1
|
Fu X, Zhu X. Key homeobox transcription factors regulate the development of the firefly's adult light organ and bioluminescence. Nat Commun 2024; 15:1736. [PMID: 38443352 PMCID: PMC10914744 DOI: 10.1038/s41467-024-45559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
Adult fireflies exhibit unique flashing courtship signals, emitted by specialized light organs, which develop mostly independently from larval light organs during the pupal stage. The mechanisms of adult light organ development have not been thoroughly studied until now. Here we show that key homeobox transcription factors AlABD-B and AlUNC-4 regulate the development of adult light organs and bioluminescence in the firefly Aquatica leii. Interference with the expression of AlAbd-B and AlUnc-4 genes results in undeveloped or non-luminescent adult light organs. AlABD-B regulates AlUnc-4, and they interact with each other. AlABD-B and AlUNC-4 activate the expression of the luciferase gene AlLuc1 and some peroxins. Four peroxins are involved in the import of AlLUC1 into peroxisomes. Our study provides key insights into the development of adult light organs and flash signal control in fireflies.
Collapse
Affiliation(s)
- Xinhua Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xinlei Zhu
- Firefly Conservation Research Centre, Wuhan, 430070, China
| |
Collapse
|
2
|
Zuo B, Nneji LM, Sun YB. Comparative genomics reveals insights into anuran genome size evolution. BMC Genomics 2023; 24:379. [PMID: 37415107 PMCID: PMC10324214 DOI: 10.1186/s12864-023-09499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Amphibians, particularly anurans, display an enormous variation in genome size. Due to the unavailability of whole genome datasets in the past, the genomic elements and evolutionary causes of anuran genome size variation are poorly understood. To address this, we analyzed whole-genome sequences of 14 anuran species ranging in size from 1.1 to 6.8 Gb. By annotating multiple genomic elements, we investigated the genomic correlates of anuran genome size variation and further examined whether the genome size relates to habitat types. RESULTS Our results showed that intron expansions or contraction and Transposable Elements (TEs) diversity do not contribute significantly to genome size variation. However, the recent accumulation of transposable elements (TEs) and the lack of deletion of ancient TEs primarily accounted for the evolution of anuran genome sizes. Our study showed that the abundance and density of simple repeat sequences positively correlate with genome size. Ancestral state reconstruction revealed that genome size exhibits a taxon-specific pattern of evolution, with families Bufonidae and Pipidae experiencing extreme genome expansion and contraction events, respectively. Our result showed no relationship between genome size and habitat types, although large genome-sized species are predominantly found in humid habitats. CONCLUSIONS Overall, our study identified the genomic element and their evolutionary dynamics accounting for anuran genome size variation, thus paving a path to a greater understanding of the size evolution of the genome in amphibians.
Collapse
Affiliation(s)
- Bin Zuo
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
| | - Lotanna Micah Nneji
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Yan-Bo Sun
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
3
|
Genome Evolution and the Future of Phylogenomics of Non-Avian Reptiles. Animals (Basel) 2023; 13:ani13030471. [PMID: 36766360 PMCID: PMC9913427 DOI: 10.3390/ani13030471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Non-avian reptiles comprise a large proportion of amniote vertebrate diversity, with squamate reptiles-lizards and snakes-recently overtaking birds as the most species-rich tetrapod radiation. Despite displaying an extraordinary diversity of phenotypic and genomic traits, genomic resources in non-avian reptiles have accumulated more slowly than they have in mammals and birds, the remaining amniotes. Here we review the remarkable natural history of non-avian reptiles, with a focus on the physical traits, genomic characteristics, and sequence compositional patterns that comprise key axes of variation across amniotes. We argue that the high evolutionary diversity of non-avian reptiles can fuel a new generation of whole-genome phylogenomic analyses. A survey of phylogenetic investigations in non-avian reptiles shows that sequence capture-based approaches are the most commonly used, with studies of markers known as ultraconserved elements (UCEs) especially well represented. However, many other types of markers exist and are increasingly being mined from genome assemblies in silico, including some with greater information potential than UCEs for certain investigations. We discuss the importance of high-quality genomic resources and methods for bioinformatically extracting a range of marker sets from genome assemblies. Finally, we encourage herpetologists working in genomics, genetics, evolutionary biology, and other fields to work collectively towards building genomic resources for non-avian reptiles, especially squamates, that rival those already in place for mammals and birds. Overall, the development of this cross-amniote phylogenomic tree of life will contribute to illuminate interesting dimensions of biodiversity across non-avian reptiles and broader amniotes.
Collapse
|
4
|
Jakt LM, Dubin A, Johansen SD. Intron size minimisation in teleosts. BMC Genomics 2022; 23:628. [PMID: 36050638 PMCID: PMC9438311 DOI: 10.1186/s12864-022-08760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Spliceosomal introns are parts of primary transcripts that are removed by RNA splicing. Although introns apparently do not contribute to the function of the mature transcript, in vertebrates they comprise the majority of the transcribed region increasing the metabolic cost of transcription. The persistence of long introns across evolutionary time suggests functional roles that can offset this metabolic cost. The teleosts comprise one of the largest vertebrate clades. They have unusually compact and variable genome sizes and provide a suitable system for analysing intron evolution. Results We have analysed intron lengths in 172 vertebrate genomes and show that teleost intron lengths are relatively short, highly variable and bimodally distributed. Introns that were long in teleosts were also found to be long in mammals and were more likely to be found in regulatory genes and to contain conserved sequences. Our results argue that intron length has decreased in parallel in a non-random manner throughout teleost evolution and represent a deviation from the ancestral state. Conclusion Our observations indicate an accelerated rate of intron size evolution in the teleosts and that teleost introns can be divided into two classes by their length. Teleost intron sizes have evolved primarily as a side-effect of genome size evolution and small genomes are dominated by short introns (<256 base pairs). However, a non-random subset of introns has resisted this process across the teleosts and these are more likely have functional roles in all vertebrate clades. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08760-w).
Collapse
Affiliation(s)
- Lars Martin Jakt
- Faculty for bioscience and aquaculture, Nord University, Universitetsalléen 11, Bodoe, 8026, Norway.
| | - Arseny Dubin
- Faculty for bioscience and aquaculture, Nord University, Universitetsalléen 11, Bodoe, 8026, Norway.,Currently at: Parental Investment and Immune Dynamics, GEOMAR Helmholtz Centre for Ocean Research, Düsternbrookerweg 20, Kiel, D-24105, Germany
| | - Steinar Daae Johansen
- Faculty for bioscience and aquaculture, Nord University, Universitetsalléen 11, Bodoe, 8026, Norway
| |
Collapse
|
5
|
Li Y, Liu Y, Yu H, Liu F, Han W, Zeng Q, Zhang Y, Zhang L, Hu J, Bao Z, Wang S. Adaptive Bird-like Genome Miniaturization During the Evolution of Scallop Swimming Lifestyle. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1066-1077. [PMID: 35905893 DOI: 10.1016/j.gpb.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
Genome miniaturization drives key evolutionary innovations of adaptive traits in vertebrates, such as the flight evolution of birds. However, whether similar evolutionary processes exist in invertebrates remains poorly understood. Derived from the second-largest animal phylum, scallops are a special group of bivalve molluscs and acquire the evolutionary novelty of the swimming lifestyle, providing excellent models for investigating the coordinated genome and lifestyle evolution. Here, we show for the first time that genome sizes of scallops exhibit a generally negative correlation with locomotion activity. To elucidate the co-evolution of genome size and swimming lifestyle, we focus on the Asian moon scallop (Amusium pleuronectes) that possesses the smallest known scallop genome while being among scallops with the highest swimming activity. Whole-genome sequencing of A. pleuronectes reveals highly conserved chromosomal macrosynteny and microsynteny, suggestive of a highly contracted but not degenerated genome. Genome reduction of A. pleuronectes is facilitated by significant inactivation of transposable elements, leading to reduced gene length, elevated expression of genes involved in energy-producing pathways, and decreased copy numbers and expression levels of biomineralization-related genes. Similar evolutionary changes of relevant pathways are also observed for bird genome reduction with flight evolution. The striking mimicry of genome miniaturization underlying the evolution of bird flight and scallop swimming unveils the potentially common, pivotal role of genome size fluctuation in the evolution of novel lifestyles in the animal kingdom.
