1
|
Krüger L, Strahl A, Goedecke E, Delsmann MM, Leonhardt LG, Beil FT, Hubert J. Safety of Intraoperative Cell Salvage in Two-Stage Revision of Septic Hip Arthroplasties. Antibiotics (Basel) 2024; 13:902. [PMID: 39335075 PMCID: PMC11428730 DOI: 10.3390/antibiotics13090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: The aim of this study was to evaluate the safety of intraoperative cell salvage (ICS) during reimplantation in the two-stage revision of septic hip arthroplasties. (2) Methods: As part of an internal quality control study, blood cultures were taken from the processed ICS blood during reimplantation and examined for possible bacterial load (study group). Due to a high rate of bacterial detection with uncertain clinical significance, consecutive ICS samples were also examined from patients undergoing aseptic revision hip arthroplasty (control group). Microbiological samples, patient and surgical characteristics and the follow-up data were analyzed retrospectively. (3) Results: 9 out of 12 (75%) patients in the study group and 5 out of 8 (63%) patients in the control group had positive ICS blood cultures. There was no significant difference between the groups (p = 0.642). The initial pathogens causing the periprosthetic joint infection (PJI) were not detected, but the bacterial spectrum resembled skin flora, with a high proportion of coagulase-negative staphylococci. No complications due to possible bloodstream-associated infections were observed. In summary, the detected pathogens were interpreted as contamination without clinical significance. (4) Conclusions: ICS in the context of reimplantation was considered a safe and recommendable procedure to optimize patient blood management.
Collapse
Affiliation(s)
- Lara Krüger
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
2
|
Phenotypic Variants of Bacterial Colonies in Microbiological Diagnostics: How Often Are They Indicative of Differing Antimicrobial Susceptibility Patterns? Microbiol Spectr 2021; 9:e0055521. [PMID: 34549971 PMCID: PMC8557900 DOI: 10.1128/spectrum.00555-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenotypic variants (PV) are colonies of the same species in the same specimen with different morphological features. It is controversial whether antimicrobial susceptibility testing (AST) should be done for all PV. The objectives of this study were to quantify the proportion of differing antimicrobial susceptibility patterns (dASP) among PV and to identify species and antimicrobial compounds that are mostly affected. All PV from routine diagnostics (University Hospital Münster, Germany; 1 September 2019 to 31 August 2020) were subjected to species identification (matrix-assisted laser desorption ionization-time of flight mass spectrometry [MALDI-TOF MS]) and AST (Vitek 2). To assess the dASP, only antimicrobial agents were considered for which Vitek-derived MIC were available (interpreted according to the EUCAST clinical breakpoints). The categorical agreement (CA; agreement with the AST categories S [susceptible, standard dosing regimen], I [susceptible, increased exposure], R [resistant]) of the PV was calculated. The PV of Escherichia coli (n = 260), Pseudomonas aeruginosa (n = 86), Klebsiella pneumoniae (n = 47), Enterobacter cloacae complex (n = 45), and Staphylococcus aureus (n = 38) were included. The median CA was 95% (range, 80 to 100%, depending on the species). The colony characteristics (e.g., form/size, color, margin, hemolysis) were not indicative for dASP. PV showed a high categorical agreement in the AST categories. This observation supports a test strategy to perform AST for only one colony of PV. IMPORTANCE Phenotypic variants of bacteria are frequent in routine diagnostics and can display differing antimicrobial susceptibility patterns. We found that the likelihood of different antimicrobial susceptibility is low among PV. To save laboratory resources, only one isolate per PV could be tested to guide the antimicrobial treatment of patients.
Collapse
|
3
|
Kolben Y, Ishay Y, Azmanov H, Rokney A, Baum M, Amit S, Nir-Paz R. Right-sided endocarditis caused by polyclonal Staphylococcus aureus infection. Eur J Med Res 2021; 26:91. [PMID: 34380556 PMCID: PMC8356449 DOI: 10.1186/s40001-021-00549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
We present a case of bacterial endocarditis with both methicillin-sensitive and methicillin-resistant Staphylococcus aureus, which based on typing, originated from two distinct clones. Such a case may be misinterpreted by microbiology lab automation to be a monoclonal multi-drug resistant Staphylococcus aureus, while simple microbiology techniques will instantly reveal distinct clonality.
Collapse
Affiliation(s)
- Yotam Kolben
- Department of Medicine, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yuval Ishay
- Department of Medicine, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Henny Azmanov
- Department of Medicine, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Rokney
- Government Central Laboratories, Ministry of Health, Jerusalem, Israel
| | - Moti Baum
- Government Central Laboratories, Ministry of Health, Jerusalem, Israel
| | - Sharon Amit
- Department of Microbiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ran Nir-Paz
- Department of Microbiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Noshak MA, Rezaee MA, Hasani A, Mirzaii M. The Role of the Coagulase-negative Staphylococci (CoNS) in Infective Endocarditis; A Narrative Review from 2000 to 2020. Curr Pharm Biotechnol 2020; 21:1140-1153. [PMID: 32324510 DOI: 10.2174/1389201021666200423110359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/12/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
Coagulase-negative staphylococci (CoNS) are part of the microbiota of human skin and rarely linked with soft tissue infections. In recent years, CoNS species considered as one of the major nosocomial pathogens and can cause several infections such as catheter-acquired sepsis, skin infection, urinary tract infection, endophthalmitis, central nervous system shunt infection, surgical site infections, and foreign body infection. These microorganisms have a significant impact on human life and health and, as typical opportunists, cause peritonitis in individuals undergoing peritoneal dialysis. Moreover, it is revealed that these potential pathogens are mainly related to the use of indwelling or implanted in a foreign body and cause infective endocarditis (both native valve endocarditis and prosthetic valve endocarditis) in patients. In general, approximately eight percent of all cases of native valve endocarditis is associated with CoNS species, and these organisms cause death in 25% of all native valve endocarditis cases. Moreover, it is revealed that methicillin-resistant CoNS species cause 60 % of all prosthetic valve endocarditis cases. In this review, we describe the role of the CoNS species in infective endocarditis, and we explicated the reported cases of CoNS infective endocarditis in the literature from 2000 to 2020 to determine the role of CoNS in the process of infective endocarditis.
Collapse
Affiliation(s)
- Mohammad A Noshak
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Mirzaii
- Department of Microbiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
5
|
Temporal Changes in Patient-Matched Staphylococcus epidermidis Isolates from Infections: towards Defining a 'True' Persistent Infection. Microorganisms 2020; 8:microorganisms8101508. [PMID: 33007861 PMCID: PMC7601538 DOI: 10.3390/microorganisms8101508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus epidermidis is found naturally on the skin but is a common cause of persistent orthopaedic device-related infections (ODRIs). This study used a pan-genome and gene-by-gene approach to analyse the clonality of whole genome sequences (WGS) of 115 S. epidermidis isolates from 55 patients with persistent ODRIs. Analysis of the 522 gene core genome revealed that the isolates clustered into three clades, and MLST analysis showed that 83% of the isolates belonged to clonal complex 2 (CC2). Analysis also found 13 isolate pairs had different MLST types and less than 70% similarity within the genes; hence, these were defined as re-infection by a different S. epidermidis strain. Comparison of allelic diversity in the remaining 102 isolates (49 patients) revealed that 6 patients had microevolved infections (>7 allele differences), and only 37 patients (77 isolates) had a ‘true’ persistent infection. Analysis of the core genomes of isolate pairs from 37 patients found 110/841 genes had variations; mainly in metabolism associated genes. The accessory genome consisted of 2936 genes; with an average size of 1515 genes. To conclude, this study demonstrates the advantage of using WGS for identifying the accuracy of a persistent infection diagnosis. Hence, persistent infections can be defined as ‘true’ persistent infections if the core genome of paired isolates has ≤7 allele differences; microevolved persistent infection if the paired isolates have >7 allele differences but same MLST type; and polyclonal if they are the same species but a different MLST type.
Collapse
|
6
|
Cabrera-Contreras R, Santamaría RI, Bustos P, Martínez-Flores I, Meléndez-Herrada E, Morelos-Ramírez R, Barbosa-Amezcua M, González-Covarrubias V, Silva-Herzog E, Soberón X, González V. Genomic diversity of prevalent Staphylococcus epidermidis multidrug-resistant strains isolated from a Children's Hospital in México City in an eight-years survey. PeerJ 2019; 7:e8068. [PMID: 31768302 PMCID: PMC6874853 DOI: 10.7717/peerj.8068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/20/2019] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is a human commensal and pathogen worldwide distributed. In this work, we surveyed for multi-resistant S. epidermidis strains in eight years at a children's health-care unit in México City. Multidrug-resistant S. epidermidis were present in all years of the study, including resistance to methicillin, beta-lactams, fluoroquinolones, and macrolides. To understand the genetic basis of antibiotic resistance and its association with virulence and gene exchange, we sequenced the genomes of 17 S. epidermidis isolates. Whole-genome nucleotide identities between all the pairs of S. epidermidis strains were about 97% to 99%. We inferred a clonal structure and eight Multilocus Sequence Types (MLSTs) in the S. epidermidis sequenced collection. The profile of virulence includes genes involved in biofilm formation and phenol-soluble modulins (PSMs). Half of the S. epidermidis analyzed lacked the ica operon for biofilm formation. Likely, they are commensal S. epidermidis strains but multi-antibiotic resistant. Uneven distribution of insertion sequences, phages, and CRISPR-Cas immunity phage systems suggest frequent horizontal gene transfer. Rates of recombination between S. epidermidis strains were more prevalent than the mutation rate and affected the whole genome. Therefore, the multidrug resistance, independently of the pathogenic traits, might explain the persistence of specific highly adapted S. epidermidis clonal lineages in nosocomial settings.
