1
|
Alcaide Martin A, Bauer R, Führer-Sakel D, Heuer H, Mayerl S. Increased seizure susceptibility in thyroid hormone transporter Mct8/Oatp1c1 knockout mice is associated with altered neurotransmitter systems development. Prog Neurobiol 2025; 247:102731. [PMID: 39986448 DOI: 10.1016/j.pneurobio.2025.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Thyroid hormone (TH) transporters such as the monocarboxylate transporter Mct8 and the organic anion transporting protein Oatp1c1 facilitate TH transport into target cells. In humans, inactivating mutations in MCT8 result in Allan-Herndon-Dudley syndrome (AHDS), a severe psychomotor retardation with hallmarks of a central TH deficit and frequently observed seizures of unknown etiology. Here, we aimed to investigate seizure susceptibility in AHDS by using Mct8/Oatp1c1 double-knockout (Dko) mice, a well-established AHDS model. We tested seizure susceptibility using the pilocarpine model and observed a significantly faster occurrence of status epilepticus (SE) and more severe responses to seizure induction in Dko animals. We analyzed neuronal alterations in the hippocampus, an area central in seizure pathology, 12 h after SE by immuno-fluorescence and in situ hybridization (ISH). Dko mice presented increased cFos immunoreactivity, and ectopic expression of somatostatin in CA3 neurons. To unravel underlying mechanisms, we studied neurotransmitter systems in murine hippocampi during development at P12 and in adulthood. Employing immuno-fluorescence, ISH and qPCR analyses, we revealed an abnormal development of the inhibitory GABAergic, excitatory glutamatergic and cholinergic systems in Dko mice. Together, our data point to an altered inhibition/excitation balance in the Dko hippocampus that may explain the increased seizure susceptibility.
Collapse
Affiliation(s)
- Andrea Alcaide Martin
- University of Duisburg-Essen, University Hospital Essen, Dept. of Endocrinology, Diabetes and Metabolism, Essen, Germany; Center for Translational Neuro-, and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Jena, Germany
| | - Dagmar Führer-Sakel
- University of Duisburg-Essen, University Hospital Essen, Dept. of Endocrinology, Diabetes and Metabolism, Essen, Germany; Center for Translational Neuro-, and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Heike Heuer
- University of Duisburg-Essen, University Hospital Essen, Dept. of Endocrinology, Diabetes and Metabolism, Essen, Germany; Center for Translational Neuro-, and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Steffen Mayerl
- University of Duisburg-Essen, University Hospital Essen, Dept. of Endocrinology, Diabetes and Metabolism, Essen, Germany; Center for Translational Neuro-, and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Schreiner F, Vollbach H, Sonntag N, Schempp V, Gohlke B, Friese J, Woelfle J, Braun D, Schweizer U. Phenylbutyrate Treatment in a Boy With MCT8 Deficiency: Improvement of Thyroid Function Tests and Possible Hepatotoxicity. J Clin Endocrinol Metab 2025; 110:e992-e999. [PMID: 38781537 DOI: 10.1210/clinem/dgae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT Monocarboxylate transporter 8 (MCT8) deficiency is a rare X-chromosomal inherited disease leading to severe cognitive impairment, muscular hypotonia, and symptoms of peripheral thyrotoxicosis. Experimental approaches aiming to functionally rescue mutant MCT8 activity by the chemical chaperone phenylbutyrate (PB) demonstrated promising effects in vitro for several MCT8 missense mutations. OBJECTIVE The objective was to evaluate biochemical and clinical effects of PB in doses equivalent to those approved for the treatment of urea cycle disorders in a boy with MCT8 deficiency due to a novel MCT8 missense mutation c.703G>T (p.V235L). RESULTS During a treatment period of 13 months, PB led to a significant decrease of elevated thyrotropin and triiodothyronine (T3) serum concentrations, while free thyroxine (fT4) increased. The weight z-score of the toddler remained remarkably stable during the treatment period. Neurodevelopmental assessments (BSID-III) revealed a slight increase of gross motor skills from developmental age 4 to 6 months. However, increasing liver enzyme serum activities and accumulation of phenylacetate in urine led to treatment interruptions and dose alterations. In vitro analyses in MDCK1 cells confirmed the pathogenicity of MCT8 p.V235L. However, while PB increased expression of the mutant protein, it did not rescue T3 transport, suggesting a PB effect on thyroid function tests independent of restoring MCT8 activity. CONCLUSION In a clinical attempt of PB treatment in MCT8 deficiency we observed a significant improvement of thyroid hormone function tests, tendencies toward body weight stabilization and slight neurodevelopmental improvement. Hepatotoxicity of PB may be a limiting factor in MCT8 deficiency and requires further investigation.
Collapse
Affiliation(s)
- Felix Schreiner
- Pediatric Endocrinology Division, Children's Hospital, University Hospital Bonn, 53127 Bonn, Germany
| | - Heike Vollbach
- Pediatric Endocrinology Division, Children's Hospital, University Hospital Bonn, 53127 Bonn, Germany
| | - Niklas Sonntag
- Institute of Biochemistry and Molecular Biology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Vera Schempp
- Pediatric Endocrinology Division, Children's Hospital, University Hospital Bonn, 53127 Bonn, Germany
| | - Bettina Gohlke
- Pediatric Endocrinology Division, Children's Hospital, University Hospital Bonn, 53127 Bonn, Germany
| | - Johannes Friese
- Department of Pediatric Neurology, Children's Hospital, University Hospital Bonn, 53127 Bonn, Germany
| | - Joachim Woelfle
- Pediatric Endocrinology Division, Children's Hospital, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Doreen Braun
- Institute of Biochemistry and Molecular Biology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Ulrich Schweizer
- Institute of Biochemistry and Molecular Biology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
3
|
Bågenholm V, Nordlin KP, Pasquadibisceglie A, Belinskiy A, Holm CM, Hotiana HA, Gotfryd K, Delemotte L, Nour-Eldin HH, Pedersen PA, Gourdon P. Cryo-EM structure of the human monocarboxylate transporter 10. Structure 2025:S0969-2126(25)00065-6. [PMID: 40112803 DOI: 10.1016/j.str.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
The monocarboxylate transporter (MCT) membrane protein family has 14 human members that perform key cellular functions, such as regulating metabolism. MCT8 and MCT10 have unique cargo specificity, transporting thyroid hormone and, in the case of MCT10, aromatic amino acids. Dysfunctional MCT8 causes the severe Allan-Herndon-Dudley syndrome, yet the (patho)physiology and function of MCT8 and MCT10 are not clearly understood, especially at a structural level. We present the cryoelectron microscopy (cryo-EM) structure of MCT10, displaying the classical major facilitator superfamily fold, caught in an inward-open configuration. Together with cargo docking models, the outward-open MCT10 AlphaFold model and validating functional analysis, cargo specificity and transport principles are proposed. These findings significantly enhance our understanding of the structure and function of MCTs, information that also may be valuable for the development of novel treatments against MCT-related disorders to address global challenges such as diabetes, obesity, and cancer.
Collapse
Affiliation(s)
- Viktoria Bågenholm
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Karl Patric Nordlin
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andrea Pasquadibisceglie
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, 17165 Stockholm, Sweden
| | - Andrey Belinskiy
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Caroline Marcher Holm
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Hajira Ahmed Hotiana
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kamil Gotfryd
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, 17165 Stockholm, Sweden
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
4
|
Wagenaars F, Cenijn P, van Boxel J, Koekkoek J, Schroten H, Ishikawa H, van Duursen M, Hamers T. Characterization of thyroid hormone transport in a human choroid plexus papilloma cell line (HIBCPP) as an in vitro blood-cerebrospinal fluid barrier model. Mol Cell Endocrinol 2025; 597:112449. [PMID: 39740754 DOI: 10.1016/j.mce.2024.112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Adequate levels of thyroid hormones (THs) in the fetal brain are vital for early neurodevelopment. Most of the TH in fetal brain is derived from circulating thyroxine (T4), which gets locally converted into the biologically active triiodothyronine (T3) by deiodinase enzymes. One of the major routes of TH into the brain is through the blood-cerebrospinal fluid barrier (BCSFB). The BCSFB is maintained by the choroid plexus (CP), which separates the blood from the cerebrospinal fluid (CSF). TH transport across the BCSFB is facilitated by TH transmembrane transporters (THTMTs) present in the CP. However, TH transport across the BCSFB is still poorly understood as there is a lack of human representative BCSFB models. Previously, a human choroid plexus papilloma cell line (HIBCPP) has been established, which exhibits certain key characteristics of the human CP. In this study, the suitability of the HIBCPP cell line as a human in vitro BCSFB model for TH transport was evaluated. For this, HIBCPP cells were grown on transwell inserts and the gene and protein expression of several THTMTs was assessed using qPCR and immunohistochemistry. Additionally, the transport of T4 across a HIBCPP monolayer was assessed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), with a special focus on the role of transthyretin (TTR), a TH binding protein produced by the CP involved in TH transport across the BCSFB. Finally, inhibition studies were performed with various THTMT inhibitors, to conclude which THTMT drive TH transport across the BCSFB. Gene and protein expression data showed that several THTMTs were expressed in the HIBCPP model, however HIBCPP cells lacked key THTMTs, notably monocarboxylate transporter 8 (MCT8) and organic anion transporter polypeptide 1C1 (OATP1C1), known to be highly expressed in the human BCSFB. Moreover, TH transport across the HIBCPP model was low and addition of TTR did not increase this transport. Two TTR-binding chemicals, TBBPA and F21388, significantly decreased the transport of T4 across the HIBCPPs cells, suggesting a possible role of intracellular TTR in the transport of T4 across the BCSFB. The transport of TTR-T4 complex might be mediated through SR-B1, indicated by the decreased T4 transport after BLT-1 exposure. However, the poor expression of several important THTMTs, together with the low amount of TH transport, indicate that the HIBCPP cells lack key features that drive TH transport in the BCSFB. The HIBCPP cells could serve as a model to further study the mechanisms of TTR driven TH transport, but for the identification of THTMTs more in vivo accurate BCSFB models are necessary.
