1
|
Phuna ZX, Madhavan P. A reappraisal on amyloid cascade hypothesis: the role of chronic infection in Alzheimer's disease. Int J Neurosci 2023; 133:1071-1089. [PMID: 35282779 DOI: 10.1080/00207454.2022.2045290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer disease (AD) is a progressive neurological disorder that accounted for the most common cause of dementia in the elderly population. Lately, 'infection hypothesis' has been proposed where the infection of microbes can lead to the pathogenesis of AD. Among different types of microbes, human immunodeficiency virus-1 (HIV-1), herpes simplex virus-1 (HSV-1), Chlamydia pneumonia, Spirochetes and Candida albicans are frequently detected in the brain of AD patients. Amyloid-beta protein has demonstrated to exhibit antimicrobial properties upon encountering these pathogens. It can bind to microglial cells and astrocytes to activate immune response and neuroinflammation. Nevertheless, HIV-1 and HSV-1 can develop into latency whereas Chlamydia pneumonia, Spirochetes and Candida albicans can cause chronic infections. At this stage, the DNA of microbes remains undetectable yet active. This can act as the prolonged pathogenic stimulus that over-triggers the expression of Aβ-related genes, which subsequently lead to overproduction and deposition of Aβ plaque. This review will highlight the pathogenesis of each of the stated microbial infection, their association in AD pathogenesis as well as the effect of chronic infection in AD progression. Potential therapies for AD by modulating the microbiome have also been suggested. This review will aid in understanding the infectious manifestations of AD.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
2
|
Hashemian SMM, Madani SA, Allymehr M, Talebi A. A molecular survey of Chlamydia spp. infection in commercial poultry and detection of Chlamydia pneumoniae in a commercial turkey flock in Iran. Vet Med Sci 2023; 9:2168-2175. [PMID: 37602896 PMCID: PMC10508571 DOI: 10.1002/vms3.1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Chlamydiaceae are a group of gram-negative intracellular bacteria which can infect a wide variety of hosts. Some chlamydial agents are capable of crossing the host barrier and though they are potentially a risk to very different species. They also pose a zoonotic risk for human and different chlamydial agents are linked to several medical maladies. OBJECTIVES In this study, the presence of chlamydial agents in different commercial poultry flocks in Iran was investigated. METHODS Swab and tissue samples were collected from 435 birds in 24 different commercial poultry flocks. These samples were examined using a Chlamydiaceae-specific real-time PCR assay targeting 23S rRNA gene. Positive samples then were subjected to intergenic spacer rRNA (IGS) gene and major outer membrane protein gene (ompA) PCRs. Finally, positive PCR products were sequenced and analysed. RESULTS Only one flock of commercial turkey became positive. Partial DNA sequencing of IGS gene revealed that all positive samples from the infected flock were Chlamydia pneumoniae and were identical to previously studied isolates from koala (LPCoLN) and frog (DC9). Further investigations showed slight dissimilarity in ompA gene of C. pneumoniae from different hosts. The detected turkey isolates were located in a different clade of phylogenetic tree, close to Western barred bandicoot and koala isolates. CONCLUSION C. pneumoniae has passed the cross-species barrier in the past and therefor it could potentially be zoonotic. To the best of authors' knowledge, this is the first report of C. pneumoniae infection in commercial turkey.
Collapse
Affiliation(s)
| | - Seyed Ahmad Madani
- Department of Animal and Poultry Health and Nutrition, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Manoochehr Allymehr
- Department of Poultry Health and Diseases, Faculty of Veterinary MedicineUniversity of UrmiaUrmiaIran
| | - Alireza Talebi
- Department of Poultry Health and Diseases, Faculty of Veterinary MedicineUniversity of UrmiaUrmiaIran
| |
Collapse
|
3
|
Lipopolysaccharides and Cellular Senescence: Involvement in Atherosclerosis. Int J Mol Sci 2022; 23:ijms231911148. [PMID: 36232471 PMCID: PMC9569556 DOI: 10.3390/ijms231911148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular walls related to aging. Thus far, the roles of cellular senescence and bacterial infection in the pathogenesis of atherosclerosis have been speculated to be independent of each other. Some types of macrophages, vascular endothelial cells, and vascular smooth muscle cells are in a senescent state at the sites of atherosclerotic lesions. Likewise, bacterial infections and accumulations of lipopolysaccharide (LPS), an outer-membrane component of Gram-negative bacteria, have also been observed in the atherosclerotic lesions of patients. This review introduces the integration of these two potential pathways in atherosclerosis. Previous studies have suggested that LPS directly induces cellular senescence in cultured monocytes/macrophages and vascular cells. In addition, LPS enhances the inflammatory properties (senescence-associated secretory phenotype [SASP]) of senescent endothelial cells. Thus, LPS derived from Gram-negative bacteria could exaggerate the pathogenesis of atherosclerosis by inducing and enhancing cellular senescence and the SASP-associated inflammatory properties of specific vascular cells in atherosclerotic lesions. This proposed mechanism can provide novel approaches to preventing and treating this common age-related disease.
Collapse
|
4
|
Wajid A, Todem D, Schleiss MR, Colombo DF, Paneth NS. Gestational Antibodies to C. pneumoniae, H. pylori and CMV in Women with Preeclampsia and in Matched Controls. Matern Child Health J 2022; 26:2040-2049. [PMID: 35932403 DOI: 10.1007/s10995-022-03484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Some research has suggested a possible role for past infection in the development of preeclampsia. The objective of this study was to explore the role of Helicobacter pylori, cytomegalovirus, and Chlamydophila pneumoniae in the development of preeclampsia in a prospective pregnancy sample. METHODS We conducted a nested case-control study in The Archive for Child Health (ARCH), a pregnancy cohort of 867 unselected women enrolled at the first prenatal visit with archived blood and urine in pregnancy. We matched 21 cases of preeclampsia to 52 unaffected controls on maternal age (±4 years), race, parity, and gestational age at blood draw. Using conditional logistic regression, we examined the association between preeclampsia status and immunoglobulins G (IgG) tested by indirect ELISA to each of the three microorganisms, adjusting for potential confounders. RESULTS No significant difference was found between cases and controls. The unadjusted odds ratio was 1.5 (95%CI: 0.2-9.1), 0.6 (95%CI: 0.2-1.9), and 1.9 (95%CI: 0.6-5.6) for H. pylori, cytomegalovirus and C. pneumoniae respectively. After controlling for confounders analysis found increased odds of H. pylori IgG (AOR: 1.9; 95% CI: 0.2-15.3) and C. pneumoniae IgG (AOR: 2.3; 95% CI: 0.6-9.2) for preeclampsia, albeit being not significant. Conversely, cytomegalovirus IgG had lower odds for preeclampsia (AOR: 0.4; 95% CI: 0.1-1.7). CONCLUSIONS Past infection with H. pylori, and C. pneumoniae in early pregnancy showed a higher risk of preeclampsia, but the findings failed to achieve statistical significance. Cytomegalovirus was not associated with preeclampsia in these data. These preliminary findings encourage future research in populations with high prevalence of these infections.
Collapse
Affiliation(s)
- Abdul Wajid
- Alberta Health Services, Calgary, AB, T3A 0P6, Canada.
| | - David Todem
- Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Mark R Schleiss
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Nigel S Paneth
- Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Wang P, Wang Y, Peng H, Wang J, Zheng Q, Wang P, Wang J, Zhang H, Huang Y, Xiong L, Zhang R, Xia Y, Wang QK, Xu C. Functional rare variant in a C/EBP beta binding site in NINJ2 gene increases the risk of coronary artery disease. Aging (Albany NY) 2021; 13:25393-25407. [PMID: 34897030 PMCID: PMC8714150 DOI: 10.18632/aging.203755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
Objective: NINJ2 regulates activation of vascular endothelial cells, and genome-wide association studies showed that variants in NINJ2 confer risk to stroke. However, whether variants in NINJ2 are associated with coronary artery disease (CAD) is unknown. Methods: We genotyped rs34166160 in NINJ2 in two independent Chinese GeneID populations which included 2,794 CAD cases and 4,131 controls, and performed genetics association studies. Functional studies were also performed to reveal the mechanisms. Results: Allele rs34166160 significantly confers risk to CAD in the GeneID Hubei population which contained 1,440 CAD cases and 2,660 CAD-free controls (observed P-obs = 6.39 × 10−3 with an odds ratio (OR) was 3.39, adjusted P-adj = 8.12 × 10−3 with an OR of 3.10). The association was replicated in another population, GeneID Shandong population contained 1,354 CAD cases and 1,471 controls (P-obs = 3.33 × 10−3 with an OR of 3.14, P-adj = 0.01 with an OR of 2.74). After combining the two populations, the association was more significant (P-obs = 1.57 × 10−5 with an OR of 3.58, P-adj = 3.41 × 10−4 with an OR of 2.80). In addition, we found that rs34166160 was associated with the mRNA expression level of NINJ2 and the flanking region of rs34166160 can directly bind with transcriptional factor CCAAT-box/enhancer-binding protein beta, and the risk A allele has more transcription activity than non-risk C allele with or without LPS in HUVEC cells. Conclusions: Our study demonstrates that the functional rare variant rs34166160 in NINJ2 confers risk to CAD for the first time, and these findings further expand the range of the pathology of CAD and atherosclerosis.