Collapse
Affiliation(s)
- Yuli Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yaran Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongwei Yu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fuyun Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wentao Han
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Qifan Zeng
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lingling Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Shi Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
6
|
Yang T, Sahu SK, Yang L, Liu Y, Mu W, Liu X, Strube ML, Liu H, Zhong B. Comparative Analyses of 3,654 Plastid Genomes Unravel Insights Into Evolutionary Dynamics and Phylogenetic Discordance of Green Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:808156. [PMID: 35498716 PMCID: PMC9038950 DOI: 10.3389/fpls.2022.808156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
The plastid organelle is essential for many vital cellular processes and the growth and development of plants. The availability of a large number of complete plastid genomes could be effectively utilized to understand the evolution of the plastid genomes and phylogenetic relationships among plants. We comprehensively analyzed the plastid genomes of Viridiplantae comprising 3,654 taxa from 298 families and 111 orders and compared the genomic organizations in their plastid genomic DNA among major clades, which include gene gain/loss, gene copy number, GC content, and gene blocks. We discovered that some important genes that exhibit similar functions likely formed gene blocks, such as the psb family presumably showing co-occurrence and forming gene blocks in Viridiplantae. The inverted repeats (IRs) in plastid genomes have doubled in size across land plants, and their GC content is substantially higher than non-IR genes. By employing three different data sets [all nucleotide positions (nt123), only the first and second codon positions (nt12), and amino acids (AA)], our phylogenomic analyses revealed Chlorokybales + Mesostigmatales as the earliest-branching lineage of streptophytes. Hornworts, mosses, and liverworts forming a monophylum were identified as the sister lineage of tracheophytes. Based on nt12 and AA data sets, monocots, Chloranthales and magnoliids are successive sister lineages to the eudicots + Ceratophyllales clade. The comprehensive taxon sampling and analysis of different data sets from plastid genomes recovered well-supported relationships of green plants, thereby contributing to resolving some long-standing uncertainties in the plant phylogeny.
Collapse
Affiliation(s)
- Ting Yang
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sunil Kumar Sahu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- *Correspondence: Sunil Kumar Sahu,
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yang Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Weixue Mu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Xin Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Huan Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Bojian Zhong,
| |
Collapse
|
7
|
Bravo GA, Schmitt CJ, Edwards SV. What Have We Learned from the First 500 Avian Genomes? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012121-085928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - C. Jonathan Schmitt
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| |
Collapse
|
8
|
Shnaf ASMA, Al-Khalifa MS. First constitutive heterochromatin characterization and Karyotype of white stork Ciconia ciconia (Aves: Ciconiidae). BRAZ J BIOL 2021; 83:e248814. [PMID: 34550286 DOI: 10.1590/1519-6984.248814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022] Open
Abstract
The karyotype and constitutive heterochromatin pattern of the white stork Ciconia ciconia samples obtained from Manzala lake, Dimiaat, Egypt was described. Somatic cells of Ciconia ciconia samples have diploid number 2n= 68 chromosomes. Out of 68 chromosomes, 11 pairs including sex chromosomes were macrochromosomes and the remaining pairs were microchromosomes. Of the 11 macrochromosome pairs, no.1, 2, 4 and 5 were submetacentric and pairs no. 6, 7 and 8 were described as metacentric. In addition, the autosome pair no.3 was subtelocentric, while autosome pair no.9 was acrocentric. Also, the sex chromosome Z represents the fourth one in size and it was classified as submetacentric while, W chromosome appeared as medium size and was acrocentric. Furthermore, C-banding pattern (constitutive heterochromatin) revealed variation in their sizes and occurrence between macrochromosomes. Pairs no. 7 and 8 of autosomes exhibited unusual distribution of heterochromatin, where they appeared as entirely heterochromatic. This may be related to the origin of sex chromosomes Z and W. However, there is no sufficient evidence illustrate the appearance of entirely heterochromatic autosomes. Therefore, there is no available cytogenetic literature that describes the C-banding and karyotype of Ciconia Ciconia, so the results herein are important and may assist in cytogenetic study and evolutionary pattern of Ciconiiformes.
Collapse
Affiliation(s)
- A S M Abu Shnaf
- Minia University, Faculty of Science, Department of Zoology and Entomology, Minia, Egypt
| | - M S Al-Khalifa
- King Saud University, College of Science, Department of Zoology, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Wu B, Feng C, Zhu C, Xu W, Yuan Y, Hu M, Yuan K, Li Y, Ren Y, Zhou Y, Jiang H, Qiu Q, Wang W, He S, Wang K. The Genomes of Two Billfishes Provide Insights into the Evolution of Endothermy in Teleosts. Mol Biol Evol 2021; 38:2413-2427. [PMID: 33533895 PMCID: PMC8136490 DOI: 10.1093/molbev/msab035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endothermy is a typical convergent phenomenon which has evolved independently at least eight times in vertebrates, and is of significant advantage to organisms in extending their niches. However, how vertebrates other than mammals or birds, especially teleosts, achieve endothermy has not previously been fully understood. In this study, we sequenced the genomes of two billfishes (swordfish and sailfish), members of a representative lineage of endothermic teleosts. Convergent amino acid replacements were observed in proteins related to heat production and the visual system in two endothermic teleost lineages, billfishes and tunas. The billfish-specific genetic innovations were found to be associated with heat exchange, thermoregulation, and the specialized morphology, including elongated bill, enlarged dorsal fin in sailfish and loss of the pelvic fin in swordfish.
Collapse
Affiliation(s)
- Baosheng Wu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenguang Feng
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China.,The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chenglong Zhu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wenjie Xu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuan Yuan
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Mingliang Hu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke Yuan
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yongxin Li
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yandong Ren
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yang Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Qiu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wen Wang
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
10
|
Carducci F, Carotti E, Gerdol M, Greco S, Canapa A, Barucca M, Biscotti MA. Investigation of the activity of transposable elements and genes involved in their silencing in the newt Cynops orientalis, a species with a giant genome. Sci Rep 2021; 11:14743. [PMID: 34285310 PMCID: PMC8292531 DOI: 10.1038/s41598-021-94193-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Caudata is an order of amphibians with great variation in genome size, which can reach enormous dimensions in salamanders. In this work, we analysed the activity of transposable elements (TEs) in the transcriptomes obtained from female and male gonads of the Chinese fire-bellied newt, Cynops orientalis, a species with a genome about 12-fold larger than the human genome. We also compared these data with genomes of two basal sarcopterygians, coelacanth and lungfish. In the newt our findings highlighted a major impact of non-LTR retroelements and a greater total TE activity compared to the lungfish Protopterus annectens, an organism also characterized by a giant genome. This difference in TE activity might be due to the presence of young copies in newt in agreement also with the increase in the genome size, an event that occurred independently and later than lungfish. Moreover, the activity of 33 target genes encoding proteins involved in the TE host silencing mechanisms, such as Ago/Piwi and NuRD complex, was evaluated and compared between the three species analysed. These data revealed high transcriptional levels of the target genes in both newt and lungfish and confirmed the activity of NuRD complex genes in adults. Finally, phylogenetic analyses performed on PRDM9 and TRIM28 allowed increasing knowledge about the evolution of these two key genes of the NuRD complex silencing mechanism in vertebrates. Our results confirmed that the gigantism of the newt genomes may be attributed to the activity and accumulation of TEs.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisa Carotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via L. Giorgieri, 5, 34127, Trieste, Italy
| | - Samuele Greco
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via L. Giorgieri, 5, 34127, Trieste, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
11
|
Legendre LJ, Clarke JA. Shifts in eggshell thickness are related to changes in locomotor ecology in dinosaurs. Evolution 2021; 75:1415-1430. [PMID: 33913155 DOI: 10.1111/evo.14245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Birds share an array of unique characteristics among extant land vertebrates. Among these, external and microstructural characteristics of extant bird eggs have been linked to changes in reproductive strategy that arose among non-avian theropod dinosaurs. More recently, differences in egg proportions recovered in crown birds relative to other dinosaurs were suggested as possibly linked to avian flight, but dense sampling close to its proposed origin was lacking. Here we assess the evolution of eggshell thickness in a targeted sample of 114 dinosaurs including birds, and test the relationship of eggshell thickness with potential life history correlates and locomotor mode using phylogenetic comparative methods. Only egg mass and flight are identified as significant predictors of eggshell thickness. While a high correlation between egg mass and eggshell thickness is expected, that relationship is much stronger in flying taxa, which show a significantly higher slope and lower residual variance than flightless species. This suggests stabilizing selection of eggshell thickness among theropods, as recovered for other traits in extant birds (e.g. genome size, metabolic rate). Within living birds, Eufalconimorphae present an apomorphic increase in relative eggshell thickness which remains unexplained, as few morphological synapomorphies of this clade have been identified.