Collapse
Affiliation(s)
- Roberto Cabrera-Contreras
- Laboratorio de Patogenicidad Bacteriana, Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rosa I Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Irma Martínez-Flores
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Meléndez-Herrada
- Laboratorio de Patogenicidad Bacteriana, Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rubén Morelos-Ramírez
- Laboratorio de Patogenicidad Bacteriana, Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | | | | | - Xavier Soberón
- Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
7
|
Dengler Haunreiter V, Boumasmoud M, Häffner N, Wipfli D, Leimer N, Rachmühl C, Kühnert D, Achermann Y, Zbinden R, Benussi S, Vulin C, Zinkernagel AS. In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance. Nat Commun 2019; 10:1149. [PMID: 30850614 PMCID: PMC6408453 DOI: 10.1038/s41467-019-09053-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/13/2019] [Indexed: 02/05/2023] Open
Abstract
Treatment failure in biofilm-associated bacterial infections is an important healthcare issue. In vitro studies and mouse models suggest that bacteria enter a slow-growing/non-growing state that results in transient tolerance to antibiotics in the absence of a specific resistance mechanism. However, little clinical confirmation of antibiotic tolerant bacteria in patients exists. In this study we investigate a Staphylococcus epidermidis pacemaker-associated endocarditis, in a patient who developed a break-through bacteremia despite taking antibiotics to which the S. epidermidis isolate is fully susceptible in vitro. Characterization of the clinical S. epidermidis isolates reveals in-host evolution over the 16-week infection period, resulting in increased antibiotic tolerance of the entire population due to a prolonged lag time until growth resumption and a reduced growth rate. Furthermore, we observe adaptation towards an increased biofilm formation capacity and genetic diversification of the S. epidermidis isolates within the patient.
Collapse
Affiliation(s)
- Vanina Dengler Haunreiter
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Mathilde Boumasmoud
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Nicola Häffner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Dennis Wipfli
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Nadja Leimer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 02115, Boston, MA, USA
| | - Carole Rachmühl
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Denise Kühnert
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Yvonne Achermann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Reinhard Zbinden
- Institute of Medical Microbiology, University of Zurich, 8006, Zurich, Switzerland
| | - Stefano Benussi
- Department of Cardiac Surgery, University Heart Center, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Clement Vulin
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, 8600, Dübendorf, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
8
|
Larssen KW, Nor A, Bergh K. Rapid discrimination of Staphylococcus epidermidis genotypes in a routine clinical microbiological laboratory using single nucleotide polymorphisms in housekeeping genes. J Med Microbiol 2018; 67:169-182. [PMID: 29293080 DOI: 10.1099/jmm.0.000663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Staphylococcus epidermidis colonies often display several morphologies and antimicrobial susceptibility patterns when cultured from device-related infections, and may represent one or multiple genotypes. Genotyping may be helpful in the clinical interpretation, but is time consuming and expensive. We wanted to establish a method for rapid discrimination of S. epidermidis genotypes for use in a routine microbiology laboratory. METHODOLOGY A real-time PCR targeting eight discriminatory class I or II single-nucleotide polymorphisms (SNPs) in six of the seven housekeeping genes was constructed. Post PCR, high-resolution melt (HRM) analysis using EvaGreen as fluorophore discriminated amplicons based on their percentage GC content. RESULTS In silico, 42 representative sequence types (STs), including all major MLST group and subgroup founders, were separated into 23 different cluster profiles with a Simpson's index of diversity of 0.97. By HRM-PCR, 11 commonly encountered hospital and outbreak STs were separated into eight HRM patterns. CONCLUSION This method can rapidly establish whether S. epidermidis strains belong to different genotypes. It can be used in patients with S. epidermidis infections, as an aid in outbreak investigations and to select strains for investigation with more discriminatory methods, saving workload and costs. Results may be obtained the same day as culture results. Its strength lies mainly in indicating differences, as some STs may have the same melt profile. Changes in S. epidermidis epidemiology may warrant alterations in the inclusion of SNPs. We believe this method can reduce the threshold for performing genotyping analysis on an increasingly important nosocomial pathogen.
Collapse
Affiliation(s)
- Kjersti Wik Larssen
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne Nor
- Department of Laboratory medicine, Children's and Women's health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kåre Bergh
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Laboratory medicine, Children's and Women's health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Adesida SA, Abioye OA, Bamiro BS, Amisu KO, Badaru SO, Coker AO. Staphylococcal bacteraemia among human immunodeficiency virus positive patients at a screening center in Lagos, Nigeria. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2017. [DOI: 10.1016/j.bjbas.2016.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Tohya M, Watanabe T, Maruyama F, Arai S, Ota A, Athey TBT, Fittipaldi N, Nakagawa I, Sekizaki T. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones. PLoS One 2016; 11:e0159558. [PMID: 27433935 PMCID: PMC4951133 DOI: 10.1371/journal.pone.0159558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs), ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels) ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated) bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes.
Collapse
Affiliation(s)
- Mari Tohya
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takayasu Watanabe
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumito Maruyama
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- * E-mail: (TS); (FM)
| | - Sakura Arai
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Ota
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | | | - Nahuel Fittipaldi
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ichiro Nakagawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (TS); (FM)
| |
Collapse
|
11
|
Fux CA, Uehlinger D, Bodmer T, Droz S, Zellweger C, Mühlemann K. Dynamics of Hemodialysis Catheter Colonization by Coagulase-Negative Staphylococci. Infect Control Hosp Epidemiol 2016; 26:567-74. [PMID: 16018433 DOI: 10.1086/502586] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractObjectives:Catheter colonization is a necessary but poorly characterized step in the pathogenesis of catheter-related infections. Colonization dynamics of central venous hemodialysis catheters were studied with emphasis on coagulase-negative staphylococci (CoNS) and their population genetics, antibiotic resistance, and biofilm formation. The homogeneity of CoNS colony morphotypes was evaluated.Design:Prospective, longitudinal study during 1,158 catheter-days with microbiological analysis of skin swabs, weekly catheter blood and brush samples, and catheter tips.Setting:Hemodialysis unit of a university hospital.Patients:Twenty-six patients with 24 non-tunneled and 5 tunneled catheters.Results:Nineteen (65.5%) of the catheters became colonized, 17 by CoNS. CoNS colonization of the inner lumen was observed in 17.2% of the catheters and was first detectable after 3 weeks. Colonization of the outer surface occurred in 44.8% of the catheters within a minimum of 2 weeks. PFGE of 53 CoNS revealed 10 clones and 20 unique isolates. Isolates from clones were more frequent in catheter blood and brush cultures than were unique isolates (41% vs 15%), were resistant to more antibiotics (median, 7 vs 2), and tended to more often carry theicaAgene (64.1% vs 40%). Four (23.5%) of the catheters showed colonization with a mixture of CoNS based on PFGE. The time from catheter insertion to such mixed CoNS colonization was longer than that for colonization with one CoNS PFGE pattern only (42 vs 25 days).Conclusions:Colonization of hemodialysis catheters is dominated by multidrug-resistant,icaA-positive CoNS clones. Mixed CoNS colonization occurs, but is delayed, suggesting a process of sequential superinfection (Infect Control Hosp Epidemiol2005;26:567-574).