Collapse
Affiliation(s)
- Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yifan Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Huixin Peng
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Jingjing Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, PR China
| | - Qian Zheng
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Pengxia Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Jing Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Hongfu Zhang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Yufeng Huang
- Precision Medical Laboratory, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Huazhong University of Science and Technology, Wuhan, PR China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Qing K Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Chengqi Xu
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
6
|
Talari HR, Moniri R, Mollaghanbari M, Haddad Kashani H, Jalalian MN. Evaluating the relationship between Helicobacter pylori infection and carotid intima-media thickness a cross sectional study. Ann Med Surg (Lond) 2021; 69:102659. [PMID: 34471528 PMCID: PMC8387901 DOI: 10.1016/j.amsu.2021.102659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Helicobacter pylori is a gram-negative spiral bacterium that is frequently found in the human stomach. Significant association has been reported between Cytotoxin associated gene A (CagA)- positive Helicobacter pylori strains and coronary heart disease. The aim of the present study is to investigate the carotid intima-media thickness as an indicator of atherosclerosis in people with Helicobacter pylori infection. Methods This study was done on patients who underwent upper GI endoscopy and biopsy, and after obtaining conscious consent underwent ultrasound of the right and left carotid arteries for measuring carotid intima-media thickness (CIMT) and blood tests. Results In this study, 90 patients who underwent upper GI endoscopy were examined in three groups: negative H. pylori negative, positive cagA and negative cagA. The right, left and average of CIMT in cagA-positive group were significantly higher than the other two groups (p < 0.05). Howerver, the average of CIMT was not significantly different between men and women. Also, the hsCRP average level in positive cagA group was significantly higher than other groups (p < 0.05). Conclusion Our findings suggest that there is an increase in CIMT values in patients with H. pylori infection, especially in cases of positive cagA. The positive cagA group showed significantly higher levels of hs-CRP, as a marker of elevated inflammatory response. Therefore, H. pylori infection, especially cagA-positive strains and its associated systemic inflammatory response can be considered as a contributing factor in atherosclerosis and cardiovascular disease. H.pylori infection especially in case of positive CagA+ caused the right/left CIMT increase. Higher levels of inflammation in H.pylori, CagA patients and atherosclerosis risk factors couldn’t cause the significant difference. H.pylori infection with positive CagA and its inflammation is an important factor in atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Hamid Reza Talari
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Department of Radiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Mollaghanbari
- Department of Internal Medicine, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Naser Jalalian
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Department of Radiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Quan XQ, Xu C, Wang RC, Zhang CT, Zhang Q, Zhou HL. The relationship between Chlamydia pneumoniae infection and CD4/CD8 ratio, lymphocyte subsets in middle-aged and elderly individuals. Microb Pathog 2020; 149:104541. [PMID: 33068732 DOI: 10.1016/j.micpath.2020.104541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 04/19/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Chlamydia pneumoniae (C. pneumoniae) is a common respiratory pathogen associated with many inflammatory diseases. There are few data concerning the lymphocyte subsets in middle-aged and elderly individuals with C. pneumoniae infection. A total of 191 patients were included in this study. The study population was categorized into the middle-aged group (40-64 years old) and the elderly group (65-89 years old). Lymphocyte subsets in peripheral blood were examined with multi-colored flow cytometry. Immunological monitoring included lymphocyte subsets, C. pneumoniae IgG and IgM serology. In the middle-aged group, 69.83% individuals presented IgG positivity, which was associated with the inverted CD4/CD8 ratio. Individuals with C. pneumoniae IgG positivity also presented an increased percentage of CD8+CD28- cells and a decreased CD4/CD8 ratio when compared to weakly-positive individuals. In the elderly group, C. pneumoniae IgG positivity was associated with a significant increase in the percentage of CD3+CD56+CD45+ (NKT) cells. In conclusion, altered lymphocyte homeostasis was shown in middle-aged individuals with C. pneumoniae IgG positivity. The senescent phenotypes of T cells might be associated with C. pneumoniae infection in middle-aged individuals.
Collapse
Affiliation(s)
- Xiao-Qing Quan
- Department of General Pratice, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chang Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Run-Chang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Cun-Tai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Qing--
| | - Hong-Lian Zhou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms 2019; 7:microorganisms7050146. [PMID: 31137741 PMCID: PMC6560403 DOI: 10.3390/microorganisms7050146] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
Bacteria of the Chlamydiaceae family are a type of Gram-negative microorganism typified by their obligate intracellular lifestyle. The majority of the members in the Chlamydiaceae family are known pathogenic organisms that primarily infect the host mucosal surfaces in both humans and animals. For instance, Chlamydia trachomatis is a well-known etiological agent for ocular and genital sexually transmitted diseases, while C. pneumoniae has been implicated in community-acquired pneumonia in humans. Other chlamydial species such as C. abortus, C. caviae, C. felis, C. muridarum, C. pecorum, and C. psittaci are important pathogens that are associated with high morbidities in animals. Importantly, some of these animal pathogens have been recognized as zoonotic agents that pose a significant infectious threat to human health through cross-over transmission. The current review provides a succinct recapitulation of the characteristics as well as transmission for the previously established members of the Chlamydiaceae family and a number of other recently described chlamydial organisms.
Collapse
|
9
|
Identification of new DNA-associated proteins from Waddlia chondrophila. Sci Rep 2019; 9:4885. [PMID: 30894592 PMCID: PMC6426960 DOI: 10.1038/s41598-019-40732-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Transcriptional regulation in Chlamydiae is still poorly understood. The absence until recently of genetic tools is the main cause of this gap. We discovered three new potential DNA-associated proteins of Waddlia chondrophila, a Chlamydia-related bacterium, using heparin chromatography coupled to mass spectrometry (Wcw_0377, Wcw_1456, and Wcw_1460). By ChIP-seq analysis, we determined the regulatory landscape of these three proteins and we showed that Wcw_0377 binds all along the genome whereas Wcw_1456 and _1460 possess a wide regulon with a large number of co-regulated genes. Wcw_1456 and Wcw_1460 interact with RpoD (σ66), emerging as potential RpoD regulators. On the other hand, Wcw_0377 is able to reach the host nucleus, where it might interact with eukaryotic histones through its putative chromatin-remodelling SWIB/MDM2 domain.
Collapse
|
10
|
Edvinsson M, Welvaart N, Ryttberg L, Wretenberg P, Vikerfors T, Nyström-Rosander C. No evidence of Chlamydia pneumoniae in the synovia of patients with osteoarthritis. J Int Med Res 2018; 47:635-640. [PMID: 30392431 PMCID: PMC6381461 DOI: 10.1177/0300060518807062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a common cause of disability affecting millions of people of all ages worldwide. The pathogenesis involves an inflammatory component, but the cause of the inflammation remains incompletely understood. The intracellular bacteria Chlamydia trachomatis and C. pneumoniae have been demonstrated in patients with reactive arthritis. Both of these microorganisms can cause chronic and persistent infections, with C. trachomatis being the most common cause of reactive arthritis. This study was performed to investigate the presence of C. pneumoniae in a large number of patients with primary OA. METHODS The study included 75 patients who underwent total knee arthroplasty. During surgery, a synovial biopsy was performed and synovial fluid drawn. Real-time polymerase chain reaction (PCR) of C. pneumoniae was run on all patients, and real-time PCR of bacterial 16S rDNA was conducted on 30 of the 75 patients to screen for the presence of other bacteria. RESULTS Real-time PCR showed no evidence of the presence of C. pneumoniae in the patients' specimens, nor were other bacteria detected. CONCLUSIONS Although an inflammatory component is part of the pathogenesis of OA, we found no evidence indicating that C. pneumoniae is a stimulator of that inflammation.
Collapse
Affiliation(s)
- Marie Edvinsson
- 1 Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Nicole Welvaart
- 2 Department of Orthopaedics, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Lars Ryttberg
- 2 Department of Orthopaedics, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Per Wretenberg
- 2 Department of Orthopaedics, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Tomas Vikerfors
- 3 Department of Infectious Diseases, Örebro University, Örebro, Sweden.,4 Västerås Central Hospital, Västerås, Sweden
| | | |
Collapse
|
11
|
Thibault PK. Neck vein obstruction: Diagnosis and the role of chronic persistent Chlamydophila pneumoniae infection. Phlebology 2018; 34:372-379. [PMID: 30360684 DOI: 10.1177/0268355518804379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background The objective of this review is to describe the diagnosis of neck vein obstruction and the possible role of chronic persistent Chlamydophila pneumoniae infection in producing the syndrome of chronic cerebrospinal venous obstruction. Method The normal patterns of flow in the neck veins are described and guidelines for interpretation of the quantitative duplex ultrasound examination of the extracranial neck veins are developed. Result An infective cause of neck vein obstruction is proposed and from a literature search of the role of the obligate intracellular bacterium Chlamydophila pneumoniae in vascular and chronic diseases, a diagnostic protocol for confirming chronic persistent Chlamydophila pneumoniae infection, which includes the quantitative duplex ultrasound examination and specific blood tests are suggested. Conclusion Further research to validate this diagnostic protocol is required.
Collapse
|
12
|
Szymańska-Czerwińska M, Mitura A, Zaręba K, Schnee C, Koncicki A, Niemczuk K. Poultry in Poland as Chlamydiaceae Carrier. J Vet Res 2017; 61:411-419. [PMID: 29978103 PMCID: PMC5937338 DOI: 10.1515/jvetres-2017-0072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/08/2017] [Indexed: 11/15/2022] Open
Abstract
Introduction The study was conducted to investigate the prevalence and genetic diversity of Chlamydia spp. in poultry in Poland and estimate possible transmission to humans. Material and Methods Molecular diagnostic methods followed by sequencing and strain isolation were used on cloacal/faecal swabs collected from 182 apparently healthy poultry flocks including chickens, turkeys, ducks, and geese. Serum samples obtained from people exposed (study group) and non-exposed (control group) to birds were tested by complement fixation test to acquire data on Chlamydia spp. antibody level. Results Overall, 15.9% of the tested flocks were Chlamydiaceae-positive and three Chlamydia spp. were identified. Predominant chlamydial agent found was C. gallinacea occurring in 65.5% of all positive poultry flocks and in 73.0% of positive chicken flocks. The sequences from four chicken flocks were assigned to C. abortus, whereas C. psittaci was confirmed in one duck and one goose flock. The analysis of ompA variable domains revealed at least nine genetic variants of C. gallinacea. Chlamydial antibodies were detected in 19.2% of human serum samples in the study group in comparison with 10.8% in the controls. Conclusion The obtained results confirm that chlamydiae are common among chicken flocks in Poland with C. gallinacea as a dominant species. Moreover, the presence of C. abortus in chickens is reported here for the first time. Further investigation should focus on possible zoonotic transmission of C. gallinacea and C. abortus as well as potential pathogenic effects on birds’ health and poultry production.