Collapse
Affiliation(s)
- Fabian Wagenaars
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boeleni 1085, 1081, HV Amsterdam, the Netherlands.
| | - Peter Cenijn
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boeleni 1085, 1081, HV Amsterdam, the Netherlands
| | - Jeske van Boxel
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boeleni 1085, 1081, HV Amsterdam, the Netherlands
| | - Jacco Koekkoek
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boeleni 1085, 1081, HV Amsterdam, the Netherlands
| | - Horst Schroten
- Heidelberg University, Medical Faculty Mannheim, Department of Pediatrics, Mannheim, Germany
| | - Hiroshi Ishikawa
- University of Tsukuba, Department of Neurosurgery, Tsukuba, Japan
| | - Majorie van Duursen
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boeleni 1085, 1081, HV Amsterdam, the Netherlands
| | - Timo Hamers
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boeleni 1085, 1081, HV Amsterdam, the Netherlands
| |
Collapse
|
5
|
Çelik N, Demir K, Dibeklioğlu SE, Dündar BN, Hatipoğlu N, Mutlu GY, Arslan E, Yıldırımçakar D, Çayır A, Hacıhamdioğlu B, Sütçü ZK, Ünsal Y, Karagüzel G. Clinical and genetic characteristics of patients with monocarboxylate transporter-8 deficiency: a multicentre retrospective study. Eur J Pediatr 2024; 184:92. [PMID: 39699593 DOI: 10.1007/s00431-024-05931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Allan-Herndon-Dudley syndrome is a neurodevelopmental disorder characterized by motor and intellectual disabilities. Despite its rarity, there has been a rise in interest due to ongoing research and emerging therapy suggestions. In this multicenter, retrospective, cross-sectional study, the genetic characteristics and clinical data of twenty-one cases of genetically confirmed MCT8 deficiency were evaluated. The median age at the diagnosis was 2.4 (1.29; 5.9) years, which ranged from 0.5 to 14.0 years. The median follow-up period was 2.34 years, ranging from four months to 7.9 years. In 21 patients, 17 different variants were detected in the SLC16A2 gene. Eleven of these variants (c.1456delC, c.439G > T, c.949C > A, c.1392dupC, c.1612C > T, c.407dup, c.781del, c.589C > A, c.712G > A, c.311 T > A, c.1461del) have not been previously reported. In this study, with the exception of three cases with fT3/fT4 ratios of 4.95, 3.58, and 4.52, all cases exhibited fT3/fT4 ratios higher than five (9.9 (7.9; 12.0)). CONCLUSION MCT8 deficiency is a rare and devastating disorder characterized by central hypothyroidism and peripheral thyrotoxicosis. The fT3/fT4 ratio can be used as a useful diagnostic indicator of MCT8 deficiency in males with mental and motor retardation. There is a need to raise clinicians' awareness of this potentially treatable condition with the emergence of new and promising treatments. WHAT IS KNOWN • Allan-Herndon-Dudley syndrome, also known as MCT8 deficiency is a rare and devastating disorder characterized by central hypothyroidism and peripheral thyrotoxicosis. WHAT IS NEW • In this study, seventeen different variants were detected in the SLC16A2 gene, eleven of which (c.1456delC; c.439G>T; c.949C>A; c.1392dupC; c.1612C>T; c.407dup; c.781del; c.589C>A; c.712G>A; c.311T>A; c.1461del) have not been reported before. • The fT3/fT4 ratio can be used as a useful diagnostic indicator of MCT8 deficiency in males with mental and motor retardation.
Collapse
Affiliation(s)
- Nurullah Çelik
- Department of Pediatric Endocrinology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.
| | - Korcan Demir
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | | | - Bumin Nuri Dündar
- Department of Pediatric Endocrinology, Faculty of Medicine, İzmir Katip Celebi University, Izmir, Turkey
| | - Nihal Hatipoğlu
- Department of Pediatric Endocrinology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gül Yeşiltepe Mutlu
- Department of Pediatric Endocrinology and Diabetes, Koç University School of Medicine, Istanbul, Turkey
| | - Emrullah Arslan
- Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ege University, Izmir, Turkey
| | - Didem Yıldırımçakar
- Department of Pediatric Endocrinology, Denizli State Hospital, Denizli, Turkey
| | - Atilla Çayır
- Department of Pediatric Endocrinology and Diabetes, Erzurum Education and Research Hospital, University of Health Science, Erzurum, Turkey
| | - Bülent Hacıhamdioğlu
- Department of Pediatric Endocrinology, Faculty of Medicine, İstanbul Aydın University, Istanbul, Turkey
| | - Zümrüt Kocabey Sütçü
- Başakşehir Çam and Sakura City Hospital, Pediatric Endocrinology, Istanbul, Turkey
| | - Yağmur Ünsal
- Clinic of Pediatric Endocrinology, Şanlıurfa Education and Research Hospital, Şanlıurfa, Turkey
| | - Gülay Karagüzel
- Department of Pediatric Endocrinology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
6
|
Draskau MK, Strand IW, Davila RA, Ballegaard ASR, Pedersen M, Ramhøj L, Rising S, Tran KM, Axelstad M, Bowles J, Rosenmai AK, Spiller CM, Svingen T. Perinatal exposure to environmental chemicals that disrupt thyroid function can perturb testis development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125117. [PMID: 39414071 DOI: 10.1016/j.envpol.2024.125117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Thyroid hormones (THs) are essential for normal growth and development. Their role in skeletal and brain development is well established, with congenital hypothyroidism causing stunted growth and severe intellectual disability. THs are also important for the development of other tissues and organs, including the testis. Developmental hypothyroidism can manifest as smaller testes in early postnatal life that later develop into macroorchidism in adulthood due to increased proliferation of Sertoli cells. Effects of hypothyroidism on the testes can be modelled in rodents by exposing developing animals to TH-suppressing pharmaceuticals such as propylthiouracil (PTU) and methimazole (MMI). These drugs act by inhibiting the thyroperoxidase (TPO) enzyme in the thyroid gland, inhibiting the synthesis of THs. It is possible that environmental chemicals that inhibit TPO activity can also cause TH-mediated effects on the developing testis, but the extent to which this occurs is not known. Herein, we characterized the effects of perinatal exposure to the herbicide amitrole together with the antithyroid drug MMI. Pregnant Sprague-Dawley rats were exposed by oral gavage to two doses of amitrole (25 or 50 mg/kg body weight/day) or MMI (8 or 16 mg/kg body weight/day) from gestational day 7 until birth. After birth, pup exposure was continued by dosing lactating dams from day of delivery until pup day 16. Both chemicals caused a significant reduction in TH levels on day 16. This perinatal hypothyroidism disrupted both germ and Sertoli cell development, resulting in smaller testes and reduced seminiferous tubule diameter in 16-day old pups. Notably, fetal male blood progesterone levels were increased after exposure to both amitrole and MMI, whereas the amitrole-exposed animals also displayed increased estradiol levels. Our study raises concerns that exposure to environmental chemicals that happen to disrupt TH production may disrupt TH-dependent testis development, with adverse consequences to human reproductive health.
Collapse
Affiliation(s)
- Monica K Draskau
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Ida W Strand
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Raul Ayala Davila
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | | | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sofie Rising
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kieu-Mi Tran
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Josephine Bowles
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Anna K Rosenmai
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Cassy M Spiller
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Weiss RE, Lemos JRN, Dumitrescu AM, Islam MS, Hirani K, Refetoff S. Combined Levothyroxine and Propylthiouracil Treatment in Children with Monocarboxylate Transporter 8 Deficiency: A Multicenter Case Series of 12 Patients. Thyroid 2024; 34:1435-1443. [PMID: 39283825 PMCID: PMC11631802 DOI: 10.1089/thy.2024.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Objective: To evaluate the combined administration of propylthiouracil (PTU) and levothyroxine (LT4) in managing monocarboxylate transporter 8 (MCT8) deficiency and identify optimal therapeutic dosages. Methods: This multicenter case series involved 12 male patients with MCT8 deficiency whose parents/guardians consented to PTU and LT4 treatment. Data were collected from January 2008 to June 24, 2024. The study focused on treatment safety and outcomes, analyzing baseline and last encounter biochemical, metabolic, and anthropometric parameters. Statistical analyses included Wilcoxon signed ranks tests and generalized estimated equations to assess effects on thyroid and metabolic markers, and receiver operating characteristics curves to predict optimal dose. Results: Patients showed a significant reduction in serum total triiodothyronine (TT3) concentration and TT3/TT4 ratio, with increased serum TT4 and free T4 (fT4) concentrations. The use of PTU effectively reduced TT3 concentration by 25% at an average dose of 6.8 mg/kg/day, while LT4 increased fT4 concentration by 40% from baseline at an average dose of 4.3 µg/kg/day. Thyrotropin concentration was undetectable on treatment. No statistical differences were observed in metabolic and physical parameters between baseline and last encounter overall for the group, but six of eight patients for whom these data were available had an increase in weight (z-score). There were no adverse effects on liver function or granulocyte numbers noted throughout the period of observation. Conclusion: Combined treatment with PTU and LT4 normalized serum T3, fT4, and TT4 in patients with MCT8 deficiency. Individualized dose adjustments were crucial for achieving therapeutic goals, indicating the need for personalized treatment plans.