Collapse
Affiliation(s)
- Lucas J Legendre
- Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA
| | - Julia A Clarke
- Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Glazier DS. Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem. BIOLOGY 2021; 10:270. [PMID: 33810583 PMCID: PMC8067107 DOI: 10.3390/biology10040270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei ('genome size'). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has evolved is little understood. Here, I show that genome size correlates more positively with egg size than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of animals and plants as resulting from genome size relating strongly to cell size in most organisms, which should also apply to single-celled eggs and other reproductive propagules with relatively few cells that are pivotal first steps in their lives. However, since body size results from growth in cell size or number or both, it relates to genome size in diverse ways. Relationships between genome size and body size should be especially weak in large organisms whose size relates more to cell multiplication than to cell enlargement, as is generally observed. The ubiquitous single-cell 'bottleneck' of life cycles may affect both genome size and composition, and via both informational (genotypic) and non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates of growth and metabolism) that have both theoretical and practical significance.
Collapse
|
13
|
Lamichhaney S, Catullo R, Keogh JS, Clulow S, Edwards SV, Ezaz T. A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog, Platyplectrum ornatum. Proc Natl Acad Sci U S A 2021; 118:e2011649118. [PMID: 33836564 PMCID: PMC7980411 DOI: 10.1073/pnas.2011649118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The diversity of genome sizes across the tree of life is of key interest in evolutionary biology. Various correlates of variation in genome size, such as accumulation of transposable elements (TEs) or rate of DNA gain and loss, are well known, but the underlying molecular mechanisms driving or constraining genome size are poorly understood. Here, we study one of the smallest genomes among frogs characterized thus far, that of the ornate burrowing frog (Platyplectrum ornatum) from Australia, and compare it to other published frog and vertebrate genomes to examine the forces driving reduction in genome size. At ∼1.06 gigabases (Gb), the P. ornatum genome is like that of birds, revealing four major mechanisms underlying TE dynamics: reduced abundance of all major classes of TEs; increased net deletion bias in TEs; drastic reduction in intron lengths; and expansion via gene duplication of the repertoire of TE-suppressing Piwi genes, accompanied by increased expression of Piwi-interacting RNA (piRNA)-based TE-silencing pathway genes in germline cells. Transcriptomes from multiple tissues in both sexes corroborate these results and provide insight into sex-differentiation pathways in Platyplectrum Genome skimming of two closely related frog species (Lechriodus fletcheri and Limnodynastes fletcheri) confirms a reduction in TEs as a major driver of genome reduction in Platyplectrum and supports a macroevolutionary scenario of small genome size in frogs driven by convergence in life history, especially rapid tadpole development and tadpole diet. The P. ornatum genome offers a model for future comparative studies on mechanisms of genome size reduction in amphibians and vertebrates generally.
Collapse
Affiliation(s)
- Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Renee Catullo
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, Australia 2601
- Australian National Insect Collection and Future Science Platform Environomics, Commonwealth Scientific and Industrial Research Organization, Acton, ACT, Australia 2601
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, Australia 2601
| | - Simon Clulow
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia 2109
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Tariq Ezaz
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia 2617
| |
Collapse
|
14
|
Cabaña I, Chiaraviglio M, Di Cola V, Guisan A, Broennimann O, Gardenal CN, Rivera PC. Hybridization and hybrid zone stability between two lizards explained by population genetics and niche quantification. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractUnderstanding the factors that affect hybridization is an important issue in the study of species evolution. In this work, we analyse the genetic structure of two lizard species, Salvator merianae and Salvator rufescens, at a microscale within a climatic niche analysis framework, to reveal the main factors that contribute to the stability of their hybrid zone. We assess the effect of climate in hybridization by quantifying and decomposing the niche overlap of both species. Using a mitochondrial and a nuclear marker, we find that hybridization is frequent and is not restricted to the sympatric region. The gene flow is mainly from S. rufescens to S. merianae, with introgression into the range of S. merianae. Also, S. merianae would have long been present in the area, while S. rufescens appears to be a recent colonizer. The climate contributes to the population structure of S. merianae, but not to that of S. rufescens. The niches occupied by S. rufescens in the hybrid zone and the non-hybrid zone are similar, while the niches of S. merianae are different. Our results do not fit previous models of hybrid zone stability, suggesting the need to develop new models that consider the evolutionary factors that can differentially affect parental species and hybrids.
Collapse
Affiliation(s)
- Imanol Cabaña
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Margarita Chiaraviglio
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Valeria Di Cola
- Department of Ecology & Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Antoine Guisan
- Department of Ecology & Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- Institute of Earth Surface Dynamics, Geopolis, University of Lausanne, Lausanne, Switzerland
| | - Olivier Broennimann
- Department of Ecology & Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- Institute of Earth Surface Dynamics, Geopolis, University of Lausanne, Lausanne, Switzerland
| | - Cristina N Gardenal
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula C Rivera
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Universidad Nacional de Chilecito, La Rioja, Argentina
| |
Collapse
|
15
|
Gardner JD, Laurin M, Organ CL. The relationship between genome size and metabolic rate in extant vertebrates. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190146. [PMID: 31928192 PMCID: PMC7017434 DOI: 10.1098/rstb.2019.0146] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Genome size has long been hypothesized to affect the metabolic rate in various groups of animals. The mechanism behind this proposed association is the nucleotypic effect, in which large nucleus and cell sizes influence cellular metabolism through surface area-to-volume ratios. Here, we provide a review of the recent literature on the relationship between genome size and metabolic rate. We also conduct an analysis using phylogenetic comparative methods and a large sample of extant vertebrates. We find no evidence that the effect of genome size improves upon models in explaining metabolic rate variation. Not surprisingly, our results show a strong positive relationship between metabolic rate and body mass, as well as a substantial difference in metabolic rate between endothermic and ectothermic vertebrates, controlling for body mass. The presence of endothermy can also explain elevated rate shifts in metabolic rate whereas genome size cannot. We further find no evidence for a punctuated model of evolution for metabolic rate. Our results do not rule out the possibility that genome size affects cellular physiology in some tissues, but they are consistent with previous research suggesting little support for a direct functional connection between genome size and basal metabolic rate in extant vertebrates. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Jacob D. Gardner
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Michel Laurin
- Centre de Recherches sur la Paléobiologie et les Paléoenvironnements (CR2P), Centre National de la Recherche Scientifique (CNRS)/Muséum National d'Histoire Naturelle (MNHN)/Sorbonne Université, Paris, France
| | - Chris L. Organ
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
16
|
Legendre LJ, Davesne D. The evolution of mechanisms involved in vertebrate endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190136. [PMID: 31928191 DOI: 10.1098/rstb.2019.0136] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endothermy, i.e. the endogenous production of metabolic heat, has evolved multiple times among vertebrates, and several strategies of heat production have been studied extensively by physiologists over the course of the twentieth century. The independent acquisition of endothermy by mammals and birds has been the subject of many hypotheses regarding their origin and associated evolutionary constraints. Many groups of vertebrates, however, are thought to possess other mechanisms of heat production, and alternative ways to regulate thermogenesis that are not always considered in the palaeontological literature. Here, we perform a review of the mechanisms involved in heat production, with a focus on cellular and molecular mechanisms, in a phylogenetic context encompassing the entire vertebrate diversity. We show that endothermy in mammals and birds is not as well defined as commonly assumed by evolutionary biologists and consists of a vast array of physiological strategies, many of which are currently unknown. We also describe strategies found in other vertebrates, which may not always be considered endothermy, but nonetheless correspond to a process of active thermogenesis. We conclude that endothermy is a highly plastic character in vertebrates and provides a guideline on terminology and occurrences of the different types of heat production in vertebrate evolution. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Lucas J Legendre
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Donald Davesne
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
|
18
|
Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting. Genes (Basel) 2018; 9:genes9040181. [PMID: 29584697 PMCID: PMC5924523 DOI: 10.3390/genes9040181] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 11/17/2022] Open
Abstract
In the last few decades, there have been great efforts to reconstruct the phylogeny of Neoaves based mainly on DNA sequencing. Despite the importance of karyotype data in phylogenetic studies, especially with the advent of fluorescence in situ hybridization (FISH) techniques using different types of probes, the use of chromosomal data to clarify phylogenetic proposals is still minimal. Additionally, comparative chromosome painting in birds is restricted to a few orders, while in mammals, for example, virtually all orders have already been analyzed using this method. Most reports are based on comparisons using Gallus gallus probes, and only a small number of species have been analyzed with more informative sets of probes, such as those from Leucopternis albicollis and Gyps fulvus, which show ancestral macrochromosomes rearranged in alternative patterns. Despite this, it is appropriate to review the available cytogenetic information and possible phylogenetic conclusions. In this report, the authors gather both classical and molecular cytogenetic data and describe some interesting and unique characteristics of karyotype evolution in birds.