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Bacteremia/etiology
- Biofilms/growth & development
- Catheterization, Central Venous/adverse effects
- Catheterization, Central Venous/instrumentation
- Catheters, Indwelling/microbiology
- Coagulase
- Cross Infection/etiology
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial
- Electrophoresis, Gel, Pulsed-Field
- Equipment Contamination/statistics & numerical data
- Equipment Design
- Female
- Hospitals, University
- Humans
- Male
- Microbial Sensitivity Tests
- Middle Aged
- Prospective Studies
- Renal Dialysis/adverse effects
- Renal Dialysis/instrumentation
- Staphylococcal Infections/etiology
- Staphylococcus/genetics
- Staphylococcus/growth & development
- Superinfection/etiology
- Switzerland
- Time Factors
Collapse
Affiliation(s)
- Christoph A Fux
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Huang YC, Su LH, Wu TL, Lin TY. Molecular Surveillance of Clinical Methicillin-ResistantStaphylococcus aureusIsolates in Neonatal Intensive Care Units. Infect Control Hosp Epidemiol 2016; 26:157-60. [PMID: 15756886 DOI: 10.1086/502520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractBackground and Objective:Methicillin-resistantStaphylococcus aureus(MRSA) has become an important nosocomial pathogen in our neonatal intensive care units (NICUs) and accounts for almost allS. aureusclinical isolates. The objective of this study was to assess the relatedness of these MRSA strains.Design:MRSA clinical isolates were collected from infants hospitalized in our NICUs. Pulsed-field gel electrophoresis withSmaI digestion was used to fingerprint these isolates.Setting:Level-III NICUs in a university-affiliated children's hospital.Results:Between 1998 and 2000, a total of 122 MRSA clinical isolates were collected from 104 infants hospitalized in our NICUs. Fifteen infants had multiple isolates (range, 2 to 4 isolates). The sources of specimens included blood (72), pus (23), sputum (15), body fluids (3), and catheter tips (9). A total of 4 genotypes with 20 subtypes were identified. There were 2 genotypes in 1998, 2 genotypes in 1999, and 4 genotypes in 2000. All but 2 isolates belonged to either genotype A (63.1%; 7 subtypes) or genotype C (35.2%; 11 subtypes). Among the 15 infants with multiple isolates, the genotypes of the isolates from a single episode of MRSA infection were different in 2 of 12 cases, and reinfection with a new strain was noted in 3 of 5 cases with recurrent infections.Conclusions:Two predominant MRSA clones prevailed in our NICUs between 1998 and 2000. Polyclonal bacteremia and reinfection with a new strain were noted.
Collapse
|
13
|
Significance of Staphylococcus epidermidis in Health Care-Associated Infections, from Contaminant to Clinically Relevant Pathogen: This Is a Wake-Up Call! J Clin Microbiol 2016; 54:1679-1681. [PMID: 27170016 DOI: 10.1128/jcm.00743-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, have been recognized as an important cause of health care-associated infections. Concurrently, S. epidermidis is a common contaminant in clinical cultures, which poses a diagnostic challenge. An article in this issue of Journal of Clinical Microbiology (I. Tolo, J. C. Thomas, R. S. B. Fischer, E. L. Brown, B. M. Gray, and D. A. Robinson, J Clin Microbiol 54:1711-1719, 2015, http://dx.doi.org/10.1128/JCM.03345-15) describes a rapid single nucleotide polymorphism-based assay for distinguishing between S. epidermidis isolates from hospital and nonhospital sources, which represents an important contribution to the characterization and understanding of S. epidermidis health care-associated infections.
Collapse
|
14
|
Votintseva AA, Miller RR, Fung R, Knox K, Godwin H, Peto TEA, Crook DW, Bowden R, Walker AS. Multiple-strain colonization in nasal carriers of Staphylococcus aureus. J Clin Microbiol 2014; 52:1192-200. [PMID: 24501033 PMCID: PMC3993518 DOI: 10.1128/jcm.03254-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/27/2014] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a commensal that can also cause invasive infection. Reports suggest that nasal cocolonization occurs rarely, but the resources required to sequence multiple colonies have precluded its large-scale investigation. A staged protocol was developed to maximize detection of mixed-spa-type colonization while minimizing laboratory resources using 3,197 S. aureus-positive samples from a longitudinal study of healthy individuals in Oxfordshire, United Kingdom. Initial typing of pooled material from each sample identified a single unambiguous strain in 89.6% of samples. Twelve single-colony isolates were typed from samples producing ambiguous initial results. All samples could be resolved into one or more spa types using the protocol. Cocolonization point prevalence was 3.4 to 5.8% over 24 months of follow-up in 360 recruitment-positives. However, 18% were cocolonized at least once, most only transiently. Cocolonizing spa types were completely unrelated in 56% of samples. Of 272 recruitment-positives returning ≥12 swabs, 166 (61%) carried S. aureus continuously but only 106 (39%) carried the same single spa type without any cocolonization; 31 (11%) switched spa type and 29 (11%) had transient cocarriage. S. aureus colonization is dynamic even in long-term carriers. New unrelated cocolonizing strains could increase invasive disease risk, and ongoing within-host evolution could increase invasive potential, possibilities that future studies should explore.
Collapse
Affiliation(s)
- A. A. Votintseva
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - R. R. Miller
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - R. Fung
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - K. Knox
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - H. Godwin
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - T. E. A. Peto
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - D. W. Crook
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - R. Bowden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - A. S. Walker
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
15
|
Brown AF, Leech JM, Rogers TR, McLoughlin RM. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design. Front Immunol 2014; 4:507. [PMID: 24409186 PMCID: PMC3884195 DOI: 10.3389/fimmu.2013.00507] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/21/2013] [Indexed: 12/15/2022] Open
Abstract
In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity.
Collapse
Affiliation(s)
- Aisling F Brown
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| | - John M Leech
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| | - Thomas R Rogers
- Sir Patrick Dun Laboratory, Department of Clinical Microbiology, Trinity College Dublin, St James's Hospital , Dublin , Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| |
Collapse
|
16
|
Comparative epidemiology of Staphylococcus epidermidis isolates from patients with catheter-related bacteremia and from healthy volunteers. J Clin Microbiol 2013; 51:1541-7. [PMID: 23486718 DOI: 10.1128/jcm.03378-12] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is a major cause of catheter-related bloodstream infections (CRBSIs). Recent studies suggested the existence of well-adapted, highly resistant, hospital-associated S. epidermidis clones. The molecular epidemiology of S. epidermidis in Belgian hospitals and the Belgian community has not been explored yet. We compared a set of 33 S. epidermidis isolates causing CRBSI in hospitalized patients with a set of 33 commensal S. epidermidis isolates. The factors analyzed included resistance to antibiotics and genetic diversity as determined by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and SCCmec typing. Additionally, the presence of virulence-associated mobile genetic elements, the ica operon and the arginine catabolic mobile element (ACME), was assessed and compared against clinical data. CRBSI S. epidermidis isolates were significantly resistant to more antibiotics than commensal S. epidermidis isolates. The two populations studied were very diverse and genetically distinct as only 23% of the 37 PFGE types observed were harbored by both CRBSI and commensal isolates. ACME was found in 76% of S. epidermidis strains, regardless of their origin, while the ica operon was significantly more prevalent in CRBSI isolates than in commensal isolates (P < 0.05). Nine patients presented a clinically severe CRBSI, eight cases of which were due to an ica-positive multiresistant isolate belonging to sequence type 2 (ST2) or ST54. S. epidermidis isolates causing CRBSI were more resistant and more often ica positive than commensal S. epidermidis isolates, which were genetically heterogeneous and susceptible to the majority of antibiotics tested. Clinically severe CRBSIs were due to isolates belonging to two closely related MLST types, ST2 and ST54.
Collapse
|
17
|
Evaluation of quantitative antibiotic susceptibility testing by Vitek 2 as a routine method to predict strain relatedness of coagulase-negative staphylococci isolated from blood cultures. J Clin Microbiol 2011; 49:3355-7. [PMID: 21795506 DOI: 10.1128/jcm.05130-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To test the hypothesis that the strain relatedness of coagulase-negative staphylococci (CoNS) recovered from blood cultures can be inferred from automated antibiotic susceptibility testing (AST) results generated by Vitek 2, concordant or discordant AST results were compared with pulsed-field gel electrophoresis (PFGE) typing results for 119 CoNS blood culture isolate pairs. Concordant AST results were highly predictive of the strain relatedness of CoNS isolates.
Collapse
|
18
|
Su HC, Ramkissoon K, Doolittle J, Clark M, Khatun J, Secrest A, Wolfgang MC, Giddings MC. The development of ciprofloxacin resistance in Pseudomonas aeruginosa involves multiple response stages and multiple proteins. Antimicrob Agents Chemother 2010; 54:4626-35. [PMID: 20696867 PMCID: PMC2976116 DOI: 10.1128/aac.00762-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/14/2010] [Accepted: 07/30/2010] [Indexed: 01/17/2023] Open
Abstract
Microbes have developed resistance to nearly every antibiotic, yet the steps leading to drug resistance remain unclear. Here we report a multistage process by which Pseudomonas aeruginosa acquires drug resistance following exposure to ciprofloxacin at levels ranging from 0.5× to 8× the initial MIC. In stage I, susceptible cells are killed en masse by the exposure. In stage II, a small, slow to nongrowing population survives antibiotic exposure that does not exhibit significantly increased resistance according to the MIC measure. In stage III, exhibited at 0.5× to 4× the MIC, a growing population emerges to reconstitute the population, and these cells display heritable increases in drug resistance of up to 50 times the original level. We studied the stage III cells by proteomic methods to uncover differences in the regulatory pathways that are involved in this phenotype, revealing upregulation of phosphorylation on two proteins, succinate-semialdehyde dehydrogenase (SSADH) and methylmalonate-semialdehyde dehydrogenase (MMSADH), and also revealing upregulation of a highly conserved protein of unknown function. Transposon disruption in the encoding genes for each of these targets substantially dampened the ability of cells to develop the stage III phenotype. Considering these results in combination with computational models of resistance and genomic sequencing results, we postulate that stage III heritable resistance develops from a combination of both genomic mutations and modulation of one or more preexisting cellular pathways.