Collapse
Affiliation(s)
- Roy E. Weiss
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joana R. N. Lemos
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alexandra M. Dumitrescu
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois, USA
| | - Mohammad S. Islam
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Khemraj Hirani
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics and Committee on Genetics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Giri D, Govindaraj V, Kumar S, Ungati H, Mugesh G. A Highly Selective Fluorescent Probe for Monitoring the Thyroid Hormone Transporter Activity in Mammalian Cells. Chemistry 2024; 30:e202401719. [PMID: 38995511 DOI: 10.1002/chem.202401719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/13/2024]
Abstract
Monocarboxylate transporter 8 (MCT8) is a trans-membrane transporter, which mediates the cellular delivery of thyroid hormones, L-thyroxine (T4) and 3,5,3'-triiodo-L-thyronine (T3). In humans, the MCT8 protein is encoded by the SLC16A2 gene and mutations in the transporter cause a genetic neurological disorder known as Allan-Herndon-Dudley Syndrome (AHDS). MCT8 deficiency leads to impaired transport of thyroid hormones in the brain. Radiolabelled T4 and T3 or LC/MS-MS methods have been used to monitor the thyroid hormone uptake through MCT8. Herein, we developed a fluorescent based assay to monitor the thyroid hormone uptake through MCT8. A dansyl-based fluorescent probe having L-thyroxine moiety is found to be highly selective towards MCT8 in living cells. The high selectivity of the probe towards MCT8 can be attributed to the halogen bond-mediated recognition by the transporter protein. The presence of a free carboxylic acid group is essential for the specificity of the probe towards MCT8. Additionally, the selectivity of the probe for MCT8 is abolished upon esterification of the carboxylic group. Similarly, MCT8 does not recognize the probe when it contains a free amine group.
Collapse
Affiliation(s)
- Debasish Giri
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Vijayakumar Govindaraj
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
| | - Sagar Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Harinarayana Ungati
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
9
|
Zung A, Sonntag N, Schweizer U, Banne E, Braun D. Glycerol Phenylbutyrate Treatment of 2 Patients With Monocarboxylate Transporter 8 Deficiency. J Clin Endocrinol Metab 2024; 109:2589-2601. [PMID: 38469646 DOI: 10.1210/clinem/dgae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
CONTEXT Monocarboxylate transporter 8 (MCT8) deficiency is a rare genetic disease that leads to severe global developmental delay. MCT8 facilitates thyroid hormone (TH) transport across the cell membrane, and the serum TH profile is characterized by high T3 and low T4 levels. Recent studies have shown that the chemical chaperone sodium phenylbutyrate (NaPB) restored mutant MCT8 function and increased TH content in patient-derived induced pluripotent stem cells, making it a potential treatment for MCT8 deficiency. OBJECTIVE We aimed to assess the efficacy and safety of glycerol phenylbutyrate (GPB) in MCT8 deficiency. METHODS We treated 2 monozygotic twins aged 14.5 years with MCT8 deficiency due to P321L mutation with escalating doses of GPB over 13 months. We recorded TH, vital signs, anthropometric measurements, and neurocognitive functions. Resting metabolic rate (RMR) was measured by indirect calorimetry. Serum metabolites of GPB were monitored as a safety measure. In vitro effects of NaPB were evaluated in MDCK1 cells stably expressing the MCT8P321L mutation. The effects of GPB were compared to the effects of DITPA and TRIAC, thyromimetic medications that the patients had received in the past. RESULTS NaPB restored mutant MCT8 expression in MDCK1 cells and increased T3 transport into cells carrying the P321L mutation. GPB treatment reduced high T3 and increased low T4 levels. The patients showed a significant weight gain simultaneously with a reduction in RMR. Only minor neurocognitive improvement was observed, in hyperreflexia score and in cognitive functions. Serum metabolites did not exceed the toxic range, but elevated liver transaminases were observed. CONCLUSION In the first report of GPB treatment in MCT8 deficiency we found an improvement in TH profile and body mass index, with minor neurodevelopmental changes.
Collapse
Affiliation(s)
- Amnon Zung
- Pediatric Endocrinology Unit, Kaplan Medical Center, Rehovot 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 12000, Israel
| | - Niklas Sonntag
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Ehud Banne
- The Genetic Institute, Edith Wolfson Medical Center, Holon 5822012, Israel
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| |
Collapse
|
10
|
Wagenaars F, Cenijn P, Chen Z, Meima M, Scholze M, Hamers T. Two novel in vitro assays to screen chemicals for their capacity to inhibit thyroid hormone transmembrane transporter proteins OATP1C1 and OAT4. Arch Toxicol 2024; 98:3019-3034. [PMID: 38761188 PMCID: PMC11324666 DOI: 10.1007/s00204-024-03787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Early brain development depends on adequate transport of thyroid hormones (THs) from the maternal circulation to the fetus. To reach the fetal brain, THs have to cross several physiological barriers, including the placenta, blood-brain-barrier and blood-cerebrospinal fluid-barrier. Transport across these barriers is facilitated by thyroid hormone transmembrane transporters (THTMTs). Some endocrine disrupting chemicals (EDCs) can interfere with the transport of THs by THTMTs. To screen chemicals for their capacity to disrupt THTMT facilitated TH transport, in vitro screening assays are required. In this study, we developed assays for two THTMTs, organic anion transporter polypeptide 1C1 (OATP1C1) and organic anion transporter 4 (OAT4), both known to play a role in the transport of THs across barriers. We used overexpressing cell models for both OATP1C1 and OAT4, which showed an increased uptake of radiolabeled T4 compared to control cell lines. Using these models, we screened various reference and environmental chemicals for their ability to inhibit T4 uptake by OATP1C1 and OAT4. Tetrabromobisphenol A (TBBPA) was identified as an OATP1C1 inhibitor, more potent than any of the reference chemicals tested. Additionally perfluorooctanesulfonic acid (PFOS), perfluoroctanic acid (PFOA), pentachlorophenol and quercetin were identified as OATP1C1 inhibitors in a similar range of potency to the reference chemicals tested. Bromosulfophthalein, TBBPA, PFOA and PFOS were identified as potent OAT4 inhibitors. These results demonstrate that EDCs commonly found in our environment can disrupt TH transport by THTMTs, and contribute to the identification of molecular mechanisms underlying TH system disruption chemicals.
Collapse
Affiliation(s)
- Fabian Wagenaars
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Peter Cenijn
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Zhongli Chen
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Marcel Meima
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Martin Scholze
- Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Timo Hamers
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Liu Y, Ng L, Liu H, Heuer H, Forrest D. Cone photoreceptor differentiation regulated by thyroid hormone transporter MCT8 in the retinal pigment epithelium. Proc Natl Acad Sci U S A 2024; 121:e2402560121. [PMID: 39018199 PMCID: PMC11287251 DOI: 10.1073/pnas.2402560121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024] Open
Abstract
The key role of a thyroid hormone receptor in determining the maturation and diversity of cone photoreceptors reflects a profound influence of endocrine signaling on the cells that mediate color vision. However, the route by which hormone reaches cones remains enigmatic as cones reside in the retinal photoreceptor layer, shielded by the blood-retina barrier. Using genetic approaches, we report that cone differentiation is regulated by a membrane transporter for thyroid hormone, MCT8 (SLC16A2), in the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier. Mct8-deficient mice display hypothyroid-like cone gene expression and compromised electroretinogram responses. Mammalian color vision is typically facilitated by cone types that detect medium-long (M) and short (S) wavelengths of light but Mct8-deficient mice have a partial shift of M to S cone identity, resembling the phenotype of thyroid hormone receptor deficiency. RPE-specific ablation of Mct8 results in similar shifts in cone identity and hypothyroid-like gene expression whereas reexpression of MCT8 in the RPE in Mct8-deficient mice partly restores M cone identity, consistent with paracrine-like control of thyroid hormone signaling by the RPE. Our findings suggest that in addition to transport of essential solutes and homeostatic support for photoreceptors, the RPE regulates the thyroid hormone signal that promotes cone-mediated vision.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen45147, Germany
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
12
|
Peng W, Shi S, Yang L, Liu D. Identification of a novel nonsense SLC16A2 gene mutation in an infant with severe neurologic phenotype: A case report. Medicine (Baltimore) 2024; 103:e39047. [PMID: 39029020 PMCID: PMC11398793 DOI: 10.1097/md.0000000000039047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
RATIONALE Allan-Herndon-Dudley syndrome (AHDS) results from a pathogenic variant in the hemizygous subunit of the SLC16A2 gene, which encodes monocarboxylate transporter 8 and follows an X-linked recessive pattern. AHDS manifests as neuropsychomotor developmental delay, intellectual disability, movement disorders, and thyroid hormone abnormalities. It is frequently misdiagnosed as cerebral palsy or hypothyroidism. PATIENT CONCERNS A 9-month-old male infant exhibited poor head control, hypodynamia, motor retardation, hypertonic limbs, and thyroid abnormalities. Despite levothyroxine supplementation and rehabilitation therapy, no improvements were observed. Whole-exome sequencing identified a novel nonsense mutation in SLC16A2 (c.124G > T, p.E42X), which unequivocally established the diagnosis. DIAGNOSES AHDS was confirmed. INTERVENTIONS Levothyroxine treatment commenced early in infancy, followed by 3 months of rehabilitation therapy, starting at 5 months of age. The combined administration of levothyroxine and methimazole was initiated at 1 year and 10 months of age, respectively. OUTCOMES While improvements were noted in thyroid hormone levels, neurological developmental delays persisted. LESSONS AHDS should be considered in patients presenting with atypical neurological features and thyroid hormone abnormalities such as elevated triiodothyronine and decreased thyroxine levels. The early utilization of exome sequencing aids in prompt diagnosis. The identified SLC16A2 nonsense mutation correlates with severe neurological phenotypes and adds to the spectrum of genetic variations associated with AHDS.