Collapse
|
19
|
Rastogi A, Maheswari U, Dorrell RG, Vieira FRJ, Maumus F, Kustka A, McCarthy J, Allen AE, Kersey P, Bowler C, Tirichine L. Integrative analysis of large scale transcriptome data draws a comprehensive landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms. Sci Rep 2018; 8:4834. [PMID: 29556065 PMCID: PMC5859163 DOI: 10.1038/s41598-018-23106-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Diatoms are one of the most successful and ecologically important groups of eukaryotic phytoplankton in the modern ocean. Deciphering their genomes is a key step towards better understanding of their biological innovations, evolutionary origins, and ecological underpinnings. Here, we have used 90 RNA-Seq datasets from different growth conditions combined with published expressed sequence tags and protein sequences from multiple taxa to explore the genome of the model diatom Phaeodactylum tricornutum, and introduce 1,489 novel genes. The new annotation additionally permitted the discovery of extensive alternative splicing in diatoms, including intron retention and exon skipping, which increase the diversity of transcripts generated in changing environments. In addition, we have used up-to-date reference sequence libraries to dissect the taxonomic origins of diatom genes. We show that the P. tricornutum genome is enriched in lineage-specific genes, with up to 47% of the gene models present only possessing orthologues in other stramenopile groups. Finally, we have performed a comprehensive de novo annotation of repetitive elements showing novel classes of transposable elements such as SINE, MITE and TRIM/LARD. This work provides a solid foundation for future studies of diatom gene function, evolution and ecology.
Collapse
Affiliation(s)
- Achal Rastogi
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 75005, Paris, France
| | - Uma Maheswari
- EMBL-EBI, Wellcome Trust Genome Campus, Cambridge, CB10 1 SD, United Kingdom
| | - Richard G Dorrell
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 75005, Paris, France
| | - Fabio Rocha Jimenez Vieira
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 75005, Paris, France
| | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, Versailles, 78026, France
| | - Adam Kustka
- Earth and Environmental Sciences, Rutgers University, 101 Warren Street, 07102, Newark, New Jersey, USA
| | - James McCarthy
- J. Craig Venter Institute, 10355 Science Center Drive, 92121, San Diego, California, USA
| | - Andy E Allen
- J. Craig Venter Institute, 10355 Science Center Drive, 92121, San Diego, California, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Paul Kersey
- EMBL-EBI, Wellcome Trust Genome Campus, Cambridge, CB10 1 SD, United Kingdom
| | - Chris Bowler
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 75005, Paris, France.
| | - Leila Tirichine
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 75005, Paris, France.
| |
Collapse
|
20
|
Alternative methods of phylogenetic inference for the Patagonian lizard group Liolaemus elongatus-kriegi (Iguania: Liolaemini) based on mitochondrial and nuclear markers. Mol Phylogenet Evol 2018; 120:158-169. [DOI: 10.1016/j.ympev.2017.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022]
|
21
|
Edwards SV, Cloutier A, Baker AJ. Conserved Nonexonic Elements: A Novel Class of Marker for Phylogenomics. Syst Biol 2017; 66:1028-1044. [PMID: 28637293 PMCID: PMC5790140 DOI: 10.1093/sysbio/syx058] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 01/12/2023] Open
Abstract
Noncoding markers have a particular appeal as tools for phylogenomic analysis because, at least in vertebrates, they appear less subject to strong variation in GC content among lineages. Thus far, ultraconserved elements (UCEs) and introns have been the most widely used noncoding markers. Here we analyze and study the evolutionary properties of a new type of noncoding marker, conserved nonexonic elements (CNEEs), which consists of noncoding elements that are estimated to evolve slower than the neutral rate across a set of species. Although they often include UCEs, CNEEs are distinct from UCEs because they are not ultraconserved, and, most importantly, the core region alone is analyzed, rather than both the core and its flanking regions. Using a data set of 16 birds plus an alligator outgroup, and ∼3600-∼3800 loci per marker type, we found that although CNEEs were less variable than bioinformatically derived UCEs or introns and in some cases exhibited a slower approach to branch resolution as determined by phylogenomic subsampling, the quality of CNEE alignments was superior to those of the other markers, with fewer gaps and missing species. Phylogenetic resolution using coalescent approaches was comparable among the three marker types, with most nodes being fully and congruently resolved. Comparison of phylogenetic results across the three marker types indicated that one branch, the sister group to the passerine + falcon clade, was resolved differently and with moderate (>70%) bootstrap support between CNEEs and UCEs or introns. Overall, CNEEs appear to be promising as phylogenomic markers, yielding phylogenetic resolution as high as for UCEs and introns but with fewer gaps, less ambiguity in alignments and with patterns of nucleotide substitution more consistent with the assumptions of commonly used methods of phylogenetic analysis.
Collapse
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, 26 Oxford Street, Harvard University, Cambridge, MA 02138 USA
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, 26 Oxford Street, Harvard University, Cambridge, MA 02138 USA
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, M5S 2C6 Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, Ontario, M5S 3B2 Canada
| | - Allan J. Baker
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, M5S 2C6 Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, Ontario, M5S 3B2 Canada
| |
Collapse
|
22
|
Tollis M, DeNardo DF, Cornelius JA, Dolby GA, Edwards T, Henen BT, Karl AE, Murphy RW, Kusumi K. The Agassiz's desert tortoise genome provides a resource for the conservation of a threatened species. PLoS One 2017; 12:e0177708. [PMID: 28562605 PMCID: PMC5451010 DOI: 10.1371/journal.pone.0177708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Agassiz's desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.
Collapse
Affiliation(s)
- Marc Tollis
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Dale F. DeNardo
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - John A. Cornelius
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Greer A. Dolby
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Taylor Edwards
- University of Arizona Genetics Core, University of Arizona, Tucson, Arizona, United States of America
| | - Brian T. Henen
- Natural Resources and Environmental Affairs, Marine Air Ground Task Force Training Command, Marine Corps Air Ground Combat Center, Twentynine Palms, California, United States of America
| | - Alice E. Karl
- Alice E. Karl and Associates, Davis, California, United States of America
| | - Robert W. Murphy
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Canada
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
23
|
The genome sequence and insights into the immunogenetics of the bananaquit (Passeriformes: Coereba flaveola). Immunogenetics 2016; 69:175-186. [PMID: 27888301 DOI: 10.1007/s00251-016-0960-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
Abstract
Avian genomics, especially of non-model species, is in its infancy relative to mammalian genomics. Here, we describe the sequencing, assembly, and annotation of a new avian genome, that of the bananaquit Coereba flaveola (Passeriformes: Thraupidae). We produced ∼30-fold coverage of the genome with an assembly size of ca. 1.2 Gb, including approximately 16,500 annotated genes. Passerine birds, such as the bananaquit, are commonly infected by avian malarial parasites (Haemosporida), which presumably drive adaptive evolution of immunogenetic loci within the host genome. In the context of our research on the distribution of avian Haemosporida, we specifically characterized immune loci, including toll-like receptor (TLR) and major histocompatibility complex (MHC) genes. Additionally, we identified novel molecular markers in the form of single nucleotide polymorphisms (SNPs), both genome-wide and within identified immune loci. We discovered nine TLR genes and four MHC genes and identified five other TLR- or MHC- associated genes. Genome-wide, over 6 million high-quality SNPs were annotated, including 568 within TLR genes and 102 in MHC genes. This newly described genome and immune characterization expands the knowledge base for avian genomics and phylogenetics and allows for immune genotyping in the bananaquit, providing tools for the investigation of host-parasite coevolution.