Collapse
Affiliation(s)
- Hsun-Cheng Su
- Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Biomedical Engineering, Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kevin Ramkissoon
- Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Biomedical Engineering, Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Janet Doolittle
- Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Biomedical Engineering, Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Martha Clark
- Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Biomedical Engineering, Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jainab Khatun
- Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Biomedical Engineering, Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Ashley Secrest
- Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Biomedical Engineering, Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Matthew C. Wolfgang
- Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Biomedical Engineering, Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Morgan C. Giddings
- Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Biomedical Engineering, Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
19
|
Structural and biochemical analysis of the pentapeptide repeat protein EfsQnr, a potent DNA gyrase inhibitor. Antimicrob Agents Chemother 2010; 55:110-7. [PMID: 20937785 DOI: 10.1128/aac.01158-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chromosomally encoded Qnr homolog protein from Enterococcus faecalis (EfsQnr), when expressed, confers to its host a decreased susceptibility to quinolones and consists mainly of tandem repeats, which is consistent with belonging to the pentapeptide repeat family of proteins (PRPs). EfsQnr was cloned with an N-terminal 6× His tag and purified to homogeneity. EfsQnr partially protected DNA gyrase from fluoroquinolone inhibition at concentrations as low as 20 nM. EfsQnr inhibited the ATP-dependent supercoiling activity of DNA gyrase with a 50% inhibitory concentration (IC(50)) of 1.2 μM, while no significant inhibition of ATP-independent relaxation activity was observed. EfsQnr was cytotoxic when overexpressed in Escherichia coli, resulting in the clumping of cells and a loss of viability. The X-ray crystal structure of EfsQnr was determined to 1.6-Å resolution. EfsQnr exhibits the right-handed quadrilateral beta-helical fold typical of PRPs, with features more analogous to MfpA (mycobacterium fluoroquinolone resistance pentapeptide) than to the PRPs commonly found in cyanobacteria.
Collapse
|
20
|
Levert M, Zamfir O, Clermont O, Bouvet O, Lespinats S, Hipeaux MC, Branger C, Picard B, Saint-Ruf C, Norel F, Balliau T, Zivy M, Le Nagard H, Cruvellier S, Chane-Woon-Ming B, Nilsson S, Gudelj I, Phan K, Ferenci T, Tenaillon O, Denamur E. Molecular and evolutionary bases of within-patient genotypic and phenotypic diversity in Escherichia coli extraintestinal infections. PLoS Pathog 2010; 6:e1001125. [PMID: 20941353 PMCID: PMC2947995 DOI: 10.1371/journal.ppat.1001125] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/31/2010] [Indexed: 12/22/2022] Open
Abstract
Although polymicrobial infections, caused by combinations of viruses, bacteria, fungi and parasites, are being recognised with increasing frequency, little is known about the occurrence of within-species diversity in bacterial infections and the molecular and evolutionary bases of this diversity. We used multiple approaches to study the genomic and phenotypic diversity among 226 Escherichia coli isolates from deep and closed visceral infections occurring in 19 patients. We observed genomic variability among isolates from the same site within 11 patients. This diversity was of two types, as patients were infected either by several distinct E. coli clones (4 patients) or by members of a single clone that exhibit micro-heterogeneity (11 patients); both types of diversity were present in 4 patients. A surprisingly wide continuum of antibiotic resistance, outer membrane permeability, growth rate, stress resistance, red dry and rough morphotype characteristics and virulence properties were present within the isolates of single clones in 8 of the 11 patients showing genomic micro-heterogeneity. Many of the observed phenotypic differences within clones affected the trade-off between self-preservation and nutritional competence (SPANC). We showed in 3 patients that this phenotypic variability was associated with distinct levels of RpoS in co-existing isolates. Genome mutational analysis and global proteomic comparisons in isolates from a patient revealed a star-like relationship of changes amongst clonally diverging isolates. A mathematical model demonstrated that multiple genotypes with distinct RpoS levels can co-exist as a result of the SPANC trade-off. In the cases involving infection by a single clone, we present several lines of evidence to suggest diversification during the infectious process rather than an infection by multiple isolates exhibiting a micro-heterogeneity. Our results suggest that bacteria are subject to trade-offs during an infectious process and that the observed diversity resembled results obtained in experimental evolution studies. Whatever the mechanisms leading to diversity, our results have strong medical implications in terms of the need for more extensive isolate testing before deciding on antibiotic therapies. We investigated whether an infection is a site of pathogen within-species diversity. Our results indicate that there is indeed extensive diversity during human extraintestinal infections by Escherichia coli. This diversity was of two types, not mutually exclusive, as we found that patients were infected either by several distinct E. coli clones or by members of a single clone that exhibit micro-heterogeneity. The high degree of phenotypic diversity, including antibiotic resistance, suggests that there is no uniform selection pressure leading to a single fitter clone during an infection. We discuss a possible mechanism and a mathematical model that explains these unexpected results. Our data suggest that the evolution of diversity in the course of an infection and in in vitro experimental evolution in the absence of host immune selective pressure may have many parallels. Whatever the mechanisms leading to diversity, our results have strong medical implications in terms of the need for more extensive isolate testing before deciding on antibiotic therapies.
Collapse
Affiliation(s)
- Maxime Levert
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Oana Zamfir
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Olivier Clermont
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Odile Bouvet
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Sylvain Lespinats
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Marie Claire Hipeaux
- Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Laboratoire de Microbiologie, Colombes, France
| | - Catherine Branger
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Laboratoire de Microbiologie, Colombes, France
| | - Bertrand Picard
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Claude Saint-Ruf
- INSERM U1001 and Université Paris 5 René Descartes, Faculté de Médecine, Paris, France
| | - Françoise Norel
- Unité de Génétique Moléculaire and CNRS URA2172, Institut Pasteur, Paris, France
| | - Thierry Balliau
- CNRS UMR 0320/UMR8120 Génétique Végétale, Plate-Forme de Protéomique PAPPSO, Gif-sur-Yvette, France
| | - Michel Zivy
- CNRS UMR 0320/UMR8120 Génétique Végétale, Plate-Forme de Protéomique PAPPSO, Gif-sur-Yvette, France
| | - Hervé Le Nagard
- INSERM U738 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Stéphane Cruvellier
- Laboratoire de Génomique Comparative, CNRS UMR8030, Institut de Génomique, CEA, Genoscope, Evry, France
| | - Béatrice Chane-Woon-Ming
- Laboratoire de Génomique Comparative, CNRS UMR8030, Institut de Génomique, CEA, Genoscope, Evry, France
| | - Susanna Nilsson
- Department of Mathematics, Imperial College, London, United Kingdom
| | - Ivana Gudelj
- Department of Mathematics, Imperial College, London, United Kingdom
| | - Katherine Phan
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Ferenci
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Olivier Tenaillon
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Erick Denamur
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Schoenfelder SM, Lange C, Eckart M, Hennig S, Kozytska S, Ziebuhr W. Success through diversity – How Staphylococcus epidermidis establishes as a nosocomial pathogen. Int J Med Microbiol 2010; 300:380-6. [DOI: 10.1016/j.ijmm.2010.04.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Abrutyn E, Cabell CH, Fowler VG, Hoen B, Miro JM, Mestres CA, Sexton DJ, Corey GR. Medical treatment of endocarditis. Curr Infect Dis Rep 2010; 9:271-82. [PMID: 17618546 DOI: 10.1007/s11908-007-0043-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Infective endocarditis (IE) remains a serious and deadly disease. The incidence, which varies by gender and on the presence of predisposing factors, has not decreased, due in part to the aging population with more healthcare exposures and predisposing risk factors such as prosthetic heart valves and intracardiac devices. The most important aspects of treatment in IE hinge upon early diagnosis, microorganism identification with susceptibility testing, and early initiation of appropriate antibiotic therapy. In addition, echocardiographic imaging is critical for both diagnostic and prognostic purposes. Early evaluation for surgery should be considered. Once a therapeutic strategy is begun, careful attention to the clinical course is necessary to ensure appropriate response to therapy and to identify complications early.
Collapse
Affiliation(s)
- Elias Abrutyn
- Duke Clinical Research Institute, DUMC Box 2705, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2010; 22:582-610. [PMID: 19822890 DOI: 10.1128/cmr.00040-09] [Citation(s) in RCA: 1183] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Treatment of infectious diseases becomes more challenging with each passing year. This is especially true for infections caused by the opportunistic pathogen Pseudomonas aeruginosa, with its ability to rapidly develop resistance to multiple classes of antibiotics. Although the import of resistance mechanisms on mobile genetic elements is always a concern, the most difficult challenge we face with P. aeruginosa is its ability to rapidly develop resistance during the course of treating an infection. The chromosomally encoded AmpC cephalosporinase, the outer membrane porin OprD, and the multidrug efflux pumps are particularly relevant to this therapeutic challenge. The discussion presented in this review highlights the clinical significance of these chromosomally encoded resistance mechanisms, as well as the complex mechanisms/pathways by which P. aeruginosa regulates their expression. Although a great deal of knowledge has been gained toward understanding the regulation of AmpC, OprD, and efflux pumps in P. aeruginosa, it is clear that we have much to learn about how this resourceful pathogen coregulates different resistance mechanisms to overcome the antibacterial challenges it faces.
