provided by ori/rep is independent of mitochondrial RNA polymerase encoded by RPO41 as a HS rho(-) genome is stably maintained in a mgm101, rpo41 double mutant.
Collapse
Affiliation(s)
- Xiao Ming Zuo
- Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | | | | |
Collapse
|
41
|
McCulloch V, Seidel-Rogol BL, Shadel GS. A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol Cell Biol 2002; 22:1116-25. [PMID: 11809803 PMCID: PMC134642 DOI: 10.1128/mcb.22.4.1116-1125.2002] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A critical step toward understanding mitochondrial genetics and its impact on human disease is to identify and characterize the full complement of nucleus-encoded factors required for mitochondrial gene expression and mitochondrial DNA (mtDNA) replication. Two factors required for transcription initiation from a human mitochondrial promoter are h-mtRNA polymerase and the DNA binding transcription factor, h-mtTFA. However, based on studies in model systems, the existence of a second human mitochondrial transcription factor has been postulated. Here we report the isolation of a cDNA encoding h-mtTFB, the human homolog of Saccharomyces cerevisiae mitochondrial transcription factor B (sc-mtTFB) and the first metazoan member of this class of transcription factors to which a gene has been assigned. Recombinant h-mtTFB is capable of binding mtDNA in a non-sequence-specific fashion and activates transcription from the human mitochondrial light-strand promoter in the presence of h-mtTFA in vitro. Remarkably, h-mtTFB and its fungal homologs are related in primary sequence to a superfamily of N6 adenine RNA methyltransferases. This observation, coupled with the ability of recombinant h-mtTFB to bind S-adenosylmethionine in vitro, suggests that a structural, and perhaps functional, relationship exists between this class of transcription factors and this family of RNA modification enzymes and that h-mtTFB may perform dual functions during mitochondrial gene expression.
Collapse
Affiliation(s)
- Vicki McCulloch
- Department of Biochemistry, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
42
|
Seidel-Rogol BL, Shadel GS. Diagnostic assays for defects in mitochondrial DNA replication and transcription in yeast and human cells. Methods Cell Biol 2002; 65:413-27. [PMID: 11381607 DOI: 10.1016/s0091-679x(01)65024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- B L Seidel-Rogol
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
43
|
Bryan AC, Rodeheffer MS, Wearn CM, Shadel GS. Sls1p is a membrane-bound regulator of transcription-coupled processes involved in Saccharomyces cerevisiae mitochondrial gene expression. Genetics 2002; 160:75-82. [PMID: 11805046 PMCID: PMC1461927 DOI: 10.1093/genetics/160.1.75] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial translation is largely membrane-associated in S. cerevisiae. Recently, we discovered that the matrix protein Nam1p binds the amino-terminal domain of yeast mtRNA polymerase to couple translation and/or RNA-processing events to transcription. To gain additional insight into these transcription-coupled processes, we performed a genetic screen for genes that suppress the petite phenotype of a point mutation in mtRNA polymerase (rpo41-R129D) when overexpressed. One suppressor identified in this screen was SLS1, which encodes a mitochondrial membrane protein required for assembly of respiratory-chain enzyme complexes III and IV. The mtRNA-processing defects associated with the rpo41-R129D mutation were corrected in the suppressed strain, linking Sls1p to a pathway that includes mtRNA polymerase and Nam1p. This was supported by the observation that SLS1 overexpression rescued the petite phenotype of a NAM1 null mutation. In contrast, overexpression of Nam1p did not rescue the petite phenotype of a SLS1 null mutation, indicating that Nam1p and Sls1p are not functionally redundant but rather exist in an ordered pathway. On the basis of these data, a model in which Nam1p coordinates the delivery of newly synthesized transcripts to the membrane, where Sls1p directs or regulates their subsequent handling by membrane-bound factors involved in translation, is proposed.
Collapse
Affiliation(s)
- Anthony C Bryan
- Department of Biochemistry, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
44
|
Rodeheffer MS, Boone BE, Bryan AC, Shadel GS. Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J Biol Chem 2001; 276:8616-22. [PMID: 11118450 PMCID: PMC2606050 DOI: 10.1074/jbc.m009901200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alignment of three fungal mtRNA polymerases revealed conserved amino acid sequences in an amino-terminal region of the Saccharomyces cerevisiae enzyme implicated previously as harboring an important functional domain. Phenotypic analysis of deletion and point mutations, in conjunction with a yeast two-hybrid assay, revealed that Nam1p, a protein involved in RNA processing and translation in mitochondria, binds specifically to this domain. The significance of this interaction in vivo was demonstrated by the fact that the temperature-sensitive phenotype of a deletion mutation (rpo41Delta2), which impinges on this amino-terminal domain, is suppressed by overproducing Nam1p. In addition, mutations in the amino-terminal domain result specifically in decreased steady-state levels of mature mitochondrial CYTB and COXI transcripts, which is a primary defect observed in NAM1 null mutant yeast strains. Finally, one point mutation (R129D) did not abolish Nam1p binding, yet displayed an obvious COX1/CYTB transcript defect. This mutation exhibited the most severe mitochondrial phenotype, suggesting that mutations in the amino-terminal domain can perturb other critical interactions, in addition to Nam1p binding, that contribute to the observed phenotypes. These results implicate the amino-terminal domain of mtRNA polymerases in coupling additional factors and activities involved in mitochondrial gene expression directly to the transcription machinery.
Collapse
Affiliation(s)
| | | | | | - Gerald S. Shadel
- To whom correspondence should be addressed: Dept. of Biochemistry, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Rd., Atlanta, GA 30322. Tel.: 404-727-3798; Fax: 404-727-3954; E-mail:
| |
Collapse
|
45
|
Hobbs AEA, Srinivasan M, McCaffery JM, Jensen RE. Mmm1p, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J Cell Biol 2001; 152:401-10. [PMID: 11266455 PMCID: PMC2199622 DOI: 10.1083/jcb.152.2.401] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Accepted: 12/13/2000] [Indexed: 11/22/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, mitochondria form a branched, tubular reticulum in the periphery of the cell. Mmm1p is required to maintain normal mitochondrial shape and in mmm1 mutants mitochondria form large, spherical organelles. To further explore Mmm1p function, we examined the localization of a Mmm1p-green fluorescent protein (GFP) fusion in living cells. We found that Mmm1p-GFP is located in small, punctate structures on the mitochondrial outer membrane, adjacent to a subset of matrix-localized mitochondrial DNA nucleoids. We also found that the temperature-sensitive mmm1-1 mutant was defective in transmission of mitochondrial DNA to daughter cells immediately after the shift to restrictive temperature. Normal mitochondrial nucleoid structure also collapsed at the nonpermissive temperature with similar kinetics. Moreover, we found that mitochondrial inner membrane structure is dramatically disorganized in mmm1 disruption strains. We propose that Mmm1p is part of a connection between the mitochondrial outer and inner membranes, anchoring mitochondrial DNA nucleoids in the matrix.
Collapse
Affiliation(s)
- Alyson E. Aiken Hobbs
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Maithreyan Srinivasan
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - J. Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | - Robert E. Jensen
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|