Collapse
|
24
|
Sturge RJ, Cortés-Rodríguez MN, Rojas-Soto OR, Omland KE. Nuclear locus divergence at the early stages of speciation in the Orchard Oriole complex. Ecol Evol 2016; 6:4307-17. [PMID: 27386077 PMCID: PMC4930982 DOI: 10.1002/ece3.2168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022] Open
Abstract
As two lineages diverge from one another, mitochondrial DNA should evolve fixed differences more rapidly than nuclear DNA due to its smaller effective population size and faster mutation rate. As a consequence, molecular systematists have focused on the criteria of reciprocal monophyly in mitochondrial DNA for delimiting species boundaries. However, mitochondrial gene trees do not necessarily reflect the evolutionary history of the taxa in question, and even mitochondrial loci are not expected to be reciprocally monophyletic when the speciation event happened very recently. The goal of this study was to examine mitochondrial paraphyly within the Orchard Oriole complex, which is composed of Icterus spurius (Orchard Oriole) and Icterus fuertesi (Fuertes' Oriole). We increased the geographic sampling, added four nuclear loci, and used a range of population genetic and coalescent methods to examine the divergence between the taxa. With increased taxon sampling, we found evidence of clear structure between the taxa for mitochondrial DNA. However, nuclear loci showed little evidence of population structure, indicating a very recent divergence between I. spurius and I. fuertesi. Another goal was to examine the genetic variation within each taxon to look for evidence of a past founder event within the I. fuertesi lineage. Based on the high amounts of genetic variation for all nuclear loci, we found no evidence of such an event – thus, we found no support for the possible founding of I. fuertesi through a change in migratory behavior, followed by peripheral isolates speciation. Our results demonstrate that these two taxa are in the earliest stages of speciation, at a point when they have fixed differences in plumage color that are not reflected in monophyly of the mitochondrial or nuclear DNA markers in this study. This very recent divergence makes them ideal for continued studies of species boundaries and the earliest stages of speciation.
Collapse
Affiliation(s)
- Rachel J Sturge
- Department of Biological Sciences University of Maryland Baltimore County 1000 Hilltop Circle Baltimore Maryland 21052
| | - M Nandadevi Cortés-Rodríguez
- Department of Biological Sciences University of Maryland Baltimore County 1000 Hilltop Circle Baltimore Maryland 21052
| | - Octavio R Rojas-Soto
- Red de Biología Evolutiva Instituto de Ecología (INECOL) Carretera antigua a Coatepec 351 Xalapa 91070 Mexico
| | - Kevin E Omland
- Department of Biological Sciences University of Maryland Baltimore County 1000 Hilltop Circle Baltimore Maryland 21052
| |
Collapse
|
25
|
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenet Genome Res 2016; 147:217-39. [PMID: 26967166 DOI: 10.1159/000444429] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
The relationship between genome size and the percentage of transposons in 161 animal species evidenced that variations in genome size are linked to the amplification or the contraction of transposable elements. The activity of transposable elements could represent a response to environmental stressors. Indeed, although with different trends in protostomes and deuterostomes, comprehensive changes in genome size were recorded in concomitance with particular periods of evolutionary history or adaptations to specific environments. During evolution, genome size and the presence of transposable elements have influenced structural and functional parameters of genomes and cells. Changes of these parameters have had an impact on morphological and functional characteristics of the organism on which natural selection directly acts. Therefore, the current situation represents a balance between insertion and amplification of transposons and the mechanisms responsible for their deletion or for decreasing their activity. Among the latter, methylation and the silencing action of small RNAs likely represent the most frequent mechanisms.
Collapse
Affiliation(s)
- Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Universitx00E0; Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
26
|
Elliott TA, Gregory TR. What's in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140331. [PMID: 26323762 PMCID: PMC4571570 DOI: 10.1098/rstb.2014.0331] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2015] [Indexed: 01/13/2023] Open
Abstract
Some notable exceptions aside, eukaryotic genomes are distinguished from those of Bacteria and Archaea in a number of ways, including chromosome structure and number, repetitive DNA content, and the presence of introns in protein-coding regions. One of the most notable differences between eukaryotic and prokaryotic genomes is in size. Unlike their prokaryotic counterparts, eukaryotes exhibit enormous (more than 60,000-fold) variability in genome size which is not explained by differences in gene number. Genome size is known to correlate with cell size and division rate, and by extension with numerous organism-level traits such as metabolism, developmental rate or body size. Less well described are the relationships between genome size and other properties of the genome, such as gene content, transposable element content, base pair composition and related features. The rapid expansion of 'complete' genome sequencing projects has, for the first time, made it possible to examine these relationships across a wide range of eukaryotes in order to shed new light on the causes and correlates of genome size diversity. This study presents the results of phylogenetically informed comparisons of genome data for more than 500 species of eukaryotes. Several relationships are described between genome size and other genomic parameters, and some recommendations are presented for how these insights can be extended even more broadly in the future.
Collapse
Affiliation(s)
- Tyler A Elliott
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - T Ryan Gregory
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
27
|
Mueller RL. Genome Biology and the Evolution of Cell-Size Diversity. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a019125. [PMID: 26254312 DOI: 10.1101/cshperspect.a019125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell size is highly variable among different species across the Tree of Life. For decades, biologists have generated hypotheses to explain this variation, in many cases, drawing on the correlations that exist among cell size, genome size, nucleus size, and various physiological and developmental parameters. In recent years, our understanding of the molecular processes that generate variation in genome size over evolutionary time, as well as the processes that maintain homeostasis in cell size over ontogenetic time, has increased dramatically. The goal of this article is to highlight how information from these fields can be integrated to generate new hypotheses to explain cell-size diversity.
Collapse
|
28
|
Medina CD, Avila LJ, Sites JW, Morando M. Molecular Phylogeny of the Liolaemus kriegi Complex (Iguania, Liolaemini). HERPETOLOGICA 2015. [DOI: 10.1655/herpetologica-d-13-00083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Cintia D. Medina
- Grupo de Herpetología Patagónica, CENPAT-CONICET, Boulevard Almirante Brown 2915 U9120ACD, Puerto Madryn, Chubut, Argentina
| | - Luciano J. Avila
- Grupo de Herpetología Patagónica, CENPAT-CONICET, Boulevard Almirante Brown 2915 U9120ACD, Puerto Madryn, Chubut, Argentina
| | - Jack W. Sites
- Biology Department and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA
| | - Mariana Morando
- Grupo de Herpetología Patagónica, CENPAT-CONICET, Boulevard Almirante Brown 2915 U9120ACD, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
29
|
Meza-Lázaro RN, Nieto-Montes de Oca A. Long forsaken species diversity in the Middle American lizardHolcosus undulatus(Teiidae). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rubi Nelsi Meza-Lázaro
- Laboratorio de Herpetología; Facultad de Ciencias; Universidad Nacional Autónoma de México; Circuito exterior s/n Cd. Universitaria México 04510 DF México
| | - Adrián Nieto-Montes de Oca
- Laboratorio de Herpetología; Facultad de Ciencias; Universidad Nacional Autónoma de México; Circuito exterior s/n Cd. Universitaria México 04510 DF México
| |
Collapse
|
30
|
Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, Ödeen A, Cui J, Zhou Q, Xu L, Pan H, Wang Z, Jin L, Zhang P, Hu H, Yang W, Hu J, Xiao J, Yang Z, Liu Y, Xie Q, Yu H, Lian J, Wen P, Zhang F, Li H, Zeng Y, Xiong Z, Liu S, Zhou L, Huang Z, An N, Wang J, Zheng Q, Xiong Y, Wang G, Wang B, Wang J, Fan Y, da Fonseca RR, Alfaro-Núñez A, Schubert M, Orlando L, Mourier T, Howard JT, Ganapathy G, Pfenning A, Whitney O, Rivas MV, Hara E, Smith J, Farré M, Narayan J, Slavov G, Romanov MN, Borges R, Machado JP, Khan I, Springer MS, Gatesy J, Hoffmann FG, Opazo JC, Håstad O, Sawyer RH, Kim H, Kim KW, Kim HJ, Cho S, Li N, Huang Y, Bruford MW, Zhan X, Dixon A, Bertelsen MF, Derryberry E, Warren W, Wilson RK, Li S, Ray DA, Green RE, O'Brien SJ, Griffin D, Johnson WE, Haussler D, Ryder OA, Willerslev E, Graves GR, Alström P, Fjeldså J, Mindell DP, Edwards SV, Braun EL, Rahbek C, Burt DW, Houde P, Zhang Y, Yang H, Wang J, Jarvis ED, Gilbert MTP, Wang J. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014; 346:1311-20. [PMID: 25504712 PMCID: PMC4390078 DOI: 10.1126/science.1251385] [Citation(s) in RCA: 679] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
Collapse
Affiliation(s)
- Guojie Zhang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Cai Li
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Qiye Li
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Bo Li
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Denis M Larkin
- Royal Veterinary College, University of London, London, UK
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Agostinho Antunes
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)/Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Matthew J Greenwold
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Robert W Meredith
- Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Anders Ödeen
- Department of Animal Ecology, Uppsala University, Norbyvägen 18D, S-752 36 Uppsala, Sweden
| | - Jie Cui
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia. Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Qi Zhou
- Department of Integrative Biology University of California, Berkeley, CA 94720, USA
| | - Luohao Xu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hailin Pan
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Zongji Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Lijun Jin
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Pei Zhang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Haofu Hu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Wei Yang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Jiang Hu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Jin Xiao
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Zhikai Yang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Yang Liu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Qiaolin Xie
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Hao Yu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Jinmin Lian
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Ping Wen
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Fang Zhang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Hui Li
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Yongli Zeng
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Zijun Xiong
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Shiping Liu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Long Zhou
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Zhiyong Huang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Na An
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Jie Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. BGI Education Center,University of Chinese Academy of Sciences,Shenzhen, 518083, China
| | - Qiumei Zheng
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Yingqi Xiong
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Guangbiao Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Bo Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Jingjing Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Rute R da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Alonzo Alfaro-Núñez
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Jason T Howard
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ganeshkumar Ganapathy
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Andreas Pfenning
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Osceola Whitney
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Miriam V Rivas
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Erina Hara
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Julia Smith
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Marta Farré
- Royal Veterinary College, University of London, London, UK
| | - Jitendra Narayan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Gancho Slavov
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | | - Rui Borges
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)/Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - João Paulo Machado
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)/Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Imran Khan
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)/Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Mark S Springer
- Department of Biology, University of California Riverside, Riverside, CA 92521, USA
| | - John Gatesy
- Department of Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Olle Håstad
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Post Office Box 7011, S-750 07, Uppsala, Sweden
| | - Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kyu-Won Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyeon Jeong Kim
- Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea
| | - Seoae Cho
- Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. College of Animal Science and Technology, China Agricultural University, Beijing 100094, China
| | - Michael W Bruford
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Xiangjiang Zhan
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 China
| | - Andrew Dixon
- International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark
| | - Elizabeth Derryberry
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA. Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wesley Warren
- The Genome Institute at Washington University, St. Louis, MO 63108, USA
| | - Richard K Wilson
- The Genome Institute at Washington University, St. Louis, MO 63108, USA
| | - Shengbin Li
- College of Medicine and Forensics, Xi'an Jiaotong University, Xi'an, 710061, China
| | - David A Ray
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia. Nova Southeastern University Oceanographic Center 8000 N Ocean Drive, Dania, FL 33004, USA
| | - Darren Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Oliver A Ryder
- Genetics Division, San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Gary R Graves
- Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, Washington, DC 20013-7012, USA. Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China. Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7007, SE-750 07 Uppsala, Sweden
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark
| | - David P Mindell
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Edward L Braun
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Imperial College London, Grand Challenges in Ecosystems and the Environment Initiative, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - David W Burt
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Peter Houde
- Department of Biology, New Mexico State University, Box 30001 MSC 3AF, Las Cruces, NM 88003, USA
| | - Yong Zhang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Huanming Yang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China
| | - Jian Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6102, Australia.