Collapse
Affiliation(s)
- Wu Peng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuxia Shi
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Liqi Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Deyun Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Salas-Lucia F. Mapping Thyroid Hormone Action in the Human Brain. Thyroid 2024; 34:815-826. [PMID: 38757586 PMCID: PMC11295854 DOI: 10.1089/thy.2024.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Background: Normal brain development, mood, and cognitive functions depend on thyroid hormone (TH) action. However, little is known about how TH mediates its actions in the human brain. This is due to limited access to human brains deprived of TH during fetal and early postnatal life, as well as from adults with altered thyroid status. One way to partially bypass these limitations is by using magnetic resonance imaging and spectroscopy, two neuroimaging techniques that provide detailed, noninvasive information on human brain structure and function. Another way is using human-induced pluripotent stem cell (hiPSCs)-derived three-dimensional in vitro systems, known as brain organoids, which allow for the study of fundamental aspects of the early stages of human brain development. Summary: This narrative review focuses on neuroimaging and brain organoid studies. Neuroimaging of human brains performed in individuals with different thyroid conditions provides information on the volume, myelination, blood flow, neural activity, and connectivity of different areas. Such studies show that suboptimal thyroid status can impact human brain development and its normal function throughout life. This is true not only for patients with sporadic congenital hypothyroidism, during pregnancy or early after birth, but also for adult patients with hypo- or hyperthyroidism, patients carrying mutations that manifest as impaired sensitivity to TH, and even for normal individuals during aging. Studies using brain organoids generated from hiPSCs of healthy individuals or patients with thyroid genetic conditions provide insights into how TH can impact the early development of the human cerebral cortex. Conclusions: The developmental alterations in children born to mothers with different degrees of gestational hypothyroidism or who developed hypothyroidism early in life are remarkable, affecting multiple brain regions and pathways, including the cerebral cortex, hippocampus, cerebellum, interhemispheric and corticospinal tracts, and associative nuclei. The data connecting such changes to poor neurological outcomes in adult patients with hypothyroidism represent an objective link between thyroid-specific functional brain alterations and behavior. Growing brain organoids require TH, which is critical for human neurogenesis and oligodendrogenesis. These models have proven useful in screening drugs with potential therapeutic effects for patients with genetic thyroid diseases.
Collapse
|
14
|
Groeneweg S, Zevenbergen C, Lima de Souza EC, van Geest FS, Kloeckener-Gruissem B, Laczko E, Camargo SMR, Meima ME, Peeters RP, Visser WE. Identification of Iodotyrosines as Novel Substrates for the Thyroid Hormone Transporter MCT8. Thyroid 2024; 34:931-941. [PMID: 38661522 DOI: 10.1089/thy.2023.0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background: Monocarboxylate transporter 8 (MCT8) is the most specific thyroid hormone transporter identified to date, deficiency of which has been associated with severe intellectual and motor disability and abnormal serum thyroid function tests. However, it is presently unknown if MCT8, similar to other thyroid hormone transporters, also accepts additional substrates, and if disruption of their transport may contribute to the observed phenotype. Methods: In this study, we aimed to identify such substrates by applying liquid chromatography-mass spectrometry-based metabolome analysis in lysates of control and MCT8-overexpressing Xenopus oocytes. A subset of identified candidate substrates were validated by direct transport studies in transiently transfected COS-1 cells and human fibroblasts, which endogenously express MCT8. Moreover, transport characteristics were determined, including transport saturation and cis-inhibition potency of thyroid hormone transport. Results: Metabolome analysis identified 21 m/z ratios, corresponding to 87 candidate metabolites, with a 2.0-times differential abundance in MCT8-injected oocytes compared with controls. These metabolites included 3,5-diiodotyrosine (DIT) and several amino acids, including glutamate and glutamine. In accordance, MCT8-expressing COS-1 cells had 2.2-times lower intracellular accumulation of [125I]-DIT compared with control cells. This effect was largely blocked in the presence of 3,3',5-triiodothyronine (T3) (IC50: 2.5 ± 1.5 µM) or thyroxine (T4) (IC50: 5.8 ± 1.3 µM). Conversely, increasing concentrations of DIT enhanced the accumulation of T3 and T4. The MCT8-specific inhibitor silychristin increased the intracellular accumulation of DIT in human fibroblasts. COS-1 cells expressing MCT8 also exhibited a 50% reduction in intracellular accumulation of [125I]-3-monoiodotyrosine (MIT). In contrast, COS-1 cells expressing MCT8 did not alter the intracellular accumulation of [3H]-glutamate or [3H]-glutamine. However, studies in human fibroblasts showed a 1.5-1.9 times higher glutamate uptake in control fibroblasts compared with fibroblasts derived from patients with MCT8 deficiency, which was not affected in the presence of silychristin. Conclusions: Taken together, our results suggest that the iodotyrosines DIT and MIT can be exported by MCT8. MIT and DIT interfere with MCT8-mediated transport of thyroid hormone in vitro and vice versa. Future studies should elucidate if MCT8, being highly expressed in thyroidal follicular cells, also transports iodotyrosines in vivo.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chantal Zevenbergen
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elaine C Lima de Souza
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Barbara Kloeckener-Gruissem
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
- Department of Biology, ETHZ, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Center, University and ETH Zurich, Zurich, Switzerland
| | - Simone M R Camargo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marcel E Meima
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W Edward Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Becker PC, Güth-Steffens M, Lazarow K, Sonntag N, Braun D, Masfaka I, Renko K, Schomburg L, Köhrle J, von Kries JP, Schweizer U, Krause G, Protze J. Identification of Human TRIAC Transmembrane Transporters. Thyroid 2024; 34:920-930. [PMID: 38801167 DOI: 10.1089/thy.2023.0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background: 3,5,3'-Triiodothyroacetic acid (TRIAC) is a T3-receptor agonist pharmacologically used in patients to mitigate T3 resistance. It is additionally explored to treat some symptoms of patients with inactivating mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8, SLC16A2). MCT8 is expressed along the blood-brain barrier, on neurons, astrocytes, and oligodendrocytes. Hence, pathogenic variants in MCT8 limit the access of TH into and their functions within the brain. TRIAC was shown to enter the brain independently of MCT8 and to modulate expression of TH-dependent genes. The aim of the study was to identify transporters that facilitate TRIAC uptake into cells. Methods: We performed a whole-genome RNAi screen in HepG2 cells stably expressing a T3-receptor-dependent luciferase reporter gene. Validation of hits from the primary and confirmatory secondary screen involved a counter screen with siRNAs and compared the cellular response to TRIAC to the effect of T3, in order to exclude siRNAs targeting the gene expression machinery. MDCK1 cells were stably transfected with cDNA encoding C-terminally myc-tagged versions of the identified TRIAC-preferring transporters. Several individual clones were selected after immunocytochemical characterization for biochemical characterization of their 125I-TRIAC transport activities. Results: We identified SLC22A9 and SLC29A2 as transporters mediating cellular uptake of TRIAC. SLC22A9 encodes the organic anion transporter 7 (OAT7), a sodium-independent organic anion transporter expressed in the plasma membrane in brain, pituitary, liver, and other organs. Competition with the SLC22A9/OAT7 substrate estrone-3-sulfate reduced 125I-TRIAC uptake. SLC29A2 encodes the equilibrative nucleoside transporter 2 (ENT2), which is ubiquitously expressed, including pituitary and brain. Coincubation with the SLC29A2/ENT2 inhibitor nitrobenzyl-6-thioinosine reduced 125I-TRIAC uptake. Moreover, ABCD1, an ATP-dependent peroxisomal pump, was identified as a 125I-TRIAC exporter in transfected MDCK1 cells. Conclusions: Knowledge of TRIAC transporter expression patterns, also during brain development, may thus in the future help to interpret observations on TRIAC effects, as well as understand why TRIAC may not show a desirable effect on cells or organs not expressing appropriate transporters. The identification of ABCD1 highlights the sensitivity of our established screening assay, but it may not hold significant relevance for patients undergoing TRIAC treatment.