Collapse
|
24
|
Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 2009; 54:177-83. [PMID: 19858254 DOI: 10.1128/aac.00715-09] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Respiratory infections caused by Klebsiella pneumoniae are characterized by high rates of mortality and morbidity. Management of these infections is often difficult, due to the high frequency of strains that are resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. In the present study, we investigated the role of the K. pneumoniae AcrRAB operon in antimicrobial resistance and virulence by using isogenic knockouts deficient in the AcrB component and the AcrR repressor, both derived from the virulent strain 52145R. We demonstrated that the AcrB knockout was more susceptible, not only to quinolones, but also to other antimicrobial agents, including beta-lactams, than the wild-type strain and the AcrR knockout. We further showed that the AcrB knockout was more susceptible to antimicrobial agents present in human bronchoalveolar lavage fluid and to human antimicrobial peptides than the wild-type strain and the AcrR knockout. Finally, the AcrB knockout exhibited a reduced capacity to cause pneumonia in a murine model, in contrast to the wild-type strain. The results of this study suggest that, in addition to contributing to the multidrug resistance phenotype, the AcrAB efflux pump may represent a novel virulence factor required for K. pneumoniae to resist innate immune defense mechanisms of the lung, thus facilitating the onset of pneumonia.
Collapse
|
25
|
Impact of low-level resistance to fluoroquinolones due to qnrA1 and qnrS1 genes or a gyrA mutation on ciprofloxacin bactericidal activity in a murine model of Escherichia coli urinary tract infection. Antimicrob Agents Chemother 2009; 53:4292-7. [PMID: 19635960 DOI: 10.1128/aac.01664-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We investigated the impact of low-level resistance to fluoroquinolones on the bactericidal activity of ciprofloxacin in a murine model of urinary tract infection. The susceptible Escherichia coli strain CFT073 (ciprofloxacin MIC [CIP MIC] of 0.008 microg/ml) was compared to its transconjugants harboring qnrA1 or qnrS1 and to an S83L gyrA mutant. The three derivatives showed similar low-level resistance to fluoroquinolones (CIP MICs, 0.25 to 0.5 microg/ml). Bactericidal activity measured in vitro after 1, 3, and 6 h of exposure to 0.5 microg/ml of ciprofloxacin was significantly lower for the derivative strains (P < 0.01). In the murine model of urinary tract infection (at least 45 mice inoculated per strain), mice were treated with a ciprofloxacin regimen of 2.5 mg/kg, given subcutaneously twice daily for 2 days. In mice infected with the susceptible strain, ciprofloxacin significantly decreased viable bacterial counts (log10 CFU/g of tissue) in the bladder (4.2 +/- 0.5 versus 5.5 +/- 1.3; P = 0.001) and in the kidney (3.6 +/- 0.8 versus 5.0 +/- 1.1; P = 0.003) compared with those of untreated mice. In contrast, no significant decrease in viable bacterial counts was observed with any of the three derivative strains. The area under the concentration-time curve from 0 to 24 h/MIC and the maximum concentration of drug in serum/MIC ratios measured in plasma were indeed equal to 827 and 147, respectively, for the parental strain, and only 12.4 to 24.8 and 2.2 to 4.4, respectively, for the derivative strains. In conclusion, low-level resistance to fluoroquinolones conferred by a qnr gene is associated with decreased bactericidal activity of ciprofloxacin, similar to that obtained with a gyrA mutation.
Collapse
|
26
|
Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother 2008; 53:639-45. [PMID: 19064896 DOI: 10.1128/aac.01051-08] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, several plasmid-mediated quinolone resistance (PMQR) genes conferring low levels of quinolone resistance have been discovered. To evaluate the temporal change in the prevalence of PMQR genes over a decade in a tertiary hospital in the Republic of Korea, we selected every fifth isolate of Escherichia coli and Klebsiella pneumoniae and every third isolate of Enterobacter cloacae between 1998 and 2001 and between 2005 and 2006 from a collection of blood isolates. Six PMQR genes [qnrA, qnrB, qnrC, qnrS, aac(6')-Ib-cr, and qepA] were screened by multiplex PCR and then confirmed by direct sequencing, and the aac(6')-Ib-positive PCR products were digested with BtsCI to identify the aac(6')-Ib-cr variant. Of 461 isolates, 37 (8%) had one of the six PMQR genes; 13 (5%) of 261 E. coli strains, 13 (10%) of 135 K. pneumoniae strains, and 11 (17%) of 65 E. cloacae strains. qnrB was the most common PMQR gene and was found as early as 1998, whereas qnrS, aac(6')-Ib-cr, and qepA emerged after 2000. None of the isolates carried qnrA or qnrC. Ciprofloxacin resistance increased over time (P < 0.001), and the overall prevalence of PMQR genes tended to increase (P = 0.20). PMQR-positive isolates had significantly higher ciprofloxacin resistance and multidrug resistance rates (P = 0.005 and P < 0.001, respectively). The increasing frequency of ciprofloxacin resistance in Enterobacteriaceae was associated with an increasing prevalence of PMQR genes, and this change involved an increase in the diversity of the PMQR genes and also an increase in the prevalence of the mutations in gyrA, parC, or both in PMQR-positive strains but not PMQR-negative strains.
Collapse
|
27
|
Clonal Diversity in Episodes with Multiple Coagulase-Negative Staphylococcus Bloodstream Isolates Suggesting Frequent Contamination. Infection 2008; 37:256-60. [DOI: 10.1007/s15010-008-8020-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 05/05/2008] [Indexed: 11/27/2022]
|
28
|
The role of intraoperative cultures at the time of reimplantation in the management of infected total joint arthroplasty. Eur J Clin Microbiol Infect Dis 2008; 27:805-11. [DOI: 10.1007/s10096-008-0509-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 03/03/2008] [Indexed: 02/08/2023]
|
29
|
Locke BJ, Lowy FD. Use of colony morphology to characterize carriage profiles of coagulase negative staphylococci. Eur J Clin Microbiol Infect Dis 2007; 26:895-9. [PMID: 17885774 DOI: 10.1007/s10096-007-0387-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The absence of a reliable method to distinguish among coagulase negative staphylococcal strains in mixed culture hinders elucidation of colonization traits and precise tracking of colonization. This study examined whether colonial morphology could be used to correctly identify coagulase negative staphylococcal strains in mixed cultures. Staphylococci were isolated from nasal and hand cultures of ten subjects at 0 and 3 months. Samples were initially screened for the predominant coagulase negative staphylococcal strain by colonial morphology. The strains were subsequently identified by phenotypic and biochemical testing. Pulsed field gel electrophoresis demonstrated that the morphologic criteria correctly grouped the strains in 91.1% (41/45) of samples. This study suggests that colonial morphology is a reliable method for the initial characterization of coagulase negative staphylococcal strains. This approach has potential value for epidemiological studies that involve establishing links between commensal flora and their potential role as pathogens in subsequent clinical infections.
Collapse
Affiliation(s)
- B J Locke
- Division of Infectious Diseases, Department of Medicine, Columbia University, College of Physicians & Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
30
|
Comparison of molecular typing methods for characterization of Staphylococcus epidermidis: proposal for clone definition. J Clin Microbiol 2007; 46:118-29. [PMID: 17989196 PMCID: PMC2224289 DOI: 10.1128/jcm.01685-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study we give some direction on the selection of the most appropriate typing method(s) to be used for the characterization of Staphylococcus epidermidis, in view of the most recent findings on the evolution, population structure, and epidemiology of this species. In order to achieve this aim, quantitative assessment of the correlation of the results of three typing methods--pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and staphylococcal chromosomal cassette mec (SCCmec) typing, which target different regions of the chromosome that evolve at different rates--was performed. In order to evaluate the discriminatory ability and the strength and direction of the correlation of the different typing methods, Simpson's index of diversity (SID), the adjusted Rand coefficient (AR), and the Wallace coefficient (W) were calculated. PFGE was the most discriminatory method (SID = 99%), followed by MLST (SID = 90%) and SCCmec typing (SID = 75%). The values of AR and W (0.10 < AR < 0.30; 0.50 < W < 0.75) indicated that the partition of the same isolate collection by PFGE, MLST, and SCCmec typing provided results that had only a poor correlation with each other. However, the information provided by the combination of PFGE and SCCmec enabled the prediction of the results obtained by MLST at the level of the clonal complex with a high degree of precision (W > 0.90). We propose that clones of S. epidermidis be defined by the combination of the PFGE type followed by the SCCmec type, which provides reliable information on the short-term epidemiology and the ability to predict with consistency long-term clonal evolution.
Collapse
|
31
|
Morgan-Linnell SK, Zechiedrich L. Contributions of the combined effects of topoisomerase mutations toward fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother 2007; 51:4205-8. [PMID: 17682104 PMCID: PMC2151436 DOI: 10.1128/aac.00647-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In defined, isogenic strains, at least three mutations, two of which must be in gyrA, were required to exceed the CLSI breakpoint for fluoroquinolone resistance. Strains with double mutations in both gyrA and parC had even higher MICs of fluoroquinolones than strains with totals of three mutations.