| | - Jun Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Department of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|
31
|
Cabaña I, Gardenal CN, Chiaraviglio M, Rivera PC. Natural Hybridization in Lizards of the GenusTupinambis(Teiidae) in the Southernmost Contact Zone of their Distribution Range. ANN ZOOL FENN 2014. [DOI: 10.5735/086.051.0306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Morando M, Medina CD, Avila LJ, Perez CHF, Buxton A, Sites JW. Molecular phylogeny of the New World gecko genusHomonota(Squamata: Phyllodactylidae). ZOOL SCR 2014. [DOI: 10.1111/zsc.12052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariana Morando
- Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas; Boulevard Almirante Brown 2915 U9120ACD Puerto Madryn Chubut Argentina
| | - Cintia D. Medina
- Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas; Boulevard Almirante Brown 2915 U9120ACD Puerto Madryn Chubut Argentina
| | - Luciano J. Avila
- Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas; Boulevard Almirante Brown 2915 U9120ACD Puerto Madryn Chubut Argentina
| | - Cristian H. F. Perez
- Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas; Boulevard Almirante Brown 2915 U9120ACD Puerto Madryn Chubut Argentina
| | - Amy Buxton
- Department of Biology and Bean Life Science Museum, 401 WIDB; Brigham Young University; Provo UT 84602 USA
| | - Jack W. Sites
- Department of Biology and Bean Life Science Museum, 401 WIDB; Brigham Young University; Provo UT 84602 USA
| |
Collapse
|
33
|
Cortés-Rodríguez N, Jacobsen F, Hernandez-Baños BE, Navarro-Siguenza AG, Peters JL, Omland KE. Coalescent analyses show isolation without migration in two closely related tropical orioles: the case of Icterus graduacauda and Icterus chrysater. Ecol Evol 2013; 3:4377-87. [PMID: 24340179 PMCID: PMC3856738 DOI: 10.1002/ece3.768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/03/2013] [Accepted: 08/12/2013] [Indexed: 11/21/2022] Open
Abstract
The Isthmus of Tehuantepec has played an important role in shaping the avian diversity of Mexico, as well as the rest of the Western Hemisphere. It has been both a barrier and a land connector between North and South America for many groups of birds. Furthermore, climatic change over the Pleistocene has resulted in ecological fluctuations that led to periods of connection and isolation of the highlands in this area. Here we studied the divergence of two species of orioles whose distribution in the highlands is separated by the lowlands of the Isthmus of Tehuantepec: Icterus graduacauda (west of the Isthmus) and Icterus chrysater (east of the Isthmus). We sequenced multiple loci (one mitochondrial gene and six nuclear introns) and performed coalescent analyses (Isolation with Migration) to test whether their divergence resulted from prior occupancy of the ancestral area followed by a vicariant event or recent dispersal from one side or the other of this Isthmus. Results strongly indicate a vicariant event roughly 300,000 years ago in the Pleistocene followed by little or no gene flow. Both mitochondrial and nuclear genes show that the Isthmus of Tehuantepec is a strong barrier to gene flow. Thus, these two species appear to not exchange genes despite their recent divergence and the close geographic proximity of their ranges.
Collapse
Affiliation(s)
- Nandadevi Cortés-Rodríguez
- Department of Biological Sciences, University of Maryland-Baltimore County Baltimore, Maryland, 21250-0001
| | | | | | | | | | | |
Collapse
|
34
|
Pavlova A, Amos JN, Joseph L, Loynes K, Austin JJ, Keogh JS, Stone GN, Nicholls JA, Sunnucks P. PERCHED AT THE MITO-NUCLEAR CROSSROADS: DIVERGENT MITOCHONDRIAL LINEAGES CORRELATE WITH ENVIRONMENT IN THE FACE OF ONGOING NUCLEAR GENE FLOW IN AN AUSTRALIAN BIRD. Evolution 2013; 67:3412-28. [DOI: 10.1111/evo.12107] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 03/04/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Alexandra Pavlova
- School of Biological Sciences and Australian Centre for Biodiversity; Clayton Campus, Monash University; Wellington Road Clayton Victoria 3800 Australia
| | - J. Nevil Amos
- School of Biological Sciences and Australian Centre for Biodiversity; Clayton Campus, Monash University; Wellington Road Clayton Victoria 3800 Australia
| | - Leo Joseph
- Australian National Wildlife Collection; CSIRO Ecosystem Sciences; GPO Box 1700 Canberra Australian Capital Territory 2601 Australia
| | - Kate Loynes
- Division of Evolution; Ecology and Genetics, Building 116, Daley Road, Research School of Biology, The Australian National University; Canberra Australian Capital Territory 0200 Australia
| | - Jeremy J. Austin
- Australian Centre for Ancient DNA (ACAD); School of Earth & Environmental Sciences, The University of Adelaide; Darling Building North Terrace Campus South Australia 5005 Australia
- Sciences Department; Museum Victoria; Carlton Gardens Melbourne Victoria 3001 Australia
| | - J. Scott Keogh
- Division of Evolution; Ecology and Genetics, Building 116, Daley Road, Research School of Biology, The Australian National University; Canberra Australian Capital Territory 0200 Australia
| | - Graham N. Stone
- Institute of Evolutionary Biology; University of Edinburgh; The King's Buildings, West Mains Road Edinburgh EH9 3JT Scotland
| | - James A. Nicholls
- Institute of Evolutionary Biology; University of Edinburgh; The King's Buildings, West Mains Road Edinburgh EH9 3JT Scotland
| | - Paul Sunnucks
- School of Biological Sciences and Australian Centre for Biodiversity; Clayton Campus, Monash University; Wellington Road Clayton Victoria 3800 Australia
| |
Collapse
|
35
|
Zhang Q, Edwards SV. The evolution of intron size in amniotes: a role for powered flight? Genome Biol Evol 2013; 4:1033-43. [PMID: 22930760 PMCID: PMC3490418 DOI: 10.1093/gbe/evs070] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intronic DNA is a major component of eukaryotic genes and genomes and can be subject to
selective constraint and have functions in gene regulation. Intron size is of particular
interest given that it is thought to be the target of a variety of evolutionary forces and
has been suggested to be linked ultimately to various phenotypic traits, such as powered
flight. Using whole-genome analyses and comparative approaches that account for
phylogenetic nonindependence, we examined interspecific variation in intron size variation
in three data sets encompassing from 12 to 30 amniotes genomes and allowing for different
levels of genome coverage. In addition to confirming that intron size is negatively
associated with intron position and correlates with genome size, we found that on average
mammals have longer introns than birds and nonavian reptiles, a trend that is correlated
with the proliferation of repetitive elements in mammals. Two independent comparisons
between flying and nonflying sister groups both showed a reduction of intron size in
volant species, supporting an association between powered flight, or possibly the high
metabolic rates associated with flight, and reduced intron/genome size. Small intron size
in volant lineages is less easily explained as a neutral consequence of large effective
population size. In conclusion, we found that the evolution of intron size in amniotes
appears to be non-neutral, is correlated with genome size, and is likely influenced by
powered flight and associated high metabolic rates.