Collapse
Affiliation(s)
- Paul Carlos Becker
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Mandy Güth-Steffens
- Rheinische Friedrich-Wilhelms-Universität, Universitätsklinikum Bonn, Bonn, Germany
| | - Katina Lazarow
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Niklas Sonntag
- Rheinische Friedrich-Wilhelms-Universität, Universitätsklinikum Bonn, Bonn, Germany
| | - Doreen Braun
- Rheinische Friedrich-Wilhelms-Universität, Universitätsklinikum Bonn, Bonn, Germany
| | - Islam Masfaka
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Kostja Renko
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Experimentelle Endokrinologie, Charite Universitätsmedizin Berlin, Berlin, Germany
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Lutz Schomburg
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Experimentelle Endokrinologie, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Köhrle
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Experimentelle Endokrinologie, Charite Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ulrich Schweizer
- Rheinische Friedrich-Wilhelms-Universität, Universitätsklinikum Bonn, Bonn, Germany
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
16
|
Penna GC, Salas-Lucia F, Ribeiro MO, Bianco AC. Gene polymorphisms and thyroid hormone signaling: implication for the treatment of hypothyroidism. Endocrine 2024; 84:309-319. [PMID: 37740833 PMCID: PMC10959761 DOI: 10.1007/s12020-023-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Mutations and single nucleotide polymorphisms (SNPs) in the genes encoding the network of proteins involved in thyroid hormone signaling (TH) may have implications for the effectiveness of the treatment of hypothyroidism with LT4. It is conceivable that loss-of-function mutations or SNPs impair the ability of LT4 to be activated to T3, reach its targets, and ultimately resolve symptoms of hypothyroidism. Some of these patients do benefit from therapy containing LT4 and LT3. METHODS Here, we reviewed the PubMed and examined gene mutations and SNPs in the TH cellular transporters, deiodinases, and TH receptors, along with their impact on TH signaling, and potential clinical implications. RESULTS In some mechanisms, such as the Thr92Ala-DIO2 SNP, there is a compelling rationale for reduced T4 to T3 activation that limits the effectiveness of LT4 to restore euthyroidism. In other mechanisms, a potential case can be made but more studies with a larger number of individuals are needed. DISCUSSION/CONCLUSION Understanding the clinical impact of the genetic makeup of LT4-treated patients may help in the preemptive identification of those individuals that would benefit from therapy containing LT3.
Collapse
Affiliation(s)
- Gustavo C Penna
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo, SP, Brazil
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Wagenaars F, Cenijn P, Scholze M, Frädrich C, Renko K, Köhrle J, Hamers T. Screening for endocrine disrupting chemicals inhibiting monocarboxylate 8 (MCT8) transporter facilitated thyroid hormone transport using a modified nonradioactive assay. Toxicol In Vitro 2024; 96:105770. [PMID: 38151217 DOI: 10.1016/j.tiv.2023.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Early neurodevelopmental processes are strictly dependent on spatial and temporally modulated of thyroid hormone (TH) availability and action. Thyroid hormone transmembrane transporters (THTMT) are critical for regulating the local concentrations of TH, namely thyroxine (T4) and 3,5,3'-tri-iodothyronine (T3), in the brain. Monocarboxylate transporter 8 (MCT8) is one of the most prominent THTMT. Genetically induced deficiencies in expression, function or localization of MCT8 are associated with irreversible and severe neurodevelopmental adversities. Due to the importance of MCT8 in brain development, studies addressing chemical interferences of MCT8 facilitated T3 uptake are a crucial step to identify TH system disrupting chemicals with this specific mode of action. Recently a non-radioactive in vitro assay has been developed to rapidly screen for endocrine disrupting chemicals (EDCs) acting upon MCT8 mediated transport. This study explored the use of an UV-light digestion step as an alternative for the original ammonium persulfate (APS) digestion step. The non-radioactive TH uptake assay, with the incorporated UV-light digestion step of TH, was then used to screen a set of 31 reference chemicals and environmentally relevant substances to detect inhibition of MCT8-depending T3 uptake. This alternative assay identified three novel MCT8 inhibitors: methylmercury, bisphenol-AF and bisphenol-Z and confirmed previously known MCT8 inhibitors.
Collapse
Affiliation(s)
- Fabian Wagenaars
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Peter Cenijn
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Martin Scholze
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Caroline Frädrich
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Institut für Experimentelle Endokrinologie, Hessische Strasse 3-4, 10115 Berlin, Germany
| | - Kostja Renko
- German Centre for the Protection of Laboratory Animals (Bf3R), Bundesinstitut für Risikobewertung (BfR), Berlin, Germany
| | - Josef Köhrle
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Institut für Experimentelle Endokrinologie, Hessische Strasse 3-4, 10115 Berlin, Germany
| | - Timo Hamers
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Freund ME, van der Most F, Visser WE. Diagnosis and Therapy in MCT8 Deficiency: Ongoing Challenges. J Clin Res Pediatr Endocrinol 2024; 16:1-3. [PMID: 38345399 PMCID: PMC10938520 DOI: 10.4274/jcrpe.galenos.2024.2024-1-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Matthijs E.T. Freund
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Floor van der Most
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - W. Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
de Souza JS. Thyroid hormone biosynthesis and its role in brain development and maintenance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 142:329-365. [PMID: 39059990 DOI: 10.1016/bs.apcsb.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Thyroid hormones are critical modulators in the physiological processes necessary to virtually all tissues, with exceptionally fundamental roles in brain development and maintenance. These hormones regulate essential neurodevelopment events, including neuronal migration, synaptogenesis, and myelination. Additionally, thyroid hormones are crucial for maintaining brain homeostasis and cognitive function in adulthood. This chapter aims to offer a comprehensive understanding of thyroid hormone biosynthesis and its intricate role in brain physiology. Here, we described the mechanisms underlying the biosynthesis of thyroid hormones, their influence on various aspects of brain development and ongoing maintenance, and the proteins in the brain that are responsive to these hormones. This chapter was geared towards broadening our understanding of thyroid hormone action in the brain, shedding light on potential therapeutic targets for neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Janaina Sena de Souza
- Department of Pediatrics and Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
20
|
van Geest FS, Groeneweg S, Popa VM, Stals MAM, Visser WE. Parent Perspectives on Complex Needs in Patients With MCT8 Deficiency: An International, Prospective, Registry Study. J Clin Endocrinol Metab 2023; 109:e330-e335. [PMID: 37450560 PMCID: PMC10735299 DOI: 10.1210/clinem/dgad412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
CONTEXT Monocarboxylate transporter 8 (MCT8) deficiency is a rare neurodevelopmental and metabolic disorder, with daily care posing a heavy burden on caregivers. A comprehensive overview of these complex needs and daily care challenges is lacking. DESIGN We established an international prospective registry to systemically capture data from parents and physicians caring for patients with MCT8 deficiency. Parent-reported data on complex needs and daily care challenges were extracted. RESULTS Between July 17, 2018, and May 16, 2022, 51 patients were registered. Difficulties in daily life care were mostly related to feeding and nutritional status (17/33 patients), limited motor skills (12/33 patients), and sleeping (11/33 patients). Dietary advice was provided for 11/36 patients. Two of 32 patients were under care of a cardiologist. Common difficulties in the diagnostic trajectory included late diagnosis (20/35 patients) and visiting a multitude of specialists (15/35 patients). Median diagnostic delay was significantly shorter in patients born in or after 2017 vs before 2017 (8 vs 19 months, P < .0001). CONCLUSIONS Feeding and sleeping problems and limited motor skills mostly contribute to difficulties in daily care. The majority of patients did not receive professional dietary advice, although being underweight is a key disease feature, strongly linked with poor survival. Despite sudden death being a prominent cause of death, potentially related to the cardiovascular abnormalities frequently observed, patients were hardly seen by cardiologists. These findings can directly improve patient-centered multidisciplinary care and define patient-centered outcome measures for intervention studies in patients with MCT8 deficiency.
