1
|
Christoffersen B, Mahjani B, Clements M, Kjellström H, Humphreys K. Quasi-Monte Carlo Methods for Binary Event Models with Complex Family Data. J Comput Graph Stat 2022. [DOI: 10.1080/10618600.2022.2151454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Benjamin Christoffersen
- Division of Robotics, Perception and Learning, KTH Royal Institute of Technology
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet
- Swedish e-Science Research Center (SeRC)
| | - Behrang Mahjani
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai
| | - Mark Clements
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet
- Swedish e-Science Research Center (SeRC)
| | - Hedvig Kjellström
- Division of Robotics, Perception and Learning, KTH Royal Institute of Technology
- Swedish e-Science Research Center (SeRC)
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet
- Swedish e-Science Research Center (SeRC)
| |
Collapse
|
2
|
Modi A, Tassi F, Susca RR, Vai S, Rizzi E, Bellis GD, Lugliè C, Gonzalez Fortes G, Lari M, Barbujani G, Caramelli D, Ghirotto S. Complete mitochondrial sequences from Mesolithic Sardinia. Sci Rep 2017; 7:42869. [PMID: 28256601 PMCID: PMC5335606 DOI: 10.1038/srep42869] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/17/2017] [Indexed: 11/09/2022] Open
Abstract
Little is known about the genetic prehistory of Sardinia because of the scarcity of pre-Neolithic human remains. From a genetic perspective, modern Sardinians are known as genetic outliers in Europe, showing unusually high levels of internal diversity and a close relationship to early European Neolithic farmers. However, how far this peculiar genetic structure extends and how it originated was to date impossible to test. Here we present the first and oldest complete mitochondrial sequences from Sardinia, dated back to 10,000 yBP. These two individuals, while confirming a Mesolithic occupation of the island, belong to rare mtDNA lineages, which have never been found before in Mesolithic samples and that are currently present at low frequencies not only in Sardinia, but in the whole Europe. Preliminary Approximate Bayesian Computations, restricted by biased reference samples for Mesolithic Sardinia (the two typed samples) and Neolithic Europe (limited to central and north European sequences), suggest that the first inhabitants of the island have had a small or negligible contribution to the present-day Sardinian population, which mainly derives its genetic diversity from continental migration into the island by Neolithic times.
Collapse
Affiliation(s)
- Alessandra Modi
- Dipartimento di Biologia, Università di Firenze, 50122 Florence, Italy
| | - Francesca Tassi
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy
| | - Roberta Rosa Susca
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università di Firenze, 50122 Florence, Italy
| | - Ermanno Rizzi
- Fondazione Telethon, 20121 Milano, Italy.,Istituto di Tecnologie Biomediche, CNR, 20090 Segrate, Milano, Italy
| | | | - Carlo Lugliè
- LASP, Dipartimento di Storia, Beni Culturali e Territorio, Università di Cagliari, 09124 Cagliari, Italy
| | - Gloria Gonzalez Fortes
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università di Firenze, 50122 Florence, Italy
| | - Guido Barbujani
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy
| | - David Caramelli
- Dipartimento di Biologia, Università di Firenze, 50122 Florence, Italy
| | - Silvia Ghirotto
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Galesloot TE, Verweij N, Traglia M, Barbieri C, van Dijk F, Geurts-Moespot AJ, Girelli D, Kiemeney LALM, Sweep FCGJ, Swertz MA, van der Meer P, Camaschella C, Toniolo D, Vermeulen SH, van der Harst P, Swinkels DW. Meta-GWAS and Meta-Analysis of Exome Array Studies Do Not Reveal Genetic Determinants of Serum Hepcidin. PLoS One 2016; 11:e0166628. [PMID: 27846281 PMCID: PMC5112847 DOI: 10.1371/journal.pone.0166628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023] Open
Abstract
Serum hepcidin concentration is regulated by iron status, inflammation, erythropoiesis and numerous other factors, but underlying processes are incompletely understood. We studied the association of common and rare single nucleotide variants (SNVs) with serum hepcidin in one Italian study and two large Dutch population-based studies. We genotyped common SNVs with genome-wide association study (GWAS) arrays and subsequently performed imputation using the 1000 Genomes reference panel. Cohort-specific GWAS were performed for log-transformed serum hepcidin, adjusted for age and gender, and results were combined in a fixed-effects meta-analysis (total N 6,096). Six top SNVs (p<5x10-6) were genotyped in 3,821 additional samples, but associations were not replicated. Furthermore, we meta-analyzed cohort-specific exome array association results of rare SNVs with serum hepcidin that were available for two of the three cohorts (total N 3,226), but no exome-wide significant signal (p<1.4x10-6) was identified. Gene-based meta-analyses revealed 19 genes that showed significant association with hepcidin. Our results suggest the absence of common SNVs and rare exonic SNVs explaining a large proportion of phenotypic variation in serum hepcidin. We recommend extension of our study once additional substantial cohorts with hepcidin measurements, GWAS and/or exome array data become available in order to increase power to identify variants that explain a smaller proportion of hepcidin variation. In addition, we encourage follow-up of the potentially interesting genes that resulted from the gene-based analysis of low-frequency and rare variants.
Collapse
Affiliation(s)
- Tessel E. Galesloot
- Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Caterina Barbieri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Freerk van Dijk
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Anneke J. Geurts-Moespot
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Hepcidinanalysis.com, Department of Laboratory Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | | | - Fred C. G. J. Sweep
- Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Morris A. Swertz
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute University, Milan, Italy
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Sita H. Vermeulen
- Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Dorine W. Swinkels
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Hepcidinanalysis.com, Department of Laboratory Medicine, Radboud university medical center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Path-counting formulas for generalized kinship coefficients and condensed identity coefficients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:898424. [PMID: 25165486 PMCID: PMC4130148 DOI: 10.1155/2014/898424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/08/2014] [Indexed: 11/17/2022]
Abstract
An important computation on pedigree data is the calculation of condensed identity coefficients, which provide a complete description of the degree of relatedness of two individuals. The applications of condensed identity coefficients range from genetic counseling to disease tracking. Condensed identity coefficients can be computed using linear combinations of generalized kinship coefficients for two, three, four individuals, and two pairs of individuals and there are recursive formulas for computing those generalized kinship coefficients (Karigl, 1981). Path-counting formulas have been proposed for the (generalized) kinship coefficients for two (three) individuals but there have been no path-counting formulas for the other generalized kinship coefficients. It has also been shown that the computation of the (generalized) kinship coefficients for two (three) individuals using path-counting formulas is efficient for large pedigrees, together with path encoding schemes tailored for pedigree graphs. In this paper, we propose a framework for deriving path-counting formulas for generalized kinship coefficients. Then, we present the path-counting formulas for all generalized kinship coefficients for which there are recursive formulas and which are sufficient for computing condensed identity coefficients. We also perform experiments to compare the efficiency of our method with the recursive method for computing condensed identity coefficients on large pedigrees.
Collapse
|
5
|
Biino G, Parati G, Concas MP, Adamo M, Angius A, Vaccargiu S, Pirastu M. Environmental and genetic contribution to hypertension prevalence: data from an epidemiological survey on Sardinian genetic isolates. PLoS One 2013; 8:e59612. [PMID: 23527229 PMCID: PMC3603911 DOI: 10.1371/journal.pone.0059612] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/15/2013] [Indexed: 01/19/2023] Open
Abstract
Background and Objectives Hypertension represents a major cause of cardiovascular morbidity and mortality worldwide but its prevalence has been shown to vary in different countries. The reasons for such differences are still matter of debate, the relative contributions given by environmental and genetic factors being still poorly defined. We estimated the current prevalence, distribution and determinants of hypertension in isolated Sardinian populations and also investigated the environmental and genetic contribution to hypertension prevalence taking advantage of the characteristics of such populations. Methods and Results An epidemiological survey with cross-sectional design was carried out measuring blood pressure in 9845 inhabitants of 10 villages of Ogliastra region between 2002 and 2008. Regression analysis for assessing blood pressure determinants and variance component models for estimating heritability were performed. Overall 38.8% of this population had hypertension, its prevalence varying significantly by age, sex and among villages taking into account age and sex structure of their population. About 50% of hypertensives had prior cardiovascular disease. High blood pressure was independently associated with age, obesity related factors, heart rate, total cholesterol, alcohol consumption, low education and smoking status, all these factors contributing more in women than in men. Heritability was 27% for diastolic and 36% for systolic blood pressure, its contribution being significantly higher in men (57%) than in women (46%). Finally, the genetic correlation between systolic and diastolic blood pressure was 0.74, indicating incomplete pleiotropy. Conclusion Genetic factors involved in the expression of blood pressure traits account for about 30% of the phenotypic variance, but seem to play a larger role in men; comorbidities and environmental factors remain of predominant importance, but seem to contribute much more in women.
