1
|
Xu D, Gu Y, Li G, Wang R, Xiao S, Duan H, Jiang J, Zhao X, Wan K, He X, Liu H, Lou Y. Evaluation of the cross-immunity between Mycobacterium tuberculosis and Mycobacterium abscessus in vitro. BMC Microbiol 2025; 25:9. [PMID: 39789455 PMCID: PMC11716203 DOI: 10.1186/s12866-024-03724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) and Mycobacterium abscessus (M. abscessus) are important pathogens that can cause lung diseases. Given the abundance of shared antigens between these two pathogens, evaluating the cross-immunization between Mycobacterium tuberculosis and Mycobacterium abscessus has implications for the assessment of tuberculosis vaccines based on nontuberculous mycobacteria (NTM). The whole-cell proteins of Mycobacterium abscessus were lysed via ultrasonication and then were subcutaneously injected into BALB/c mice either alone or mixed with adjuvant for three times at a 10-day interval. After the final immunization, cross-immune antigens were analysed via genomic comparison and Mycobacterium tuberculosis proteome microarrays. BALB/c mice splenic lymphocytes were stimulated with TB-PPD to assess the cross-immunity of the cellular immune response. The effect of cross-immunity on the growth of Mycobacterium tuberculosis was evaluated using a Mycobacterium tuberculosis growth inhibition assay. Despite the presence of 1,953 homologous gene clusters between Mycobacterium tuberculosis and Mycobacterium abscessus, only 302 Mycobacterium tuberculosis antigens exhibited cross-immunoreactivity after three immunizations. Compared with the PBS group, TB-PPD stimulation significantly increased the secretion of TNF-α, IL-4, and IL-6 by sensitized mouse splenic lymphocytes, and significantly affected the proliferation of IL-2+CD4 T and TNF-α+CD4 T cells in the immunized group (P < 0.05), but had no impact on IFN-γ and IFN-γ+ CD4 T cells. Furthermore, there was no significant difference in the proliferation of Mycobacterium tuberculosis between the immunized group and the PBS group in spleen cells. These data indicate that proteins from Mycobacterium abscessus are highly immunogenic in mice. However, the cross-immune response between Mycobacterium abscessus and Mycobacterium tuberculosis was inadequate to effectively inhibit the proliferation of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Da Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yujie Gu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruihuan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shiqi Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongyang Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingwei Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuqin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinyue He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Rehermann B, Graham AL, Masopust D, Hamilton SE. Integrating natural commensals and pathogens into preclinical mouse models. Nat Rev Immunol 2024:10.1038/s41577-024-01108-3. [PMID: 39562646 DOI: 10.1038/s41577-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
Fundamental discoveries in many aspects of mammalian physiology have been made using laboratory mice as research models. These studies have been facilitated by the genetic tractability and inbreeding of such mice, the large set of immunological reagents that are available, and the establishment of environmentally controlled, high-throughput facilities. Such facilities typically include barriers to keep the mouse colonies free of pathogens and the frequent re-derivation of the mice severely limits their commensal flora. Because humans have co-evolved with microorganisms and are exposed to a variety of pathogens, a growing community of researchers posits that preclinical disease research can be improved by studying mice in the context of the microbiota and pathogens that they would encounter in the natural world. Here, we provide a perspective of how these different approaches can be combined and integrated to improve existing mouse models to enhance our understanding of disease mechanisms and develop new therapies for humans. We also propose that the term 'mice with natural microbiota' is more appropriate for describing these models than existing terms such as 'dirty mice'.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - David Masopust
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Dutt TS, Spencer JS, Karger BR, Fox A, Obregon-Henao A, Podell BK, Anderson GB, Henao-Tamayo M. ELISA-R: an R-based method for robust ELISA data analysis. Front Immunol 2024; 15:1427526. [PMID: 39416778 PMCID: PMC11479990 DOI: 10.3389/fimmu.2024.1427526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) is a technique to detect the presence of an antigen or antibody in a sample. ELISA is a simple and cost-effective method that has been used for evaluating vaccine efficacy by detecting the presence of antibodies against viral/bacterial antigens and diagnosis of disease stages. Traditional ELISA data analysis utilizes a standard curve of known analyte, and the concentration of the unknown sample is determined by comparing its observed optical density against the standard curve. However, in the case of vaccine research for complicated bacteria such as Mycobacterium tuberculosis (Mtb), there is no prior information regarding the antigen against which high-affinity antibodies are generated and therefore plotting a standard curve is not feasible. Consequently, the analysis of ELISA data in this instance is based on a comparison between vaccinated and unvaccinated groups. However, to the best of our knowledge, no robust data analysis method exists for "non-standard curve" ELISA. In this paper, we provide a straightforward R-based ELISA data analysis method with open access that incorporates end-point titer determination and curve-fitting models. Our modified method allows for direct measurement data input from the instrument, cleaning and arranging the dataset in the required format, and preparing the final report with calculations while leaving the raw data file unchanged. As an illustration of our method, we provide an example from our published data in which we successfully used our method to compare anti-Mtb antibodies in vaccinated vs non-vaccinated mice.
Collapse
Affiliation(s)
- Taru S. Dutt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - John S. Spencer
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - Burton R. Karger
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Amy Fox
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - Brendan K. Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - G. Brooke Anderson
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
4
|
Miles JR, Lu P, Bai S, Aguillón-Durán GP, Rodríguez-Herrera JE, Gunn BM, Restrepo BI, Lu LL. Antigen specificity shapes antibody functions in tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597169. [PMID: 38895452 PMCID: PMC11185737 DOI: 10.1101/2024.06.03.597169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberculosis (TB) is the number one infectious disease cause of death worldwide due to an incomplete understanding of immunity. Emerging data highlight antibody functions mediated by the Fc domain as immune correlates. However, the mechanisms by which antibody functions impact the causative agent Mycobacterium tuberculosis (Mtb) are unclear. Here, we examine how antigen specificity determined by the Fab domain shapes Fc effector functions against Mtb. Using the critical structural and secreted virulence proteins Mtb cell wall and ESAT-6 & CFP-10, we observe that antigen specificity alters subclass, antibody post-translational glycosylation, and Fc effector functions in TB patients. Moreover, Mtb cell wall IgG3 enhances disease through opsonophagocytosis of extracellular Mtb . In contrast, polyclonal and a human monoclonal IgG1 we generated targeting ESAT-6 & CFP-10 inhibit intracellular Mtb . These data show that antibodies have multiple roles in TB and antigen specificity is a critical determinant of the protective and pathogenic capacity.
Collapse
|
5
|
Najafi A, Ghazvini K, Sankian M, Gholami L, Amini Y, Zare S, Khademi F, Tafaghodi M. T helper type 1 biased immune responses by PPE17 loaded core-shell alginate-chitosan nanoparticles after subcutaneous and intranasal administration. Life Sci 2021; 282:119806. [PMID: 34252419 DOI: 10.1016/j.lfs.2021.119806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Tuberculosis, a cost and life threatening disease, was being subjected for improving vaccine strategies beyond BCG. Thus, a novel particulate delivery system using alginate-coated chitosan nanoparticles including PPE17 protein and CpG were administered through intranasal (IN) and subcutaneous (SC) routes. METHODS The encapsulated nanoparticles were first characterized for size, surface charge, encapsulation efficiency and in vitro release of PPE17 antigen. The nanoparticles were then administered intranasal and subcutaneously to evaluate the induction of systemic and/or mucosal immune responses in mice. RESULTS According to our result, the mean size of nanoparticles was measured about 427 nm, and exhibited a negative zeta potential of -37 mV. Following subcutaneous and intranasal administration, the results from cytokines assay showed that an increasing in the level of IFN-γ, and adversely a decrease in the level of IL-4 (presumptive Th1 biased immune response) was happened and also a notable elicitation in IL-17 cytokine was observed. CONCLUSION In conclusion, our study demonstrated that alginate-coated chitosan nanoparticles showed to be an effective way to improve BCG efficiency as booster strategy for subcutaneous vaccine, and also can induce strong immune responses as prime strategy through intranasal vaccination.
Collapse
Affiliation(s)
- Adel Najafi
- Clinical Microbiology Laboratory, Fatemieh Hospital, Hamedan University of Medical Science, Hamedan, Iran
| | - Kiarash Ghazvini
- Department of Microbiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Bu Ali Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Yousef Amini
- Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Sirwan Zare
- Immunology Research Center, Bu Ali Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
6
|
Mawa PA, Hasso-Agopsowicz M, Lubyayi L, Nabakooza G, Nakibuule M, Blitz R, Dun L, Govind A, Kaleebu P, Webb EL, Elliott AM, Dockrell HM, Cose S, Smith SG. Immune Responses Following BCG Immunization of Infants in Uganda and United Kingdom Are Similar for Purified Protein Derivative but Differ for Secretory Proteins of Mycobacterium tuberculosis. Front Immunol 2021; 12:637114. [PMID: 33815390 PMCID: PMC8017231 DOI: 10.3389/fimmu.2021.637114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/22/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction: The immunogenicity of BCG vaccination in infants differs between populations. We hypothesized that prenatal exposure to mycobacterial antigens might explain the differences in immune responses to BCG seen in other studies of infants in Africa and the United Kingdom (UK) and we explored this in birth cohorts in Uganda and the UK. Materials and Methods: Blood samples were obtained from BCG-immunized infants of mothers with (n = 110) and without (n = 121) latent Mycobacterium tuberculosis infection (LTBI) in Uganda and BCG-immunized infants of mothers without LTBI (n = 25) in the UK at 10 and 52 weeks after birth. Cytokine and chemokine responses to PPD were measured to assess responses to BCG immunization, and to ESAT6/CFP10 to assess exposure to or infection with M. tuberculosis or non-tuberculous mycobacteria (NTM) in 6-day whole blood culture supernatants by a 17-plex Luminex assay. Median responses were compared between Ugandan infants (together, and separated by maternal LTBI status) and UK infants. Results: The IFN-γ response to BCG vaccination was similar between Ugandan and UK infants at 10 and 52 weeks. At week 52, TNF production was marginally higher in Ugandan infants, but after adjusting for multiple comparisons this difference was not significant. At weeks 10 and 52, stimulation of blood with ESAT6/CFP10 produced significantly higher IFN-γ, TNF, IL-12p40, IL-1α, IL-1β, IL-1Ra, IP-10, MIP-1α, MIP-1β, and GM-CSF in Ugandan compared to UK infants. Stimulation of blood with ESAT6/CFP10 produced significantly higher amounts of IL-8 (p = 0.0001), IL-10 (p = 0.0022), and IL-13 (p = 0.0020) in the UK than in Ugandan infants of mothers without LTBI at week 10, but not at week 52. Conclusions: Immune responses to mycobacterial antigens following BCG immunization are similar for PPD, but differ for ESAT6/CFP10, between infants in Uganda and the UK. Neither maternal LTBI nor infant exposure to or infection with mycobacteria impacts the response to BCG. The observed global differences in immune response to BCG immunization are likely to be due to other causes.