Collapse
Affiliation(s)
| | - Agata Mitura
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Kinga Zaręba
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07 743 Jena, Germany
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Krzysztof Niemczuk
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
13
|
Iron Homeostasis in Tissues Is Affected during Persistent Chlamydia pneumoniae Infection in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3642301. [PMID: 28691023 PMCID: PMC5485268 DOI: 10.1155/2017/3642301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/09/2017] [Indexed: 11/18/2022]
Abstract
Chlamydia pneumoniae (C. pneumoniae) may be a mediator in the pathogenesis of atherosclerosis. For its growth C. pneumoniae depends on iron (Fe), but how Fe changes in tissues during persistent infection or affects bacterial replication in tissues is unknown. C. pneumoniae-infected C57BL/6J mice were sacrificed on days 4, 8, 20, and 40. Mice had bacteria in the lungs and liver on all days. Inflammatory markers, chemokine Cxcl2 and interferon-gamma, were not affected in the liver on day 40. The copper (Cu)/zinc (Zn) ratio in serum, another marker of infection/inflammation, increased on day 4 and tended to increase again on day 40. The Fe markers, transferrin receptor (TfR), Hepcidin (Hamp1), and ferroportin 1 (Fpn1), increased in the liver on day 4 and then normalized except for TfR that tended to decrease. TfR responses were similar to Fe in serum that increased on day 4 but tended to decrease thereafter. In the liver, Fe was increased on day 4 and also on day 40. The reappearing increases in Cu/Zn on day 40 concomitant with the increase in liver Fe on day 40, even though TfR tended to decrease, and the fact that viable C. pneumoniae was present in the lungs and liver may indicate the early phase of activation of recurrent infection.
Collapse
|
14
|
Maheshwari P, Eslick GD. Bacterial Infection Increases the Risk of Alzheimer’s Disease: An Evidence-Based Assessment. J Alzheimers Dis 2016. [DOI: 10.3233/jad-160362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Abstract
In the United States in the 1930s, although the pathogen was not known, atypical pneumonia was clinically distinguished from pneumococcal pneumonia by its resistance to sulfonamides. Reimann (1938) reported seven patients with an unusual form of tracheo bronchopneumonia and severe constitutional symptoms. He believed the clinical picture of this disease differed from that of the disease caused by influenza viruses or known bacteria and instead suspected "primary atypical pneumonia." For many years, the responsible infectious agent was tentatively classified as a filterable virus that could pass through a Seitz filter to remove bacteria and was reported to be a psittacosis-like or new virus. After that, Eaton et al. (1942, 1944, 1945) identified an agent that was the principal cause of primary atypical pneumonia using cotton rats, hamsters, and chick embryos. Eaton et al. (1942, 1944, 1945) did not perform an inoculation study in human volunteers. During the 1940s, there were three groups engaged in discovering the etiology of the primary atypical pneumonia. (1) Commission on Acute Respiratory Diseases Diseases directed by John Dingle, (2) Dr. Monroe Eaton's group, the Virus Research Laboratory of the California State Public Health Department, (3) The Hospital of the Rockefeller Institute for Medical Research directed by Horsfall. During 1940s, the members of the Commission on Acute Respiratory Diseases concluded that the bacteria-free filtrates obtained from the patients, presumably containing a virus, could induce primary atypical pneumonia in human volunteers via Pinehurst trials. During 1950s, serological approaches for identification of the Eaton agent developed such as Fluorescent-Stainable Antibody, and at the beginning of the1960s, the Eaton agent successfully grew in media, and finally accepted as a cause of primary atypical pneumonia. Thus, technical difficulties with visualizing the agent and failure to recognize the full significance of the Pinehurst transmission experiments resulted in a lapse of 20 years before acceptance of the Eaton agent as Mycoplasma pneumoniae. This review describes the history of M. pneumoniae pneumonia with a special focus on the recognition between the 1930 and 1960s of the Eaton agent as the infectious cause.
Collapse
Affiliation(s)
- Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of MedicineMitaka, Japan
| |
Collapse
|
16
|
de Barsy M, Frandi A, Panis G, Théraulaz L, Pillonel T, Greub G, Viollier PH. Regulatory (pan-)genome of an obligate intracellular pathogen in the PVC superphylum. ISME JOURNAL 2016; 10:2129-44. [PMID: 26953603 PMCID: PMC4989314 DOI: 10.1038/ismej.2016.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 01/17/2023]
Abstract
Like other obligate intracellular bacteria, the Chlamydiae feature a compact regulatory genome that remains uncharted owing to poor genetic tractability. Exploiting the reduced number of transcription factors (TFs) encoded in the chlamydial (pan-)genome as a model for TF control supporting the intracellular lifestyle, we determined the conserved landscape of TF specificities by ChIP-Seq (chromatin immunoprecipitation-sequencing) in the chlamydial pathogen Waddlia chondrophila. Among 10 conserved TFs, Euo emerged as a master TF targeting >100 promoters through conserved residues in a DNA excisionase-like winged helix-turn-helix-like (wHTH) fold. Minimal target (Euo) boxes were found in conserved developmentally-regulated genes governing vertical genome transmission (cytokinesis and DNA replication) and genome plasticity (transposases). Our ChIP-Seq analysis with intracellular bacteria not only reveals that global TF regulation is maintained in the reduced regulatory genomes of Chlamydiae, but also predicts that master TFs interpret genomic information in the obligate intracellular α-proteobacteria, including the rickettsiae, from which modern day mitochondria evolved.
Collapse
Affiliation(s)
- Marie de Barsy
- Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Antonio Frandi
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurence Théraulaz
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Edvinsson M, Ilbäck NG, Frisk P, Thelin S, Nyström-Rosander C. Trace Element Changes in Thoracic Aortic Dissection. Biol Trace Elem Res 2016; 169:159-63. [PMID: 26152852 DOI: 10.1007/s12011-015-0432-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023]
Abstract
Thoracic aortic dissection is a life-threatening condition with an incompletely understood pathogenesis. Trace elements are essential for the functioning of different processes in the body, including the immune system and associated responses to infection/inflammation. Because inflammation may be part of the pathogenesis of thoracic aortic dissection, we investigated whether trace element changes associated with inflammation occur in serum and tissue samples during the disease. The study included 21 patients undergoing surgery for thoracic aortic dissection, 10 forensic autopsy specimens for tissue controls and 23 healthy blood donors for serum controls. Levels of magnesium (Mg), calcium (Ca), vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd) and mercury (Hg) were measured in the aortic tissue and serum by inductively coupled plasma-mass spectrometry (ICP-MS). In the serum, Ca, V, Cu and Zn decreased, whereas Fe increased. In the tissue, Cu and Zn decreased and Fe tended to increase. The Cu/Zn ratio in the serum, a marker of infection/inflammation, did not change in the patients. Concerning trace element changes in the serum and tissue, our data do not support the hypothesis that inflammation is involved in the pathogenesis of thoracic aortic dissection.
Collapse
Affiliation(s)
- Marie Edvinsson
- Department of Medical Sciences, Infectious Diseases, Uppsala University, University Hospital, S-751 85, Uppsala, Sweden.
| | - Nils-Gunnar Ilbäck
- Department of Medical Sciences, Infectious Diseases, Uppsala University, University Hospital, S-751 85, Uppsala, Sweden
- Risk Benefit Assessment Department, National Food Agency, Box 622, 751 26, Uppsala, Sweden
| | - Peter Frisk
- Research in Metal Biology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Stefan Thelin
- Department of Surgical Sciences, Thoracic Surgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Christina Nyström-Rosander
- Department of Medical Sciences, Infectious Diseases, Uppsala University, University Hospital, S-751 85, Uppsala, Sweden
| |
Collapse
|
18
|
He X, Liang Y, LaValley MP, Lai J, Ingalls RR. Comparative analysis of the growth and biological activity of a respiratory and atheroma isolate of Chlamydia pneumoniae reveals strain-dependent differences in inflammatory activity and innate immune evasion. BMC Microbiol 2015; 15:228. [PMID: 26494400 PMCID: PMC4619265 DOI: 10.1186/s12866-015-0569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background Chlamydia pneumoniae is a common human pathogen that is associated with upper and lower respiratory tract infections. It has also been suggested that C. pneumoniae infection can trigger or promote a number of chronic inflammatory conditions, including asthma and atherosclerosis. Several strains of C. pneumoniae have been isolated from humans and animals, and sequence data demonstrates marked genetic conservation, leaving unanswered the question as to why chronic inflammatory conditions may occur following some respiratory-acquired infections. Methods C. pneumoniae strains AR39 and AO3 were used in vitro to infect murine bone marrow derived macrophages and L929 fibroblasts, or in vivo to infect C57BL/6 mice via the intranasal route. Results We undertook a comparative study of a respiratory isolate, AR39, and an atheroma isolate, AO3, to determine if bacterial growth and host responses to infection varied between these two strains. We observed differential growth depending on the host cell type and the growth temperature; however both strains were capable of forming plaques in vitro. The host response to the respiratory isolate was found to be more inflammatory both in vitro, in terms of inflammatory cytokine induction, and in vivo, as measured by clinical response and lung inflammatory markers using a mouse model of respiratory infection. Conclusions Our data demonstrates that a subset of C. pneumoniae strains is capable of evading host innate immune defenses during the acute respiratory infection. Further studies on the genetic basis for these differences on both the host and pathogen side could enhance our understanding how C. pneumoniae contributes to the development chronic inflammation at local and distant sites.