Collapse
Affiliation(s)
- Ginevra Biino
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Yang L, Cheng E, Özsoyoğlu ZM. Efficient path-based computations on pedigree graphs with compact encodings. BMC Bioinformatics 2012; 13 Suppl 3:S14. [PMID: 22536898 PMCID: PMC3311099 DOI: 10.1186/1471-2105-13-s3-s14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A pedigree is a diagram of family relationships, and it is often used to determine the mode of inheritance (dominant, recessive, etc.) of genetic diseases. Along with rapidly growing knowledge of genetics and accumulation of genealogy information, pedigree data is becoming increasingly important. In large pedigree graphs, path-based methods for efficiently computing genealogical measurements, such as inbreeding and kinship coefficients of individuals, depend on efficient identification and processing of paths. In this paper, we propose a new compact path encoding scheme on large pedigrees, accompanied by an efficient algorithm for identifying paths. We demonstrate the utilization of our proposed method by applying it to the inbreeding coefficient computation. We present time and space complexity analysis, and also manifest the efficiency of our method for evaluating inbreeding coefficients as compared to previous methods by experimental results using pedigree graphs with real and synthetic data. Both theoretical and experimental results demonstrate that our method is more scalable and efficient than previous methods in terms of time and space requirements.
Collapse
|
7
|
Silberstein M, Weissbrod O, Otten L, Tzemach A, Anisenia A, Shtark O, Tuberg D, Galfrin E, Gannon I, Shalata A, Borochowitz ZU, Dechter R, Thompson E, Geiger D. A system for exact and approximate genetic linkage analysis of SNP data in large pedigrees. Bioinformatics 2012; 29:197-205. [PMID: 23162081 DOI: 10.1093/bioinformatics/bts658] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The use of dense single nucleotide polymorphism (SNP) data in genetic linkage analysis of large pedigrees is impeded by significant technical, methodological and computational challenges. Here we describe Superlink-Online SNP, a new powerful online system that streamlines the linkage analysis of SNP data. It features a fully integrated flexible processing workflow comprising both well-known and novel data analysis tools, including SNP clustering, erroneous data filtering, exact and approximate LOD calculations and maximum-likelihood haplotyping. The system draws its power from thousands of CPUs, performing data analysis tasks orders of magnitude faster than a single computer. By providing an intuitive interface to sophisticated state-of-the-art analysis tools coupled with high computing capacity, Superlink-Online SNP helps geneticists unleash the potential of SNP data for detecting disease genes. RESULTS Computations performed by Superlink-Online SNP are automatically parallelized using novel paradigms, and executed on unlimited number of private or public CPUs. One novel service is large-scale approximate Markov Chain-Monte Carlo (MCMC) analysis. The accuracy of the results is reliably estimated by running the same computation on multiple CPUs and evaluating the Gelman-Rubin Score to set aside unreliable results. Another service within the workflow is a novel parallelized exact algorithm for inferring maximum-likelihood haplotyping. The reported system enables genetic analyses that were previously infeasible. We demonstrate the system capabilities through a study of a large complex pedigree affected with metabolic syndrome. AVAILABILITY Superlink-Online SNP is freely available for researchers at http://cbl-hap.cs.technion.ac.il/superlink-snp. The system source code can also be downloaded from the system website. CONTACT omerw@cs.technion.ac.il SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mark Silberstein
- Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
A two-step genetic study on quantitative precursors of coronary artery disease in a homogeneous Indian population: case-control association discovery and validation by transmission-disequilibrium test. J Biosci 2012; 36:857-68. [PMID: 22116284 DOI: 10.1007/s12038-011-9148-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In spite of its strong familiality, gene identification for coronary artery disease (CAD) has not yielded a consistent picture. One major reason for this is that families or cases and controls were not recruited from a homogeneous population. We, therefore, attempted to map genes underlying 10 quantitative traits (QTs) that are known precursors of CAD in a homogeneous population (Marwari) of India. The QTs are apolipoprotein B (ApoB), C-reactive protein (CRP), fibrinogen (FBG), homocysteine (HCY), lipoprotein (a) (LPA), cholesterol - total (CHOL-T), cholesterol - HDL (CHOL-H), cholesterol - LDL (CHOL-L), cholesterol - VLDL (CHOL-V) and triglyceride (TG). We assayed 209 SNPs in 31 genes among members of Marwari families. After log-transformation and covariate-adjustment of the QTs, a two-step analysis was performed. In Step-1, data on unrelated individuals were analysed for association with the SNPs. In Step-2, for validation of Step-1 results, a quantitative transmission-disequilibrium test on parent- offspring data was performed for each SNP found to be significantly associated with a QT in Step-1 on an independent sample set drawn from the same population. Statistically significant results found for the various QTs and SNPs were: rs3774933, rs230528, rs230521, rs1005819 and rs1609798 (intronic, NFKB1) with APOB; rs5361 (Missense, R greatr than S, SELE) and rs4648004 (Intronic, NFKB1) with FBG; rs4220 (Missense, K greater than R, FGB) with HCY; and rs3025035 (Intronic, VEGFA) with CHOL-H. SNPs in SELE, VEGFA, FGB and NFKB1 genes impact significantly on levels of quantitative precursors of CAD in Marwaris.
Collapse
|
9
|
TMPRSS6 rs855791 modulates hepcidin transcription in vitro and serum hepcidin levels in normal individuals. Blood 2011; 118:4459-62. [DOI: 10.1182/blood-2011-06-364034] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
The iron hormone hepcidin is inhibited by matriptase-2 (MT2), a liver serine protease encoded by the TMPRSS6 gene. Cleaving the bone morphogenetic protein (BMP) coreceptor hemojuvelin (HJV), MT2 impairs the BMP/son of mothers against decapentaplegic homologs (SMAD) signaling pathway, down-regulates hepcidin, and facilitates iron absorption. TMPRSS6 inactivation causes iron-deficiency anemia refractory to iron administration both in humans and mice. Genome-wide association studies have shown that the SNP rs855791, which causes the MT2 V736A amino acid substitution, is associated with variations of serum iron, transferrin saturation, hemoglobin, and erythrocyte traits. In the present study, we show that, in vitro, MT2 736A inhibits hepcidin more efficiently than 736V. Moreover, in a genotyped population, after exclusion of samples with iron deficiency and inflammation, hepcidin, hepcidin/transferrin saturation, and hepcidin/ferritin ratios were significantly lower and iron parameters were consistently higher in homozygotes 736A than in 736V. Our results indicate that rs855791 is a TMPRSS6 functional variant and strengthen the idea that even a partial inability to modulate hepcidin influences iron parameters and, indirectly, erythropoiesis.
Collapse
|
10
|
Han L, Abney M. Identity by descent estimation with dense genome-wide genotype data. Genet Epidemiol 2011; 35:557-67. [PMID: 21769932 DOI: 10.1002/gepi.20606] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/06/2011] [Accepted: 05/31/2011] [Indexed: 11/11/2022]
Abstract
We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high-density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high-density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point-wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13-generation pedigree and genotyped with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow-up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available.
Collapse
Affiliation(s)
- Lide Han
- Department of Human Genetics, University of Chicago, Illinois, USA
| | | |
Collapse
|
11
|
Ruggiero D, Dalmasso C, Nutile T, Sorice R, Dionisi L, Aversano M, Bröet P, Leutenegger AL, Bourgain C, Ciullo M. Genetics of VEGF serum variation in human isolated populations of cilento: importance of VEGF polymorphisms. PLoS One 2011; 6:e16982. [PMID: 21347390 PMCID: PMC3036731 DOI: 10.1371/journal.pone.0016982] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/19/2011] [Indexed: 11/18/2022] Open
Abstract
Vascular Endothelial Growth Factor (VEGF) is the main player in angiogenesis. Because of its crucial role in this process, the study of the genetic factors controlling VEGF variability may be of particular interest for many angiogenesis-associated diseases. Although some polymorphisms in the VEGF gene have been associated with a susceptibility to several disorders, no genome-wide search on VEGF serum levels has been reported so far. We carried out a genome-wide linkage analysis in three isolated populations and we detected a strong linkage between VEGF serum levels and the 6p21.1 VEGF region in all samples. A new locus on chromosome 3p26.3 significantly linked to VEGF serum levels was also detected in a combined population sample. A sequencing of the gene followed by an association study identified three common single nucleotide polymorphisms (SNPs) influencing VEGF serum levels in one population (Campora), two already reported in the literature (rs3025039, rs25648) and one new signal (rs3025020). A fourth SNP (rs41282644) was found to affect VEGF serum levels in another population (Cardile). All the identified SNPs contribute to the related population linkages (35% of the linkage explained in Campora and 15% in Cardile). Interestingly, none of the SNPs influencing VEGF serum levels in one population was found to be associated in the two other populations. These results allow us to exclude the hypothesis that the common variants located in the exons, intron-exon junctions, promoter and regulative regions of the VEGF gene may have a causal effect on the VEGF variation. The data support the alternative hypothesis of a multiple rare variant model, possibly consisting in distinct variants in different populations, influencing VEGF serum levels.