Collapse
Affiliation(s)
- Patrice A. Mawa
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mateusz Hasso-Agopsowicz
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lawrence Lubyayi
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Grace Nabakooza
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Marjorie Nakibuule
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Rose Blitz
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Li Dun
- Fetal Medicine Unit, Gynaecology and Obstetrics Department, North Middlesex University Hospital National Health Service Trust, London, United Kingdom
| | - Abha Govind
- Fetal Medicine Unit, Gynaecology and Obstetrics Department, North Middlesex University Hospital National Health Service Trust, London, United Kingdom
| | - Pontiano Kaleebu
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Emily L. Webb
- Medical Research Council Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hazel M. Dockrell
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephen Cose
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Steven G. Smith
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Gutiérrez-González LH, Juárez E, Carranza C, Carreto-Binaghi LE, Alejandre A, Cabello-Gutiérrrez C, Gonzalez Y. Immunological Aspects of Diagnosis and Management of Childhood Tuberculosis. Infect Drug Resist 2021; 14:929-946. [PMID: 33727834 PMCID: PMC7955028 DOI: 10.2147/idr.s295798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
The diagnosis of tuberculosis (TB) in children is difficult because of the low sensitivity and specificity of traditional microbiology techniques in this age group. Whereas in adults the culture of Mycobacterium tuberculosis (M. tuberculosis), the gold standard test, detects 80% of positive cases, it only detects around 30-40% of cases in children. The new methods based on the immune response to M. tuberculosis infection could be affected by many factors. It is necessary to evaluate the medical record, clinical features, presence of drug-resistant M. tuberculosis strains, comorbidities, and BCG vaccination history for the diagnosis in children. There is no ideal biomarker for all TB cases in children. A new strategy based on personalized diagnosis could be used to evaluate specific molecules produced by the host immune response and make therapeutic decisions in each child, thereby changing standard immunological signatures to personalized signatures in TB. In this way, immune diagnosis, prognosis, and the use of potential immunomodulators as adjunct TB treatments will meet personalized treatment.
Collapse
Affiliation(s)
| | - Esmeralda Juárez
- Microbiology Department, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Claudia Carranza
- Microbiology Department, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Laura E Carreto-Binaghi
- Microbiology Department, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Alejandro Alejandre
- Pediatric Clinic, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Carlos Cabello-Gutiérrrez
- Virology and Mycology Department, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Yolanda Gonzalez
- Microbiology Department, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
8
|
Korablioviene J, Mauricas M, Dumalakiene I, Caplinskas S, Viliene R, Baleisis J, Vysniauskis G, Chorostowska-Wynimko J, Magelinskiene G, Korabliov P, Valiulis A. BCG masking phenomena might depend on the species of Mycobacterium. Acta Microbiol Immunol Hung 2021; 68:27-33. [PMID: 33646137 DOI: 10.1556/030.2021.01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
This study investigated BCG masking dependency on the species of Mycobacterium through the immune response to the mycobacterial region of deletion 1 (RD-1) associated growth affecting proteins (GEP).To evaluate the effects of GEP, 8-week old female BALB/c mice were immunized with either the wild type Mycobacterium bovis (MBGEP) or the ATCC Mycobacterium avium subsp. avium (MAGEP) strain and then subjected to further exposure with Mycobacterium terrae or M. avium sub. avium. Mice immunized with MAGEP and those mice further exposed to M. avium subsp. avium had increased granulocytes (GRA) and monocytes to lymphocytes rate (MLR) compared to control mice. Immunization of mice with GEP induced an antibody response one month after primary immunization, as observed by cross-reactivity. Our findings suggest that MAGEP is related to a latent hypersensitivity reaction and an increased risk of mycobacterial infection susceptibility. According to the results of the present study, previous sensitization with NTM antigens results in varying immune reactions after contact with different NTM argued that masking phenomena may be dependent on the species of Mycobacterium.
Collapse
Affiliation(s)
- Joana Korablioviene
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
- 2Center for Communicable Diseases and AIDS, Nugaletojų Str. 14, Vilnius, Lithuania
| | - Mykolas Mauricas
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Irena Dumalakiene
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Saulius Caplinskas
- 2Center for Communicable Diseases and AIDS, Nugaletojų Str. 14, Vilnius, Lithuania
- 3Educology and Social Work Institute, Mykolas Romeris University, Ateities Str. 20, Vilnius, Lithuania
| | - Rita Viliene
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Justinas Baleisis
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Gintautas Vysniauskis
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Joanna Chorostowska-Wynimko
- 4Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Ginreta Magelinskiene
- 5Department of Public Health, Institute of Health Sciences, Vilnius University Faculty of Medicine, M.K. Ciurlionio Str. 21, Vilnius, Lithuania
| | - Pavel Korabliov
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Arunas Valiulis
- 5Department of Public Health, Institute of Health Sciences, Vilnius University Faculty of Medicine, M.K. Ciurlionio Str. 21, Vilnius, Lithuania
- 6Department of Children's Diseases, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Antakalnio Str. 57, Vilnius, Lithuania
| |
Collapse
|
9
|
Shah JA, Lindestam Arlehamn CS, Horne DJ, Sette A, Hawn TR. Nontuberculous Mycobacteria and Heterologous Immunity to Tuberculosis. J Infect Dis 2020; 220:1091-1098. [PMID: 31165861 DOI: 10.1093/infdis/jiz285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
Development of an improved tuberculosis (TB) vaccine is a high worldwide public health priority. Bacillus Calmette-Guerin (BCG), the only licensed TB vaccine, provides variable efficacy against adult pulmonary TB, but why this protection varies is unclear. Humans are regularly exposed to non-tuberculous mycobacteria (NTM) that live in soil and water reservoirs and vary in different geographic regions around the world. Immunologic cross-reactivity may explain disparate outcomes of BCG vaccination and susceptibility to TB disease. Evidence supporting this hypothesis is increasing but challenging to obtain due to a lack of reliable research tools. In this review, we describe the progress and bottlenecks in research on NTM epidemiology, immunology and heterologous immunity to Mtb. With ongoing efforts to develop new vaccines for TB, understanding the effect of NTM on vaccine efficacy may be a critical determinant of success.
Collapse
Affiliation(s)
- Javeed A Shah
- Tuberculosis Research and Training Center, Department of Medicine, University of Washington, Seattle.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | | | - David J Horne
- Tuberculosis Research and Training Center, Department of Medicine, University of Washington, Seattle
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, California.,University of California San Diego, La Jolla
| | - Thomas R Hawn
- Tuberculosis Research and Training Center, Department of Medicine, University of Washington, Seattle
| |
Collapse
|
10
|
Burel JG, Babor M, Pomaznoy M, Lindestam Arlehamn CS, Khan N, Sette A, Peters B. Host Transcriptomics as a Tool to Identify Diagnostic and Mechanistic Immune Signatures of Tuberculosis. Front Immunol 2019; 10:221. [PMID: 30837989 PMCID: PMC6389658 DOI: 10.3389/fimmu.2019.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is a major infectious disease worldwide, and is associated with several challenges for control and eradication. First, more accurate diagnostic tools that better represent the spectrum of infection states are required; in particular, identify the latent TB infected individuals with high risk of developing active TB. Second, we need to better understand, from a mechanistic point of view, why the immune system is unsuccessful in some cases for control and elimination of the pathogen. Host transcriptomics is a powerful approach to identify both diagnostic and mechanistic immune signatures of diseases. We have recently reported that optimal study design for these two purposes should be guided by different sets of criteria. Here, based on already published transcriptomics signatures of tuberculosis, we further develop these guidelines and identify additional factors to consider for obtaining diagnostic vs. mechanistic signatures in terms of cohorts, samples, data generation and analysis. Diagnostic studies should aim to identify small disease signatures with high discriminatory power across all affected populations, and against similar pathologies to TB. Specific focus should be made on improving the diagnosis of infected individuals at risk of developing active disease. Conversely, mechanistic studies should focus on tissues biopsies, immune relevant cell subsets, state of the art transcriptomic techniques and bioinformatics tools to understand the biological meaning of identified gene signatures that could facilitate therapeutic interventions. Finally, investigators should ensure their data are made publicly available along with complete annotations to facilitate metadata and cross-study analyses.