Collapse
Affiliation(s)
- Qu Zhang
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
36
|
Palinauskas V, Križanauskienė A, Iezhova TA, Bolshakov CV, Jönsson J, Bensch S, Valkiūnas G. A new method for isolation of purified genomic DNA from haemosporidian parasites inhabiting nucleated red blood cells. Exp Parasitol 2013; 133:275-80. [DOI: 10.1016/j.exppara.2012.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|
37
|
Jacobsen F, Omland KE. Extensive introgressive hybridization within the northern oriole group (Genus Icterus) revealed by three-species isolation with migration analysis. Ecol Evol 2012; 2:2413-29. [PMID: 23145328 PMCID: PMC3492769 DOI: 10.1002/ece3.365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022] Open
Abstract
Until recently, studies of divergence and gene flow among closely-related taxa were generally limited to pairs of sister taxa. However, organisms frequently exchange genes with other non-sister taxa. The “northern oriole” group within genus Icterus exemplifies this problem. This group involves the extensively studied hybrid zone between Baltimore oriole (Icterus galbula) and Bullock's oriole (I. bullockii), an alleged hybrid zone between I. bullockii and black-backed oriole (I. abeillei), and likely mtDNA introgression between I. galbula and I. abeillei. Here, we examine the divergence population genetics of the entire northern oriole group using a multipopulation Isolation-with-Migration (IM) model. In accordance with Haldane's rule, nuclear loci introgress extensively beyond the I. galbula–I. bullockii hybrid zone, while mtDNA does not. We found no evidence of introgression between I. bullockii and I. abeillei or between I. galbula and I. abeillei when all three species were analyzed together in a three-population model. However, traditional pairwise analysis suggested some nuclear introgression from I. abeillei into I. galbula, probably reflecting genetic contributions from I. bullockii unaccounted for in a two-population model. Thus, only by including all members of this group in the analysis was it possible to rigorously estimate the level of gene flow among these three closely related species.
Collapse
Affiliation(s)
- Frode Jacobsen
- Department of Biological Sciences, University of Maryland Baltimore County 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | | |
Collapse
|
38
|
McLean A, Toon A, Schmidt D, Joseph L, Hughes J. Speciation in chestnut-shouldered fairy-wrens (Malurus spp.) and rapid phenotypic divergence in variegated fairy-wrens (Malurus lamberti): A multilocus approach. Mol Phylogenet Evol 2012; 63:668-78. [DOI: 10.1016/j.ympev.2012.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 02/05/2012] [Accepted: 02/13/2012] [Indexed: 11/25/2022]
|
39
|
Kasai F, O'Brien PCM, Ferguson-Smith MA. Reassessment of genome size in turtle and crocodile based on chromosome measurement by flow karyotyping: close similarity to chicken. Biol Lett 2012; 8:631-5. [PMID: 22491763 DOI: 10.1098/rsbl.2012.0141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The genome size in turtles and crocodiles is thought to be much larger than the 1.2 Gb of the chicken (Gallus gallus domesticus, GGA), according to the animal genome size database. However, GGA macrochromosomes show extensive homology in the karyotypes of the red eared slider (Trachemys scripta elegans, TSC) and the Nile crocodile (Crocodylus niloticus, CNI), and bird and reptile genomes have been highly conserved during evolution. In this study, size and GC content of all chromosomes are measured from the flow karyotypes of GGA, TSC and CNI. Genome sizes estimated from the total chromosome size demonstrate that TSC and CNI are 1.21 Gb and 1.29 Gb, respectively. This refines previous overestimations and reveals similar genome sizes in chicken, turtle and crocodile. Analysis of chromosome GC content in each of these three species shows a higher GC content in smaller chromosomes than in larger chromosomes. This contrasts with mammals and squamates in which GC content does not correlate with chromosome size. These data suggest that a common ancestor of birds, turtles and crocodiles had a small genome size and a chromosomal size-dependent GC bias, distinct from the squamate lineage.
Collapse
Affiliation(s)
- Fumio Kasai
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
40
|
Sun C, Shepard DB, Chong RA, López Arriaza J, Hall K, Castoe TA, Feschotte C, Pollock DD, Mueller RL. LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol Evol 2011; 4:168-83. [PMID: 22200636 PMCID: PMC3318908 DOI: 10.1093/gbe/evr139] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2011] [Indexed: 01/20/2023] Open
Abstract
Among vertebrates, most of the largest genomes are found within the salamanders, a clade of amphibians that includes 613 species. Salamander genome sizes range from ~14 to ~120 Gb. Because genome size is correlated with nucleus and cell sizes, as well as other traits, morphological evolution in salamanders has been profoundly affected by genomic gigantism. However, the molecular mechanisms driving genomic expansion in this clade remain largely unknown. Here, we present the first comparative analysis of transposable element (TE) content in salamanders. Using high-throughput sequencing, we generated genomic shotgun data for six species from the Plethodontidae, the largest family of salamanders. We then developed a pipeline to mine TE sequences from shotgun data in taxa with limited genomic resources, such as salamanders. Our summaries of overall TE abundance and diversity for each species demonstrate that TEs make up a substantial portion of salamander genomes, and that all of the major known types of TEs are represented in salamanders. The most abundant TE superfamilies found in the genomes of our six focal species are similar, despite substantial variation in genome size. However, our results demonstrate a major difference between salamanders and other vertebrates: salamander genomes contain much larger amounts of long terminal repeat (LTR) retrotransposons, primarily Ty3/gypsy elements. Thus, the extreme increase in genome size that occurred in salamanders was likely accompanied by a shift in TE landscape. These results suggest that increased proliferation of LTR retrotransposons was a major molecular mechanism contributing to genomic expansion in salamanders.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Biology, Colorado State University
| | - Donald B. Shepard
- Department of Biology, Colorado State University
- Current address: Department of Fisheries, Wildlife and Conservation Biology; University of Minnesota
| | | | | | - Kathryn Hall
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Todd A. Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | | | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | | |
Collapse
|
41
|
Camargo A, Avila LJ, Morando M, Sites JW. Accuracy and Precision of Species Trees: Effects of Locus, Individual, and Base Pair Sampling on Inference of Species Trees in Lizards of the Liolaemus darwinii Group (Squamata, Liolaemidae). Syst Biol 2011; 61:272-88. [DOI: 10.1093/sysbio/syr105] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Arley Camargo
- Department of Biology and Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA
| | - Luciano J. Avila
- CONICET-CENPAT, Boulevard Almirante Brown 2825, U9120ACF, Puerto Madryn, Chubut, Argentina
| | - Mariana Morando
- CONICET-CENPAT, Boulevard Almirante Brown 2825, U9120ACF, Puerto Madryn, Chubut, Argentina
| | - Jack W. Sites
- Department of Biology and Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
42
|
Jacobsen F, Omland KE. Species tree inference in a recent radiation of orioles (Genus Icterus): Multiple markers and methods reveal cytonuclear discordance in the northern oriole group. Mol Phylogenet Evol 2011; 61:460-9. [DOI: 10.1016/j.ympev.2011.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/13/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
|
43
|
Lee JY, Joseph L, Edwards SV. A species tree for the Australo-Papuan Fairy-wrens and allies (Aves: Maluridae). Syst Biol 2011; 61:253-71. [PMID: 21978990 DOI: 10.1093/sysbio/syr101] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We explored the efficacy of species tree methods at the family level in birds, using the Australo-Papuan Fairy-wrens (Passeriformes: Maluridae) as a model system. Fairy-wrens of the genus Malurus are known for high intensities of sexual selection, resulting in some cases in rapid speciation. This history suggests that incomplete lineage sorting (ILS) of neutrally evolving loci could be substantial, a situation that could compromise traditional methods of combining loci in phylogenetic analysis. Using 18 molecular markers (5 anonymous loci, 7 exons, 5 introns, and 1 mitochondrial DNA locus), we show that gene tree monophyly across species could be rejected for 16 of 18 loci, suggesting substantial ILS at the family level in these birds. Using the software Concaterpillar, we also detect three statistically distinct clusters of gene trees among the 18 loci. Despite substantial variation in gene trees, species trees constructed using four different species tree estimation methods (BEST, BUCKy, and STAR) were generally well supported and similar to each other and to the concatenation tree, with a few mild discordances at nodes that could be explained by rapid and recent speciation events. By contrast, minimizing deep coalescences produced a species tree that was topologically more divergent from those of the other methods as measured by multidimensional scaling of trees. Additionally, gene and species trees were topologically more similar in the BEST analysis, presumably because of the species tree prior employed in BEST which appropriately assumes that gene trees are correlated with each other and with the species tree. Among the 18 loci, we also discovered 102 independent indel markers, which also proved phylogenetically informative, primarily among genera, and displayed a ∼4-fold bias towards deletions. As suggested in earlier work, the grasswrens (Amytornis) are sister to the rest of the family and the emu-wrens (Stipiturus) are sister to fairy-wrens (Malurus, Clytomyias). Our study shows that ILS is common at the family level in birds yet, despite this, species tree methods converge on broadly similar results for this family.