Collapse
Affiliation(s)
- Daniela Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | | | - Teresa Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Rossella Sorice
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Laura Dionisi
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Mario Aversano
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | | | | | | | - Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| |
Collapse
|
12
|
Application of a new method for GWAS in a related case/control sample with known pedigree structure: identification of new loci for nephrolithiasis. PLoS Genet 2011; 7:e1001281. [PMID: 21283782 PMCID: PMC3024262 DOI: 10.1371/journal.pgen.1001281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 12/17/2010] [Indexed: 12/24/2022] Open
Abstract
In contrast to large GWA studies based on thousands of individuals and large meta-analyses combining GWAS results, we analyzed a small case/control sample for uric acid nephrolithiasis. Our cohort of closely related individuals is derived from a small, genetically isolated village in Sardinia, with well-characterized genealogical data linking the extant population up to the 16(th) century. It is expected that the number of risk alleles involved in complex disorders is smaller in isolated founder populations than in more diverse populations, and the power to detect association with complex traits may be increased when related, homogeneous affected individuals are selected, as they are more likely to be enriched with and share specific risk variants than are unrelated, affected individuals from the general population. When related individuals are included in an association study, correlations among relatives must be accurately taken into account to ensure validity of the results. A recently proposed association method uses an empirical genotypic covariance matrix estimated from genome-screen data to allow for additional population structure and cryptic relatedness that may not be captured by the genealogical data. We apply the method to our data, and we also investigate the properties of the method, as well as other association methods, in our highly inbred population, as previous applications were to outbred samples. The more promising regions identified in our initial study in the genetic isolate were then further investigated in an independent sample collected from the Italian population. Among the loci that showed association in this study, we observed evidence of a possible involvement of the region encompassing the gene LRRC16A, already associated to serum uric acid levels in a large meta-analysis of 14 GWAS, suggesting that this locus might lead a pathway for uric acid metabolism that may be involved in gout as well as in nephrolithiasis.
Collapse
|
13
|
Axenovich TI, Aulchenko YS. MQScore_SNP software for multipoint parametric linkage analysis of quantitative traits in large pedigrees. Ann Hum Genet 2010; 74:286-9. [PMID: 20529018 DOI: 10.1111/j.1469-1809.2010.00576.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We describe software for multipoint parametric linkage analysis of quantitative traits using information about SNP genotypes. A mixed model of major gene and polygene inheritance is implemented in this software. Implementation of several algorithms to avoid computational underflow and decrease running time permits application of our software to the analysis of very large pedigrees collected in human genetically isolated populations. We tested our software by performing linkage analysis of adult height in a large pedigree from a Dutch isolated population. Three significant and four suggestive loci were identified with the help of our programs, whereas variance-component-based linkage analysis, which requires the pedigree fragmentation, demonstrated only three suggestive peaks. The software package MQScore_SNP is available at http://mga.bionet.nsc.ru/soft/index.html.
Collapse
Affiliation(s)
- Tatiana I Axenovich
- Institute of Cytology & Genetics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | |
Collapse
|
14
|
Colonna V, Nutile T, Ferrucci RR, Fardella G, Aversano M, Barbujani G, Ciullo M. Comparing population structure as inferred from genealogical versus genetic information. Eur J Hum Genet 2009; 17:1635-41. [PMID: 19550436 PMCID: PMC2987018 DOI: 10.1038/ejhg.2009.97] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 11/09/2022] Open
Abstract
Algorithms for inferring population structure from genetic data (ie, population assignment methods) have shown to effectively recognize genetic clusters in human populations. However, their performance in identifying groups of genealogically related individuals, especially in scanty-differentiated populations, has not been tested empirically thus far. For this study, we had access to both genealogical and genetic data from two closely related, isolated villages in southern Italy. We found that nearly all living individuals were included in a single pedigree, with multiple inbreeding loops. Despite F(st) between villages being a low 0.008, genetic clustering analysis identified two clusters roughly corresponding to the two villages. Average kinship between individuals (estimated from genealogies) increased at increasing values of group membership (estimated from the genetic data), showing that the observed genetic clusters represent individuals who are more closely related to each other than to random members of the population. Further, average kinship within clusters and F(st) between clusters increases with increasingly stringent membership threshold requirements. We conclude that a limited number of genetic markers is sufficient to detect structuring, and that the results of genetic analyses faithfully mirror the structuring inferred from detailed analyses of population genealogies, even when F(st) values are low, as in the case of the two villages. We then estimate the impact of observed levels of population structure on association studies using simulated data.
Collapse
Affiliation(s)
- Vincenza Colonna
- Dipartimento di Biologia ed Evoluzione, Università di Ferrara, Ferrara, Italy
- Istituto di Genetica e Biofisica ‘A. Buzzati-Traverso', National Research Council (CNR), Napoli, Italy
| | - Teresa Nutile
- Istituto di Genetica e Biofisica ‘A. Buzzati-Traverso', National Research Council (CNR), Napoli, Italy
| | - Ronald R Ferrucci
- Dipartimento di Biologia ed Evoluzione, Università di Ferrara, Ferrara, Italy
| | - Giulio Fardella
- Istituto di Genetica e Biofisica ‘A. Buzzati-Traverso', National Research Council (CNR), Napoli, Italy
| | - Mario Aversano
- Istituto di Genetica e Biofisica ‘A. Buzzati-Traverso', National Research Council (CNR), Napoli, Italy
| | - Guido Barbujani
- Dipartimento di Biologia ed Evoluzione, Università di Ferrara, Ferrara, Italy
| | - Marina Ciullo
- Istituto di Genetica e Biofisica ‘A. Buzzati-Traverso', National Research Council (CNR), Napoli, Italy
| |
Collapse
|
15
|
Sieh W, Choi Y, Chapman NH, Craig UK, Steinbart EJ, Rothstein JH, Oyanagi K, Garruto RM, Bird TD, Galasko DR, Schellenberg GD, Wijsman EM. Identification of novel susceptibility loci for Guam neurodegenerative disease: challenges of genome scans in genetic isolates. Hum Mol Genet 2009; 18:3725-38. [PMID: 19567404 PMCID: PMC2742398 DOI: 10.1093/hmg/ddp300] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/17/2009] [Accepted: 06/25/2009] [Indexed: 12/17/2022] Open
Abstract
Amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) is a fatal neurodegenerative disease found in the Chamorro people of Guam and other Pacific Island populations. The etiology is unknown, although both genetic and environmental factors appear important. To identify loci for ALS/PDC, we conducted both genome-wide linkage and association analyses, using approximately 400 microsatellite markers, in the largest sample assembled to date, comprising a nearly complete sample of all living and previously sampled deceased cases. A single, large, complex pedigree was ascertained from a village on Guam, with smaller families and a case-control sample ascertained from the rest of Guam by population-based neurological screening and archival review. We found significant evidence for two regions with novel ALS/PDC loci on chromosome 12 and supportive evidence for the involvement of the MAPT region on chromosome 17. D12S1617 on 12p gave the strongest evidence of linkage (maximum LOD score, Z(max) = 4.03) in our initial scan, with additional support in the complete case-control sample in the form of evidence of allelic association at this marker and another nearby marker. D12S79 on 12q also provided significant evidence of linkage (Z(max) = 3.14) with support from flanking markers. Our results suggest that ALS/PDC may be influenced by as many as three loci, while illustrating challenges that are intrinsic in genetic analyses of isolated populations, as well as analytical strategies that are useful in this context. Elucidation of the genetic basis of ALS/PDC should improve our understanding of related neurodegenerative disorders including Alzheimer disease, Parkinson disease, frontotemporal dementia and ALS.
Collapse
Affiliation(s)
- Weiva Sieh
- Division of Medical Genetics, Department of Medicine
- Division of Epidemiology, Department of Health Research and Policy, Stanford University, Stanford, CA 94305, USA
| | | | | | - Ulla-Katrina Craig
- Micronesian Health and Aging Study, University of Guam, Mangilao, Guam 96923, USA
| | - Ellen J. Steinbart
- Department of Neurology
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | | | - Kiyomitsu Oyanagi
- Department of Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | - Ralph M. Garruto
- Laboratory of Biomedical Anthropology and Neurosciences, Department of Anthropology, Binghamton University, Binghamton, NY 13902, USA
| | - Thomas D. Bird
- Division of Medical Genetics, Department of Medicine
- Department of Neurology
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Douglas R. Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA and
| | - Gerard D. Schellenberg
- Department of Neurology
- Division of Gerontology and Geriatric Medicine, Department of Medicine
- Department of Pharmacology and
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen M. Wijsman
- Division of Medical Genetics, Department of Medicine
- Department of Biostatistics
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Mocci E, Concas MP, Fanciulli M, Pirastu N, Adamo M, Cabras V, Fraumene C, Persico I, Sassu A, Picciau A, Prodi DA, Serra D, Biino G, Pirastu M, Angius A. Microsatellites and SNPs linkage analysis in a Sardinian genetic isolate confirms several essential hypertension loci previously identified in different populations. BMC MEDICAL GENETICS 2009; 10:81. [PMID: 19715579 PMCID: PMC2741446 DOI: 10.1186/1471-2350-10-81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/28/2009] [Indexed: 01/11/2023]
Abstract
Background A multiplicity of study designs such as gene candidate analysis, genome wide search (GWS) and, recently, whole genome association studies have been employed for the identification of the genetic components of essential hypertension (EH). Several genome-wide linkage studies of EH and blood pressure-related phenotypes demonstrate that there is no single locus with a major effect while several genomic regions likely to contain EH-susceptibility loci were validated by multiple studies. Methods We carried out the clinical assessment of the entire adult population in a Sardinian village (Talana) and we analyzed 16 selected families with 62 hypertensive subjects out of 267 individuals. We carried out a double GWS using a set of 902 uniformly spaced microsatellites and a high-density SNPs map on the same group of families. Results Three loci were identified by both microsatellites and SNP scans and the obtained linkage results showed a remarkable degree of similarity. These loci were identified on chromosome 2q24, 11q23.1–25 and 13q14.11–21.33. Further support to these findings is their broad description present in literature associated to EH or related phenotypes. Bioinformatic investigation of these loci shows several potential EH candidate genes, several of whom already associated to blood pressure regulation pathways. Conclusion Our search for major susceptibility EH genetic factors evidences that EH in the genetic isolate of Talana is due to the contribution of several genes contained in loci identified and replicated by earlier findings in different human populations.