Collapse
Affiliation(s)
- Julie G Burel
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Mariana Babor
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Mikhail Pomaznoy
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Nabeela Khan
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Bjoern Peters
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Kilpeläinen A, Maya-Hoyos M, Saubí N, Soto CY, Joseph Munne J. Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned. Expert Rev Vaccines 2018; 17:1005-1020. [PMID: 30300040 DOI: 10.1080/14760584.2018.1534588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome, tuberculosis, and malaria are responsible for most human deaths produced by infectious diseases worldwide. Vaccination against HIV requires generation of memory T cells and neutralizing antibodies, mucosal immunity, and stimulation of an innate immune responses. In this context, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for T-cell induction. AREAS COVERED In this review, we provide a comprehensive summary of the literature regarding immunogenicity studies in animal models performed since 2005. Furthermore, we provide expert commentary and 5-year view on how the development of potential recombinant BCG-based HIV vaccines involves careful selection of the HIV antigen, expression vectors, promoters, BCG strain, preclinical animal models, influence of preexisting immunity, and safety issues, for the rational design of recombinant BCG:HIV vaccines to prevent HIV transmission in the general population. EXPERT COMMENTARY The three critical issues to be considered when developing a rBCG:HIV vaccine are codon optimization, antigen localization, and plasmid stability in vivo. The use of integrative expression vectors are likely to improve the mycobacterial vaccine stability and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Milena Maya-Hoyos
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Narcís Saubí
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Carlos Y Soto
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Joan Joseph Munne
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|
12
|
Palmer MV, Thacker TC. Use of the Human Vaccine, Mycobacterium bovis Bacillus Calmette Guérin in Deer. Front Vet Sci 2018; 5:244. [PMID: 30349823 PMCID: PMC6186790 DOI: 10.3389/fvets.2018.00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
The only vaccine ever approved for human tuberculosis was developed a century ago from an isolate of Mycobacterium bovis derived from a tuberculous cow. Initial safety and efficacy studies of an attenuated version of this isolate were conducted in cattle and other animals. In 1921 the first human, an infant, was orally dosed with this attenuated strain that came to be known as M. bovis bacillus Calmette-Guérin (BCG); named for Albert Calmette and Camille Guérin, the two French scientists that developed the strain. Since 1921, billions of people have been vaccinated with BCG making it the oldest, most widely used, and safest vaccine in use today. It is also the tuberculosis vaccine most studied for use in wildlife, including deer. While BCG vaccination of deer may not reliably prevent infection, it consistently decreases lesion severity, minimizing large, necrotic lesions, which often contain large numbers of bacilli. It is believed that decreased lesion severity correlates with decreased disease transmission; however, this hypothesis remains to be proven. Safety studies in white-tailed deer show BCG may persist in lymphoid tissues for up to 12 months; a factor to be considered in deer used for food. Beyond efficacy and safety, methods of vaccine delivery to free-ranging deer are also under investigation, both in the laboratory and in the field. The ideal delivery method is effective, efficient and safe for non-target species, including livestock. Ingestion of BCG by cattle is of special concern as such cattle may present as "false positives" using currently approved diagnostic methods, thus interfering with efforts by animal health agencies to monitor cattle for tuberculosis. An effective BCG vaccine for deer would be of value in regions where free-ranging deer represent a potential source of M. bovis for livestock. Such a vaccine would also be beneficial to farmed deer where M. bovis represents a serious threat to trade and productivity.
Collapse
Affiliation(s)
- Mitchell V. Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | | |
Collapse
|
13
|
Atmakuri K, Penn-Nicholson A, Tanner R, Dockrell HM. Meeting report: 5th Global Forum on TB Vaccines, 20-23 February 2018, New Delhi India. Tuberculosis (Edinb) 2018; 113:55-64. [PMID: 30514514 DOI: 10.1016/j.tube.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
The 5th Global Forum on TB Vaccines was held in New Delhi, India from 20 to 23 February 2018. This was the largest Global Forum on TB Vaccines to date with nearly 350 participants from more than 30 countries. The program included over 60 speakers in 12 special, plenary and breakout sessions and 72 posters. This Global Forum brought a great sense of momentum and excitement to the field. New vaccines are in clinical trials, new routes of delivery are being tested, novel assays and biomarker signatures are being developed, and the results from the first prevention of infection clinical trial with the H4:IC31 vaccine candidate and BCG revaccination were presented. Speakers and participants acknowledged the significant challenges that the TB vaccine R&D field continues to face - including limited funding, and the need for novel effective vaccine candidates and tools such as improved diagnostics and biomarkers to accurately predict protective efficacy. New solutions and approaches to address these challenges were discussed. The following report presents highlights from talks presented at this Global Forum. A full program, abstract book and presentations (where publicly available) from the Forum may be found at tbvaccinesforum.org.
Collapse
Affiliation(s)
- Krishnamohan Atmakuri
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121001, India.
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Wernher and Beit South Building, Health Sciences Faculty, Observatory, 7925 Cape Town, Anzio Road, Observatory, Cape Town, 7935, South Africa.
| | - Rachel Tanner
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Hazel M Dockrell
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
14
|
Cossu D, Yokoyama K, Tomizawa Y, Momotani E, Hattori N. Altered humoral immunity to mycobacterial antigens in Japanese patients affected by inflammatory demyelinating diseases of the central nervous system. Sci Rep 2017; 7:3179. [PMID: 28600575 PMCID: PMC5466620 DOI: 10.1038/s41598-017-03370-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) and Mycobacterium bovis (BCG) have been associated to several human autoimmune diseases such as multiple sclerosis (MS), but there are conflicting evidence on the issue. The objective of this study is to evaluate their role in Japanese patients affected by inflammatory demyelinating disorders of the central nervous system (IDDs). A total of 97 IDDs subjects including 51 MS and 46 neuromyelitis optica spectrum disorder (NMOSD) patients, and 34 healthy controls (HCs) were tested for the detection of IgG, IgM and IgA against mycobacterial antigens by indirect ELISA. The levels of anti-MAP IgG were higher in MS patients compared to NMOSD patients (AUC = 0.59, p = 0.02) and HCs (AUC = 0.67, p = 0.01), and the anti-MAP antibodies were more prevalent in MS patients treated with interferon-beta (OR = 11.9; p = 0.004). Anti-BCG IgG antibodies were detected in 8% of MS, 32% of NMOSD and 18% of HCs, the difference between MS and NMOSD groups was statistically significant (AUC = 0.66, p = 0.005). Competition experiments showed that nonspecific IgM were elicited by common mycobacterial antigens. Our study provided further evidence for a possible association between MAP and MS, while BCG vaccination seemed to be inversely related to the risk of developing MS.
Collapse
Affiliation(s)
- Davide Cossu
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan
| | - Kazumasa Yokoyama
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan.
| | - Yuji Tomizawa
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan
| | - Eiichi Momotani
- Tohto College of Health Sciences, Department of Human-care, Saitama, 366-0052, Japan
| | - Nobutaka Hattori
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan
| |
Collapse
|
15
|
Jenkins AO, Michel A, Rutten V. Original Mycobacterial Sin, a consequence of highly homologous antigens? Vet Microbiol 2017; 203:286-293. [PMID: 28619159 DOI: 10.1016/j.vetmic.2017.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
The role of antigens shared between Mycobacteria in in-vivo cross-reactive immune responses in host animals, have been reported to be responsible for reduced BCG vaccination efficacy as well reduced specificity of routine immunological diagnostic tests. This presents with significant disease control challenges in humans and animals. The present review highlights the results of previous studies on the effect of pre-sensitization to environmental mycobacteria on either pathogenic mycobacteria and/or M. bovis BCG, in experimental animals. It also takes an in-depth view into assessing the genetic similarities and relationships between atypical mycobacteria and Mycobacterium tuberculosis complex (MTBC) and how they might explain the immunological imprint of environmental mycobacteria in directing the hosts' immune response upon subsequent exposure to other classes of mycobacteria. The outcome of this review suggests that genetic closeness between particular atypical mycobacteria and MTBC usually indicate a higher level of homology for certain shared protective antigens. This ultimately results in a higher level of cross reactive immune responses as compared with other atypical mycobacteria that are further away genetically. This would explain the different effects of environmental mycobacteria on MTBC that have been reported in the different studies. In other words the direction of the host immune system in response to exposure to MTBC would depend on the type of environmental mycobacteria that was encountered in the initial exposure. We also explain these mycobacterial interactions in the context of the phenomenon of "Original Mycobacterial Sin". The effects of these inevitable mycobacterial interactions on field diagnosis and control by vaccination and how to circumvent them are discussed.
Collapse
Affiliation(s)
- A O Jenkins
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - A Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - V Rutten
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| |
Collapse
|
16
|
Verreck FAW, Tchilian EZ, Vervenne RAW, Sombroek CC, Kondova I, Eissen OA, Sommandas V, van der Werff NM, Verschoor E, Braskamp G, Bakker J, Langermans JAM, Heidt PJ, Ottenhoff THM, van Kralingen KW, Thomas AW, Beverley PCL, Kocken CHM. Variable BCG efficacy in rhesus populations: Pulmonary BCG provides protection where standard intra-dermal vaccination fails. Tuberculosis (Edinb) 2017; 104:46-57. [PMID: 28454649 DOI: 10.1016/j.tube.2017.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 01/22/2023]
Abstract
M.bovis BCG vaccination against tuberculosis (TB) notoriously displays variable protective efficacy in different human populations. In non-human primate studies using rhesus macaques, despite efforts to standardise the model, we have also observed variable efficacy of BCG upon subsequent experimental M. tuberculosis challenge. In the present head-to-head study, we establish that the protective efficacy of standard parenteral BCG immunisation varies among different rhesus cohorts. This provides different dynamic ranges for evaluation of investigational vaccines, opportunities for identifying possible correlates of protective immunity and for determining why parenteral BCG immunisation sometimes fails. We also show that pulmonary mucosal BCG vaccination confers reduced local pathology and improves haematological and immunological parameters post-infection in animals that are not responsive to induction of protection by standard intra-dermal BCG. These results have important implications for pulmonary TB vaccination strategies in the future.
Collapse
Affiliation(s)
- Frank A W Verreck
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands.
| | - Elma Z Tchilian
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK.
| | - Richard A W Vervenne
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Claudia C Sombroek
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Ivanela Kondova
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Okke A Eissen
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Vinod Sommandas
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Nicole M van der Werff
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Ernst Verschoor
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Gerco Braskamp
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Jaco Bakker
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Jan A M Langermans
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Peter J Heidt
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre (LUMC), Albinusdreef 2, 2333-ZA, Leiden, The Netherlands
| | - Klaas W van Kralingen
- Department of Pulmonology, Leiden University Medical Centre (LUMC), Albinusdreef 2, 2333-ZA, Leiden, The Netherlands
| | - Alan W Thomas
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Peter C L Beverley
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK.
| | - Clemens H M Kocken
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| |
Collapse
|
17
|
Arregui S, Sanz J, Marinova D, Martín C, Moreno Y. On the impact of masking and blocking hypotheses for measuring the efficacy of new tuberculosis vaccines. PeerJ 2016; 4:e1513. [PMID: 26893956 PMCID: PMC4756732 DOI: 10.7717/peerj.1513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022] Open
Abstract
Over the past 60 years, the Mycobacterium bovis bacille Calmette–Guérin (BCG) has been used worldwide to prevent tuberculosis (TB). However, BCG has shown a very variable efficacy in different trials, offering a wide range of protection in adults against pulmonary TB. One of the most accepted hypotheses to explain these inconsistencies points to the existence of a pre-existing immune response to antigens that are common to environmental sources of mycobacterial antigens and Mycobacterium tuberculosis. Specifically, two different mechanisms have been hypothesized to explain this phenomenon: the masking and the blocking effects. According to masking hypothesis, previous sensitization confers some level of protection against TB that masks vaccine’s effects. In turn, the blocking hypothesis postulates that previous immune response prevents vaccine taking of a new TB vaccine. In this work we introduce a series of models to discriminate between masking and blocking mechanisms and address their relative likelihood. We apply our methodology to the data reported by BCG-REVAC clinical trials, which were specifically designed for studying BCG efficacy variability. Our results yield estimates that are consistent with high levels of blocking (41% in Manaus -95% CI [14–68]- and 96% in Salvador -95% CI [52–100]-). Moreover, we also show that masking does not play any relevant role in modifying vaccine’s efficacy either alone or in addition to blocking. The quantification of these effects around a plausible model constitutes a relevant step towards impact evaluation of novel anti-tuberculosis vaccines, which are susceptible of being affected by similar effects, especially if applied on individuals previously exposed to mycobacterial antigens.