Collapse
Affiliation(s)
- Sonia K Morgan-Linnell
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Mail-stop BCM-280, Houston, TX 77030-3411, USA
| | | |
Collapse
|
32
|
Unemo M, Friberg O, Enquist E, Källman J, Söderquist B. Genetic homogeneity/heterogeneity of Propionibacterium acnes isolated from patients during cardiothoracic reoperation. Anaerobe 2007; 13:121-6. [PMID: 17512224 DOI: 10.1016/j.anaerobe.2007.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 11/16/2022]
Abstract
Following cardiothoracic surgery, deep sternal wound infection (SWI) remains one of the most severe complications. Recently, Propionibacterium acnes has been suspected as an etiological agent of deep SWI. However, this bacterium constitutes part of the resident micro-flora of the human skin. Consequently, findings of P. acnes in invasive samples are difficult to value. The aims of this study were to develop and optimize a pulsed-field gel electrophoresis (PFGE) protocol for P. acnes, in order to investigate the genetic homogeneity/heterogeneity of P. acnes isolates from multiple tissue samples (predominantly biopsies), collected at different locations, from 12 patients during cardiothoracic reoperation. There were 24 distinguishable PFGE fingerprints identified among the P. acnes isolates (n=54). Five (42%) of the patients carried only isolates that were interpreted as presumably clonally related. From the remaining seven patients, two or three different P. acnes clones were cultured, however, from six of them, the clones were identified in multiple samples. P. acnes may be a relatively frequent etiological agent of postoperative cardiothoracic infections. Existence of several clonally related P. acnes isolates derived from multiple samples from patients suffering from deep SWI after cardiothoracic surgery has not previously been shown.
Collapse
Affiliation(s)
- Magnus Unemo
- Department of Clinical Microbiology, Orebro University Hospital, SE-701 85 Orebro, Sweden.
| | | | | | | | | |
Collapse
|
33
|
Nilsdotter-Augustinsson A, Koskela A, Ohman L, Söderquist B. Characterization of coagulase-negative staphylococci isolated from patients with infected hip prostheses: use of phenotypic and genotypic analyses, including tests for the presence of the ica operon. Eur J Clin Microbiol Infect Dis 2007; 26:255-65. [PMID: 17342460 DOI: 10.1007/s10096-007-0281-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate phenotypic and/or genotypic heterogeneity in coagulase-negative staphylococci (CoNS) obtained from multiple tissue samples taken perioperatively during exchange surgery from each of 19 patients with clinically and/or microbiologically proven hip prosthesis infections. CoNS are important pathogens in prosthetic hip joint infections. Several virulence factors have been suggested for CoNS, such as phenotypic variation, yet the pathogenic processes that are involved remain unclear. The PhenePlate system (PhPlate AB, Stockholm Sweden) was used for phenotyping and pulsed-field gel electrophoresis for genotyping of polymorphisms in isolates of CoNS. Furthermore, polymerase chain reaction was used to determine the presence of the icaADB gene complex in the isolates. Some patients were infected with CoNS and other species, some were infected with multiple CoNS species, although infections with Staphylococcus epidermidis alone were most common, and some were infected with different S. epidermidis clones. Phenotypic variation was found among isolates both from the same tissue sample and from different samples from the same patient, and in some cases such variation represented the presence of different clones. One-third of the patients infected with S. epidermidis carried the icaADB genes. CoNS isolates showing phenotypic and/or genotypic heterogeneity were identified in tissue samples from half of the patients. The presence of the intercellular adhesion (ica) operon does not seem to be a prerequisite for establishing infection with CoNS.
Collapse
Affiliation(s)
- A Nilsdotter-Augustinsson
- Division of Infectious Diseases, Department of Molecular and Clinical Medicine, Linköping University, 58185 Linköping, Sweden.
| | | | | | | |
Collapse
|
34
|
Matrat S, Petrella S, Cambau E, Sougakoff W, Jarlier V, Aubry A. Expression and purification of an active form of the Mycobacterium leprae DNA gyrase and its inhibition by quinolones. Antimicrob Agents Chemother 2007; 51:1643-8. [PMID: 17325221 PMCID: PMC1855561 DOI: 10.1128/aac.01282-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium leprae, the causative agent of leprosy, is noncultivable in vitro; therefore, evaluation of antibiotic activity against M. leprae relies mainly upon the mouse footpad system, which requires at least 12 months before the results become available. We have developed an in vitro assay for studying the activities of quinolones against the DNA gyrase of M. leprae. We overexpressed in Escherichia coli the M. leprae GyrA and GyrB subunits separately as His-tagged proteins by using a pET plasmid carrying the gyrA and gyrB genes. The soluble 97.5-kDa GyrA and 74.5-kDa GyrB subunits were purified by nickel chelate chromatography and were reconstituted as an enzyme with DNA supercoiling activity. Based on the drug concentrations that inhibited DNA supercoiling by 50% or that induced DNA cleavage by 25%, the 13 quinolones tested clustered into three groups. Analysis of the quinolone structure-activity relationship demonstrates that the most active quinolones against M. leprae DNA gyrase share the following structural features: a substituted carbon at position 8, a cyclopropyl substituent at N-1, a fluorine at C-6, and a substituent ring at C-7. We conclude that the assays based on DNA supercoiling inhibition and drug-induced DNA cleavage on purified M. leprae DNA gyrase are rapid, efficient, and safe methods for the screening of quinolone derivatives with potential in vivo activities against M. leprae.
Collapse
Affiliation(s)
- Stéphanie Matrat
- Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, 91, Boulevard de l'Hôpital, Paris cedex 13, France
| | | | | | | | | | | |
Collapse
|
35
|
Miragaia M, Thomas JC, Couto I, Enright MC, de Lencastre H. Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol 2007; 189:2540-52. [PMID: 17220222 PMCID: PMC1899367 DOI: 10.1128/jb.01484-06] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite its importance as a human pathogen, information on population structure and global epidemiology of Staphylococcus epidermidis is scarce and the relative importance of the mechanisms contributing to clonal diversification is unknown. In this study, we addressed these issues by analyzing a representative collection of S. epidermidis isolates from diverse geographic and clinical origins using multilocus sequence typing (MLST). Additionally, we characterized the mobile element (SCCmec) carrying the genetic determinant of methicillin resistance. The 217 S. epidermidis isolates from our collection were split by MLST into 74 types, suggesting a high level of genetic diversity. Analysis of MLST data using the eBURST algorithm revealed the existence of nine epidemic clonal lineages that were disseminated worldwide. One single clonal lineage (clonal complex 2) comprised 74% of the isolates, whereas the remaining isolates were clustered into 8 minor clonal lineages and 13 singletons. According to our evolutionary model, SCCmec was acquired at least 56 times by S. epidermidis. Although geographic dissemination of S. epidermidis strains and the value of the index of association between the alleles, 0.2898 (P < 0.05), support the clonality of S. epidermidis species, examination of the sequence changes at MLST loci during clonal diversification showed that recombination gives rise to new alleles approximately twice as frequently as point mutations. We suggest that S. epidermidis has a population with an epidemic structure, in which nine clones have emerged upon a recombining background and evolved quickly through frequent transfer of genetic mobile elements, including SCCmec.
Collapse
Affiliation(s)
- M Miragaia
- Laboratório de Genética Molecular, Instituto de Technologia Química e Biológica, Universidade Nova de Lisboa (ITQB/UNL), Portugal
| | | | | | | | | |
Collapse
|
36
|
Zeller V, Kitzis MD, Graff W, Mamoudy P, Desplaces N. Hip arthroplasty infection with heterogeneous vancomycin-resistant Staphylococcus aureus. ACTA ACUST UNITED AC 2006; 38:934-8. [PMID: 17008244 DOI: 10.1080/00365540600606408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We report a case of heterogeneous vancomycin-resistant Staphylococcus aureus hip arthroplasty infection. Apparent cure was obtained by excision of infected tissues and removal of prosthetic material combined with optimal and closely monitored prolonged intravenous antibiotic therapy including continuous high-dose vancomycin.
Collapse
Affiliation(s)
- Valérie Zeller
- Department of Orthopaedic Surgery, Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Blood culture contamination represents an ongoing source of frustration for clinicians and microbiologists alike. Ambiguous culture results often lead to diagnostic uncertainty in clinical management and are associated with increased health care costs due to unnecessary treatment and testing. A variety of strategies have been investigated and employed to decrease contamination rates. In addition, numerous approaches to increase our ability to distinguish between clinically significant bacteremia and contamination have been explored. In recent years, there has been an increase in the application of computer-based tools to support infection control activities as well as provide clinical decision support related to the management of infectious diseases. Finally, new approaches for estimating bacteremia risk which have the potential to decrease unnecessary blood culture utilization have been developed and evaluated. In this review, we provide an overview of blood culture contamination and describe the potential utility of a variety of approaches to improve both detection and prevention. While it is clear that progress is being made, fundamental challenges remain.