Collapse
|
17
|
Kirichenko AV, Belonogova NM, Aulchenko YS, Axenovich TI. PedStr software for cutting large pedigrees for haplotyping, IBD computation and multipoint linkage analysis. Ann Hum Genet 2009; 73:527-31. [PMID: 19604226 DOI: 10.1111/j.1469-1809.2009.00531.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose an automatic heuristic algorithm for splitting large pedigrees into fragments of no more than a user-specified bit size. The algorithm specifically aims to split large pedigrees where many close relatives are genotyped and to produce a set of sub-pedigrees for haplotype reconstruction, IBD computation or multipoint linkage analysis with the help of the Lander-Green-Kruglyak algorithm. We demonstrate that a set of overlapping pedigree fragments constructed with the help of our algorithm allows fast and effective haplotype reconstruction and detection of an allele's parental origin. Moreover, we compared pedigree fragments constructed with the help of our algorithm and existing programs PedCut and Jenti for multipoint linkage analysis. Our algorithm demonstrated significantly higher linkage power than the algorithm of Jenti and significantly shorter running time than the algorithm of PedCut. The software package PedStr implementing our algorithms is available at http://mga.bionet.nsc.ru/soft/index.html.
Collapse
Affiliation(s)
- Anatoly V Kirichenko
- Institute of Cytology & Genetics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | | | | | | |
Collapse
|
18
|
Bellenguez C, Ober C, Bourgain C. A multiple splitting approach to linkage analysis in large pedigrees identifies a linkage to asthma on chromosome 12. Genet Epidemiol 2009; 33:207-16. [PMID: 18839415 DOI: 10.1002/gepi.20371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Large genealogies are potentially very informative for linkage analysis. However, the software available for exact non-parametric multipoint linkage analysis is limited with respect to the complexity of the families it can handle. A solution is to split the large pedigrees into sub-families meeting complexity constraints. Different methods have been proposed to "best" split large genealogies. Here, we propose a new procedure in which linkage is performed on several carefully chosen sub-pedigree sets from the genealogy instead of using just a single sub-pedigree set. Our multiple splitting procedure capitalizes on the sensitivity of linkage results to family structure and has been designed to control computational feasibility and global type I error. We describe and apply this procedure to the extreme case of the highly complex Hutterite pedigree and use it to perform a genome-wide linkage analysis on asthma. The detection of a genome-wide significant linkage for asthma on chromosome 12q21 illustrates the potential of this multiple splitting approach.
Collapse
|
19
|
Baguhl R, Wilke B, Klöting N, Klöting I. Genes on rat chromosomes 3, 5, 10, and 16 are linked with facets of metabolic syndrome. Obesity (Silver Spring) 2009; 17:1215-9. [PMID: 19584880 DOI: 10.1038/oby.2008.658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
WOKW (Wistar Ottawa Karlsburg W) rats develop metabolic syndrome closely resembling human disorder. In crossing studies between disease-prone WOKW and disease-resistant DA (Dark Agouti) rats, several quantitative trait loci (QTLs) were mapped. To prove the in vivo relevance of QTLs, congenic DA.WOKW rats, briefly termed DA.3aW, DA.3bW, DA.5W, DA.10W, and DA.16W, were generated by transferring chromosomal regions of WOKW chromosomes 3, 5, 10, and 16 onto DA genetic background. Male (n=12) and female (n=12) rats of each congenic strain and their parental strain DA were characterized for adiposity index (AI), serum leptin, and serum insulin as well as serum cholesterol and serum triglycerides as single facets of metabolic syndrome at the age of 30 weeks. The data showed a significant higher AI for male and female DA.3aW and female DA.16W compared with DA. Serum leptin was significantly elevated in male and female DA.3aW, DA.10W, and DA.16W rats in comparison with DA. Rats of both sexes of DA.10W and female DA.16W showed significantly elevated serum insulin in comparison to DA. Female rats of all congenics had significantly higher serum cholesterol compared with DA, while males did not differ. Finally, triglycerides were only elevated in male DA.16W. The results demonstrate an involvement of WOKW chromosomes 3, 5, 10, and 16 in developing facets of the metabolic syndrome.
Collapse
Affiliation(s)
- Romy Baguhl
- Department of Laboratory Animal Science, Medical Faculty, University Greifswald, Karlsburg, Germany
| | | | | | | |
Collapse
|
20
|
Vitart V, Biloglav Z, Hayward C, Janicijevic B, Smolej-Narancic N, Barac L, Pericic M, Klaric IM, Skaric-Juric T, Barbalic M, Polasek O, Kolcic I, Carothers A, Rudan P, Hastie N, Wright A, Campbell H, Rudan I. 3000 years of solitude: extreme differentiation in the island isolates of Dalmatia, Croatia. Eur J Hum Genet 2009; 14:478-87. [PMID: 16493443 DOI: 10.1038/sj.ejhg.5201589] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Communities with increased shared ancestry represent invaluable tools for genetic studies of complex traits. "1001 Dalmatians" research program collects biomedical information for genetic epidemiological research from multiple small isolated populations ('metapopulation') in the islands of Dalmatia, Croatia. Random samples of 100 individuals from 10 small island settlements (n<2000 inhabitants) were collected in 2002 and 2003. These island communities were carefully chosen to represent a wide range of distinct and well-documented demographic histories. Here, we analysed their genetic make-up using 26 short tandem repeat (STR) markers, at least 5 cM apart. We found a very high level of differentiation between most of these island communities based on Wright's fixation indexes, even within the same island. The model-based clustering algorithm, implemented in STRUCTURE, defined six clusters with very distinct genetic signatures, four of which corresponded to single villages. The extent of background LD, assessed with eight linked markers on Xq13-21, paralleled the extent of differentiation and was also very high in most of the populations under study. For each population, demographic history was characterised and 12 "demographic history" variables were tentatively defined. Following stepwise regression, the demographic history variable that most significantly predicted the extent of LD was the proportion of locally born grandparents. Strong isolation and endogamy are likely to be the main forces maintaining this highly structured overall population.
Collapse
Affiliation(s)
- Veronique Vitart
- Human Genetics Unit, Medical Research Council, Western General Hospital, Edinburgh, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bellenguez C, Ober C, Bourgain C. Linkage analysis with dense SNP maps in isolated populations. Hum Hered 2009; 68:87-97. [PMID: 19365135 DOI: 10.1159/000212501] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 11/25/2008] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE SNP maps are becoming the gold standard for genetic markers, even for linkage analyses. However, because of the density of SNPs on most high throughput platforms, the resulting significant linkage disequilibrium (LD) can bias classical nonparametric multipoint linkage analyses. This problem may be even stronger in population isolates where LD can extend over larger distances and with a more stochastic pattern. We investigate the issue of linkage analysis with SNPs from the Affymetrix 500K GeneChip array in extended families from the isolated Hutterite population. METHODS We minimized LD between SNPs by two methods based on a LD block pattern (Merlin and SNPLINK) and by MASEL, a new algorithm that we proposed to select SNP subsets with minimum LD and with no prior hypothesis about the LD pattern. RESULTS Simulations, performed using the real LD pattern observed in the Hutterite population, show that sizeable inflation of linkage statistics persist when LD between SNPs is minimized by Merlin and SNPLINK. Inflation of linkage statistics is better controlled with MASEL. CONCLUSION In this population, it may be difficult to extract from standard GeneChip arrays a SNP map without LD-driven bias that is more informative than a dense microsatellite map.
Collapse
|
22
|
Bellis C, Cox HC, Dyer TD, Charlesworth JC, Begley KN, Quinlan S, Lea RA, Heath SC, Blangero J, Griffiths LR. Linkage mapping of CVD risk traits in the isolated Norfolk Island population. Hum Genet 2008; 124:543-52. [PMID: 18975005 DOI: 10.1007/s00439-008-0580-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 10/21/2008] [Indexed: 01/04/2023]
Abstract
To understand the underlying genetic architecture of cardiovascular disease (CVD) risk traits, we undertook a genome-wide linkage scan to identify CVD quantitative trait loci (QTLs) in 377 individuals from the Norfolk Island population. The central aim of this research focused on the utilization of a genetically and geographically isolated population of individuals from Norfolk Island for the purposes of variance component linkage analysis to identify QTLs involved in CVD risk traits. Substantial evidence supports the involvement of traits such as systolic and diastolic blood pressures, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, body mass index and triglycerides as important risk factors for CVD pathogenesis. In addition to the environmental influences of poor diet, reduced physical activity, increasing age, cigarette smoking and alcohol consumption, many studies have illustrated a strong involvement of genetic components in the CVD phenotype through family and twin studies. We undertook a genome scan using 400 markers spaced approximately 10 cM in 600 individuals from Norfolk Island. Genotype data was analyzed using the variance components methods of SOLAR. Our results gave a peak LOD score of 2.01 localizing to chromosome 1p36 for systolic blood pressure and replicated previously implicated loci for other CVD relevant QTLs.