Collapse
Affiliation(s)
- Sergio Arregui
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
| | - Joaquín Sanz
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Sainte-Justine Hospital Research Centre, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Dessislava Marinova
- Department of Microbiology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martín
- Department of Microbiology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Service of Microbiology, Miguel Servet Hospital, Zaragoza, Aragón, Spain
| | - Yamir Moreno
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain; Complex Networks and Systems Lagrange Lab, Institute for Scientific Interchange, Turin, Italy
| |
Collapse
|
18
|
Singh VK, Srivastava R, Srivastava BS. Manipulation of BCG vaccine: a double-edged sword. Eur J Clin Microbiol Infect Dis 2016; 35:535-43. [PMID: 26810060 DOI: 10.1007/s10096-016-2579-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG), an attenuated vaccine derived from M. bovis, is the only licensed vaccine against tuberculosis (TB). Despite its protection against TB in children, the protective efficacy in pulmonary TB is variable in adolescents and adults. In spite of the current knowledge of molecular biology, immunology and cell biology, infectious diseases such as TB and HIV/AIDS are still challenges for the scientific community. Genetic manipulation facilitates the construction of recombinant BCG (rBCG) vaccine that can be used as a highly immunogenic vaccine against TB with an improved safety profile, but, still, the manipulation of BCG vaccine to improve efficacy should be carefully considered, as it can bring in both favourable and unfavourable effects. The purpose of this review is not to comprehensively review the interaction between microorganisms and host cells in order to use rBCG expressing M. tuberculosis (Mtb) immunodominant antigens that are available in the public domain, but, rather, to also discuss the limitations of rBCG vaccine, expressing heterologous antigens, during manipulation that pave the way for a promising new vaccine approach.
Collapse
Affiliation(s)
- V K Singh
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 22184, Lund, Sweden.
| | - R Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - B S Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| |
Collapse
|
19
|
Bazzi S, Modjtahedi H, Mudan S, Akle C, Bahr GM. Analysis of the immunomodulatory properties of two heat-killed mycobacterial preparations in a human whole blood model. Immunobiology 2015; 220:1293-304. [PMID: 26253276 DOI: 10.1016/j.imbio.2015.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
The significant role played by mycobacteria in modulating immune responses through enhancing the crosstalk between innate and adaptive immunity has been highlighted in several studies. Owing to their unique antigenic profile, heat killed (HK) preparations of rapid-growing mycobacteria, currently undergoing clinical development, have been assessed as adjuvant therapy in various diseases. The purpose of this study is to investigate the regulation of leukocyte surface receptors, in whole blood from healthy donors, following in vitro stimulation with HK Mycobacterium vaccae (M. vaccae) or M. obuense. We have demonstrated the ability of both mycobacterial preparations to target monocytes and neutrophils and to regulate the surface expression of selected adhesion receptors, antigen-presenting and costimulatory receptors, pattern recognition receptors, complement and Fc receptors, as well as cytokine/chemokine receptors. Toll-like receptors (TLRs) 1 and 2 were also shown to be involved in mediating the M. obuense-induced upregulation of selected surface receptors on monocytes. Whole blood stimulation with M. vaccae or M. obuense resulted in a significant increase in the secretion of a specific set of cytokines and chemokines. Both mycobacterial preparations induced strong antigen-specific proliferative responses in peripheral blood mononuclear cells. Collectively, our data shows that M. vaccae and M. obuense have the potential to act as potent immunomodulators. Future research based on these findings may reveal novel immune pathways induced by these preparations with potential implication for their use in diverse immunotherapeutic approaches.
Collapse
Affiliation(s)
- Samer Bazzi
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, Surrey KT1 2EE, United Kingdom; Faculty of Medicine and Medical Sciences, University of Balamand, 33 Amioun, Al Kurah, Lebanon.
| | - Helmout Modjtahedi
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, Surrey KT1 2EE, United Kingdom.
| | - Satvinder Mudan
- Division of Clinical Sciences, St George's, University of London, London SW170RE, United Kingdom; Department of Academic Surgery, Royal Marsden Hospital, London SW3 6JJ, United Kingdom.
| | - Charles Akle
- The London Clinic, London W1G 6JA, United Kingdom.
| | - Georges M Bahr
- Faculty of Medicine and Medical Sciences, University of Balamand, 33 Amioun, Al Kurah, Lebanon.
| |
Collapse
|
20
|
Abstract
SUMMARY Tuberculosis (TB) is a leading cause of death worldwide despite the availability of effective chemotherapy for over 60 years. Although Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination protects against active TB disease in some populations, its efficacy is suboptimal. Development of an effective TB vaccine is a top global priority that has been hampered by an incomplete understanding of protective immunity to TB. Thus far, preventing TB disease, rather than infection, has been the primary target for vaccine development. Several areas of research highlight the importance of including preinfection vaccines in the development pipeline. First, epidemiology and mathematical modeling studies indicate that a preinfection vaccine would have a high population-level impact for control of TB disease. Second, immunology studies support the rationale for targeting prevention of infection, with evidence that host responses may be more effective during acute infection than during chronic infection. Third, natural history studies indicate that resistance to TB infection occurs in a small percentage of the population. Fourth, case-control studies of BCG indicate that it may provide protection from infection. Fifth, prevention-of-infection trials would have smaller sample sizes and a shorter duration than disease prevention trials and would enable opportunities to search for correlates of immunity as well as serve as a criterion for selecting a vaccine product for testing in a larger TB disease prevention trial. Together, these points support expanding the focus of TB vaccine development efforts to include prevention of infection as a primary goal along with vaccines or other interventions that reduce the rate of transmission and reactivation.
Collapse
|
21
|
Specific Proteins in Nontuberculous Mycobacteria: New Potential Tools. BIOMED RESEARCH INTERNATIONAL 2015; 2015:964178. [PMID: 26106621 PMCID: PMC4463991 DOI: 10.1155/2015/964178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/20/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022]
Abstract
Nontuberculous mycobacteria (NTM) have been isolated from water, soil, air, food, protozoa, plants, animals, and humans. Although most NTM are saprophytes, approximately one-third of NTM have been associated with human diseases. In this study, we did a comparative proteomic analysis among five NTM strains isolated from several sources. There were different numbers of protein spots from M. gordonae (1,264), M. nonchromogenicum type I (894), M. nonchromogenicum type II (935), M. peregrinum (806), and M. scrofulaceum/Mycobacterium mantenii (1,486) strains, respectively. We identified 141 proteins common to all strains and specific proteins to each NTM strain. A total of 23 proteins were selected for its identification. Two of the common proteins identified (short-chain dehydrogenase/reductase SDR and diguanylate cyclase) did not align with M. tuberculosis complex protein sequences, which suggest that these proteins are found only in the NTM strains. Some of the proteins identified as common to all strains can be used as markers of NTM exposure and for the development of new diagnostic tools. Additionally, the specific proteins to NTM strains identified may represent potential candidates for the diagnosis of diseases caused by these mycobacteria.
Collapse
|
22
|
Immunological consequences of intragenus conservation of Mycobacterium tuberculosis T-cell epitopes. Proc Natl Acad Sci U S A 2014; 112:E147-55. [PMID: 25548174 DOI: 10.1073/pnas.1416537112] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A previous unbiased genome-wide analysis of CD4 Mycobacterium tuberculosis (MTB) recognition using peripheral blood mononuclear cells from individuals with latent MTB infection (LTBI) or nonexposed healthy controls (HCs) revealed that certain MTB sequences were unexpectedly recognized by HCs. In the present study, it was found that, based on their pattern of reactivity, epitopes could be divided into LTBI-specific, mixed reactivity, and HC-specific categories. This pattern corresponded to sequence conservation in nontuberculous mycobacteria (NTMs), suggesting environmental exposure as an underlying cause of differential reactivity. LTBI-specific epitopes were found to be hyperconserved, as previously reported, whereas the opposite was true for NTM conserved epitopes, suggesting that intragenus conservation also influences host pathogen adaptation. The biological relevance of this observation was demonstrated further by several observations. First, the T cells elicited by MTB/NTM cross-reactive epitopes in HCs were found mainly in a CCR6(+)CXCR3(+) memory subset, similar to findings in LTBI individuals. Thus, both MTB and NTM appear to elicit a phenotypically similar T-cell response. Second, T cells reactive to MTB/NTM-conserved epitopes responded to naturally processed epitopes from MTB and NTMs, whereas T cells reactive to MTB-specific epitopes responded only to MTB. Third, cross-reactivity could be translated to antigen recognition. Several MTB candidate vaccine antigens were cross-reactive, but others were MTB-specific. Finally, NTM-specific epitopes that elicit T cells that recognize NTMs but not MTB were identified. These epitopes can be used to characterize T-cell responses to NTMs, eliminating the confounding factor of MTB cross-recognition and providing insights into vaccine design and evaluation.