Collapse
Affiliation(s)
- Ferdy S van Geest
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Stefan Groeneweg
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Veronica M Popa
- Patient Advisory Council of RD Connect and MCT8-AHDS Foundation, Oklahoma, OK 74464, USA
| | - Milou A M Stals
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - W Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
21
|
Wilpert NM, Tonduti D, Vaia Y, Krude H, Sarret C, Schuelke M. Establishing Patient-Centered Outcomes for MCT8 Deficiency: Stakeholder Engagement and Systematic Literature Review. Neuropsychiatr Dis Treat 2023; 19:2195-2216. [PMID: 37881807 PMCID: PMC10595182 DOI: 10.2147/ndt.s379703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction The SCL16A2 gene encodes the thyroid hormone (TH) transporter MCT8. Pathogenic variants result in a reduced TH uptake into the CNS despite high serum T3 concentrations. Patients suffer from severe neurodevelopmental delay and require multidisciplinary care. Since a first compassionate use study in 2008, the development of therapies has recently gained momentum. Treatment strategies range from symptom-based approaches, supplementation with TH or TH-analogs, to gene therapy. All these studies have mainly used surrogate endpoints and clinical outcomes. However, the EMA and FDA strongly encourage researchers to involve patients and their advocacy groups in the design of clinical trials. This should strengthen the patients' perspective and identify clinical endpoints that are clinically relevant to their daily life. Methods We involved patient families to define patient-relevant outcomes for MCT8 deficiency. In close collaboration with patient families, we designed a questionnaire asking for their five most preferred therapeutic goals, which, if achieved at least, make a difference in their lives. In addition, we performed a systematic review according to Cochrane recommendations of the published treatment trials. Results We obtained results from 15 families with completed questionnaires from 14 mothers and 8 fathers. Improvement in development, especially in gross motor skills, was most important to the parents. 59% wished for head control and 50% for sitting ability. Another 36% wished for weight gain, 32% for improvement of expressive language skills, and 18% for a reduction of dystonia/spasticity, less dysphagia, and reflux. Paraclinical aspects were least important (5-9%). In a treatment trial (n=46) and compassionate use cases (n=83), the results were mainly inconclusive, partly due to a lack of predefined patient-centered clinical endpoints. Discussion We recommend that future trials should define a relevant improvement in "development" and/or other patient-relevant outcomes compared to natural history as treatment goals.
Collapse
Affiliation(s)
- Nina-Maria Wilpert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Pediatric Neurology, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Center for Chronically Sick Children, Berlin, Germany
| | - Davide Tonduti
- Unit of Pediatric Neurology, C.O.A.L.A. (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children’s Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Ylenia Vaia
- Unit of Pediatric Neurology, C.O.A.L.A. (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children’s Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Heiko Krude
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Catherine Sarret
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Markus Schuelke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Pediatric Neurology, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Center for Chronically Sick Children, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, Berlin, Germany
| |
Collapse
|
22
|
Siemes D, Vancamp P, Markova B, Spangenberg P, Shevchuk O, Siebels B, Schlüter H, Mayerl S, Heuer H, Engel DR. Proteome Analysis of Thyroid Hormone Transporter Mct8/Oatp1c1-Deficient Mice Reveals Novel Dysregulated Target Molecules Involved in Locomotor Function. Cells 2023; 12:2487. [PMID: 37887331 PMCID: PMC10605308 DOI: 10.3390/cells12202487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Thyroid hormone (TH) transporter MCT8 deficiency causes severe locomotor disabilities likely due to insufficient TH transport across brain barriers and, consequently, compromised neural TH action. As an established animal model for this disease, Mct8/Oatp1c1 double knockout (DKO) mice exhibit strong central TH deprivation, locomotor impairments and similar histo-morphological features as seen in MCT8 patients. The pathways that cause these neuro-motor symptoms are poorly understood. In this paper, we performed proteome analysis of brain sections comprising cortical and striatal areas of 21-day-old WT and DKO mice. We detected over 2900 proteins by liquid chromatography mass spectrometry, 67 of which were significantly different between the genotypes. The comparison of the proteomic and published RNA-sequencing data showed a significant overlap between alterations in both datasets. In line with previous observations, DKO animals exhibited decreased myelin-associated protein expression and altered protein levels of well-established neuronal TH-regulated targets. As one intriguing new candidate, we unraveled and confirmed the reduced protein and mRNA expression of Pde10a, a striatal enzyme critically involved in dopamine receptor signaling, in DKO mice. As altered PDE10A activities are linked to dystonia, reduced basal ganglia PDE10A expression may represent a key pathogenic pathway underlying human MCT8 deficiency.
Collapse
Affiliation(s)
- Devon Siemes
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, University Duisburg-Essen, 45141 Essen, Germany; (D.S.); (P.S.); (O.S.); (D.R.E.)
| | - Pieter Vancamp
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (P.V.); (B.M.); (S.M.)
| | - Boyka Markova
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (P.V.); (B.M.); (S.M.)
| | - Philippa Spangenberg
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, University Duisburg-Essen, 45141 Essen, Germany; (D.S.); (P.S.); (O.S.); (D.R.E.)
| | - Olga Shevchuk
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, University Duisburg-Essen, 45141 Essen, Germany; (D.S.); (P.S.); (O.S.); (D.R.E.)
| | - Bente Siebels
- Section Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.S.); (H.S.)
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.S.); (H.S.)
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (P.V.); (B.M.); (S.M.)
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (P.V.); (B.M.); (S.M.)
| | - Daniel Robert Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, University Duisburg-Essen, 45141 Essen, Germany; (D.S.); (P.S.); (O.S.); (D.R.E.)
| |
Collapse
|
23
|
Richard S, Ren J, Flamant F. Thyroid hormone action during GABAergic neuron maturation: The quest for mechanisms. Front Endocrinol (Lausanne) 2023; 14:1256877. [PMID: 37854197 PMCID: PMC10579935 DOI: 10.3389/fendo.2023.1256877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Thyroid hormone (TH) signaling plays a major role in mammalian brain development. Data obtained in the past years in animal models have pinpointed GABAergic neurons as a major target of TH signaling during development, which opens up new perspectives to further investigate the mechanisms by which TH affects brain development. The aim of the present review is to gather the available information about the involvement of TH in the maturation of GABAergic neurons. After giving an overview of the kinds of neurological disorders that may arise from disruption of TH signaling during brain development in humans, we will take a historical perspective to show how rodent models of hypothyroidism have gradually pointed to GABAergic neurons as a main target of TH signaling during brain development. The third part of this review underscores the challenges that are encountered when conducting gene expression studies to investigate the molecular mechanisms that are at play downstream of TH receptors during brain development. Unravelling the mechanisms of action of TH in the developing brain should help make progress in the prevention and treatment of several neurological disorders, including autism and epilepsy.
Collapse
Affiliation(s)
| | | | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, USC1370 Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Lyon, France
| |
Collapse
|
24
|
Solazzi R, Nanni G, Esposito S, Estienne M, Freri E, Zibordi F, Canafoglia L, Castellotti B, Granata T. Repetitive Sleep Starts in Allan-Herndon-Dudley Syndrome. Pediatr Neurol 2023; 147:24-27. [PMID: 37542971 DOI: 10.1016/j.pediatrneurol.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 08/07/2023]
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is caused by mutations in the SLC16A2 gene, encoding for the monocarboxylate transporter 8 (MCT8). Central hypothyroidism and chronic peripheral thyrotoxicosis result in a severe phenotype, mainly characterized by poor growth, intellectual disability, spastic tetraparesis, and movement disorders, including paroxysmal ones (startle reaction and paroxysmal dyskinesias). Seizures are rarely reported. We conducted a retrospective analysis on video electroencephalography (EEG) recordings in four subjects with AHDS, focused on paroxysmal events. Among other manifestations recorded on EEG, we diagnosed repetitive sleep starts (RSS) in all subjects. RSS are a paroxysmal nonepileptic phenomenon occurring during sleep, similar to epileptic spasms in their clinical and electromyography characteristics, but not related to any EEG change. This is the first report on RSS in AHDS. We present video-EEG polygraphic documentation, suggesting that RSS could be underestimated or misdiagnosed. The importance of a correct diagnosis is crucial in a therapeutic perspective.
Collapse
Affiliation(s)
- Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuliana Nanni
- Department of Pediatrics, San Salvatore Hospital, L'Aquila, Italy
| | - Silvia Esposito
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Estienne
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Zibordi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
25
|
Ueno M, Chiba Y, Murakami R, Miyai Y, Matsumoto K, Wakamatsu K, Takebayashi G, Uemura N, Yanase K. Distribution of Monocarboxylate Transporters in Brain and Choroid Plexus Epithelium. Pharmaceutics 2023; 15:2062. [PMID: 37631275 PMCID: PMC10458808 DOI: 10.3390/pharmaceutics15082062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The choroid plexus (CP) plays central roles in regulating the microenvironment of the central nervous system by secreting the majority of cerebrospinal fluid (CSF) and controlling its composition. A monolayer of epithelial cells of CP plays a significant role in forming the blood-CSF barrier to restrict the movement of substances between the blood and ventricles. CP epithelial cells are equipped with transporters for glucose and lactate that are used as energy sources. There are many review papers on glucose transporters in CP epithelial cells. On the other hand, distribution of monocarboxylate transporters (MCTs) in CP epithelial cells has received less attention compared with glucose transporters. Some MCTs are known to transport lactate, pyruvate, and ketone bodies, whereas others transport thyroid hormones. Since CP epithelial cells have significant carrier functions as well as the barrier function, a decline in the expression and function of these transporters leads to a poor supply of thyroid hormones as well as lactate and can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases. In this review paper, recent findings regarding the distribution and significance of MCTs in the brain, especially in CP epithelial cells, are summarized.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Yumi Miyai
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Genta Takebayashi
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (N.U.); (K.Y.)