Collapse
Affiliation(s)
- C Bellis
- Genomics Research Centre, Griffith Institute for Health and Medical Research, Griffith University, Gold Coast PMB 50, GCMC Bundall 9726, Gold Coast, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Identity-by-descent estimation and mapping of qualitative traits in large, complex pedigrees. Genetics 2008; 179:1577-90. [PMID: 18622032 DOI: 10.1534/genetics.108.089912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Computing identity-by-descent sharing between individuals connected through a large, complex pedigree is a computationally demanding task that often cannot be done using exact methods. What I present here is a rapid computational method for estimating, in large complex pedigrees, the probability that pairs of alleles are IBD given the single-point genotype data at that marker for all individuals. The method can be used on pedigrees of essentially arbitrary size and complexity without the need to divide the individuals into separate subpedigrees. I apply the method to do qualitative trait linkage mapping using the nonparametric sharing statistic S(pairs). The validity of the method is demonstrated via simulation studies on a 13-generation 3028-person pedigree with 700 genotyped individuals. An analysis of an asthma data set of individuals in this pedigree finds four loci with P-values <10(-3) that were not detected in prior analyses. The mapping method is fast and can complete analyses of approximately 150 affected individuals within this pedigree for thousands of markers in a matter of hours.
Collapse
|
24
|
Prodi DA, Pirastu N, Maninchedda G, Sassu A, Picciau A, Palmas MA, Mossa A, Persico I, Adamo M, Angius A, Pirastu M. EDA2R is associated with androgenetic alopecia. J Invest Dermatol 2008; 128:2268-70. [PMID: 18385763 DOI: 10.1038/jid.2008.60] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Androgenetic alopecia (AGA) is a common heritable polygenic disorder whose genetics is not fully understood, even though it seems to be X-linked. We carried out an epidemiological survey for AGA on 9,000 people from 8 isolated villages of a secluded region of Sardinia (Ogliastra), and identified a large cohort of affected individuals. We genotyped 200 cases and 200 controls (mean kinship 0.001) with the 500k chip array and conducted case-control association analysis on the X chromosome. We identified Xq11-q12 as strongly associated with AGA. In particular, we found that rs1352015 located 8 kb from the EDA2R gene showed the best result (P=7.77e(-7)). This region also contains the AR gene, hence we tested both genes in 492 cases and 492 controls. We found that the non-synonymous SNP rs1385699 on EDA2R gave the best result (P=3.9e(-19)) whereas rs6152 on the AR gene is less significant (P=4.17e(-12)). Further statistical analysis carried out by conditioning each gene to the presence of the other showed that the association with EDA2R is independent while the association with AR seems to be the result of linkage disequilibrium. These results give insight into the pathways involved in AGA etiology.
Collapse
|
25
|
Ciullo M, Nutile T, Dalmasso C, Sorice R, Bellenguez C, Colonna V, Persico MG, Bourgain C. Identification and replication of a novel obesity locus on chromosome 1q24 in isolated populations of Cilento. Diabetes 2008; 57:783-90. [PMID: 18162505 DOI: 10.2337/db07-0970] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Obesity is a complex trait with a variety of genetic susceptibility variants. Several loci linked to obesity and/or obesity-related traits have been identified, and relatively few regions have been replicated. Studying isolated populations can be a useful approach to identify rare variants that will not be detected with whole-genome association studies in large populations. RESEARCH DESIGN AND METHODS Random individuals were sampled from Campora, an isolated village of the Cilento area in South Italy, phenotyped for BMI, and genotyped using a dense microsatellite marker map. An efficient pedigree-breaking strategy was applied to perform genome-wide linkage analyses of both BMI and obesity. Significance was assessed with ad hoc simulations for the two traits and with an original local false discovery rate approach to quantitative trait linkage analysis for BMI. A genealogy-corrected association test was performed for a single nucleotide polymorphism located in one of the linkage regions. A replication study was conducted in the neighboring village of Gioi. RESULTS A new locus on chr1q24 significantly linked to BMI was identified in Campora. Linkage at the same locus is suggested with obesity. Three additional loci linked to BMI were also detected, including the locus including the INSIG2 gene region. No evidence of association between the rs7566605 variant and BMI or obesity was found. In Gioi, the linkage on chr1q24 was replicated with both BMI and obesity. CONCLUSIONS Overall, our results confirm that successful linkage studies can be accomplished in these populations both to replicate known linkages and to identify novel quantitative trait linkages.
Collapse
Affiliation(s)
- Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu F, Kirichenko A, Axenovich TI, van Duijn CM, Aulchenko YS. An approach for cutting large and complex pedigrees for linkage analysis. Eur J Hum Genet 2008; 16:854-60. [PMID: 18301450 DOI: 10.1038/ejhg.2008.24] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Utilizing large pedigrees in linkage analysis is a computationally challenging task. The pedigree size limits applicability of the Lander-Green-Kruglyak algorithm for linkage analysis. A common solution is to split large pedigrees into smaller computable subunits. We present a pedigree-splitting method that, within a user supplied bit-size limit, identifies subpedigrees having the maximal number of subjects of interest (eg patients) who share a common ancestor. We compare our method with the maximum clique partitioning method using a large and complex human pedigree consisting of 50 patients with Alzheimer's disease ascertained from genetically isolated Dutch population. We show that under a bit-size limit our method can assign more patients to subpedigrees than the clique partitioning method, particularly when splitting deep pedigrees where the subjects of interest are scattered in recent generations and are relatively distantly related via multiple genealogic connections. Our pedigree-splitting algorithm and associated software can facilitate genome-wide linkage scans searching for rare mutations in large pedigrees coming from genetically isolated populations. The software package PedCut implementing our approach is available at http://mga.bionet.nsc.ru/soft/index.html.
Collapse
Affiliation(s)
- Fan Liu
- Department of Epidemiology & Biostatistics, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Falchi M, Fuchsberger C. Jenti: an efficient tool for mining complex inbred genealogies. Bioinformatics 2008; 24:724-6. [PMID: 18222918 DOI: 10.1093/bioinformatics/btm617] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SUMMARY An efficient tool for mining complex inbred genealogies that identify clusters of individuals sharing the same expected amount of relatedness is described. Additionally it allows for the reconstruction of sub-pedigrees suitable for genetic mapping in a systematic way. AVAILABILITY http://www.jenti.org.
Collapse
Affiliation(s)
- Mario Falchi
- Twin Research & Genetic Epidemiology Unit, Kings College London, UK.
| | | |
Collapse
|
28
|
Falchi M. Analysis of quantitative trait loci. Methods Mol Biol 2008; 453:297-326. [PMID: 18712311 DOI: 10.1007/978-1-60327-429-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Diseases with complex inheritance are characterized by multiple genetic and environmental factors that often interact to produce clinical symptoms. In addition, etiological heterogeneity (different risk factors causing similar phenotypes) obscure the inheritance pattern among affected relatives and hamper the feasibility of gene-mapping studies. For such diseases, the careful selection of quantitative phenotypes that may represent intermediary risk factors for disease development (intermediate phenotypes) is etiologically more homogeneous than the disease per se. Over the last 15 years quantitative trait locus mapping has become a popular method for understanding the genetic basis for intermediate phenotypes. This chapter provides an introduction to classical and recent strategies for mapping quantitative trait loci in humans.
Collapse
Affiliation(s)
- Mario Falchi
- Twin Research and Genetic Epidemiology Unit, King's College London School of Medicine, London, United Kingdom
| |
Collapse
|
29
|
Bellis C, Cox HC, Ovcaric M, Begley KN, Lea RA, Quinlan S, Burgner D, Heath SC, Blangero J, Griffiths LR. Linkage disequilibrium analysis in the genetically isolated Norfolk Island population. Heredity (Edinb) 2007; 100:366-73. [PMID: 18091769 DOI: 10.1038/sj.hdy.6801083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Norfolk Island is a human genetic isolate, possessing unique population characteristics that could be utilized for complex disease gene localization. Our intention was to evaluate the extent and strength of linkage disequilibrium (LD) in the Norfolk isolate by investigating markers within Xq13.3 and the NOS2A gene encoding the inducible nitric oxide synthase. A total of six microsatellite markers spanning approximately 11 Mb were assessed on chromosome Xq13.3 in a group of 56 men from Norfolk Island. Additionally, three single nucleotide polymorphisms (SNPs) localizing to the NOS2A gene were analyzed in a subset of the complex Norfolk pedigree. With the exception of two of the marker pairs, one of which is the most distantly spaced marker, all the Xq13.3 marker pairs were found to be in significant LD indicating that LD extends up to 9.5-11.5 Mb in the Norfolk Island population. Also, all SNPs studied showed significant LD in both Norfolk Islanders and Australian Caucasians, with two of the marker pairs in complete LD in the Norfolk population only. The Norfolk Island study population possesses a unique set of characteristics including founder effect, geographical isolation, exhaustive genealogical information and phenotypic data of use to cardiovascular disease risk traits. With LD extending up to 9.5-11 Mb, the Norfolk isolate should be a powerful resource for the localization of complex disease genes.