Collapse
Affiliation(s)
- Xianbao He
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA. .,Boston University School of Medicine, Boston, MA, USA.
| | - Yanmei Liang
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA.
| | - Michael P LaValley
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| | - Juying Lai
- Division of Rheumatology, Immunology and Allergy, Brigham & Women's Hospital, Boston, MA, USA.
| | - Robin R Ingalls
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA. .,Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
19
|
Salvatore P, Zullo A, Sommese L, Colicchio R, Picascia A, Schiano C, Mancini FP, Napoli C. Infections and cardiovascular disease: is Bartonella henselae contributing to this matter? J Med Microbiol 2015; 64:799-809. [PMID: 26066633 DOI: 10.1099/jmm.0.000099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease is still the major cause of death worldwide despite the remarkable progress in its prevention and treatment. Endothelial progenitor cells (EPCs) have recently emerged as key players of vascular repair and regenerative medicine applied to cardiovascular disease. A large amount of effort has been put into discovering the factors that could aid or impair the number and function of EPCs, and also into characterizing these cells at the molecular level in order to facilitate their therapeutic applications in vascular disease. Interestingly, the major cardiovascular risk factors have been associated with reduced number and function of EPCs. The bacterial contribution to cardiovascular disease represents a long-standing controversy. The discovery that Bartonella henselae can infect and damage EPCs revitalizes the enduring debate about the microbiological contribution to atherosclerosis, thus allowing the hypothesis that this infection could impair the cardiovascular regenerative potential and increase the risk for cardiovascular disease. In this review, we summarize the rationale suggesting that Bartonella henselae could favour atherogenesis by infecting and damaging EPCs, thus reducing their vascular repair potential. These mechanisms suggest a novel link between communicable and non-communicable human diseases, and put forward the possibility that Bartonella henselae could enhance the susceptibility and worsen the prognosis in cardiovascular disease.
Collapse
Affiliation(s)
- Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Alberto Zullo
- CEINGE-Advanced Biotechnologies, Naples, Italy.,Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Linda Sommese
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Department of Experimental Medicine, Section of Microbiology, Second University of Naples, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Antonietta Picascia
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Concetta Schiano
- Foundation SDN, Institute of Diagnostic and Nuclear Development, IRCCS, Naples, Italy
| | | | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Foundation SDN, Institute of Diagnostic and Nuclear Development, IRCCS, Naples, Italy
| |
Collapse
|
20
|
Weinmaier T, Hoser J, Eck S, Kaufhold I, Shima K, Strom TM, Rattei T, Rupp J. Genomic factors related to tissue tropism in Chlamydia pneumoniae infection. BMC Genomics 2015; 16:268. [PMID: 25887605 PMCID: PMC4489044 DOI: 10.1186/s12864-015-1377-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia pneumoniae (Cpn) are obligate intracellular bacteria that cause acute infections of the upper and lower respiratory tract and have been implicated in chronic inflammatory diseases. Although of significant clinical relevance, complete genome sequences of only four clinical Cpn strains have been obtained. All of them were isolated from the respiratory tract and shared more than 99% sequence identity. Here we investigate genetic differences on the whole-genome level that are related to Cpn tissue tropism and pathogenicity. RESULTS We have sequenced the genomes of 18 clinical isolates from different anatomical sites (e.g. lung, blood, coronary arteries) of diseased patients, and one animal isolate. In total 1,363 SNP loci and 184 InDels have been identified in the genomes of all clinical Cpn isolates. These are distributed throughout the whole chlamydial genome and enriched in highly variable regions. The genomes show clear evidence of recombination in at least one potential region but no phage insertions. The tyrP gene was always encoded as single copy in all vascular isolates. Phylogenetic reconstruction revealed distinct evolutionary lineages containing primarily non-respiratory Cpn isolates. In one of these, clinical isolates from coronary arteries and blood monocytes were closely grouped together. They could be distinguished from all other isolates by characteristic nsSNPs in genes involved in RB to EB transition, inclusion membrane formation, bacterial stress response and metabolism. CONCLUSIONS This study substantially expands the genomic data of Cpn and elucidates its evolutionary history. The translation of the observed Cpn genetic differences into biological functions and the prediction of novel pathogen-oriented diagnostic strategies have to be further explored.
Collapse
Affiliation(s)
- Thomas Weinmaier
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria.
| | - Jonathan Hoser
- Department of Genome Oriented Bioinformatics, Technical University Munich, 85354, Freising, Germany.
| | - Sebastian Eck
- Center for Human Genetics and Laboratory Diagnostics Dr. Klein, Dr. Rost and Colleagues, 82152, Martinsried, Germany.
| | - Inga Kaufhold
- Department of Molecular and Clinical Infectious Diseases, University of Luebeck, 23538, Luebeck, Germany.
| | - Kensuke Shima
- Department of Molecular and Clinical Infectious Diseases, University of Luebeck, 23538, Luebeck, Germany.
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Center Munich, 85764, Neuherberg, Germany.
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria.
- Department of Genome Oriented Bioinformatics, Technical University Munich, 85354, Freising, Germany.
| | - Jan Rupp
- Department of Molecular and Clinical Infectious Diseases, University of Luebeck, 23538, Luebeck, Germany.
| |
Collapse
|
21
|
Chiba N, Shimada K, Chen S, Jones HD, Alsabeh R, Slepenkin AV, Peterson E, Crother TR, Arditi M. Mast cells play an important role in chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway. THE JOURNAL OF IMMUNOLOGY 2015; 194:3840-51. [PMID: 25754739 DOI: 10.4049/jimmunol.1402685] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/02/2015] [Indexed: 01/17/2023]
Abstract
Mast cells are known as central players in allergy and anaphylaxis, and they play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae is an important human pathogen, but it is unclear what role mast cells play during C. pneumoniae infection. We infected C57BL/6 (wild-type [WT]) and mast cell-deficient mice (Kit(W-sh/W-sh) [Wsh]) with C. pneumoniae. Wsh mice showed improved survival compared with WT mice, with fewer cells in Wsh bronchoalveolar lavage fluid (BALF), despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT mice. Cromolyn, a mast cell stabilizer, reduced BALF cells and bacterial burden similar to the levels seen in Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BALF cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation, whereas Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of matrix metalloprotease-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during C. pneumoniae infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for C. pneumoniae.
Collapse
Affiliation(s)
- Norika Chiba
- Division of Pediatric Infectious Diseases and Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048
| | - Kenichi Shimada
- Division of Pediatric Infectious Diseases and Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048
| | - Shuang Chen
- Division of Pediatric Infectious Diseases and Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048
| | - Heather D Jones
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048
| | - Randa Alsabeh
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048; and
| | | | - Ellena Peterson
- Department of Pathology, University of California Irvine, Irvine, CA 92697
| | - Timothy R Crother
- Division of Pediatric Infectious Diseases and Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048
| | - Moshe Arditi
- Division of Pediatric Infectious Diseases and Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048;
| |
Collapse
|
22
|
He C, Yang Z, Lu NH. Helicobacter pylori-an infectious risk factor for atherosclerosis? J Atheroscler Thromb 2014; 21:1229-42. [PMID: 25342566 DOI: 10.5551/jat.25775] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Accumulating evidence implicates Helicobacter pylori (H. pylori) infection in the pathogenesis of certain diseases localized outside the stomach, particularly those characterized by persistent and low-grade systematic inflammation. Recently, the role of H. pylori infection in the development of atherosclerosis and its clinical complications has received attention. Atherosclerosis is a high-cost disease, and acute events resulting from this condition rank first among morbidity and mortality statistics in most industrialized countries. Atherosclerosis is a multifactorial disorder, and traditional risk factors explain only 50% of its etiology. Therefore, identifying new risk factors for atherosclerosis is necessary. Serological studies indicate that chronic H. pylori infection, especially that with more virulent strains, may predispose patients to the onset of atherosclerosis and related adverse clinical events, and PCR studies have detected H. pylori DNA in atherosclerotic plaques, although this finding remains controversial. If this association were to be confirmed, its importance to public health would be substantial, as the eradication of H. pylori is more straightforward and less costly than the long-term treatment of other risk factors. This review investigates the potential relationship between H. pylori infection and atherosclerosis from both epidemiological and pathogenic perspectives and characterizes the potential mechanisms underlying this correlation.
Collapse
Affiliation(s)
- Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University
| | | | | |
Collapse
|
23
|
Becker E, Hegemann JH. All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show species-specific function. Microbiologyopen 2014; 3:544-56. [PMID: 24985494 PMCID: PMC4287181 DOI: 10.1002/mbo3.186] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 01/27/2023] Open
Abstract
The bacterial pathogens Chlamydia trachomatis and C. pneumoniae are obligate intracellular parasites, cause a number of serious diseases, and can infect various cell types in humans. Chlamydial infections are probably initiated by binding of the bacterial outer membrane protein OmcB to host cell glycosaminoglycans (GAGs). Here, we show that all nine members of the polymorphic membrane protein (Pmp) family of C. trachomatis mediate adhesion to human epithelial and endothelial cells. Importantly, exposure of infectious particles to soluble recombinant Pmps blocks subsequent infection, thus implicating an important function of the entire protein family in the infection process. Analogous experiments with pairs of recombinant Pmps or a combination of Pmp and OmcB revealed that all Pmps probably act in an adhesion pathway that is distinct from the OmcB-GAG pathway. Finally, we provide evidence that the Pmps of C. trachomatis and C. pneumoniae exhibit species and tissue specificity. These findings argue for the involvement of C. trachomatis Pmps in the initial phase of infection and suggest that they may interact with a receptor other than the epidermal growth factor receptor recently identified for their counterparts in C. pneumoniae.