Collapse
|
23
|
Dhanasekaran S, Jenum S, Stavrum R, Wiker HG, Kenneth J, Vaz M, Doherty TM, Grewal HMS. Effect of non-tuberculous Mycobacteria on host biomarkers potentially relevant for tuberculosis management. PLoS Negl Trop Dis 2014; 8:e3243. [PMID: 25329719 PMCID: PMC4199571 DOI: 10.1371/journal.pntd.0003243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/05/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) are different from Mycobacterium tuberculosis (MTB) both in their ubiquitous environmental distribution and in their reduced capacity to cause disease. While often neglected in favour of other infectious diseases, NTM may interfere with important aspects of TB control and management, namely the efficacy of new anti-tuberculosis (TB) vaccines; the immuno-diagnostic Tuberculin skin test (TST) and QuantiFERON TB Gold In Tube assay (QFTGIT); and immune biomarkers explored for their diagnostic and/or predictive potential. Our objective was therefore to explore host immune biomarkers in children who had NTM isolated from respiratory and/or gastric specimens. METHODOLOGY AND PRINCIPLE FINDINGS The present study was nested within a prospective cohort study of BCG-vaccinated neonates in Southern India. In this setting, immune biomarkers from peripheral blood were analyzed in 210 children aged <3 years evaluated for TB using dual-colour-Reverse-Transcriptase-Multiple-Ligation-dependent-Probe-Amplification (dcRT-MLPA) and Bio-Plex assays. The children were classified based on clinical examination, chest X-rays and mycobacterial culture reports as either: 1) TB disease, 2) NTM present and 3) controls. The study shows a down-regulation of RAB33A (p<0.001) and up-regulation of TGFβ1, IL-2 and IL-6 (all p<0.05) in children with TB disease, and that RAB33A, TGFBR2 and IL-10 (all p<0.05) were differentially expressed in children with NTM present when compared to children that were culture negative for MTB and NTM (controls). CONCLUSIONS AND SIGNIFICANCE Carriage of NTM may reduce the specificity of future diagnostic and predictive immune biomarkers relevant to TB management.
Collapse
Affiliation(s)
- S. Dhanasekaran
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Synne Jenum
- Center for Immune Regulation, Rikshospitalet- Radium Hospitalet Medical Centre, University of Oslo, Oslo, Norway
| | - Ruth Stavrum
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Harald G. Wiker
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - John Kenneth
- Division of Infectious Diseases, St. John's Research Institute, Koramangala, Bangalore, India
| | - Mario Vaz
- Division of Health & Humanities, St. John's Research Institute, Koramangala, Bangalore, India
| | - T. Mark Doherty
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- GlaxoSmithKline Pharma, Vaccines, Brøndby, Denmark
- * E-mail: (TMD); (HMSG)
| | - Harleen M. S. Grewal
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland university hospital, University of Bergen, Bergen, Norway
- * E-mail: (TMD); (HMSG)
| | | |
Collapse
|
24
|
Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus. Semin Immunol 2014; 26:559-77. [PMID: 25311810 DOI: 10.1016/j.smim.2014.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Abstract
Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease--the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage.
Collapse
|
25
|
MacGillivray DM, Kollmann TR. The role of environmental factors in modulating immune responses in early life. Front Immunol 2014; 5:434. [PMID: 25309535 PMCID: PMC4161944 DOI: 10.3389/fimmu.2014.00434] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/26/2014] [Indexed: 12/23/2022] Open
Abstract
The concept of immunological memory stipulates that past exposures shape present immune function. These exposures include not only specific antigens impacting adaptive immune memory but also conserved pathogen or danger associated molecular patterns that mold innate immune responses for prolonged periods of time. It should thus not come as a surprise that there is a vast range of external or environmental factors that impact immunity. The importance of environmental factors modulating immunity is most readily recognized in early life, a period of rapidly changing environments. We here summarize available data on the role of environment shaping immune development and from it derive an overarching hypothesis relating the underlying molecular mechanisms and evolutionary principles involved.
Collapse
Affiliation(s)
- Duncan M. MacGillivray
- Division of Infectious and Immunological Diseases, Department of Paediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tobias R. Kollmann
- Division of Infectious and Immunological Diseases, Department of Paediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Hur YG, Gorak-Stolinska P, Lalor MK, Mvula H, Floyd S, Raynes J, Ben-Smith A, Fitchett JR, Flanagan KL, Burl S, Ota MO, Crampin AC, Smith SG, Dockrell HM. Factors affecting immunogenicity of BCG in infants, a study in Malawi, The Gambia and the UK. BMC Infect Dis 2014; 14:184. [PMID: 24708690 PMCID: PMC4101864 DOI: 10.1186/1471-2334-14-184] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/31/2014] [Indexed: 11/13/2022] Open
Abstract
Background BCG immunogenicity in infants differs between populations and these differences have been attributed to various factors. In this study, the influence of geographical location, season of birth, timing of vaccination, micronutrient status (zinc) and inflammatory status (C-reactive protein, CRP) were assessed. Methods Immunogenicity was assessed by cytokine signature in culture supernatants from diluted whole blood samples stimulated with M. tuberculosis PPD, using a multiplex bead assay. Results were correlated with the plasma zinc and CRP concentrations at the time of sampling, and with interview and household data. BCG vaccinated infants were recruited in Malawi, The Gambia and the UK. Results In Malawi, infants vaccinated within the first week after birth showed lower production of most cytokines measured than those vaccinated later. The number of cytokines showing significant differences between Malawian and Gambian infants decreased after adjusting for season of birth. In Malawi, a proportion of infants had zinc deficiency and elevated plasma CRP (>10 mg/L), but neither zinc deficiency nor high CRP was associated with production of any of the cytokines measured. Conclusions The cytokine/chemokine signatures observed in response to M. tuberculosis PPD in infants at 3 months post BCG vaccination were affected by geographical location, season of birth, and timing of vaccination but not associated with the concentration of plasma zinc or inflammatory status. These factors should be considered in future trials of new TB vaccines.
Collapse
Affiliation(s)
- Yun-Gyoung Hur
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London WC1E 7HT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Singh OP, Sundar S. Whole blood assay and visceral leishmaniasis: Challenges and promises. Immunobiology 2014; 219:323-8. [PMID: 24571797 DOI: 10.1016/j.imbio.2014.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/05/2013] [Accepted: 01/19/2014] [Indexed: 12/14/2022]
Abstract
For years, the ability to study immune responses in patients with active visceral leishmaniasis (VL) has been hampered by the absence of detectable antigen-specific Th1 responses using cells from peripheral blood mononuclear cells (PBMCs). Employing whole blood assay (WBA), we recently reported that whole blood cells of active VL patients maintain the capacity to secrete significant levels of antigen driven IFN-γ and IL-10. Furthermore, WBA that uses soluble leishmania antigen (SLA) have advantages over the leishmanin skin test (LST), in terms of higher specificity and better correlation with surrogate markers of exposures to Leishmania donovani. These findings open the door to a series of immunological and epidemiological studies not previously possible for VL. In the present review, we discuss current status, future perspectives as well as obstacles in the research on WBA. Research in this area is essential for development of potential immunological and epidemiological tools for VL.
Collapse
Affiliation(s)
- Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, India.
| |
Collapse
|
28
|
Gaayeb L, Sarr JB, Cames C, Pinçon C, Hanon JB, Ndiath MO, Seck M, Herbert F, Sagna AB, Schacht AM, Remoue F, Riveau G, Hermann E. Effects of malnutrition on children's immunity to bacterial antigens in Northern Senegal. Am J Trop Med Hyg 2014; 90:566-73. [PMID: 24445198 DOI: 10.4269/ajtmh.12-0657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To evaluate immunity to vaccine-preventable diseases according to nutritional status, a longitudinal study was conducted in Senegalese children ages 1-9 years old. A linear regression analysis predicted that weight for age was positively associated with immunoglobulin G (IgG) response to tetanus toxoid in children born during the rainy season or at the beginning of the dry season. A relationship between village, time of visits, and levels of antibodies to tetanus showed that environmental factors played a role in modulating humoral immunity to tetanus vaccine over time. Moreover, a whole-blood stimulation assay highlighted that the production of interferon-γ (IFN-γ) in response to tetanus toxoid was compromised in stunted children. However, the absence of cytokine modulation in response to Mycobacterium tuberculosis-purified protein derivatives and phytohemagglutinin suggests that the overall ability to produce IFN-γ was preserved in stunted children. Therefore, these results show that nutritional status can specifically alter the efficacy of long-lasting immunity to tetanus.
Collapse
Affiliation(s)
- Lobna Gaayeb
- Center for Infection and Immunity of Lille (CIIL)-U1019 Inserm, Unité Mixte de Recherche (UMR) 8204 Centre National de la Recherche Scientifique (CNRS), Université Lille Nord de France, Institut Pasteur de Lille, Lille, France; Centre de Recherche Biomédicale Espoir Pour la Santé (EPLS), Saint-Louis, Senegal; Institut de Recherche pour le Développement Unité Mixte Internationale (UMI) 233 TransVIHmi, Centre Régional de Recherche et de Formation à la prise en charge Clinique, Centre Hospitalier Universitaire de Fann, Dakar, Senegal; Department of Biostatistics, Faculté de Pharmacie de Lille, Université Lille Nord de France, Lille, France; UMR198 URMITE, Campus International, Institut de Recherche pour le Développement, Université Cheikh Anta Diop de Dakar (UCAD), Institut de Recherche pour le Développement Hann, Dakar, Senegal; UMR Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement 224, CNRS5290, Université de Montpellier 1 et 2, Institut de Recherche pour le Développement, Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dockrell HM. Real vaccines in the real world: tuberculosis vaccines move south. Expert Rev Vaccines 2014; 7:703-7. [DOI: 10.1586/14760584.7.6.703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Park SH, Veerapu NS, Shin EC, Biancotto A, McCoy JP, Capone S, Folgori A, Rehermann B. Subinfectious hepatitis C virus exposures suppress T cell responses against subsequent acute infection. Nat Med 2013; 19:1638-42. [PMID: 24270546 PMCID: PMC4196667 DOI: 10.1038/nm.3408] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is endemic in many countries due to its high propensity to establish persistence1. The presence of HCV–specific T cells in repeatedly HCV–exposed subjects who test for HCV RNA and antibodies and do not have any history of HCV infection has been interpreted as T cell–mediated protection2-5. Here, we show in nonhuman primates that repeated exposure to human plasma with trace amounts of HCV induced HCV–specific T cells without seroconversion and systemic viremia, but did not protect upon subsequent HCV challenge. Rather, HCV–specific recall and de novo T cell responses as well as intrahepatic T cell recruitment and IFN-γ production were suppressed upon HCV challenge, concomitant to quantitative and qualitative changes in regulatory T (Treg) cells that began after subinfectious HCV exposure and increased after HCV challenge. In vitro Treg cell depletion restored HCV–specific T cell responses. Thus, T cells primed by trace amounts of HCV do not generate effective recall responses upon subsequent HCV infection. Subinfectious HCV exposure predisposes to Treg cell expansion, which suppresses effector T cells during subsequent infection. Strategies to reverse this exposure–induced suppression should be examined to aid the development of T cell–based vaccines against HCV and other endemic pathogens.