Collapse
Affiliation(s)
- C Bellis
- Genomics Research Centre, School of Medical Science, Griffith University, Gold Coast, Bundall, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Marroni F, Grazio D, Pattaro C, Devoto M, Pramstaller P. Estimates of genetic and environmental contribution to 43 quantitative traits support sharing of a homogeneous environment in an isolated population from South Tyrol, Italy. Hum Hered 2007; 65:175-82. [PMID: 17934319 DOI: 10.1159/000109734] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 06/20/2007] [Indexed: 11/19/2022] Open
Abstract
As part of the genomic health care program 'GenNova', we measured 43 quantitative traits in 1,136 subjects living in three isolated villages in South Tyrol (Italy), for which extended genealogical information was available. Thirty-seven of the studied traits had been previously investigated in other populations, while six of them are, to the best of our knowledge, studied here for the first time. For all 43 traits we estimated narrow-sense heritability, individual-specific environmental effects, and shared environmental effects. Estimates of narrow-sense heritability were in good agreement with previous findings. We found significant heritability for all traits; after correcting for multiple testing, all traits except serum concentration of glutamic oxaloacetic transaminase (GOT) and potassium still showed significant heritability. In contrast, the effect of living in the same sibship or village (the so-called sibship and household effects, respectively) was significant for a few traits only, and after correcting for multiple testing no trait showed significant shared environment effect. We suggest that the sharing of a highly similar environment by the subjects included in this study explains the low contribution of the household effects to the overall trait variation. This peculiarity should provide an advantage in gene-mapping projects by reducing environmental bias.
Collapse
|
31
|
Axenovich TI, Zorkoltseva IV, Liu F, Kirichenko AV, Aulchenko YS. Breaking loops in large complex pedigrees. Hum Hered 2007; 65:57-65. [PMID: 17898536 DOI: 10.1159/000108937] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 05/22/2007] [Indexed: 11/19/2022] Open
Abstract
For pedigrees with multiple loops, exact likelihoods could not be computed in an acceptable time frame and thus, approximate methods are used. Some of these methods are based on breaking loops and approximations of complex pedigree likelihoods using the exact likelihood of the corresponding zero-loop pedigree. Due to ignoring loops, this method results in a loss of genetic information and a decrease in the power to detect linkage. To minimize this loss, an optimal set of loop breakers has to be selected. In this paper, we present a graph theory based algorithm for automatic selection of an optimal set of loop breakers. We propose using a total relationship between measured pedigree members as a proxy to power. To minimize the loss of genetic information, we suggest selection of such breakers whose duplication in a pedigree would be accompanied by a minimal loss of total relationship between measured pedigree members. We show that our algorithm compares favorably with other existing loop-breaker selection algorithms in terms of conservation of genetic information, statistical power and CPU time of subsequent linkage analysis. We implemented our method in a software package LOOP_EDGE, which is available at http://mga.bionet.nsc.ru/nlru/.
Collapse
Affiliation(s)
- Tatiana I Axenovich
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | | | |
Collapse
|
32
|
Angius A, Hyland FCL, Persico I, Pirastu N, Woodage T, Pirastu M, De la Vega FM. Patterns of linkage disequilibrium between SNPs in a Sardinian population isolate and the selection of markers for association studies. Hum Hered 2007; 65:9-22. [PMID: 17652959 DOI: 10.1159/000106058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 04/30/2007] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE In isolated populations, 'background' linkage disequilibrium (LD) has been shown to extend over large genetic distances. This and their reduced environmental and genetic heterogeneity has stimulated interest in their potential for association mapping. We compared LD unit map distances with pair-wise measurements of LD in a dense single nucleotide polymorphism (SNP) set. METHODS We genotyped 771 SNPs in an 8 Mb segment of chromosome 22 on 101 individuals from the isolated village of Talana, Sardinia, and compared with outbred European populations. RESULTS Heterozygosity was remarkably similar in both populations. In contrast, the extent of LD observed was quite different. The decay of LD with distance is slower in the isolate. The differences in LD map lengths suggest that useful LD extends up to three times farther in the Sardinian population; smaller differences are seen with pairwise LD metrics. While LD map length slightly decreases with average relatedness, cryptic relatedness does not explain the decrease in LD map length. Haplotypes, block boundaries, and patterns of LD are similar in both populations, suggesting a shared distribution of recombination hotspots. CONCLUSIONS About 15% fewer haplotype tagging SNPs need to be genotyped in the isolate, and possibly 70% fewer if selecting SNPs evenly spaced on the metric LD map.
Collapse
|
33
|
Herrera VLM, Ponce LRB, Ruiz-Opazo N. Genome-wide scan for interacting loci affecting human cholesteryl ester transfer protein-induced hypercholesterolemia in transgenic human cholesteryl ester transfer protein F2-intercross rats. J Hypertens 2007; 25:1608-12. [PMID: 17620956 DOI: 10.1097/hjh.0b013e328182df1a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We documented susceptibility in Dahl S rats to coronary atherosclerosis upon the transgenic expression of human cholesteryl ester transfer protein (hCETP) producing severe combined hyperlipidemia, as detected in Tg[hCETP]53 (Tg53) Dahl S rats. In other genetic backgrounds (i.e. Dahl R, spontaneously hypertensive rat strains) transgene expression does not lead to severe combined hyperlipidemia. This study aimed to identify genetic loci that modify the effect of hCETP on hypercholesterolemia observed in different genetic contexts. METHODS To identify quantitative trait loci (QTL) that affect hCETP-mediated hyperlipidemia in Tg53 Dahl S rats in contrast to Tg53 Dahl R rats we performed a genome-wide scan for QTL affecting plasma total cholesterol in an F2[Tg (R x S)]-intercross male population (n = 159) that are transgenic for the Tg[hCETP]53 transgene. Hybrids were genotyped with 121 informative polymorphic markers. RESULTS We detected three novel hCETP-dependent QTL for hypercholesterolemia: one on chromosome 3 with suggestive linkage [logarithm of odds score derived from likelihood ratio statistic using a factor of 4.6 (LOD) 2.26]; one on chromosome 9 with significant linkage (LOD 4.15), and one on chromosome 11 with significant linkage (LOD 3.48) that have not been detected in other rat intercrosses. CONCLUSION Three cholesteryl ester transfer protein (CETP)-interacting loci were identified in a Tg53 Dahl S rat intercross study affecting cholesterol metabolism. These results could partly explain the controversy regarding the atherogenic role of CETP in humans, suggesting the hypothesis that putative CETP interacting genes confound or play an important role in CETP-mediated pro-atherogenic susceptibility in humans. Overall, these observations reiterate the key role of epistasis in complex, multifactorial traits.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Section of Molecular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
34
|
Liu F, Arias-Vásquez A, Sleegers K, Aulchenko YS, Kayser M, Sanchez-Juan P, Feng BJ, Bertoli-Avella AM, van Swieten J, Axenovich TI, Heutink P, van Broeckhoven C, Oostra BA, van Duijn CM. A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population. Am J Hum Genet 2007; 81:17-31. [PMID: 17564960 PMCID: PMC1950931 DOI: 10.1086/518720] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 03/27/2007] [Indexed: 12/30/2022] Open
Abstract
Alzheimer disease (AD) is the most common cause of dementia. We conducted a genome screen of 103 patients with late-onset AD who were ascertained as part of the Genetic Research in Isolated Populations (GRIP) program that is conducted in a recently isolated population from the southwestern area of The Netherlands. All patients and their 170 closely related relatives were genotyped using 402 microsatellite markers. Extensive genealogy information was collected, which resulted in an extremely large and complex pedigree of 4,645 members. The pedigree was split into 35 subpedigrees, to reduce the computational burden of linkage analysis. Simulations aiming to evaluate the effect of pedigree splitting on false-positive probabilities showed that a LOD score of 3.64 corresponds to 5% genomewide type I error. Multipoint analysis revealed four significant and one suggestive linkage peaks. The strongest evidence of linkage was found for chromosome 1q21 (heterogeneity LOD [HLOD]=5.20 at marker D1S498). Approximately 30 cM upstream of this locus, we found another peak at 1q25 (HLOD=4.0 at marker D1S218). These two loci are in a previously established linkage region. We also confirmed the AD locus at 10q22-24 (HLOD=4.15 at marker D10S185). There was significant evidence of linkage of AD to chromosome 3q22-24 (HLOD=4.44 at marker D3S1569). For chromosome 11q24-25, there was suggestive evidence of linkage (HLOD=3.29 at marker D11S1320). We next tested for association between cognitive function and 4,173 single-nucleotide polymorphisms in the linked regions in an independent sample consisting of 197 individuals from the GRIP region. After adjusting for multiple testing, we were able to detect significant associations for cognitive function in four of five AD-linked regions, including the new region on chromosome 3q22-24 and regions 1q25, 10q22-24, and 11q25. With use of cognitive function as an endophenotype of AD, our study indicates the that the RGSL2, RALGPS2, and C1orf49 genes are the potential disease-causing genes at 1q25. Our analysis of chromosome 10q22-24 points to the HTR7, MPHOSPH1, and CYP2C cluster. This is the first genomewide screen that showed significant linkage to chromosome 3q23 markers. For this region, our analysis identified the NMNAT3 and CLSTN2 genes. Our findings confirm linkage to chromosome 11q25. We were unable to confirm SORL1; instead, our analysis points to the OPCML and HNT genes.