Collapse
Affiliation(s)
- Elisabeth Becker
- Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
24
|
Frutos MC, Monetti MS, Ré VE, Cuffini CG. Molecular evidence of Chlamydophila pneumoniae infection in reptiles in Argentina. Rev Argent Microbiol 2014; 46:45-8. [PMID: 24721274 DOI: 10.1016/s0325-7541(14)70047-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/14/2014] [Indexed: 11/26/2022] Open
Abstract
In the central area of Argentina, the epidemiological and molecular characteristics of Chlamydophila pneumoniae infections in reptiles are still unknown. A nested polymerase chain reaction of the rpoB gene was used to detect C. pneumoniae in cloacal swab samples from 19 reptiles at a recreational area. Eleven (57.89%) reptiles were positive; the sequencing and phylogenetic analysis confirmed the presence of this bacterium. Neither C. pneumoniae DNA in the caregivers pharynges nor IgM antibodies anti-C. pneumoniae in their serum samples were detected; however, caregivers presented very high titers of IgG anti-C. pneumoniae. The detection of C. pneumoniae DNA in reptiles demonstrated the circulation of this agent in the recreational area and could be responsible for the exacerbated immune response of the personnel handling the reptiles, which suggests a potential zoonotic cycle. This is the first report of the detection of C. pneumoniae in reptiles in Argentina.
Collapse
Affiliation(s)
- María C Frutos
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Marina S Monetti
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana E Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia G Cuffini
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
25
|
Lichy C, Grau AJ. Investigating the association between influenza vaccination and reduced stroke risk. Expert Rev Vaccines 2014; 5:535-40. [PMID: 16989633 DOI: 10.1586/14760584.5.4.535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acute infections, mainly of the respiratory tract, have consistently been demonstrated to considerably increase the risk of stroke. At present, prospective interventional trials are lacking and there is no proof of the effectiveness of any therapeutic anti-infective strategy in stroke prevention. However, some new evidence from observational studies lends support to the idea that influenza vaccination may contribute importantly to fighting stroke. Although final proof of efficacy is still missing, patients with previous cerebral ischemia and subjects of any age at high risk of stroke should be encouraged to receive annual influenza vaccination.
Collapse
Affiliation(s)
- Christoph Lichy
- University of Heidelberg Im Neuenheimer Feld, Department of Neurology, 400, 69120 Heidelberg, Germany.
| | | |
Collapse
|
26
|
Chakraborti S, Alam MN, Chaudhury A, Sarkar J, Pramanik A, Asrafuzzaman S, Das SK, Ghosh SN, Chakraborti T. Pathophysiological Aspects of Lipoprotein-Associated Phospholipase A2: A Brief Overview. PHOSPHOLIPASES IN HEALTH AND DISEASE 2014:115-133. [DOI: 10.1007/978-1-4939-0464-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
27
|
Chlamydia pneumoniae antibodies and C-reactive protein levels in patients with abdominal aortic aneurysms. ScientificWorldJournal 2013; 2013:212450. [PMID: 24459421 PMCID: PMC3888745 DOI: 10.1155/2013/212450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The study aim was to assess the relationship between the presence of antibodies to Chlamydia pneumoniae and abdominal aortic aneurysm (AAA) incidence. PATIENTS AND METHODS Consecutive AAA patients and AAA-free controls were recruited prospectively. Serum samples from both groups were examined to determine Immunoglobulin (Ig) A and IgG titres against Chlamydia pneumoniae by ELISA and C-reactive protein (CRP) concentrations. Results were expressed as mean (SD) or median (IQR) and compared using χ (2) and Mann-Whitney U tests. A P value of <0.05 was considered statistically significant. RESULTS Each study group (AAA/nAAA) comprised 250 patients. 196 (78.7%) AAA patients had positive IgA antichlamydial antibody titres, compared to 181 (72.4%) in the control group (P = 0.008, OR 2.0, 95% CI 1.2-3.5). However, positive IgG antibody titres were similar (191 versus 203; P = 0.222, OR 0.7, 95% CI 0.4-1.3). Average CRP concentrations were higher in AAA individuals. IgA or IgG antibody titres were not related to CRP concentrations. CONCLUSIONS These results demonstrated that the frequent incidence of Chlamydia pneumoniae antibodies within the general population makes it difficult to relate its presence to AAA development, despite the high IgA antibody titres. In addition, raised CRP concentrations in AAA patients are not related to the presence of antichlamydial antibodies.
Collapse
|
28
|
Abstract
To understand the epidemiology of Chlamydia pneumoniae acute infections in Taiwan, we collected 116 paired and 244 single sera from patients suspected of C. pneumoniae infection and conducted microimmunofluorescence test. Eighty-three patients (83/360, 23%) met the diagnostic criteria of current C. pneumoniae infection. The C. pneumoniae infections were significantly higher in men than in women (P< or =0.0001) and were most frequent in the group of 40-49 year-olds, and the people older than 70 years old. C. pneumoniae infection often occurred in the late autumn lasting to the cold winter and in the transition period between the spring and summer.
Collapse
Affiliation(s)
- Min-Chih Hsu
- Mycotic Diseases Laboratory, Research and Diagnostics Center, Centers for Disease Control, No. 161 Kun-Yang Street, Taipei 11561, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Jupelli M, Shimada K, Chiba N, Slepenkin A, Alsabeh R, Jones HD, Peterson E, Chen S, Arditi M, Crother TR. Chlamydia pneumoniae infection in mice induces chronic lung inflammation, iBALT formation, and fibrosis. PLoS One 2013; 8:e77447. [PMID: 24204830 PMCID: PMC3808399 DOI: 10.1371/journal.pone.0077447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/06/2013] [Indexed: 02/06/2023] Open
Abstract
Chlamydia pneumoniae (CP) lung infection can induce chronic lung inflammation and is associated with not only acute asthma but also COPD exacerbations. However, in mouse models of CP infection, most studies have investigated specifically the acute phase of the infection and not the longer-term chronic changes in the lungs. We infected C57BL/6 mice with 5×105 CP intratracheally and monitored inflammation, cellular infiltrates and cytokine levels over time to investigate the chronic inflammatory lung changes. While bacteria numbers declined by day 28, macrophage numbers remained high through day 35. Immune cell clusters were detected as early as day 14 and persisted through day 35, and stained positive for B, T, and follicular dendritic cells, indicating these clusters were inducible bronchus associated lymphoid tissues (iBALTs). Classically activated inflammatory M1 macrophages were the predominant subtype early on while alternatively activated M2 macrophages increased later during infection. Adoptive transfer of M1 but not M2 macrophages intratracheally 1 week after infection resulted in greater lung inflammation, severe fibrosis, and increased numbers of iBALTS 35 days after infection. In summary, we show that CP lung infection in mice induces chronic inflammatory changes including iBALT formations as well as fibrosis. These observations suggest that the M1 macrophages, which are part of the normal response to clear acute C. pneumoniae lung infection, result in an enhanced acute response when present in excess numbers, with greater inflammation, tissue injury, and severe fibrosis.
Collapse
Affiliation(s)
- Madhulika Jupelli
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Kenichi Shimada
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Norika Chiba
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Anatoly Slepenkin
- Department of Pathology, University of California Irvine, Irvine, California, United States of America
| | - Randa Alsabeh
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Heather D. Jones
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ellena Peterson
- Department of Pathology, University of California Irvine, Irvine, California, United States of America
| | - Shuang Chen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Moshe Arditi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Timothy R. Crother
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Fujimoto Y, Shimoyama A, Saeki A, Kitayama N, Kasamatsu C, Tsutsui H, Fukase K. Innate immunomodulation by lipophilic termini of lipopolysaccharide; synthesis of lipid As from Porphyromonas gingivalis and other bacteria and their immunomodulative responses. MOLECULAR BIOSYSTEMS 2013; 9:987-96. [PMID: 23429860 DOI: 10.1039/c3mb25477a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic studies of lipid A and LPS partial structures have been performed to investigate the relationship between structures and functions of LPS. Recent studies have suggested several pathological implications of LPS from parasitic bacteria due to its influence on the host immune responses. To address this issue, we established an efficient synthetic strategy that is widely applicable to the synthesis of various lipid As by using a key disaccharide intermediate with selectively cleavable protecting groups. Porphyromonas gingivalis and Helicobacter pylori lipid As were synthesized and their biological activities were evaluated. All synthetic lipid As did not induce strong inflammatory responses: some are very weak cytokine inducers and others are antagonistic in IL-6 and IL-8 induction with E. coli LPS. On the other hand, P. gingivalis lipid As showed potent IL-18 inducing activity. Since IL-18 has been shown to correlate with chronic inflammation, P. gingivalis LPS may be implicated in the chronic inflammatory responses.
Collapse
Affiliation(s)
- Yukari Fujimoto
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Di Pietro M, Filardo S, De Santis F, Sessa R. Chlamydia pneumoniae infection in atherosclerotic lesion development through oxidative stress: a brief overview. Int J Mol Sci 2013; 14:15105-20. [PMID: 23877837 PMCID: PMC3742290 DOI: 10.3390/ijms140715105] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 12/11/2022] Open
Abstract
Chlamydia pneumoniae, an obligate intracellular pathogen, is known as a leading cause of respiratory tract infections and, in the last two decades, has been widely associated with atherosclerosis by seroepidemiological studies, and direct detection of the microorganism within atheroma. C. pneumoniae is presumed to play a role in atherosclerosis for its ability to disseminate via peripheral blood mononuclear cells, to replicate and persist within vascular cells, and for its pro-inflammatory and angiogenic effects. Once inside the vascular tissue, C. pneumoniae infection has been shown to induce the production of reactive oxygen species in all the cells involved in atherosclerotic process such as macrophages, platelets, endothelial cells, and vascular smooth muscle cells, leading to oxidative stress. The aim of this review is to summarize the data linking C. pneumoniae-induced oxidative stress to atherosclerotic lesion development.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome 00185, Italy; E-Mails: (M.D.P.); (S.F.); (F.D.S.)