Collapse
Affiliation(s)
- Su-Hyung Park
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhao J, Sun Z, Pei H, Ye J, Chen C, Samten B, Zhang S, Guo X. Immunological evaluation of a novel Mycobacterium tuberculosis antigen, Rv3117, absent in Mycobacterium bovis BCG. Mol Med Rep 2013; 8:1587-93. [PMID: 24045507 DOI: 10.3892/mmr.2013.1687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/04/2013] [Indexed: 11/05/2022] Open
Abstract
Tuberculosis (TB) remains a global infectious disease. To investigate the value of a novel Mycobacterium tuberculosis (M. tuberculosis) region of difference 5 (RD5)-encoded antigen, Rv3117, in the development of effective immuno-diagnostics and vaccines against TB, the immune responses to the antigen were examined in human subjects, as well as in C57BL/6 mice. The results showed that Rv3117 was able to evoke specific humoral and cellular immune responses. Consistent with the results from the RD1-encoded antigens, culture filtrate protein 10 kDa (CFP-10) and early secreted antigenic target 6 kDa (ESAT-6), the immunoglobulin G (IgG), IgM and IgA antibody responses to Rv3117 were able to statistically distinguish between the 65 patients with active pulmonary TB and the 59 healthy controls (P<0.01, respectively). In addition, higher levels of Rv3117‑specific interferon-γ (IFN-γ) were observed in immunized C57BL/6 mice than in the negative control mice (P<0.05). Furthermore, high titers of total IgG, IgG1 and IgG2a antibodies were present in the sera from immunized mice, even six weeks subsequent to the immunization. In conclusion, the present results suggested that Rv3117 may be used as a candidate for the development of TB immunodiagnostics and vaccine design.
Collapse
Affiliation(s)
- Junwei Zhao
- Department of Medical Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Strategy to better select HIV-infected individuals for latent TB treatment in BCG-vaccinated population. PLoS One 2013; 8:e73069. [PMID: 24015285 PMCID: PMC3754919 DOI: 10.1371/journal.pone.0073069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022] Open
Abstract
Objective To evaluate the T-SPOT.TB interferon-γ releasing assay and the tuberculin skin test (TST), for the diagnosis of latent tuberculosis infection(LTBI) and the development of subsequent active tuberculosis, in BCG-vaccinated HIV-infected individuals. Methods HIV-infected individuals without clinical suspicion of active TB or a past history of TB were enrolled from 1 January 2008 to 30 November 2010. Both T-SPOT.TB test and TST were offered to the participants whom were followed up prospectively until April 30, 2012 for development of TB. Results Among the 909 participants, 25% had positive TST reactions with cut-off point of 5 mm and 15% had positive T-SPOT.TB results. After a median follow-up of 2.97 years, there were 5 cases developed culture-confirmed active TB (all had dual positive TST and T-SPOT.TB results), and the incidence was 0.17 per 100 person-years. The relative risks (RRs) for subsequent active TB in HIV-infected individuals with positive TST results, positive T-SPOT.TB results and dual positive results compared with the risk for individuals with negative results were 40.6 (95% CI 2.1–767.9), 73.9 (95% CI 3.9–1397.7) and 226.5 (95% CI 12.0–4284), respectively. The number needed to treat to prevent one subsequent TB case among patients with a positive TST, a positive T-SPOT.TB and dual positive results was 35, 22 and 8 respectively. Conclusions Adopting positive results of the TST and T-SPOT.TB to screen LTBI among BCG-vaccinated HIV-infected individuals might be feasible. Number needed to treat for isoniazid preventive therapy could be reduced significantly by using dual positive strategy.
Collapse
|
33
|
Abstract
Tuberculosis continues to persist despite widespread use of BCG, the only licensed vaccine to prevent TB. BCG's limited efficacy coupled with the emergence of drug-resistant strains of Mycobacterium tuberculosis emphasizes the need for a more effective vaccine for combatting this disease. However, the development of a TB vaccine is hindered by the lack of immune correlates, suboptimal animal models, and limited funding. An adolescent/adult vaccine would have the greatest public health impact, but effective delivery of such a vaccine will require a better understanding of global TB epidemiology, improved infrastructure, and engagement of public health leaders and global manufacturers. Here we discuss the current state of tuberculosis vaccine research and development, including our understanding of the underlying immunology as well as the challenges and opportunities that may hinder or facilitate the development of a new and efficacious vaccine.
Collapse
|
34
|
Pitt JM, Blankley S, McShane H, O'Garra A. Vaccination against tuberculosis: how can we better BCG? Microb Pathog 2012; 58:2-16. [PMID: 23257069 DOI: 10.1016/j.micpath.2012.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 01/01/2023]
Abstract
Tuberculosis remains one of the most significant human diseases of the developing world, accounting for 3800 worldwide deaths per day. Although we currently have a vaccine for tuberculosis, BCG, this is insufficient at protecting from adult pulmonary tuberculosis in the parts of the world where a good vaccine is most needed. This has prompted the search for new vaccination strategies that can protect better than BCG, or can boost BCG-induced immunity. We discuss these subjects in line with what is known of the immune responses to BCG and Mycobacterium tuberculosis - the etiological agent of the disease, as well as the particular difficulties facing development of new vaccines against tuberculosis. A greater understanding of the factors constituting optimal protection against Mycobacterium tuberculosis infection, as well as which pathogenic factors facilitate active disease, will accelerate the delivery of safe vaccines able to restrict active tuberculosis and thus impede contagion.
Collapse
Affiliation(s)
- Jonathan M Pitt
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
35
|
Singh OP, Stober CB, Singh AK, Blackwell JM, Sundar S. Cytokine responses to novel antigens in an Indian population living in an area endemic for visceral leishmaniasis. PLoS Negl Trop Dis 2012; 6:e1874. [PMID: 23150744 PMCID: PMC3493615 DOI: 10.1371/journal.pntd.0001874] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
Background There are no effective vaccines for visceral leishmaniasis (VL), a neglected parasitic disease second only to malaria in global mortality. We previously identified 14 protective candidates in a screen of 100 Leishmania antigens as DNA vaccines in mice. Here we employ whole blood assays to evaluate human cytokine responses to 11 of these antigens, in comparison to known defined and crude antigen preparations. Methods Whole blood assays were employed to measure IFN-γ, TNF-α and IL-10 responses to peptide pools of the novel antigens R71, Q51, L37, N52, L302.06, J89, M18, J41, M22, M63, M57, as well as to recombinant proteins of tryparedoxin peroxidase (TRYP), Leishmania homolog of the receptor for activated C kinase (LACK) and to crude soluble Leishmania antigen (SLA), in Indian patients with active (n = 8) or cured (n = 16) VL, and in modified Quantiferon positive (EHC+ve, n = 20) or modified Quantiferon negative (EHC−ve, n = 9) endemic healthy controls (EHC). Results Active VL, cured VL and EHC+ve groups showed elevated SLA-specific IFN-γ, but only active VL patients produced IL-10 and EHC+ve did not make TNF-α. IFN-γ to IL-10 and TNF-α to IL-10 ratios in response to TRYP and LACK antigens were higher in cured VL and EHC+ve exposed individuals compared to active VL. Five of the eleven novel candidates (R71, L37, N52, J41, and M22) elicited IFN-γ and TNF-α, but not IL-10, responses in cured VL (55–87.5% responders) and EHC+ve (40–65% responders) subjects. Conclusions Our results are consistent with an important balance between pro-inflammatory IFNγ and TNFγ cytokine responses and anti-inflammatory IL-10 in determining outcome of VL in India, as highlighted by response to both crude and defined protein antigens. Importantly, cured VL patients and endemic Quantiferon positive individuals recognise 5 novel vaccine candidate antigens, confirming our recent data for L. chagasi in Brazil, and their potential as cross-species vaccine candidates. Visceral leishmaniasis is a parasitic infection that results in death in susceptible people unless they are treated. Current drugs are expensive and toxic, and there are no vaccines in use in humans. We know that it is possible to become immune to infection with this parasite because people who have been cured using drug treatment are resistant to further infection. In addition, a large percentage of people infected with the parasite remain asymptomatic and develop a specific immune response that can be measured using crude leishmanial antigens. We hypothesized that these resistant people might hold the key to understanding the kind of immune response required for protection. In this paper we compared the immune response to a series of novel vaccine candidates in people with active disease, in those drug-cured from the disease, and in the naturally resistant individuals. We show that immune individuals make strong cytokine responses to five of eleven novel vaccine candidates that were tested, making them ideal candidates to take forward in the development of a defined vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Carmel B. Stober
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Abhishek Kr. Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jenefer M. Blackwell
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Subiaco, Western Australia, Australia
- * E-mail: (JMB); (SS)
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- * E-mail: (JMB); (SS)
| |
Collapse
|
36
|
Gowthaman U, Rai PK, Khan N, Jackson DC, Agrewala JN. Lipidated promiscuous peptides vaccine for tuberculosis-endemic regions. Trends Mol Med 2012; 18:607-14. [PMID: 22939171 DOI: 10.1016/j.molmed.2012.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 10/27/2022]
Abstract
Despite nine decades of Bacillus Calmette--Guérin (BCG) vaccination, tuberculosis continues to be a major global health challenge. Clinical trials worldwide have proved the inadequacy of the BCG vaccine in preventing the manifestation of pulmonary tuberculosis in adults. Ironically, the efficacy of BCG is poorest in tuberculosis endemic areas. Factors such as nontuberculous or environmental mycobacteria and helminth infestation have been suggested to limit the efficacy of BCG. Hence, in high TB-burden countries, radically novel strategies of vaccination are urgently required. Here we showcase the properties of lipidated promiscuous peptide vaccines that target and activate cells of the innate and adaptive immune systems by employing a Toll-like receptor-2 agonist, S-[2,3-bis(palmitoyloxy)propyl]cysteine (Pam2Cys). Such a strategy elicits robust protection and enduring memory responses by type 1 T helper cells (Th1). Consequently, lipidated peptides may yield a better vaccine than BCG.