Collapse
Affiliation(s)
- Fan Liu
- Genetic Epidemiology Unit, Department of Epidemiology and Biostatistics and Clinical Genetics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Arnett DK, Baird AE, Barkley RA, Basson CT, Boerwinkle E, Ganesh SK, Herrington DM, Hong Y, Jaquish C, McDermott DA, O'Donnell CJ. Relevance of Genetics and Genomics for Prevention and Treatment of Cardiovascular Disease. Circulation 2007; 115:2878-901. [PMID: 17515457 DOI: 10.1161/circulationaha.107.183679] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Atherosclerotic cardiovascular disease (CVD) is a major health problem in the United States and around the world. Evidence accumulated over decades convincingly demonstrates that family history in a parent or a sibling is associated with atherosclerotic CVD, manifested as coronary heart disease, stroke, and/or peripheral arterial disease. Although there are several mendelian disorders that contribute to CVD, most common forms of CVD are believed to be multifactorial and to result from many genes, each with a relatively small effect working alone or in combination with modifier genes and/or environmental factors. The identification and the characterization of these genes and their modifiers would enhance prediction of CVD risk and improve prevention, treatment, and quality of care. This scientific statement describes the approaches researchers are using to advance understanding of the genetic basis of CVD and details the current state of knowledge regarding the genetics of myocardial infarction, atherosclerotic CVD, hypercholesterolemia, and hypertension. Current areas of interest and investigation--including gene-environment interaction, pharmacogenetics, and genetic counseling--are also discussed. The statement concludes with a list of specific recommendations intended to help incorporate usable knowledge into current clinical and public health practice, foster and guide future research, and prepare both researchers and practitioners for the changes likely to occur as molecular genetics moves from the laboratory to clinic.
Collapse
|
36
|
Pattaro C, Marroni F, Riegler A, Mascalzoni D, Pichler I, Volpato CB, Dal Cero U, De Grandi A, Egger C, Eisendle A, Fuchsberger C, Gögele M, Pedrotti S, Pinggera GK, Stefanov SA, Vogl FD, Wiedermann CJ, Meitinger T, Pramstaller PP. The genetic study of three population microisolates in South Tyrol (MICROS): study design and epidemiological perspectives. BMC MEDICAL GENETICS 2007; 8:29. [PMID: 17550581 PMCID: PMC1913911 DOI: 10.1186/1471-2350-8-29] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 06/05/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND There is increasing evidence of the important role that small, isolated populations could play in finding genes involved in the etiology of diseases. For historical and political reasons, South Tyrol, the northern most Italian region, includes several villages of small dimensions which remained isolated over the centuries. METHODS The MICROS study is a population-based survey on three small, isolated villages, characterized by: old settlement; small number of founders; high endogamy rates; slow/null population expansion. During the stage-1 (2002/03) genealogical data, screening questionnaires, clinical measurements, blood and urine samples, and DNA were collected for 1175 adult volunteers. Stage-2, concerning trait diagnoses, linkage analysis and association studies, is ongoing. The selection of the traits is being driven by expert clinicians. Preliminary, descriptive statistics were obtained. Power simulations for finding linkage on a quantitative trait locus (QTL) were undertaken. RESULTS Starting from participants, genealogies were reconstructed for 50,037 subjects, going back to the early 1600s. Within the last five generations, subjects were clustered in one pedigree of 7049 subjects plus 178 smaller pedigrees (3 to 85 subjects each). A significant probability of familial clustering was assessed for many traits, especially among the cardiovascular, neurological and respiratory traits. Simulations showed that the MICROS pedigree has a substantial power to detect a LOD score > or = 3 when the QTL specific heritability is > or = 20%. CONCLUSION The MICROS study is an extensive, ongoing, two-stage survey aimed at characterizing the genetic epidemiology of Mendelian and complex diseases. Our approach, involving different scientific disciplines, is an advantageous strategy to define and to study population isolates. The isolation of the Alpine populations, together with the extensive data collected so far, make the MICROS study a powerful resource for the study of diseases in many fields of medicine. Recent successes and simulation studies give us confidence that our pedigrees can be valuable both in finding new candidates loci and to confirm existing candidate genes.
Collapse
Affiliation(s)
| | - Fabio Marroni
- Institute of Genetic Medicine, European Academy, Bolzano, Italy
| | - Alice Riegler
- Institute of Genetic Medicine, European Academy, Bolzano, Italy
| | | | - Irene Pichler
- Institute of Genetic Medicine, European Academy, Bolzano, Italy
| | | | | | | | - Clemens Egger
- Institute of Genetic Medicine, European Academy, Bolzano, Italy
| | - Agatha Eisendle
- Institute of Genetic Medicine, European Academy, Bolzano, Italy
| | | | - Martin Gögele
- Institute of Genetic Medicine, European Academy, Bolzano, Italy
| | - Sara Pedrotti
- Institute of Genetic Medicine, European Academy, Bolzano, Italy
| | - Gerd K Pinggera
- Institute of Genetic Medicine, European Academy, Bolzano, Italy
| | | | - Florian D Vogl
- Department of Gynaecology, Hospital of Merano, Via Rossini 5, 39012 Merano-Meran, Italy
| | - Christian J Wiedermann
- Laboratory of Medical Intensive Care, Division of General Internal Medicine, Department of Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Division of Internal Medicine II, Department of Medicine, Central Hospital of Bolzano, Bolzano/Bozen, Italy
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- GSF – National Research Center for Environment and Health, Institute of Human Genetics, München-Neuherberg, Germany
| | - Peter P Pramstaller
- Institute of Genetic Medicine, European Academy, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Department of Neurology, General Regional Hospital, Bolzano, Italy
| |
Collapse
|
37
|
Colonna V, Nutile T, Astore M, Guardiola O, Antoniol G, Ciullo M, Persico MG. Campora: a young genetic isolate in South Italy. Hum Hered 2007; 64:123-35. [PMID: 17476112 PMCID: PMC2787182 DOI: 10.1159/000101964] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 02/14/2007] [Indexed: 12/21/2022] Open
Abstract
Genetic isolates have been successfully used in the study of complex traits, mainly because due to their features, they allow a reduction in the complexity of the genetic models underlying the trait. The aim of the present study is to describe the population of Campora, a village in the South of Italy, highlighting its properties of a genetic isolate. Both historical evidence and multi-locus genetic data (genomic and mitochondrial DNA polymorphisms) have been taken into account in the analyses. The extension of linkage disequilibrium (LD) regions has been evaluated on autosomes and on a region of the X chromosome. We defined a study sample population on the basis of the genealogy and exogamy data. We found in this population a few different mitochondrial and Y chromosome haplotypes and we ascertained that, similarly to other isolated populations, in Campora LD extends over wider region compared to large and genetically heterogeneous populations. These findings indicate a conspicuous genetic homogeneity in the genome. Finally, we found evidence for a recent population bottleneck that we propose to interpret as a demographic crisis determined by the plague of the 17th century. Overall our findings demonstrate that Campora displays the genetic characteristics of a young isolate.
Collapse
Affiliation(s)
- Vincenza Colonna
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR Naples, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Andrade J, Andersen M, Sillén A, Graff C, Odeberg J. The use of grid computing to drive data-intensive genetic research. Eur J Hum Genet 2007; 15:694-702. [PMID: 17377522 DOI: 10.1038/sj.ejhg.5201815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In genetics, with increasing data sizes and more advanced algorithms for mining complex data, a point is reached where increased computational capacity or alternative solutions becomes unavoidable. Most contemporary methods for linkage analysis are based on the Lander-Green hidden Markov model (HMM), which scales exponentially with the number of pedigree members. In whole genome linkage analysis, genotype simulations become prohibitively time consuming to perform on single computers. We have developed "Grid-Allegro", a Grid aware implementation of the Allegro software, by which several thousands of genotype simulations can be performed in parallel in short time. With temporary installations of the Allegro executable and datasets on remote nodes at submission, the need of predefined Grid run-time environments is circumvented. We evaluated the performance, efficiency and scalability of this implementation in a genome scan on Swedish multiplex Alzheimer's disease families. We demonstrate that "Grid-Allegro" allows for the full exploitation of the features available in Allegro for genome-wide linkage. The implementation of existing bioinformatics applications on Grids (Distributed Computing) represent a cost-effective alternative for addressing highly resource-demanding and data-intensive bioinformatics task, compared to acquiring and setting up clusters of computational hardware in house (Parallel Computing), a resource not available to most geneticists today.
Collapse
Affiliation(s)
- Jorge Andrade
- Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH), SE-10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
39
|
Ciullo M, Bellenguez C, Colonna V, Nutile T, Calabria A, Pacente R, Iovino G, Trimarco B, Bourgain C, Persico MG. New susceptibility locus for hypertension on chromosome 8q by efficient pedigree-breaking in an Italian isolate. Hum Mol Genet 2006; 15:1735-43. [PMID: 16611673 DOI: 10.1093/hmg/ddl097] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Essential hypertension (EH) affects a large proportion of the adult population in Western countries and is a major risk factor for cardiovascular diseases. EH is a multifactorial disease with a complex genetic component. To tackle the complexity of this genetic component, we have initiated a study of Campora, an isolated village in South Italy. A random sample of 389 adults was genotyped for a very dense microsatellite genome scan and phenotyped for EH. Of this sample, 173 affected individuals were all related through a 2,180-member pedigree and could be integrated within a linkage analysis. The complexity of the pedigree prevented its direct use for a non-parametric linkage (NPL) analysis. Therefore, the method proposed by Falchi et al. [2004, Am. J. Hum. Genet., 75, 1015-1031] was used for automatic pedigree-breaking. We identified a new locus for EH on chromosome 8q22-23 and detected linkage with two known loci for EH: 1q42-43 and 4p16. Simulations showed that the linkage with 8q22-23 is highly genome-wide significant, even when accounting for the breaking of the pedigree. An extension to qualitative traits of another pedigree-breaking approach [Pankratz et al., 2001, Genet. Epidemiol., 21 (Suppl. 1), S258-S263] also detected a significant linkage on 8q22-23 using a remarkably different set of sub-pedigrees and helped to refine the location of the linkage signal. This work both identifies a new locus strongly linked to hypertension and shows that the power of linkage analysis can be improved by the appropriate use of efficient pedigree-breaking strategies.