Collapse
Affiliation(s)
- Keri K Hall
- Department of Internal Medicine, Division of Infectious Diseases, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
38
|
Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 2006; 50:3953-5. [PMID: 16954321 PMCID: PMC1635235 DOI: 10.1128/aac.00915-06] [Citation(s) in RCA: 579] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among 313 Enterobacteriaceae from the United States with a ciprofloxacin MIC of >/=0.25 microg/ml and reduced susceptibility to ceftazidime, aac(6')-Ib was present in 50.5% of isolates, and of these, 28% carried the cr variant responsible for low-level ciprofloxacin resistance. aac(6')-Ib-cr was geographically widespread, stable over time, most common in Escherichia coli, equally prevalent in ciprofloxacin-susceptible and -resistant strains, and not associated with qnr genes.
Collapse
Affiliation(s)
- Chi Hye Park
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114-2696, USA
| | | | | | | | | |
Collapse
|
39
|
Strahilevitz J, Robicsek A, Hooper DC. Role of the extended alpha4 domain of Staphylococcus aureus gyrase A protein in determining low sensitivity to quinolones. Antimicrob Agents Chemother 2006; 50:600-6. [PMID: 16436716 PMCID: PMC1366898 DOI: 10.1128/aac.50.2.600-606.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolones target two bacterial type II topoisomerases, DNA gyrase and topoisomerase IV. Acquired resistance to quinolones occurs stepwise, with the first mutation occurring in the more sensitive target enzyme. To limit the emergence of resistance, quinolones should ideally possess dual activities against the two enzymes. For reasons that are as yet unclear, Staphylococcus aureus gyrase is less sensitive to quinolones than topoisomerase IV, counter to its greater sensitivity in Escherichia coli, thereby limiting the use of quinolones for the treatment of staphylococcal infections. Mutations in the alpha4-helix domain of the GyrA subunit of gyrase are important in determining quinolone resistance. We replaced an extended region encompassing the alpha4 domain in the E. coli GyrA protein with its homolog in S. aureus and tested for its ability to complement a thermosensitive gyrase and its catalytic and noncatalytic properties. Purified gyrase reconstituted with chimeric GyrA was more resistant to ciprofloxacin than wild-type gyrase at both inhibition of catalytic activity and stimulation of cleavage complexes, and this difference was more apparent in the presence of K+-glutamate. The chimeric GyrA subunit was able to complement thermosensitive gyrase, similar to wild-type GyrA. Without supplemental K+-glutamate the MICs of ciprofloxacin for thermosensitive E. coli complemented with chimeric DNA gyrase were equal to those for E. coli complemented with wild-type gyrase but were twofold higher in the presence of K+-glutamate. Our findings suggest that the extended alpha4 domain of S. aureus GyrA is responsible, at least in part, for the increased resistance of S. aureus gyrase to quinolones and that this effect is modulated by K+-glutamate.
Collapse
Affiliation(s)
- Jacob Strahilevitz
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114-2696, USA
| | | | | |
Collapse
|
40
|
Cone LA, Sontz EM, Wilson JW, Mitruka SN. Staphylococcus capitis endocarditis due to a transvenous endocardial pacemaker infection: case report and review of Staphylococcus capitis endocarditis. Int J Infect Dis 2005; 9:335-9. [PMID: 16085441 DOI: 10.1016/j.ijid.2004.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/19/2004] [Accepted: 08/28/2004] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Newer microbiologic methods to determine the species of coagulase-negative staphylococci (CoNS) have evolved which have shown that most endocarditis due to CoNS is caused by Staphylococcus epidermidis, and far fewer by Staphylococcus warneri and Staphylococcus lugdunensis. METHODS The recent opportunity to successfully treat a patient with methicillin-resistant Staphylococcus capitis endocarditis secondary to an infected transvenous pacemaker led to a review of the literature relating to S. capitis endocarditis. RESULTS Thirteen previously recorded patients were identified. Twelve (86%) patients were male. Ten had endocarditis associated with a native valve, two with prosthetic valves and one with a transvenous pacemaker. Mortality was low in all 14 cases (including this case report) with only two deaths; one in a patient with a native valve and the other with a prosthetic valve. Four of the isolates were methicillin resistant but sensitive to vancomycin, which was used in the treatment of eight patients. Those patients with prosthetic cardiac devices appear to do better when the devices are surgically removed. CONCLUSIONS CoNS as a cause of endocarditis appears to be increasing and the current ability to determine the species of these organisms should elicit the epidemiology, clinical characteristics and biomolecular mechanisms involved in the induction of valvular disease.
Collapse
Affiliation(s)
- Lawrence A Cone
- Department of Medicine, Section of Infectious Diseases, Eisenhower Medical Center, Rancho Mirage, CA 92270, USA.
| | | | | | | |
Collapse
|
41
|
Strahilevitz J, Hooper DC. Dual targeting of topoisomerase IV and gyrase to reduce mutant selection: direct testing of the paradigm by using WCK-1734, a new fluoroquinolone, and ciprofloxacin. Antimicrob Agents Chemother 2005; 49:1949-56. [PMID: 15855518 PMCID: PMC1087631 DOI: 10.1128/aac.49.5.1949-1956.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quinolones that act equally against DNA gyrase and topoisomerase IV are a desirable modality to decrease the selection of resistant strains. We first determined by genetic and biochemical studies in Staphylococcus aureus that the primary target enzyme of WCK-1734, a new quinolone, was DNA gyrase. A single mutation in gyrase, but not topoisomerase IV, caused a two- to fourfold increase in the MIC. Studies with purified topoisomerase IV and gyrase from S. aureus also showed that gyrase was more sensitive than topoisomerase IV to WCK-1734 (50% inhibitory concentration, 1.25 and 2.5 to 5.0 microg/ml, respectively; 50% stimulation of cleavage complex formation, 0.62 and 2.5 to 5.0 microg/ml, respectively). To test the effect of balanced activity of quinolones against the two target enzymes, we measured the frequency of selection of mutants with ciprofloxacin (which targets topoisomerase IV) and WCK-1734 alone and in combination. With the combination of ciprofloxacin and WCK-1734, each at its MIC, the ratio of frequency of mutants selected was significantly lower than that with each drug alone at two times their respective MICs. We further characterized resistant strains selected with the combination of ciprofloxacin and WCK-1734 and found evidence to suggest the existence of novel mutational mechanisms for low-level quinolone resistance. By use of a combination of differentially targeting quinolones, this study provides novel data in direct support of the paradigm for dual targeting of quinolone action and reduced development of resistance.
Collapse
Affiliation(s)
- Jacob Strahilevitz
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2696, USA
| | | |
Collapse
|
42
|
Haas JP, Evans AM, Preston KE, Larson EL. Risk factors for surgical site infection after cardiac surgery: the role of endogenous flora. Heart Lung 2005; 34:108-14. [PMID: 15761455 DOI: 10.1016/j.hrtlng.2004.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The study's objective was to assess predictors of surgical site infection (SSI) after cardiac surgery and the relationship of perioperative nasal carriage of Staphylococcus species with the development of SSI. METHODS Surveillance for infections was performed, and anterior nares cultures of patients who underwent cardiac surgery were obtained. Preoperative risk factors were analyzed, and staphylococcal isolates from nares and SSI were compared using pulsed-field gel electrophoresis. RESULTS Twelve patients had 14 SSIs (5.7 infections/100 surgeries). Two risk factors were significantly associated with SSI: smoking (P = .002, confidence interval(95) 1.1-1.4, relative risk = 1.3) and increased body mass index (P = .003, confidence interval(95) 2.8-99.8, relative risk = 16.8). A total of 5 of 8 infected patients (62.5%) for whom nares cultures were available had identical strains in their nares and SSI. CONCLUSION Smoking and body mass index were predictors of SSI. Approximately 2 of 3 infected patients for whom nares cultures were obtained had an SSI that was likely from an endogenous source.
Collapse
Affiliation(s)
- Janet P Haas
- Department of Eidemiology, Columbia University School of Nursing and New York Presbyterian Hospital, New York, New York 10032, USA
| | | | | | | |
Collapse
|
43
|
Miragaia M, Couto I, de Lencastre H. Genetic Diversity among Methicillin-ResistantStaphylococcus epidermidis(MRSE). Microb Drug Resist 2005; 11:83-93. [PMID: 15910220 DOI: 10.1089/mdr.2005.11.83] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We selected 106 methicillin-resistant Staphylococcus epidermidis (MRSE) and 22 methicillin-susceptible S. epidermidis (MSSE) hospital isolates--each with a different PFGE pattern--for more detailed documentation of genetic diversity. The 106 MRSE isolates showed extensive variation in the SmaI DNA fragments hybridizing with the DNA probe for mecA, the molecular size of which varied from as low as 20 kb up to over 500 kb. Parallel variation was also observed in the size of DNA fragments hybridizing with the chromosomal genes orfX and gyrA, and this was also observed in MSSE isolates. In contrast, SmaI fragments associated with the housekeeping genes murE and aroE, both located distantly from orfX, showed little size variation. Typing for the mec complex and ccr identified 10 different SCCmec structures and a large number of strains (21 isolates) that were non-typeable. The majority of strains studied (36%) carried a SCCmec type IV-like structure, including strains with non-related PFGE profiles. On the other hand, closely related strains often carried different types of SCCmec. The findings indicate that the acquisition and/or loss of mobile genetic elements, including various structural types of SCCmec, may occur frequently in the vicinity of the orfX gene on the S. epidermidis chromosome.