Collapse
Affiliation(s)
- Uthaman Gowthaman
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | | | | | | | | |
Collapse
|
37
|
Heparin-binding hemagglutinin induces IFN-γ(+) IL-2(+) IL-17(+) multifunctional CD4(+) T cells during latent but not active tuberculosis disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:746-51. [PMID: 22461525 DOI: 10.1128/cvi.00047-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mycobacterial heparin-binding hemagglutinin (HBHA) protein induces a potent gamma interferon (IFN-γ) response in latent tuberculosis (TB) infection and is a candidate vaccine and diagnostic antigen. We have assessed HBHA-specific intracellular IFN-γ, interleukin-2 (IL-2), and IL-17 production by CD4(+) T cells in TB cases and household contacts (HHCs) as well as the level of secreted IFN-γ in whole-blood culture supernatant. HHCs were further classified as tuberculin skin test (TST) positive or negative, and the group was also divided as HIV positive or negative. Our study revealed that HBHA induces multifunctional IFN-γ-, IL-2-, and IL-17-coexpressing CD4(+) T cells in HHCs but not in active TB cases; however, IFN-γ levels in culture supernatant did not differ between participant groups. Further studies are needed to completely understand how HBHA induces immune responses in different disease groups.
Collapse
|
38
|
Added value of use of a purified protein derivative-based enzyme-linked immunosorbent spot assay for patients with Mycobacterium bovis BCG infection after intravesical BCG instillations. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:974-7. [PMID: 22461529 DOI: 10.1128/cvi.05597-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this case series, we describe four cases in which the use of gamma interferon release assays with purified protein derivative (PPD) as a stimulating antigen was able to demonstrate PPD-specific immune activation. This may help to improve the adequate diagnosis of (systemic) Mycobacterium bovis BCG infections after intravesical BCG instillations for bladder carcinoma.
Collapse
|
39
|
Scriba TJ, Tameris M, Smit E, van der Merwe L, Hughes EJ, Kadira B, Mauff K, Moyo S, Brittain N, Lawrie A, Mulenga H, de Kock M, Makhethe L, Janse van Rensburg E, Gelderbloem S, Veldsman A, Hatherill M, Geldenhuys H, Hill AVS, Hawkridge A, Hussey GD, Hanekom WA, McShane H, Mahomed H. A phase IIa trial of the new tuberculosis vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis-infected adults. Am J Respir Crit Care Med 2012; 185:769-78. [PMID: 22281831 DOI: 10.1164/rccm.201108-1548oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Novel tuberculosis (TB) vaccines should be safe and effective in populations infected with Mycobacterium tuberculosis (M.tb) and/or HIV for effective TB control. OBJECTIVE To determine the safety and immunogenicity of MVA85A, a novel TB vaccine, among M.tb- and/or HIV-infected persons in a setting where TB and HIV are endemic. METHODS An open-label, phase IIa trial was conducted in 48 adults with M.tb and/or HIV infection. Safety and immunogenicity were analyzed up to 52 weeks after intradermal vaccination with 5 × 10(7) plaque-forming units of MVA85A. Specific T-cell responses were characterized by IFN-γ enzyme-linked immunospot and whole blood intracellular cytokine staining assays. MEASUREMENTS AND MAIN RESULTS MVA85A was well tolerated and no vaccine-related serious adverse events were recorded. MVA85A induced robust and durable response of mostly polyfunctional CD4(+) T cells, coexpressing IFN-γ, tumor necrosis factor-α, and IL-2. Magnitudes of pre- and postvaccination T-cell responses were lower in HIV-infected, compared with HIV-uninfected, vaccinees. No significant effect of antiretroviral therapy on immunogenicity of MVA85A was observed. CONCLUSIONS MVA85A was safe and immunogenic in persons with HIV and/or M.tb infection. These results support further evaluation of safety and efficacy of this vaccine for prevention of TB in these target populations.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine, and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Randhawa AK, Shey MS, Keyser A, Peixoto B, Wells RD, de Kock M, Lerumo L, Hughes J, Hussey G, Hawkridge A, Kaplan G, Hanekom WA, Hawn TR. Association of human TLR1 and TLR6 deficiency with altered immune responses to BCG vaccination in South African infants. PLoS Pathog 2011; 7:e1002174. [PMID: 21852947 PMCID: PMC3154845 DOI: 10.1371/journal.ppat.1002174] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 06/06/2011] [Indexed: 12/19/2022] Open
Abstract
The development of effective immunoprophylaxis against tuberculosis (TB) remains a global priority, but is hampered by a partially protective Bacillus Calmette-Guérin (BCG) vaccine and an incomplete understanding of the mechanisms of immunity to Mycobacterium tuberculosis. Although host genetic factors may be a primary reason for BCG's variable and inadequate efficacy, this possibility has not been intensively examined. We hypothesized that Toll-like receptor (TLR) variation is associated with altered in vivo immune responses to BCG. We examined whether functionally defined TLR pathway polymorphisms were associated with T cell cytokine responses in whole blood stimulated ex vivo with BCG 10 weeks after newborn BCG vaccination of South African infants. In the primary analysis, polymorphism TLR6_C745T (P249S) was associated with increased BCG-induced IFN-γ in both discovery (n = 240) and validation (n = 240) cohorts. In secondary analyses of the combined cohort, TLR1_T1805G (I602S) and TLR6_G1083C (synonymous) were associated with increased IFN-γ, TLR6_G1083C and TLR6_C745T were associated with increased IL-2, and TLR1_A1188T was associated with increased IFN-γ and IL-2. For each of these polymorphisms, the hypo-responsive allele, as defined by innate immunity signaling assays, was associated with increased production of TH1-type T cell cytokines (IFN-γ or IL-2). After stimulation with TLR1/6 lipopeptide ligands, PBMCs from TLR1/6-deficient individuals (stratified by TLR1_T1805G and TLR6_C745T hyporesponsive genotypes) secreted lower amounts of IL-6 and IL-10 compared to those with responsive TLR1/6 genotypes. In contrast, no IL-12p70 was secreted by PBMCs or monocytes. These data support a mechanism where TLR1/6 polymorphisms modulate TH1 T-cell polarization through genetic regulation of monocyte IL-10 secretion in the absence of IL-12. These studies provide evidence that functionally defined innate immune gene variants are associated with the development of adaptive immune responses after in vivo vaccination against a bacterial pathogen in humans. These findings could potentially guide novel adjuvant vaccine strategies as well as have implications for IFN-γ-based diagnostic testing for TB. Tuberculosis (TB) is one of the leading infectious causes of death worldwide. The current vaccine for TB, BCG, is widely used but it is not highly effective in preventing disease. We investigated the role of host genetics in the immune response to BCG vaccination. We found that variants of innate immunity genes (TLR1 and TLR6) were associated with BCG-induced immune responses after vaccination. These findings may guide new strategies for vaccine development as well as diagnosis of TB.
Collapse
Affiliation(s)
- April Kaur Randhawa
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Muki S. Shey
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, South Africa
| | - Alana Keyser
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, South Africa
| | - Blas Peixoto
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Richard D. Wells
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Marwou de Kock
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, South Africa
| | - Lesedi Lerumo
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, South Africa
| | - Jane Hughes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, South Africa
| | - Gregory Hussey
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, South Africa
| | - Anthony Hawkridge
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, South Africa
| | - Gilla Kaplan
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, South Africa
| | - Thomas R. Hawn
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
41
|
Detection of proliferative responses to ESAT-6 and CFP-10 by FASCIA assay for diagnosis of Mycobacterium tuberculosis infection. J Immunol Methods 2011; 370:55-64. [DOI: 10.1016/j.jim.2011.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/23/2011] [Accepted: 05/23/2011] [Indexed: 01/28/2023]
|
42
|
Abstract
Effective prophylactic and/or therapeutic vaccination is a key strategy for controlling the global TB epidemic. The partial effectiveness of the existing TB vaccine, bacille Calmette-Guérin (BCG), suggests effective vaccination is possible and highlights the need for an improved vaccination strategy. Clinical trials are evaluating both modifications to the existing BCG immunization methods and also novel TB vaccines, designed to replace or boost BCG. Candidate vaccines in clinical development include live mycobacterial vaccines designed to replace BCG, subunit vaccines designed to boost BCG and therapeutic vaccines designed as an adjunct to chemotherapy. There is a great need for validated animal models, identification of immunological biomarkers of protection and field sites with the capacity for large-scale efficacy testing in order to develop and license a novel TB vaccine or regimen.
Collapse
Affiliation(s)
- Rosalind Rowland
- The Jenner Institute, Old Road Campus Research Building, Oxford University, Oxford, OX3 7DQ, UK
| | - Helen McShane
- The Jenner Institute, Old Road Campus Research Building, Oxford University, Oxford, OX3 7DQ, UK
| |
Collapse
|
43
|
Perry S, Hussain R, Parsonnet J. The impact of mucosal infections on acquisition and progression of tuberculosis. Mucosal Immunol 2011; 4:246-51. [PMID: 21412228 PMCID: PMC5480373 DOI: 10.1038/mi.2011.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than one-third of the world's population, or over 2 billion people, are infected with Mycobacterium tuberculosis, the causative pathogen of tuberculosis in humans. Why only 10% of those infected develop active disease while the remainder harbor latent infection remains one of the greatest scientific and public health mysteries. Bacterial persistence is characterized by a dynamic state of immunological tolerance between pathogen and host. The critical role of CD4(+) T cells in defense against intracellular pathogens became evident during epidemiological studies of HIV-1 infection, which showed a clear inverse relationship between CD4(+) T-cell count in peripheral blood and increased risk of infection with M. tuberculosis, pneumocystis and Toxoplasma gondii. There is also growing evidence of a common mucosal immune system, whereby immune cells activated at one mucosal site may disseminate to remote effector sites. In this commentary, we review emerging evidence from human studies that the outcome of M. tuberculosis infection is influenced by concurrent mucosal infections, using Helicobacter pylori and geohelminths as examples. Understanding how the complexity of microbial exposures influences host immunity may have important implications for vaccine development and therapeutic interventions.