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome 00185, Italy; E-Mails: (M.D.P.); (S.F.); (F.D.S.)
| | - Fiorenzo De Santis
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome 00185, Italy; E-Mails: (M.D.P.); (S.F.); (F.D.S.)
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome 00185, Italy; E-Mails: (M.D.P.); (S.F.); (F.D.S.)
| |
Collapse
|
32
|
Kreutmayer S, Csordas A, Kern J, Maass V, Almanzar G, Offterdinger M, Öllinger R, Maass M, Wick G. Chlamydia pneumoniae infection acts as an endothelial stressor with the potential to initiate the earliest heat shock protein 60-dependent inflammatory stage of atherosclerosis. Cell Stress Chaperones 2013; 18:259-68. [PMID: 23192457 PMCID: PMC3631098 DOI: 10.1007/s12192-012-0378-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 12/21/2022] Open
Abstract
We identified increased expression and redistribution of the intracellular protein 60-kDa human heat shock protein (hHSP60) (HSPD1) to the cell surface in human endothelial cells subjected to classical atherosclerosis risk factors and subsequent immunologic cross-reactivity against this highly conserved molecule, as key events occurring early in the process of atherosclerosis. The present study aimed at investigating the role of infectious pathogens as stress factors for vascular endothelial cells and, as such, contributors to early atherosclerotic lesion formation. Using primary donor-matched arterial and venous human endothelial cells, we show that infection with Chlamydia pneumoniae leads to marked upregulation and surface expression of hHSP60 and adhesion molecules. Moreover, we provide evidence for an increased susceptibility of arterial endothelial cells for redistribution of hHSP60 to the cellular membrane in response to C. pneumoniae infection as compared to autologous venous endothelial cells. We also show that oxidative stress has a central role to play in endothelial cell activation in response to chlamydial infection. These data provide evidence for a role of C. pneumoniae as a potent primary endothelial stressor for arterial endothelial cells leading to enrichment of hHSP60 on the cellular membrane and, as such, a potential initiator of atherosclerosis.
Collapse
Affiliation(s)
- Simone Kreutmayer
- />Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Peter-Mayr Strasse 4a, 6020 Innsbruck, Austria
| | - Adam Csordas
- />Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Peter-Mayr Strasse 4a, 6020 Innsbruck, Austria
- />Division of Cardiac and Vascular Surgery, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Jan Kern
- />Institute of Medical Microbiology, Hygiene and Infectious Diseases, Paracelsus Medical Private University of Salzburg, Salzburg, Austria
| | - Viola Maass
- />Institute of Medical Microbiology, Hygiene and Infectious Diseases, Paracelsus Medical Private University of Salzburg, Salzburg, Austria
| | - Giovanni Almanzar
- />Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Peter-Mayr Strasse 4a, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- />Biooptics Facility, Division of Neurobiochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Robert Öllinger
- />Division of Visceral, Transplant and Thorax Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Matthias Maass
- />Institute of Medical Microbiology, Hygiene and Infectious Diseases, Paracelsus Medical Private University of Salzburg, Salzburg, Austria
| | - Georg Wick
- />Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Peter-Mayr Strasse 4a, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Joshi R, Khandelwal B, Joshi D, Gupta OP. Chlamydophila pneumoniae infection and cardiovascular disease. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2013; 5:169-81. [PMID: 23626952 PMCID: PMC3632020 DOI: 10.4103/1947-2714.109178] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a multifactorial vascular inflammatory process; however, the inciting cause for inflammation remains unclear. Two decades ago, Chlamydophila pneumoniae (formerly Chlamydia pneumoniae) infection was proposed as a putative etiologic agent. We performed a PubMed search using the keywords Chlamydia and atherosclerosis in a Boolean query to identify published studies on C. pneumoniae and its role in atherogenesis, and to understand research interest in this topic. We found 1,652 published articles on this topic between 1991 and 2011. We analyzed relevant published studies and found various serological, molecular, and animal modeling studies in the early period. Encouraged by positive results from these studies, more than a dozen antibiotic clinical-trials were subsequently conducted, which did not find clinical benefits of anti-Chlamydophila drug therapy. While many researchers believe that the organism is still important, negative clinical trials had a similar impact on overall research interest. With many novel mechanisms identified for atherogenesis, there is a need for newer paradigms in Chlamydophila-atherosclerosis research.
Collapse
Affiliation(s)
- Rajnish Joshi
- Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Gangtok, India
| | | | | | | |
Collapse
|
34
|
O’Meara CP, Armitage CW, Harvie MCG, Timms P, Lycke NY, Beagley KW. Immunization with a MOMP-based vaccine protects mice against a pulmonary Chlamydia challenge and identifies a disconnection between infection and pathology. PLoS One 2013; 8:e61962. [PMID: 23613984 PMCID: PMC3628704 DOI: 10.1371/journal.pone.0061962] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 03/16/2013] [Indexed: 12/31/2022] Open
Abstract
Chlamydia pneumoniae is responsible for up to 20% of community acquired pneumonia and can exacerbate chronic inflammatory diseases. As the majority of infections are either mild or asymptomatic, a vaccine is recognized to have the greatest potential to reduce infection and disease prevalence. Using the C. muridarum mouse model of infection, we immunized animals via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, with recombinant chlamydial major outer membrane protein (MOMP) combined with adjuvants CTA1-DD or a combination of cholera toxin/CpG-oligodeoxynucleotide (CT/CpG). Vaccinated animals were challenged IN with C. muridarum and protection against infection and pathology was assessed. SL and TC immunization with MOMP and CT/CpG was the most protective, significantly reducing chlamydial burden in the lungs and preventing weight loss, which was similar to the protection induced by a previous live infection. Unlike a previous infection however, these vaccinations also provided almost complete protection against fibrotic scarring in the lungs. Protection against infection was associated with antigen-specific production of IFNγ, TNFα and IL-17 by splenocytes, however, protection against both infection and pathology required the induction of a similar pro-inflammatory response in the respiratory tract draining lymph nodes. Interestingly, we also identified two contrasting vaccinations capable of preventing infection or pathology individually. Animals IN immunized with MOMP and either adjuvant were protected from infection, but not the pathology. Conversely, animals TC immunized with MOMP and CTA1-DD were protected from pathology, even though the chlamydial burden in this group was equivalent to the unimmunized controls. This suggests that the development of pathology following an IN infection of vaccinated animals was independent of bacterial load and may have been driven instead by the adaptive immune response generated following immunization. This identifies a disconnection between the control of infection and the development of pathology, which may influence the design of future vaccines.
Collapse
Affiliation(s)
- Connor P. O’Meara
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Charles W. Armitage
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Marina C. G. Harvie
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter Timms
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Nils Y. Lycke
- Mucosal Immunobiology and Vaccine Centre (MIVAC), University of Göteborg, Göteborg, Götaland, Sweden
| | - Kenneth W. Beagley
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
35
|
Edvinsson M, Nilsson K, Thelin S, Nyström-Rosander C. No evidence of Chlamydophila spp. or other intracellular bacteria in mitral valves. Int J Cardiol 2013; 164:249-50. [PMID: 22805541 DOI: 10.1016/j.ijcard.2012.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 06/24/2012] [Indexed: 11/17/2022]
|
36
|
Roulis E, Polkinghorne A, Timms P. Chlamydia pneumoniae: modern insights into an ancient pathogen. Trends Microbiol 2012; 21:120-8. [PMID: 23218799 DOI: 10.1016/j.tim.2012.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/28/2012] [Accepted: 10/31/2012] [Indexed: 01/11/2023]
Abstract
Chlamydia pneumoniae is an enigmatic human and animal pathogen. Originally discovered in association with acute human respiratory disease, it is now associated with a remarkably wide range of chronic diseases as well as having a cosmopolitan distribution within the animal kingdom. Molecular typing studies suggest that animal strains are ancestral to human strains and that C. pneumoniae crossed from animals to humans as the result of at least one relatively recent zoonotic event. Whole genome analyses appear to support this concept - the human strains are highly conserved whereas the single animal strain that has been fully sequenced has a larger genome with several notable differences. When compared to the other, better known chlamydial species that is implicated in human infection, Chlamydia trachomatis, C. pneumoniae demonstrates pertinent differences in its cell biology, development, and genome structure. Here, we examine the characteristic facets of C. pneumoniae biology, offering insights into the diversity and evolution of this silent and ancient pathogen.
Collapse
Affiliation(s)
- Eileen Roulis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
| | | | | |
Collapse
|
37
|
Crother TR, Ma J, Jupelli M, Chiba N, Chen S, Slepenkin A, Alsabeh R, Peterson E, Shimada K, Arditi M. Plasmacytoid dendritic cells play a role for effective innate immune responses during Chlamydia pneumoniae infection in mice. PLoS One 2012; 7:e48655. [PMID: 23119083 PMCID: PMC3485374 DOI: 10.1371/journal.pone.0048655] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/26/2012] [Indexed: 01/02/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are known for their robust antiviral response and their pro-tolerance effects towards allergic diseases and tissue engraftments. However, little is known about the role pDCs may play during a bacterial infection, including pulmonary Chlamydia pneumoniae (CP). In this study, we investigated the role of pDCs during pulmonary CP infection. Our results revealed that depletion of pDCs during acute CP infection in mice results in delayed and reduced lung inflammation, with an early delay in cellular recruitment and significant reduction in early cytokine production in the lungs. This was followed by impaired and delayed bacterial clearance from the lungs which then resulted in a severe and prolonged chronic inflammation and iBALT like structures containing large numbers of B and T cells in these animals. We also observed that increasing the pDC numbers in the lung by FLT3L treatment experimentally results in greater lung inflammation during acute CP infection. In contrast to these results, restimulation of T-cells in the draining lymph nodes of pDC-depleted mice induced greater amounts of proinflammatory cytokines than we observed in control mice. These results suggest that pDCs in the lung may provide critical proinflammatory innate immune responses in response to CP infection, but are suppressive towards adaptive immune responses in the lymph node. Thus pDCs in the lung and the draining lymph node appear to have different roles and phenotypes during acute CP infection and may play a role in host immune responses.