Collapse
Affiliation(s)
- Marina Ciullo
- Institute of Genetics and Biophysics, A. Buzzati-Traverso, CNR Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Falchi M, Borlino CC. PowQ: a user-friendly package for the design of variance component multipoint linkage analysis studies. Bioinformatics 2006; 22:1404-5. [PMID: 16585065 DOI: 10.1093/bioinformatics/btl124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A user-friendly, graphical package for power evaluation and enhancement planning through variance component linkage analysis in a multipoint framework.
Collapse
Affiliation(s)
- Mario Falchi
- Twin Research and Genetic Epidemiology Unit, St Thomas' Hospital London, UK.
| | | |
Collapse
|
41
|
Dick DM, Jones K, Saccone N, Hinrichs A, Wang JC, Goate A, Bierut L, Almasy L, Schuckit M, Hesselbrock V, Tischfield J, Foroud T, Edenberg H, Porjesz B, Begleiter H. Endophenotypes successfully lead to gene identification: results from the collaborative study on the genetics of alcoholism. Behav Genet 2005; 36:112-26. [PMID: 16341909 DOI: 10.1007/s10519-005-9001-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 07/15/2005] [Indexed: 11/29/2022]
Abstract
The use of endophenotypes has been proposed as a strategy to aid gene identification efforts for complex phenotypes [Gottesman, I. I., and Shields J. (1972). Schizophrenia and Genetics: A Twin Study Vantage Point. London: Academic]. As part of the Collaborative Study of the Genetics of Alcoholism (COGA) project, we have analyzed electrophysiological endophenotypes, in addition to clinical diagnoses, as part of our effort to identify genes involved in the predisposition to alcohol dependence. In this paper we summarize published results from linkage and association analyses of two chromosomal regions in which the use of endophenotypes has successfully led to the identification of genes associated with alcohol dependence [GABRA2 (Edenberg et al., (2004). Am. J. Hum. Genet. 74:705-714) and CHRM2 (Wang et al., (2004). Hum. Mol. Genet. 13:1903-1911)]. Our experience in the COGA project has been that the analysis of endophenotypes provides several advantages over diagnostic phenotypes, including the strength and localization of the linkage signal. Our results provide an illustration of the successful use of endophenotypes to identify genes involved in the predisposition to a complex psychiatric phenotype, a strategy originally proposed by Gottesman and Shields in 1972.
Collapse
Affiliation(s)
- Danielle M Dick
- Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Heijmans BT, Beekman M, Putter H, Lakenberg N, van der Wijk HJ, Whitfield JB, Posthuma D, Pedersen NL, Martin NG, Boomsma DI, Slagboom PE. Meta-analysis of four new genome scans for lipid parameters and analysis of positional candidates in positive linkage regions. Eur J Hum Genet 2005; 13:1143-53. [PMID: 16015283 DOI: 10.1038/sj.ejhg.5201466] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lipid levels in plasma strongly influence the risk for coronary heart disease. To localise and subsequently identify genes affecting lipid levels, we performed four genome-wide linkage scans followed by combined linkage/association analysis. Genome-scans were performed in 701 dizygotic twin pairs from four samples with data on plasma levels of HDL- and LDL-cholesterol and their major protein constituents, apolipoprotein AI (ApoAI) and Apolipoprotein B (ApoB). To maximise power, the genome scans were analysed simultaneously using a well-established meta-analysis method that was newly applied to linkage analysis. Overall LOD scores were estimated using the means of the sample-specific quantitative trait locus (QTL) effects inversely weighted by the standard errors obtained using an inverse regression method. Possible heterogeneity was accounted for with a random effects model. Suggestive linkage for HDL-C was observed on 8p23.1 and 12q21.2 and for ApoAI on 1q21.3. For LDL-C and ApoB, linkage regions frequently coincided (2p24.1, 2q32.1, 19p13.2 and 19q13.31). Six of the putative QTLs replicated previous findings. After fine mapping, three maximum LOD scores mapped within 1 cM of major candidate genes, namely APOB (LOD=2.1), LDLR (LOD=1.9) and APOE (LOD=1.7). APOB haplotypes explained 27% of the QTL effect observed for LDL-C on 2p24.1 and reduced the LOD-score by 0.82. Accounting for the effect of the LDLR and APOE haplotypes did not change the LOD score close to the LDLR gene but abolished the linkage signal at the APOE gene. In conclusion, application of a new meta-analysis approach maximised the power to detect QTLs for lipid levels and improved the precision of their location estimate.
Collapse
Affiliation(s)
- Bastiaan T Heijmans
- Molecular Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yu Y, Wyszynski DF, Waterworth DM, Wilton SD, Barter PJ, Kesäniemi YA, Mahley RW, McPherson R, Waeber G, Bersot TP, Ma Q, Sharma SS, Montgomery DS, Middleton LT, Sundseth SS, Mooser V, Grundy SM, Farrer LA. Multiple QTLs influencing triglyceride and HDL and total cholesterol levels identified in families with atherogenic dyslipidemia. J Lipid Res 2005; 46:2202-13. [PMID: 16061952 DOI: 10.1194/jlr.m500137-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We conducted a genome-wide scan using variance components linkage analysis to localize quantitative-trait loci (QTLs) influencing triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol, and total cholesterol (TC) levels in 3,071 subjects from 459 families with atherogenic dyslipidemia. The most significant evidence for linkage to TG levels was found in a subset of Turkish families at 11q22 [logarithm of the odds ratio (LOD)=3.34] and at 17q12 (LOD=3.44). We performed sequential oligogenic linkage analysis to examine whether multiple QTLs jointly influence TG levels in the Turkish families. These analyses revealed loci at 20q13 that showed strong epistatic effects with 11q22 (conditional LOD=3.15) and at 7q36 that showed strong epistatic effects with 17q12 (conditional LOD=3.21). We also found linkage on the 8p21 region for TG in the entire group of families (LOD=3.08). For HDL-C levels, evidence of linkage was identified on chromosome 15 in the Turkish families (LOD=3.05) and on chromosome 5 in the entire group of families (LOD=2.83). Linkage to QTLs for TC was found at 8p23 in the entire group of families (LOD=4.05) and at 5q13 in a subset of Turkish and Mediterranean families (LOD=3.72). These QTLs provide important clues for the further investigation of genes responsible for these complex lipid phenotypes. These data also indicate that a large proportion of the variance of TG levels in the Turkish population is explained by the interaction of multiple genetic loci.
Collapse
Affiliation(s)
- Yi Yu
- Department of Medicine (Genetics Program), Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bourgain C, Génin E. Complex trait mapping in isolated populations: Are specific statistical methods required? Eur J Hum Genet 2005; 13:698-706. [PMID: 15785775 DOI: 10.1038/sj.ejhg.5201400] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this paper, we review the statistical methods that can be used in isolated populations to map genes involved in complex diseases. Our intention is to highlight the fact that if the features of population isolates may help in the identification of susceptibility factors for complex traits, the choice and design of methods for statistical analysis in these populations deserve particular care. We show that methods designed for outbred samples are generally not appropriate for isolated populations and could lead to false conclusions.
Collapse
|
45
|
Mathias RA, Beaty TH, Bailey-Wilson JE, Bickel C, Stockton ML, Barnes KC. Inheritance of total serum IgE in the isolated Tangier Island population from Virginia: complexities associated with genealogical depth of pedigrees in segregation analyses. Hum Hered 2005; 59:228-38. [PMID: 16093728 DOI: 10.1159/000087123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 05/12/2005] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES This study was aimed at performing a segregation analysis of total serum immunoglobulin E (tIgE) in an isolated population using maximal genealogical information permitted by current software and computer capacities, while assessing the reliability of the best-fitting model of inheritance for tIgE through simulations. METHODS All current Tangier Island, VA, residents (n = 664) belonged to one large extended pedigree (n = 3,501) spanning 13 generations, with an average inbreeding coefficient of 0.009. Phenotype data were obtained on 453 (68.2%) of the residents using a population-based recruitment scheme. Due to computational limitations resulting from the extremely complex pedigree structure, analysis on only two pedigree reconstructions was feasible: a reduced pedigree retaining all phenotyped individuals and their parents as 57 distinct families, and 922 nuclear families. RESULTS Familial correlations and heritability calculations reveal a significant genetic component to tIgE in these data (heritability = 26%). The most parsimonious model to explain tIgE distribution indicated by the reduced pedigree structure was a two-distribution Mendelian model. However, larger and non-genetic models could not be rejected. Simulations over 200 replicates performed to evaluate the reliability of this model, indicated that using restricted genealogical information had minimal impact on results of segregation analyses performed here.
Collapse
Affiliation(s)
- Rasika A Mathias
- Department of Epidemiology, Bloomberg School of Hygiene and Public Health, Johns Hopkins University, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|