Collapse
Affiliation(s)
- S Perry
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - R Hussain
- Department of Molecular Biology, Aga Khan University, Karachi, Pakistan
| | - J Parsonnet
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
44
|
Ho P, Wei X, Seah GT. Regulatory T cells induced by Mycobacterium chelonae sensitization influence murine responses to bacille Calmette-Guerin. J Leukoc Biol 2010; 88:1073-80. [PMID: 20651297 DOI: 10.1189/jlb.0809582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The efficacy of live Mycobacterium bovis BCG as a tuberculosis vaccine is highly varied globally. Differential sensitization to environmental mycobacteria prior to BCG vaccination may prime immune effects leading to this variation, but the precise immune mechanisms and cell types involved in this phenomenon are unknown. We hypothesized that pre-vaccination sensitization to environmental mycobacteria induces mycobacterium-specific Tregs that suppress responses to BCG. This was investigated by testing Treg responses following priming of BALB/c mice by i.p. immunization with heat-killed CHE. Such mice produced higher levels of IL-10 before and after intranasal, live BCG administration and had fewer lung inflammatory cells post-BCG, relative to nonsensitized mice. In CHE-sensitized mice, the percentage of splenic CD4+CD25+ cells expressing Foxp3 amongst total lymphocytes was not elevated significantly, but these cells limited nonspecific proliferation of CD4+CD25⁻ effector cells upon coculture and promoted higher expression levels of CD103 and Foxp3 in response to BCG antigen stimulation than CD4+CD25+ cells from nonsensitized mice. In adoptive transfer experiments, naïve, WT mice receiving CD4+CD25+ cells from CHE-sensitized mice and then given live BCG intranasally had significantly elevated lung IL-10 levels, reduced frequencies of lung IL-2-producing cells, and lower lymphocyte numbers in the BAL. Therefore, CHE sensitization induced CD4+CD25+ Tregs with functional, suppressive activity on BCG responses in vitro and in vivo. Treg induction could therefore be one mechanism underlying how environmental mycobacteria priming modulates host responses to the BCG vaccine.
Collapse
Affiliation(s)
- Peiying Ho
- Department of Microbiology and Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
45
|
Burl S, Adetifa UJ, Cox M, Touray E, Ota MO, Marchant A, Whittle H, McShane H, Rowland-Jones SL, Flanagan KL. Delaying Bacillus Calmette-Guérin Vaccination from Birth to 4 1/2 Months of Age Reduces Postvaccination Th1 and IL-17 Responses but Leads to Comparable Mycobacterial Responses at 9 Months of Age. THE JOURNAL OF IMMUNOLOGY 2010; 185:2620-8. [DOI: 10.4049/jimmunol.1000552] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Abstract
There has never been a greater need for a new protective tuberculosis vaccine. Bacille Calmette-Guerin remains the cornerstone of any vaccine strategy, but improving its immunogenicity and efficacy has now become an urgent global health priority. This review discusses the main vaccines currently in clinical development and other novel vaccine strategies in the pipeline. It addresses the key questions in vaccine design, including antigen selection, route of vaccine delivery and immune correlates of vaccine-induced protection. There is an opportunity to identify such correlates from ongoing and future Phase II/III trials and, as these emerge, they can be used to validate the most relevant and predictive animal models with which to develop the next generation of new vaccines.
Collapse
Affiliation(s)
- Angela M Minassian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Level 2, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
47
|
Pan W, Matizirofa L, Workman L, Hawkridge T, Hanekom W, Mahomed H, Hussey G, Hatherill M. Comparison of mantoux and tine tuberculin skin tests in BCG-vaccinated children investigated for tuberculosis. PLoS One 2009; 4:e8085. [PMID: 19956612 PMCID: PMC2779491 DOI: 10.1371/journal.pone.0008085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/13/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Tuberculin skin tests (TSTs) are long-established screening methods for tuberculosis (TB). We aimed to compare agreement between the intradermal Mantoux and multipuncture percutaneous Tine methods and to quantify risk factors for a positive test result. METHODOLOGY/PRINCIPAL FINDINGS 1512 South African children younger than 5 years of age who were investigated for tuberculosis (TB) during a Bacille Calmette Guerin (BCG) trial were included in this analysis. Children underwent both Mantoux and Tine tests. A positive test was defined as Mantoux >or=15 mm or Tine >or= Grade 3 for the binary comparison. Agreement was evaluated using kappa (binary) and weighted kappa (hierarchical). Multivariate regression models identified independent risk factors for TST positivity. The Mantoux test was positive in 430 children (28.4%) and the Tine test in 496 children (32.8%, p<0.0001), with observed binary agreement 87.3% (kappa 0.70) and hierarchical agreement 85.0% (weighted kappa 0.66). Among 173 children culture-positive for Mycobacterium tuberculosis, Mantoux was positive in 49.1% and Tine in 54.9%, p<0.0001 (kappa 0.70). Evidence of digit preference was noted for Mantoux readings at 5 mm threshold intervals. After adjustment for confounders, a positive culture, suggestive chest radiograph, and proximity of TB contact were risk factors for a positive test using both TST methods. There were no independent associations between ethnicity, gender, age, or over-crowding, and TST result. CONCLUSIONS/SIGNIFICANCE The Tine test demonstrated a higher positive test rate than the Mantoux, with substantial agreement between TST methods among young BCG-vaccinated children. TB disease and exposure factors, but not demographic variables, were independent risk factors for a positive result using either test method. These findings suggest that the Tine might be a useful screening tool for childhood TB in resource-limited countries.
Collapse
Affiliation(s)
- Wenli Pan
- Department of Health, Haikou, Hainan Province, China
- German Academic Exchange Service (DAAD) Program, Charite Medical University, Berlin, Germany
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lyness Matizirofa
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Tony Hawkridge
- Aeras Global TB Vaccine Foundation, Rockville, Maryland, United States of America
| | - Willem Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Gregory Hussey
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
48
|
Butera O, Chiacchio T, Carrara S, Casetti R, Vanini V, Meraviglia S, Guggino G, Dieli F, Vecchi M, Lauria FN, Marruchella A, Laurenti P, Singh M, Caccamo N, Girardi E, Goletti D. New tools for detecting latent tuberculosis infection: evaluation of RD1-specific long-term response. BMC Infect Dis 2009; 9:182. [PMID: 19930588 PMCID: PMC2784468 DOI: 10.1186/1471-2334-9-182] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 11/21/2009] [Indexed: 11/29/2022] Open
Abstract
Background Interferon-gamma (IFN-γ) release assays (IGRAs) were designed to detect latent tuberculosis infection (LTBI). However, discrepancies were found between the tuberculin skin test (TST) and IGRAs results that cannot be attributed to prior Bacille Calmètte Guerin vaccinations. The aim of this study was to evaluate tools for improving LTBI diagnosis by analyzing the IFN-γ response to RD1 proteins in prolonged (long-term response) whole blood tests in those subjects resulting negative to assays such as QuantiFERON-TB Gold In tube (QFT-IT). Methods The study population included 106 healthy TST+ individuals with suspected LTBI (recent contact of smear-positive TB and homeless) consecutively enrolled. As controls, 13 healthy subjects unexposed to M. tuberculosis (TST-, QFT-IT-) and 29 subjects with cured pulmonary TB were enrolled. IFN-γ whole blood response to RD1 proteins and QFT-IT were evaluated at day 1 post-culture. A prolonged test evaluating long-term IFN-γ response (7-day) to RD1 proteins in diluted whole blood was performed. Results Among the enrolled TST+ subjects with suspected LTBI, 70/106 (66.0%) responded to QFT-IT and 64/106 (60.3%) to RD1 proteins at day 1. To evaluate whether a prolonged test could improve the detection of LTBI, we set up the test using cured TB patients (with a microbiologically diagnosed past pulmonary disease) who resulted QFT-IT-negative and healthy controls as comparator groups. Using this assay, a statistically significant difference was found between IFN-γ levels in cured TB patients compared to healthy controls (p < 0.006). Based on these data, we constructed a receiver operating characteristic (ROC) curve and we calculated a cut-off. Based on the cut-off value, we found that among the 36 enrolled TST+ subjects with suspected LTBI not responding to QFT-IT, a long term response to RD1 proteins was detected in 11 subjects (30.6%). Conclusion These results indicate that IFN-γ long-term response to M. tuberculosis RD1 antigens may be used to detect past infection with M. tuberculosis and may help to identify additional individuals with LTBI who resulted negative in the short-term tests. These data may provide useful information for improving immunodiagnostic tests for tuberculosis infection, especially in individuals at high risk for active TB.
Collapse
Affiliation(s)
- Ornella Butera
- Department of Epidemiology and Preclinical Research, L. Spallanzani National Institute for Infectious Diseases, IRCCS, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ho P, Zhang L, Wei X, Seah GT. Mycobacterium chelonaesensitisation induces CD4+-mediated cytotoxicity against BCG. Eur J Immunol 2009; 39:1841-9. [DOI: 10.1002/eji.200838933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Immunogenicity of novel DosR regulon-encoded candidate antigens of Mycobacterium tuberculosis in three high-burden populations in Africa. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1203-12. [PMID: 19553548 DOI: 10.1128/cvi.00111-09] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Increasing knowledge about DosR regulon-encoded proteins has led us to produce novel Mycobacterium tuberculosis antigens for immunogenicity testing in human populations in three countries in Africa to which tuberculosis (TB) is endemic. A total of 131 tuberculin skin test-positive and/or ESAT-6/CFP10-positive, human immunodeficiency virus-negative adult household contacts of active pulmonary TB cases from South Africa (n = 56), The Gambia (n = 26), and Uganda (n = 49) were tested for gamma interferon responses to 7 classical and 51 DosR regulon-encoded M. tuberculosis recombinant protein antigens. ESAT-6/CFP10 fusion protein evoked responses in >75% of study participants in all three countries. Of the DosR regulon-encoded antigens tested, Rv1733c was the most commonly recognized by participants from both South Africa and Uganda and the third most commonly recognized antigen in The Gambia. The four most frequently recognized DosR regulon-encoded antigens in Uganda (Rv1733c, Rv0081, Rv1735c, and Rv1737c) included the three most immunogenic antigens in South Africa. In contrast, Rv3131 induced the highest percentage of responders in Gambian contacts (38%), compared to only 3.4% of Ugandan contacts and no South African contacts. Appreciable percentages of TB contacts with a high likelihood of latent M. tuberculosis infection responded to several novel DosR regulon-encoded M. tuberculosis proteins. In addition to significant similarities in antigen recognition profiles between the three African population groups, there were also disparities, which may stem from genetic differences between both pathogen and host populations. Our findings have implications for the selection of potential TB vaccine candidates and for determining biosignatures of latent M. tuberculosis infection, active TB disease, and protective immunity.
Collapse
|