Collapse
Affiliation(s)
- Timothy R. Crother
- Pediatrics Infectious Diseases, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jun Ma
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Madhulika Jupelli
- Pediatrics Infectious Diseases, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Norika Chiba
- Pediatrics Infectious Diseases, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shuang Chen
- Pediatrics Infectious Diseases, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Anatoly Slepenkin
- Department of Pathology, University of California Irvine, Irvine, California, United States of America
| | - Randa Alsabeh
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ellena Peterson
- Department of Pathology, University of California Irvine, Irvine, California, United States of America
| | - Kenichi Shimada
- Pediatrics Infectious Diseases, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Moshe Arditi
- Pediatrics Infectious Diseases, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Prevalence of Chlamydophila pneumoniae in patients with pneumonia in the main university hospital in Alexandria. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2012. [DOI: 10.1016/j.ejcdt.2012.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Hirai I, Ebara M, Nakanishi S, Yamamoto C, Sasaki T, Ikuta K, Yamamoto Y. Jurkat cell proliferation is suppressed by Chlamydia (Chlamydophila) pneumoniae infection accompanied with attenuation of phosphorylation at Thr389 of host cellular p70S6K. Immunobiology 2012; 218:527-32. [PMID: 22795649 DOI: 10.1016/j.imbio.2012.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 01/02/2023]
Abstract
Chlamydia (Chlamydophila) pneumoniae infects T lymphocytes and multiplies within them. Our previous studies have indicated that C. pneumoniae infection suppresses proliferation of peripheral blood mononuclear cells stimulated with Staphylococcus-enterotoxin B; however, the mechanism of suppression was unclear. In this study, we explored the molecular mechanism involved in C. pneumoniae infection by using human acute T cell leukemia cell line, Jurkat E6-1. Proliferation of Jurkat cells was suppressed in an m.o.i.-dependent manner by C. pneumoniae infection. The suppression by the infection was particularly evident during the initial 24h of the infection, and down modulation of cyclin D3 protein levels were observed at the same time period by immunoblot analysis. The suppression of the Jurkat cell proliferation and the down modulation of cyclin D3 protein level were only induced by viable C. pneumoniae infection, not by exposure to UV-killed or heat-killed C. pneumoniae. Phosphorylations at Thr308 and Ser473 of AKT were induced by C. pneumoniae infection; however, phosphorylation at Thr389 of the downstream kinase, p70S6K was inhibited by unidentified mechanism associated with C. pneumoniae infection. Taking into account that G1 arrest of the C. pneumoniae infected Jurkat cells were not observed and that p70S6K is one of the most important regulators of protein synthesis, it was suggested that the suppression of Jurkat cell proliferation by C. pneumoniae was at least in part mediated by down modulation of protein synthesis through attenuation of Thr389 phosphorylation of p70S6K.
Collapse
Affiliation(s)
- Itaru Hirai
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Losonczy G. [Early and late mortality of patients with community acquired pneumonia]. Orv Hetil 2012; 153:884-90. [PMID: 22668588 DOI: 10.1556/oh.2012.29393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Community acquired pneumonia is the most frequent infective cause of severe sepsis and death. The risk of mortality in community acquired pneumonia is predictable by the "pneumonia severity index" and various biomarkers (e.g., procalcitonin, troponin-I). Quantitative testing of pneumococcal load (DNA) in blood has also become possible recently. Early death due to acute myocardial infarction is more frequent among patients with previous community acquired pneumonia. The 1-year and the 5-6 year survival is shorter among these patients. Pro-inflammatory cytokines synthesized during community acquired pneumonia accelerate chronic inflammation ongoing in atherosclerotic plaques. The pro-thrombotic condition present in atherosclerosis is also potentiated by community acquired pneumonia. These pathophysiological mechanisms may explain the epidemiologic fact that community acquired pneumonia is an independent risk factor of cardiovascular mortality.
Collapse
Affiliation(s)
- György Losonczy
- Semmelweis Egyetem, Általános Orvostudományi Kar Pulmonológiai Klinika, Budapest
| |
Collapse
|
41
|
Fujimoto Y, Shimoyama A, Suda Y, Fukase K. Synthesis and immunomodulatory activities of Helicobacter pylori lipophilic terminus of lipopolysaccharide including lipid A. Carbohydr Res 2012; 356:37-43. [PMID: 22486825 DOI: 10.1016/j.carres.2012.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 12/21/2022]
Abstract
Helicobacter pylori, a Gram-negative bacterium, causes gastroduodenal inflammatory diseases such as chronic gastritis and peptic ulcers, and is also a risk factor for gastric carcinogenesis. In this article, we review recent developments and findings in the chemical synthesis and immunomodulatory activities of H. pylori lipid A and 3-deoxy-D-manno-2-octulosonic acid (Kdo)-lipid A, to clarify the structural basis for the inflammatory response to H. pylori LPS. The synthetic methods include a new divergent synthetic approach with a widely applicable key intermediate for other types of lipid A structures, as well as a selective α-glycosylation reaction between Kdo and lipid A. Cytokine induction assays of the chemically synthesized lipid A structures showed selective cytokine induction depending on the patterns of acyl groups and phosphate groups. The results of cytokine induction assay suggested that H. pylori LPS can modulate the immune response during infection, and also plays a role in chronic inflammatory responses.
Collapse
Affiliation(s)
- Yukari Fujimoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043, Japan.
| | | | | | | |
Collapse
|
42
|
Yasui Y, Yanatori I, Kawai Y, Miura K, Suminami Y, Hirota T, Tamari M, Ouchi K, Kishi F. Genomic screening for Chlamydophila pneumoniae-specific antigens using serum samples from patients with primary infection. FEMS Microbiol Lett 2012; 329:168-76. [PMID: 22309593 DOI: 10.1111/j.1574-6968.2012.02520.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/31/2012] [Indexed: 11/29/2022] Open
Abstract
Chlamydophila pneumoniae, an obligate intracellular human pathogen, causes respiratory tract infections. The most common techniques used for the serological diagnosis of C. pneumoniae infections are microimmunofluorescence tests and commercial serological ELISA tests; these are based on the detection of antibodies against whole chlamydial elementary bodies and lipopolysaccharide/outer membrane protein, respectively. Identification of more specific and highly immunodominant antigens is essential for the development of new serodiagnostic assays. To identify novel specific antigens from C. pneumoniae, we screened 455 genes with unknown function in the genome of C. pneumoniae J138. Extracts of Saccharomyces cerevisiae cells expressing GFP-tagged C. pneumoniae proteins were subjected to Western blot analysis using serum samples from C. pneumoniae-infected patients as the primary antibodies. From this comprehensive analysis, 58 clones expressing C. pneumoniae open reading frames, including hypothetical proteins, were identified as antigens. These results have provided useful information for the development of new serological tools for the diagnosis for C. pneumoniae infections and for the development of vaccines in future.
Collapse
Affiliation(s)
- Yumiko Yasui
- Department of Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shimoyama A, Saeki A, Tanimura N, Tsutsui H, Miyake K, Suda Y, Fujimoto Y, Fukase K. Chemical synthesis of Helicobacter pylori lipopolysaccharide partial structures and their selective proinflammatory responses. Chemistry 2011; 17:14464-74. [PMID: 22095469 DOI: 10.1002/chem.201003581] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 07/27/2011] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori is a common cause of gastroduodenal inflammatory diseases such as chronic gastritis and peptic ulcers and also an important factor in gastric carcinogenesis. Recent reports have demonstrated that bacterial inflammatory processes, such as stimulation with H. pylori lipopolysaccharide (LPS), initiate atherosclerosis. To establish the structures responsible for the inflammatory response of H. pylori LPS, we synthesized various kinds of lipid A structures (i.e., triacylated lipid A and Kdo-lipid A compounds), with or without the ethanolamine group at the 1-phosphate moiety, by a new divergent synthetic route. Stereoselective α-glycosylation of Kdo N-phenyltrifluoroacetimidate was achieved by use of microfluidic methods. None of the lipid A and Kdo-lipid A compounds were a strong inducer of IL-1β, IL-6, or IL-8, suggesting that H. pylori LPS is unable to induce acute inflammation. In fact, the lipid A and Kdo-lipid A compounds showed antagonistic activity against cytokine induction by E. coli LPS, except for the lipid A compound with the ethanolamine group, which showed very weak agonistic activity. On the other hand, these H. pylori LPS partial structures showed potent IL-18- and IL-12-inducing activities. IL-18 has been shown to correlate with chronic inflammation, so H. pylori LPS might be implicated in the chronic inflammatory responses induced by H. pylori. These results also indicated that H. pylori LPS can modulate the immune response: NF-κB activation through hTLR4/MD-2 was suppressed, whereas production of IL-18 and IL-12 was promoted.
Collapse
Affiliation(s)
- Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Comparison of real-time PCR and a microimmunofluorescence serological assay for detection of chlamydophila pneumoniae infection in an outbreak investigation. J Clin Microbiol 2011; 50:151-3. [PMID: 22031704 DOI: 10.1128/jcm.05357-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed the performance of a recently validated real-time PCR assay and a commercially available microimmunofluorescence serologic test for the detection of Chlamydophila pneumoniae infection during an outbreak. Evaluation of specimens from 137 individuals suggests that real-time PCR holds greater utility as a diagnostic tool for early C. pneumoniae detection.