Collapse
Affiliation(s)
- June Y Lee
- Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
44
|
Organ CL, Canoville A, Reisz RR, Laurin M. Paleogenomic data suggest mammal-like genome size in the ancestral amniote and derived large genome size in amphibians. J Evol Biol 2010; 24:372-80. [PMID: 21091812 DOI: 10.1111/j.1420-9101.2010.02176.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An unsolved question in evolutionary genomics is whether amniote genomes have been expanding or contracting since the common ancestor of this diverse group. Here, we report on the polarity of amniote genome size evolution using genome size estimates for 14 extinct tetrapod genera from the Paleozoic and early Mesozoic Eras using osteocyte lacunae size as a correlate. We find substantial support for a phylogenetically controlled regression model relating genome size to osteocyte lacunae size (P of slopes <0.01, r²=0.65, phylogenetic signal λ=0.83). Genome size appears to have been homogeneous across Paleozoic crown-tetrapod lineages (average haploid genome size 2.9-3.7 pg) with values similar to those of extant mammals. The differentiation in genome size and underlying architecture among extant tetrapod lineages likely evolved in the Mesozoic and Cenozoic Eras, with expansion in amphibians, contractions along the diapsid lineage, and no directional change within the synapsid lineage leading to mammals.
Collapse
Affiliation(s)
- C L Organ
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
45
|
Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV. Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genomics Hum Genet 2010; 11:239-64. [PMID: 20590429 DOI: 10.1146/annurev-genom-082509-141646] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of birds and nonavian reptiles (Reptilia) are critical for understanding genome evolution in mammals and amniotes generally. Despite decades of study at the chromosomal and single-gene levels, and the evidence for great diversity in genome size, karyotype, and sex chromosome diversity, reptile genomes are virtually unknown in the comparative genomics era. The recent sequencing of the chicken and zebra finch genomes, in conjunction with genome scans and the online publication of the Anolis lizard genome, has begun to clarify the events leading from an ancestral amniote genome--predicted to be large and to possess a diverse repeat landscape on par with mammals and a birdlike sex chromosome system--to the small and highly streamlined genomes of birds. Reptilia exhibit a wide range of evolutionary rates of different subgenomes and, from isochores to mitochondrial DNA, provide a critical contrast to the genomic paradigms established in mammals.
Collapse
Affiliation(s)
- Daniel E Janes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
46
|
Lee JY, Edwards SV. DIVERGENCE ACROSS AUSTRALIA'S CARPENTARIAN BARRIER: STATISTICAL PHYLOGEOGRAPHY OF THE RED-BACKED FAIRY WREN (MALURUS MELANOCEPHALUS). Evolution 2008; 62:3117-34. [DOI: 10.1111/j.1558-5646.2008.00543.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Gifford ME, Larson A. In situ genetic differentiation in a Hispaniolan lizard (Ameiva chrysolaema): A multilocus perspective. Mol Phylogenet Evol 2008; 49:277-91. [DOI: 10.1016/j.ympev.2008.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/03/2008] [Accepted: 06/11/2008] [Indexed: 11/27/2022]
|
48
|
Brumfield RT, Liu L, Lum DE, Edwards SV. Comparison of Species Tree Methods for Reconstructing the Phylogeny of Bearded Manakins (Aves: Pipridae, Manacus) from Multilocus Sequence Data. Syst Biol 2008; 57:719-31. [DOI: 10.1080/10635150802422290] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Robb T. Brumfield
- Museum of Natural Science Baton Rouge, Louisiana 70803, USA; E-mail:
- Department of Biological Sciences, Louisiana State University Baton Rouge, Lousiana, 70803, USA
| | - Liang Liu
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, Massachusetts 02138, USA; E-mail: (L.L.); (S.V.E.)
| | - David E. Lum
- Department of Biological Sciences, University of Washington Seattle, Washington 98195, USA
- Current address: 95-390 Kuahelani Ave., Suite 3E, Mililani, Hawaii 96789, USA
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, Massachusetts 02138, USA; E-mail: (L.L.); (S.V.E.)
| |
Collapse
|
49
|
Amniote phylogenomics: testing evolutionary hypotheses with BAC library scanning and targeted clone analysis of large-scale DNA sequences from reptiles. Methods Mol Biol 2008; 422:91-117. [PMID: 18629663 DOI: 10.1007/978-1-59745-581-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Phylogenomics research integrating established principles of systematic biology and taking advantage of the wealth of DNA sequences being generated by genome science holds promise for answering long-standing evolutionary questions with orders of magnitude more primary data than in the past. Although it is unrealistic to expect whole-genome initiatives to proceed rapidly for commercially unimportant species such as reptiles, practical approaches utilizing genomic libraries of large-insert clones pave the way for a phylogenomics of species that are nevertheless essential for testing evolutionary hypotheses within a phylogenetic framework. This chapter reviews the case for adopting genome-enabled approaches to evolutionary studies and outlines a program for using bacterial artificial chromosome (BAC) libraries or plasmid libraries as a basis for completing "genome scans" of reptiles. We have used BACs to close a critical gap in the genome database for Reptilia, the sister group of mammals, and present the methodological approaches taken to achieve this as a guideline for designing similar comparative studies. In addition, we provide a detailed step-by-step protocol for BAC-library screening and shotgun sequencing of specific clones containing target genes of evolutionary interest. Taken together, the genome scanning and shotgun sequencing techniques offer complementary diagnostic potential and can substantially increase the scale and power of analyses aimed at testing evolutionary hypotheses for nonmodel species.
Collapse
|
50
|
Starostová Z, Kratochvíl L, Flajshans M. Cell size does not always correspond to genome size: phylogenetic analysis in geckos questions optimal DNA theories of genome size evolution. ZOOLOGY 2008; 111:377-384. [PMID: 18595679 DOI: 10.1016/j.zool.2007.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/07/2007] [Accepted: 10/21/2007] [Indexed: 11/27/2022]
Abstract
At higher taxonomic levels, a significant correlation between genome size (GS) and erythrocyte size (ES) has been reported for many taxa. Under optimal DNA theories, several mechanisms presuming a causative link between GS and ES have been proposed to explain this seemingly general pattern. The correlation between GS and ES has been rarely tested among closely related organisms within an explicit phylogenetic framework. Eyelid geckos (family Eublepharidae) serve as a proper group to conduct such an analysis. We used flow cytometry to measure GS in 15 forms of eublepharids and conducted a phylogenetic reconstruction of GS and ES to test the successiveness of evolutionary shifts in these traits. Most parsimoniously, there were two independent increases and two decreases in GS during the evolution of eublepharids. Nevertheless, changes in GS and ES were not phylogenetically associated in a manner predicted by optimal DNA theories. Our results question the generality of causative bonds between DNA content and cell size and demonstrate that cell size cannot always serve as a proxy of GS. We suggest there is no need to expect a direct causative link between GS and ES to explain the correlation between GS and cell size at higher taxonomic levels. Such a correlation can be explained by simple mechanistic constraints and a combination of the population-genetic model of genome complexity with cell-size-metabolic rate relationship.
Collapse
Affiliation(s)
- Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicná 7, CZ-128 44 Praha 2, Czech Republic
| | | | | |
Collapse
|