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (N.U.); (K.Y.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (N.U.); (K.Y.)
| |
Collapse
|
26
|
Mayerl S, Heuer H. lThyroid hormone transporter Mct8/Oatp1c1 deficiency compromises proper oligodendrocyte maturation in the mouse CNS. Neurobiol Dis 2023:106195. [PMID: 37307933 DOI: 10.1016/j.nbd.2023.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023] Open
Abstract
Proper CNS myelination depends on the timed availability of thyroid hormone (TH) that induces differentiation of oligodendrocyte precursor cells (OPCs) to mature, myelinating oligodendrocytes. Abnormal myelination is frequently observed in Allan-Herndon-Dudley syndrome caused by inactivating mutations in the TH transporter MCT8. Likewise, persistent hypomyelination is a key CNS feature of the Mct8/Oatp1c1 double knockout (Dko) mouse model, a well-established mouse model for human MCT8 deficiency that exhibits diminished TH transport across brain barriers and thus a TH deficient CNS. Here, we explored whether decreased myelin content is caused by an impairment in oligodendrocyte maturation. To that end, we studied OPC and oligodendrocyte populations in Dko mice versus wild-type and single TH transporter knockout animals at different developmental time points (at postnatal days P12, P30, and P120) using multi-marker immunostaining and confocal microscopy. Only in Dko mice we observed a reduction in cells expressing the oligodendroglia marker Olig2, encompassing all stages between OPCs and mature oligodendrocytes. Moreover, Dko mice exhibited at all analysed time points an increased portion of OPCs and a reduced number of mature oligodendrocytes both in white and grey matter regions indicating a differentiation blockage in the absence of Mct8/Oatp1c1. We also assessed cortical oligodendrocyte structural parameters by visualizing and counting the number of mature myelin sheaths formed per oligodendrocyte. Again, only Dko mice displayed a reduced number of myelin sheaths that in turn exhibited an increase in length indicating a compensatory response to the reduced number of mature oligodendrocyte. Altogether, our studies underscore an oligodendrocyte differentiation impairment and altered oligodendrocyte structural parameters in the global absence of Mct8 and Oatp1c1. Both mechanisms most likely do not only cause the abnormal myelination state but also contribute to compromised neuronal functionality in Mct8/Oatp1c1 deficient animals.
Collapse
Affiliation(s)
- Steffen Mayerl
- Dept. of Endocrinology, Diabetes & Metabolism, University of Duisburg-Essen, Essen, Germany.
| | - Heike Heuer
- Dept. of Endocrinology, Diabetes & Metabolism, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Thomas J, Sairoz, Jose A, Poojari VG, Shetty S, K SP, Prabhu R V K, Rao M. Role and Clinical Significance of Monocarboxylate Transporter 8 (MCT8) During Pregnancy. Reprod Sci 2023; 30:1758-1769. [PMID: 36595209 PMCID: PMC10229697 DOI: 10.1007/s43032-022-01162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
The review aims to summarize the available research focusing on the importance of monocarboxylate transporter (MCT8) in thyroid hormone trafficking across the placenta and fetal development. A systematic search was carried out in PubMed; studies available in English related to "monocarboxylate transporter", "adverse pregnancy", "fetal development," and "thyroid hormone" were identified and assessed. The references within the resulting articles were manually searched. MCT8 is a highly active and selective thyroid hormone transporter that facilitates the cellular uptake of triiodothyronine (T3), thyroxine (T4), reverse triiodothyronine (rT3), and diiodothyronine (T2) in different tissues. MCT8 is expressed in the placenta from the first trimester onwards, allowing the transport of thyroid hormone from mother to fetus. Mutations in MCT8 cause an X-linked disorder known as Allan-Herndon-Dudley syndrome (AHDS), characterized by severe psychomotor impairment and peripheral thyrotoxicosis. Hence, any maternal thyroid dysfunction may cause severe consequences for the fetus and newborn. Further research regarding MCT8 gene expression, polymorphic variation, and adverse pregnancy outcomes must be done to establish that MCT8 is a novel prognostic marker for the early detection of pregnancy-related complications.
Collapse
Affiliation(s)
- Jinsu Thomas
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sairoz
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anmi Jose
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vidyashree G Poojari
- Department of Reproductive Medicine and Surgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishnananda Prabhu R V
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
28
|
Triac Treatment Prevents Neurodevelopmental and Locomotor Impairments in Thyroid Hormone Transporter Mct8/Oatp1c1 Deficient Mice. Int J Mol Sci 2023; 24:ijms24043452. [PMID: 36834863 PMCID: PMC9966820 DOI: 10.3390/ijms24043452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Patients with inactive thyroid hormone (TH) transporter MCT8 display intellectual disability due to compromised central TH transport and action. As a therapeutic strategy, application of thyromimetic, MCT8-independent compounds Triac (3,5,3'-triiodothyroacetic acid), and Ditpa (3,5-diiodo-thyropropionic acid) was proposed. Here, we directly compared their thyromimetic potential in Mct8/Oatp1c1 double knock-out mice (Dko) modeling human MCT8 deficiency. Dko mice received either Triac (50 ng/g or 400 ng/g) or Ditpa (400 ng/g or 4000 ng/g) daily during the first three postnatal weeks. Saline-injected Wt and Dko mice served as controls. A second cohort of Dko mice received Triac (400 ng/g) daily between postnatal weeks 3 and 6. Thyromimetic effects were assessed at different postnatal stages by immunofluorescence, ISH, qPCR, electrophysiological recordings, and behavior tests. Triac treatment (400 ng/g) induced normalized myelination, cortical GABAergic interneuron differentiation, electrophysiological parameters, and locomotor performance only when administered during the first three postnatal weeks. Ditpa (4000 ng/g) application to Dko mice during the first three postnatal weeks resulted in normal myelination and cerebellar development but only mildly improved neuronal parameters and locomotor function. Together, Triac is highly-effective and more efficient than Ditpa in promoting CNS maturation and function in Dko mice yet needs to be initiated directly after birth for the most beneficial effects.
Collapse
|
29
|
Kubota M, Yakuwa A, Terashima H, Hoshino H. A nationwide survey of monocarboxylate transporter 8 deficiency in Japan: Its incidence, clinical course, MRI and laboratory findings. Brain Dev 2022; 44:699-705. [PMID: 35945102 DOI: 10.1016/j.braindev.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Monocarboxylate transporter 8 (MCT8) deficiency is an X-linked recessive developmental disorder characterized by initially marked truncal hypotonia, later athetotic posturing, and severe intellectual disability caused by mutations in SLC16A2, which is responsible for the transport of triiodothyronine (T3) into neurons. We conducted a nationwide survey of patients with MCT8 deficiency to clarify their current status. METHODS Primary survey: In 2016-2017, we assessed the number of patients diagnosed with MCT8 deficiency from 1027 hospitals. Secondary survey: in 2017-2018, we sent case surveys to 31 hospitals (45 cases of genetic diagnosis), who responded in the primary survey. We asked for: 1) perinatal history, 2) developmental history, 3) head MRI findings, 4) neurophysiological findings, 5) thyroid function tests, and 5) genetic test findings. RESULTS We estimated the prevalence of MCT8 deficiency to be 1 in 1,890,000 and the incidence of MCT8 deficiency per million births to be 2.12 (95 % CI: 0.99-3.25). All patients showed severe psychomotor retardation, and none were able to walk or speak. The significantly higher value of the free T3/free T4 (fT3/fT4) ratio found in our study can be a simple and useful diagnostic biomarker (Our value 11.60 ± 4.14 vs control 3.03 ± 0.38). Initial white matter signal abnormalities on head MRI showed recovery, but somatosensory evoked potentials (SEP) showed no improvement, suggesting that the patient remained dysfunctional. CONCLUSION For early diagnosis, including in mild cases, it might be important to consider the clinical course, early head MRI, SEP, and fT3/fT4 ratio.
Collapse
Affiliation(s)
- Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Japan; Department of Pediatrics, Shimada Ryoiku Medical Center for Challenged Children, Japan.
| | - Akiko Yakuwa
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, Japan.
| | - Hiroshi Terashima
- Division of Neurology, National Center for Child Health and Development, Japan.
| | | |
Collapse
|
30
|
De Angelis M, Maity-Kumar G, Schriever SC, Kozlova EV, Müller TD, Pfluger PT, Curras-Collazo MC, Schramm KW. Development and validation of an LC-MS/MS methodology for the quantification of thyroid hormones in dko MCT8/OATP1C1 mouse brain. J Pharm Biomed Anal 2022; 221:115038. [PMID: 36152487 PMCID: PMC7613747 DOI: 10.1016/j.jpba.2022.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
The Allan-Herndon Dudley Syndrome (AHDS) is a rare disease caused by the progressive loss of monocarboxylate transporter 8 (MCT8). In patients with AHDS, the absence of MCT8 impairs transport of thyroid hormones (TH) through the blood brain barrier, leading to a central state of TH deficiency. In mice, the AHDS is mimicked by simultaneous deletion of the TH transporters MCT8 and the solute carrier organic anion transporter family member 1c1 (OATP1C1). To support preclinical mouse studies, an analytical methodology was developed and successfully applied for quantifying selected thyroid hormones in mouse whole brain and in specific regions using liquid chromatography tandem mass-spectrometry (LC-MS/MS). An important requirement for the methodology was its high sensitivity since a very low concentration of THs was expected in MCT8/OATP1C1 double-knockout (dko) mouse brain. Seven THs were targeted: L-thyroxine (T4), 3,3,5-triiodo-L-thyronine-thy-ronine (T3), 3,3’,5’-triiodo-L-thyronine-thyronine (rT3), 3,3-diiodo-L-thyronine (3,3’-T2, T2), 3,5-diiodo-L-thyro-nine (rT2, 3,5-T2), 3-iodo-L-thyronine (T1), 3-iodothyronamine (T1AM). Isotope dilution liquid chromatography triple-quadrupole mass spectrometry methodology was applied for detection and quantification. The method was validated in wild-type animals for mouse whole brain and for five different brain regions (hypothalamus, hippocampus, prefrontal cortex, brainstem and cortex). Instrumental calibration curves ranged from 0.35 to 150 pg/μL with good linearity (r2 >0.996). The limit of quantification was from 0.08 to 0.6 pg/mg, with an intra- and inter-day precision of 4.2−14.02% and 0.4−17.9% respectively, and accuracies between 84.9% and 114.8% when the methodology was validated for the whole brain. In smaller, distinct brain regions, intra- and inter-day precision were 0.6−20.7% and 2.5−15.6% respectively, and accuracies were 80.2−128.6%. The new methodology was highly sensitive and allowed for the following quantification in wild-type mice: (i) for the first time, four distinct thyroid hormones (T4, T3, rT3 and 3,3’-T2) in only approximately 100 mg of mouse brain were detected; (ii) the quantification of T4 and T3 for the first time in distinct mouse brain regions were reported. Further, application of our method to MCT8/OATP1C1 dko mice revealed the expected, relative lack of T3 and T4 uptake into the brain, and confirmed the utility of our analytical method to study TH transport across the blood brain barrier in a preclinical model of central TH deficiency.