Collapse
|
45
|
Albrecht M, Sharma CM, Dittrich MT, Müller T, Reinhardt R, Vogel J, Rudel T. The transcriptional landscape of Chlamydia pneumoniae. Genome Biol 2011; 12:R98. [PMID: 21989159 PMCID: PMC3333780 DOI: 10.1186/gb-2011-12-10-r98] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/18/2011] [Accepted: 10/11/2011] [Indexed: 02/07/2023] Open
Abstract
Background Gene function analysis of the obligate intracellular bacterium Chlamydia pneumoniae is hampered by the facts that this organism is inaccessible to genetic manipulations and not cultivable outside the host. The genomes of several strains have been sequenced; however, very little information is available on the gene structure and transcriptome of C. pneumoniae. Results Using a differential RNA-sequencing approach with specific enrichment of primary transcripts, we defined the transcriptome of purified elementary bodies and reticulate bodies of C. pneumoniae strain CWL-029; 565 transcriptional start sites of annotated genes and novel transcripts were mapped. Analysis of adjacent genes for co-transcription revealed 246 polycistronic transcripts. In total, a distinct transcription start site or an affiliation to an operon could be assigned to 862 out of 1,074 annotated protein coding genes. Semi-quantitative analysis of mapped cDNA reads revealed significant differences for 288 genes in the RNA levels of genes isolated from elementary bodies and reticulate bodies. We have identified and in part confirmed 75 novel putative non-coding RNAs. The detailed map of transcription start sites at single nucleotide resolution allowed for the first time a comprehensive and saturating analysis of promoter consensus sequences in Chlamydia. Conclusions The precise transcriptional landscape as a complement to the genome sequence will provide new insights into the organization, control and function of genes. Novel non-coding RNAs and identified common promoter motifs will help to understand gene regulation of this important human pathogen.
Collapse
Affiliation(s)
- Marco Albrecht
- Department of Microbiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, 97074, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Lin FY, Lin YW, Huang CY, Chang YJ, Tsao NW, Chang NC, Ou KL, Chen TL, Shih CM, Chen YH. GroEL1, a Heat Shock Protein 60 ofChlamydia pneumoniae, Induces Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Expression in Endothelial Cells and Enhances Atherogenesis in Hypercholesterolemic Rabbits. THE JOURNAL OF IMMUNOLOGY 2011; 186:4405-14. [DOI: 10.4049/jimmunol.1003116] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
El-Shourbagy MAA, El-Refaie TA, Sayed KKA, Wahba KAH, El-Din ASS, Fathy MM. Impact of seroconversion and antichlamydial treatment on the rate of pre-eclampsia among Egyptian primigravidae. Int J Gynaecol Obstet 2011; 113:137-40. [PMID: 21334621 DOI: 10.1016/j.ijgo.2010.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/08/2010] [Accepted: 01/20/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the effect of antichlamydial treatment and Chlamydia pneumoniae seroconversion on the incidence of pre-eclampsia among Egyptian primigravidae. METHODS The present prospective study included 600 healthy normotensive primigravidae who attended an outpatient clinic at 10-16weeks of pregnancy. A single venous blood sample was collected to test for C. pneumonia-specific immunoglobulin G (IgG) antibodies using an enzyme-linked immunosorbent assay. Seropositive women were randomly allocated to receive or not receive antichlamydial treatment before 20weeks of pregnancy. Seronegative participants had another test at delivery for the presence of C. pneumonia-specific IgG to determine seroconversion. All participants were followed up for up to 8weeks postpartum and observed for the development of pre-eclampsia. RESULTS The rate of pre-eclampsia among seropositive participants differed significantly depending on whether the women received treatment or not (6.5% and 19.1%, respectively; P=0.014). No statistically significant difference in the rate of pre-eclampsia was detected between seronegative participants who underwent seroconversion and those who did not. CONCLUSION The present results indirectly support the hypothesis that infectious agents (in particular C. pneumoniae) have a role in the development of pre-eclampsia. The findings also indicate that antichlamydial treatment might help to reduce the incidence of pre-eclampsia.
Collapse
|
48
|
Stone CB, Bulir DC, Emdin CA, Pirie RM, Porfilio EA, Slootstra JW, Mahony JB. Chlamydia Pneumoniae CdsL Regulates CdsN ATPase Activity, and Disruption with a Peptide Mimetic Prevents Bacterial Invasion. Front Microbiol 2011; 2:21. [PMID: 21687413 PMCID: PMC3109343 DOI: 10.3389/fmicb.2011.00021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/30/2011] [Indexed: 12/29/2022] Open
Abstract
Chlamydiae are obligate intracellular pathogens that likely require type III secretion (T3S) to invade cells and replicate intracellularly within a cytoplasmic vacuole called an inclusion body. Chlamydia pneumoniae possess a YscL ortholog, CdsL, that has been shown to interact with the T3S ATPase (CdsN). In this report we demonstrate that CdsL down-regulates CdsN enzymatic activity in a dose-dependent manner. Using Pepscan epitope mapping we identified two separate binding domains to which CdsL binds viz. CdsN221–229 and CdsN265–270. We confirmed the binding domains using a pull-down assay and showed that GST–CdsN221–270, which encompasses these peptides, co-purified with His–CdsL. Next, we used orthology modeling based on the crystal structure of a T3S ATPase ortholog from Escherichia coli, EscN, to map the binding domains on the predicted 3D structure of CdsN. The CdsL binding domains mapped to the catalytic domain of the ATPase, one in the central channel of the ATPase hexamer and one on the outer face. Since peptide mimetics have been used to disrupt essential protein interactions of the chlamydial T3S system and inhibit T3S-mediated invasion of HeLa cells, we hypothesized that if CdsL–CdsN binding is essential for regulating T3S then a CdsN peptide mimetic could be used to potentially block T3S and chlamydial invasion. Treatment of elementary body with a CdsN peptide mimetic inhibited C. pneumoniae invasion into HeLa cells in a dose-dependent fashion. This report represents the first use of Pepscan technology to identify binding domains for specific T3S proteins viz. CdsL on the ATPase, CdsN, and demonstrates that peptide mimetics can be used as anti-virulence factors to block bacterial invasion.
Collapse
Affiliation(s)
- Chris B Stone
- Michael G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University, Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare Hamilton, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Pannekoek Y, Dickx V, Beeckman DSA, Jolley KA, Keijzers WC, Vretou E, Maiden MCJ, Vanrompay D, van der Ende A. Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species. PLoS One 2010; 5:e14179. [PMID: 21152037 PMCID: PMC2996290 DOI: 10.1371/journal.pone.0014179] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/02/2010] [Indexed: 11/19/2022] Open
Abstract
Chlamydia comprises a group of obligate intracellular bacterial parasites responsible for a variety of diseases in humans and animals, including several zoonoses. Chlamydia trachomatis causes diseases such as trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Chlamydia pneumoniae is a common cause of community-acquired respiratory tract infections. Chlamydia psittaci, causing zoonotic pneumonia in humans, is usually hosted by birds, while Chlamydia abortus, causing abortion and fetal death in mammals, including humans, is mainly hosted by goats and sheep. We used multi-locus sequence typing to asses the population structure of Chlamydia. In total, 132 Chlamydia isolates were analyzed, including 60 C. trachomatis, 18 C. pneumoniae, 16 C. abortus, 34 C. psittaci and one of each of C. pecorum, C. caviae, C. muridarum and C. felis. Cluster analyses utilizing the Neighbour-Joining algorithm with the maximum composite likelihood model of concatenated sequences of 7 housekeeping fragments showed that C. psittaci 84/2334 isolated from a parrot grouped together with the C. abortus isolates from goats and sheep. Cluster analyses of the individual alleles showed that in all instances C. psittaci 84/2334 formed one group with C. abortus. Moving 84/2334 from the C. psittaci group to the C. abortus group resulted in a significant increase in the number of fixed differences and elimination of the number of shared mutations between C. psittaci and C. abortus. C. psittaci M56 from a muskrat branched separately from the main group of C. psittaci isolates. C. psittaci genotypes appeared to be associated with host species. The phylogenetic tree of C. psittaci did not follow that of its host bird species, suggesting host species jumps. In conclusion, we report for the first time an association between C. psittaci genotypes with host species.
Collapse
Affiliation(s)
- Yvonne Pannekoek
- Department of Medical Microbiology, Academic Medical Center, Center for Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands
| | - Veerle Dickx
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Delphine S. A. Beeckman
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Wendy C. Keijzers
- Department of Medical Microbiology, Academic Medical Center, Center for Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands
| | - Evangelia Vretou
- Laboratory of Biotechnology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Daisy Vanrompay
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Arie van der Ende
- Department of Medical Microbiology, Academic Medical Center, Center for Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands
| |
Collapse
|
50
|
Fitch PM, Wheelhouse NM, Bowles P, Paterson M, Longbottom D, Entrican G, Howie SEM. Ectopic lymphoid tissue formation in the lungs of mice infected with Chlamydia pneumoniae is associated with epithelial macrophage inflammatory protein-2/CXCL2 expression. Clin Exp Immunol 2010; 162:372-8. [PMID: 20840653 DOI: 10.1111/j.1365-2249.2010.04231.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Infection with Chlamydia pneumoniae (Cp) accounts for around 10% of community acquired bacterial pneumonia and has been associated with other chronic inflammatory conditions. We describe a C57/Bl6 murine model of Cp lung infection characterized by a dose-dependent, resolving neutrophilia followed by lymphocytic infiltration of the lungs. By 21 days post-infection, mice exhibit a T helper type 1 (Th1) polarized serum antibody response with local mucosal antibody secretion and organization of ectopic lymphoid tissue which persisted in the absence of detectable Cp DNA. Macrophage inflammatory protein (MIP)-2/CXCL2, which recruits neutrophils and lymphocytes and is associated with ectopic lymphoid tissue formation, was secreted in the lungs post-infection. In vitro, lung epithelial cells up-regulated MIP-2/CXCL2 in response to both rough lipopolysaccharide (reLPS) and Cp infection. We conclude that Cp infection can have long-term inflammatory effects on tissue that persist after clearance of active infection.
Collapse
Affiliation(s)
- P M Fitch
- University of Edinburgh/MRC Centre for Inflammation Research, UK.
| | | | | | | | | | | | | |
Collapse
|