Collapse
Affiliation(s)
- M Miragaia
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB/UNL), Oeiras, Portugal
| | | | | |
Collapse
|
44
|
Huys G, D'Haene K, Van Eldere J, von Holy A, Swings J. Molecular diversity and characterization of tetracycline-resistant Staphylococcus aureus isolates from a poultry processing plant. Appl Environ Microbiol 2005; 71:574-9. [PMID: 15640240 PMCID: PMC544260 DOI: 10.1128/aem.71.1.574-579.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 08/23/2004] [Indexed: 11/20/2022] Open
Abstract
DNA fingerprinting and molecular characterization showed that the tetracycline-resistant Staphylococcus aureus population of a South African poultry processing plant comprised one or possibly several tet(K)-containing endemic clones that contaminated chicken and machinery surfaces at all sampled processing stages. The tet(K) gene was transferable by filter mating to S. aureus recipient 80CR5 and was located on a pT181-like plasmid.
Collapse
Affiliation(s)
- Geert Huys
- Laboratory of Microbiology, Ghent University, K.L. Ledeganckstr. 35, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
45
|
Wang M, Sahm DF, Jacoby GA, Zhang Y, Hooper DC. Activities of newer quinolones against Escherichia coli and Klebsiella pneumoniae containing the plasmid-mediated quinolone resistance determinant qnr. Antimicrob Agents Chemother 2004; 48:1400-1. [PMID: 15047552 PMCID: PMC375334 DOI: 10.1128/aac.48.4.1400-1401.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seventeen qnr-containing transconjugants were constructed with azide-resistant Escherichia coli J53 as the recipient, and the MICs of 12 quinolones were tested by agar dilution methods. Sitafloxacin, BAYy3118, and premafloxacin had higher activity in vitro than ciprofloxacin against transconjugants and donors containing qnr. The donors had higher quinolone MICs than the transconjugants.
Collapse
Affiliation(s)
- Minggui Wang
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
46
|
Wang M, Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Chemother 2003; 47:2242-8. [PMID: 12821475 PMCID: PMC161834 DOI: 10.1128/aac.47.7.2242-2248.2003] [Citation(s) in RCA: 350] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although quinolone resistance usually results from chromosomal mutations, recent studies indicate that quinolone resistance can also be plasmid mediated. The gene responsible, qnr, is distinct from the known quinolone resistance genes and in previous studies seemed to be restricted to Klebsiella pneumoniae and Escherichia coli isolates from the University of Alabama in Birmingham, where this resistance was discovered. In Shanghai, the frequency of ciprofloxacin resistance in E. coli has exceeded 50% since 1993. Seventy-eight unique ciprofloxacin-resistant clinical isolates of E. coli from Shanghai hospitals were screened for the qnr gene by colony blotting and Southern hybridization of plasmid DNA. Conjugation experiments were done with azide-resistant E. coli J53 as a recipient with selection for plasmid-encoded antimicrobial resistance (chloramphenicol, gentamicin, or tetracycline) and azide counterselection. qnr genes were sequenced, and the structure of the plasmid DNA adjacent to qnr was analyzed by primer walking with a sequential series of outward-facing sequencing primers with plasmid DNA templates purified from transconjugants. Six (7.7%) of 78 strains gave a reproducible hybridization signal with a qnr gene probe on colony blots and yielded strong signals on plasmid DNA preparations. Quinolone resistance was transferred from all six probe-positive strains. Transconjugants had 16- to 250-fold increases in the MICs of ciprofloxacin relative to that of the recipient. All six strains contained qnr with a nucleotide sequence identical to that originally reported, except for a single nucleotide change (CTA-->CTG at position 537) encoding the same amino acid. qnr was located in complex In4 family class 1 integrons. Two completely sequenced integrons were designated In36 and In37. Transferable plasmid-mediated quinolone resistance associated with qnr is thus prevalent in quinolone-resistant clinical strains of E. coli from Shanghai and may contribute to the rapid increase in bacterial resistance to quinolones in China.
Collapse
Affiliation(s)
- Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | | | | | | | | | | |
Collapse
|
47
|
Johnson JR, Murray AC, Gajewski A, Sullivan M, Snippes P, Kuskowski MA, Smith KE. Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob Agents Chemother 2003; 47:2161-8. [PMID: 12821463 PMCID: PMC161843 DOI: 10.1128/aac.47.7.2161-2168.2003] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone use in poultry production may select for resistant Escherichia coli that can be transmitted to humans. To define the prevalence and virulence potential of poultry-associated, quinolone-resistant E. coli in the United States, 169 retail chicken products from the Minneapolis-St. Paul area (1999 to 2000) were screened for nalidixic acid (Nal)-resistant E. coli. Sixty-two (37%) products yielded Nal-resistant E. coli. From 55 products that yielded both Nal-resistant and susceptible E. coli, two isolates (one resistant, one susceptible) per sample were further characterized. Twenty-three (21%) of the 110 E. coli isolates (13 resistant, 10 susceptible) satisfied criteria for extraintestinal pathogenic E. coli (ExPEC), i.e., exhibited >or=2 of pap (P fimbriae), sfa/foc (S/F1C fimbriae), afa/dra (Dr binding adhesins), iutA (aerobactin receptor), and kpsMT II (group 2 capsule synthesis). Compared with other isolates, ExPEC isolates more often derived from virulence-associated E. coli phylogenetic groups B2 or D (74% versus 32%; P < 0.001) and exhibited more ExPEC-associated virulence markers (median, 10.0 versus 4.0; P < 0.001). In contrast, the Nal-resistant and -susceptible populations were indistinguishable according to all characteristics analyzed, including pulsed-field gel electrophoresis profiles. These findings indicate that Nal-resistant E. coli is prevalent in retail poultry products and that a substantial minority of such strains represent potential human pathogens. The similarity of the Nal-resistant and -susceptible populations suggests that they derive from the same source population, presumably the avian fecal flora, with Nal resistance emerging by spontaneous mutation as a result of fluoroquinolone exposure.
Collapse
Affiliation(s)
- James R Johnson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55417, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Melvin P Weinstein
- Department of Medicine, University of Medicine, Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903-0019, USA.
| |
Collapse
|
49
|
Khatib R, Sharma M, Naqvi SAH, Riederer K, Almoujahed MO, Fakih MG. Molecular analysis of Staphylococcus aureus blood isolates shows lack of polyclonal bacteremia. J Clin Microbiol 2003; 41:1717-9. [PMID: 12682167 PMCID: PMC153877 DOI: 10.1128/jcm.41.4.1717-1719.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular analysis of the first blood culture from 41 patients with Staphylococcus aureus bacteremia and 20 bacteremia-associated catheter tip isolates revealed indistinguishable blood colonies in 39 patients (95.1%) and two related variants in two patients (4.9%). Polyclonal bacteremia was not observed in any patient, including four with genetic diversity in the catheter tip isolate.
Collapse
Affiliation(s)
- Riad Khatib
- St. John Hospital & Medical Center, Detroit, Michigan 48236, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Kishii R, Takei M, Fukuda H, Hayashi K, Hosaka M. Contribution of the 8-methoxy group to the activity of gatifloxacin against type II topoisomerases of Streptococcus pneumoniae. Antimicrob Agents Chemother 2003; 47:77-81. [PMID: 12499172 PMCID: PMC148977 DOI: 10.1128/aac.47.1.77-81.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhibitory activities (50% inhibitory concentrations [IC(50)s]) of gatifloxacin and other quinolones against both DNA gyrase and topoisomerase IV of the wild-type Streptococcus pneumoniae IID553 were determined. The IC(50)s of 10 compounds ranged from 4.28 to 582 microg/ml against DNA gyrase and from 1.90 to 35.2 microg/ml against topoisomerase IV. The inhibitory activity against DNA gyrase was more varied than that against topoisomerase IV among fluoroquinolones. The IC(50)s for DNA gyrase of the 8-methoxy quinolones gatifloxacin and AM-1147 were approximately seven times lower than those of their 8-H counterparts AM-1121 and ciprofloxacin, whereas the IC(50)s for topoisomerase IV were 1.5 times lower. Moreover, the IC(50) ratios (IC(50) for DNA gyrase/IC(50) for topoisomerase IV) of gatifloxacin, AM-1147, and moxifloxacin, which possess 8-methoxy groups, were almost the same. The 8-methoxy quinolones showed higher antibacterial activity and less mutant selectivity against IID553 than their 8-H counterparts. These results suggest that the 8-methoxy group enhances both target inhibition, especially for DNA gyrase, leading to potent antipneumococcal activity and dual inhibition against both DNA gyrase and topoisomerase IV in the bacterial cell.
Collapse
Affiliation(s)
- Ryuta Kishii
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., Shimotsuga, Tochigi 329-0114, Japan.
| | | | | | | | | |
Collapse
|