Collapse
Affiliation(s)
- Meri De Angelis
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, Neuherberg, Germany.
| | - Gandhari Maity-Kumar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany; TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany
| | | | - Karl-Werner Schramm
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, Neuherberg, Germany; Department für Biowissenschaftliche Grundlagen, Technische Universität München, Weihenstephaner Steig 23, Freising, Germany
| |
Collapse
|
31
|
Sundaram SM, Arrulo Pereira A, Müller-Fielitz H, Köpke H, De Angelis M, Müller TD, Heuer H, Körbelin J, Krohn M, Mittag J, Nogueiras R, Prevot V, Schwaninger M. Gene therapy targeting the blood-brain barrier improves neurological symptoms in a model of genetic MCT8 deficiency. Brain 2022; 145:4264-4274. [PMID: 35929549 DOI: 10.1093/brain/awac243] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 12/27/2022] Open
Abstract
A genetic deficiency of the solute carrier monocarboxylate transporter 8 (MCT8), termed Allan-Herndon-Dudley syndrome, is an important cause of X-linked intellectual and motor disability. MCT8 transports thyroid hormones across cell membranes. While thyroid hormone analogues improve peripheral changes of MCT8 deficiency, no treatment of the neurological symptoms is available so far. Therefore, we tested a gene replacement therapy in Mct8- and Oatp1c1-deficient mice as a well-established model of the disease. Here, we report that targeting brain endothelial cells for Mct8 expression by intravenously injecting the vector AAV-BR1-Mct8 increased tri-iodothyronine (T3) levels in the brain and ameliorated morphological and functional parameters associated with the disease. Importantly, the therapy resulted in a long-lasting improvement in motor coordination. Thus, the data support the concept that MCT8 mediates the transport of thyroid hormones into the brain and indicate that a readily accessible vascular target can help overcome the consequences of the severe disability associated with MCT8 deficiency.
Collapse
Affiliation(s)
- Sivaraj M Sundaram
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Adriana Arrulo Pereira
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Hannes Köpke
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Meri De Angelis
- Institute for Diabetes and Obesity, Helmholtz Zentrum Munich, Munich, and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.,Institute of Experimental Genetics, Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum Munich, Munich, and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Jakob Körbelin
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany.,Department of Oncology, Hematology and Bone Marrow Transplantation, UKE Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Krohn
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Jens Mittag
- Institute for Endocrinology and Diabetes, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Vincent Prevot
- Université Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), 59045 Lille Cedex, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany
| |
Collapse
|
32
|
Brûlé E, Silander TL, Wang Y, Zhou X, Bak B, Groeneweg S, Bernard DJ. IGSF1 Deficiency Leads to Reduced TSH Production Independent of Alterations in Thyroid Hormone Action in Male Mice. Endocrinology 2022; 163:6609251. [PMID: 35708735 PMCID: PMC9258739 DOI: 10.1210/endocr/bqac092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/19/2022]
Abstract
Loss of function mutations in IGSF1/Igsf1 cause central hypothyroidism. Igsf1 knockout mice have reduced pituitary thyrotropin-releasing hormone receptor, Trhr, expression, perhaps contributing to the phenotype. Because thyroid hormones negatively regulate Trhr, we hypothesized that IGSF1 might affect thyroid hormone availability in pituitary thyrotropes. Consistent with this idea, IGSF1 coimmunoprecipitated with the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in transfected cells. This association was impaired with IGSF1 bearing patient-derived mutations. Wild-type IGSF1 did not, however, alter MCT8-mediated thyroid hormone import into heterologous cells. IGSF1 and MCT8 are both expressed in the apical membrane of the choroid plexus. However, MCT8 protein levels and localization in the choroid plexus were unaltered in Igsf1 knockout mice, ruling out a necessary chaperone function for IGSF1. MCT8 expression was low in the pituitary and was similarly unaffected in Igsf1 knockouts. We next assessed whether IGSF1 affects thyroid hormone transport or action, by MCT8 or otherwise, in vivo. To this end, we treated hypothyroid wild-type and Igsf1 knockout mice with exogenous thyroid hormones. T4 and T3 inhibited TSH release and regulated pituitary and forebrain gene expression similarly in both genotypes. Interestingly, pituitary TSH beta subunit (Tshb) expression was consistently reduced in Igsf1 knockouts relative to wild-type regardless of experimental condition, whereas Trhr was more variably affected. Although IGSF1 and MCT8 can interact in heterologous cells, the physiological relevance of their association is not clear. Nevertheless, the results suggest that IGSF1 loss can impair TSH production independently of alterations in TRHR levels or thyroid hormone action.
Collapse
Affiliation(s)
- Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montreal H3G 1Y6, Canada
| | - Tanya L Silander
- Integrated Program in Neuroscience, McGill University, Montreal H3G 1Y6, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Beata Bak
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Daniel J Bernard
- Correspondence: Daniel J. Bernard, PhD, Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Prom. Sir William Osler, Room 1320, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
33
|
Liao XH, Avalos P, Shelest O, Ofan R, Shilo M, Bresee C, Likhite S, Vit JP, Heuer H, Kaspar B, Meyer K, Dumitrescu AM, Refetoff S, Svendsen CN, Vatine GD. AAV9-MCT8 Delivery at Juvenile Stage Ameliorates Neurological and Behavioral Deficits in a Mouse Model of MCT8-Deficiency. Thyroid 2022; 32:849-859. [PMID: 35350867 PMCID: PMC9469747 DOI: 10.1089/thy.2022.0034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor disability disorder that also manifests characteristic abnormal thyroid hormone (TH) levels. AHDS is caused by inactivating mutations in monocarboxylate transporter 8 (MCT8), a specific TH plasma membrane transporter widely expressed in the central nervous system (CNS). MCT8 mutations cause impaired transport of TH across brain barriers, leading to insufficient neural TH supply. There is currently no successful therapy for the neurological symptoms. Earlier work has shown that intravenous (IV), but not intracerebroventricular adeno-associated virus serotype 9 (AAV9) -based gene therapy given to newborn Mct8 knockout (Mct8-/y) male mice increased triiodothyronine (T3) brain content and partially rescued TH-dependent gene expression, suggesting a promising approach to treat this neurological disorder. Methods: The potential of IV delivery of AAV9 carrying human MCT8 was tested in the well-established Mct8-/y/Organic anion-transporting polypeptide 1c1 (Oatp1c1)-/ - double knockout (dKO) mouse model of AHDS, which, unlike Mct8-/y mice, displays both neurological and TH phenotype. Further, as the condition is usually diagnosed during childhood, treatment was given intravenously to P30 mice and psychomotor tests were carried out blindly at P120-P140 after which tissues were collected and analyzed. Results: Systemic IV delivery of AAV9-MCT8 at a juvenile stage led to improved locomotor and cognitive functions at P120-P140, which was accompanied by a near normalization of T3 content and an increased response of positively regulated TH-dependent gene expression in different brain regions examined (thalamus, hippocampus, and parietal cortex). The effects on serum TH concentrations and peripheral tissues were less pronounced, showing only improvement in the serum T3/reverse T3 (rT3) ratio and in liver deiodinase 1 expression. Conclusion: IV administration of AAV9, carrying the human MCT8, to juvenile dKO mice manifesting AHDS has long-term beneficial effects, predominantly on the CNS. This preclinical study indicates that this gene therapy has the potential to ameliorate the devastating neurological symptoms in patients with AHDS.
Collapse
Affiliation(s)
- Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Pablo Avalos
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Oksana Shelest
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Raz Ofan
- Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Shilo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Catherine Bresee
- Biostatistics Core, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Jean-Philippe Vit
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
| | - Brian Kaspar
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | | | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, The University of Chicago, Chicago, Illinois, USA
- Address correspondence to: Samuel Refetoff, MD, Department of Medicine, The University of Chicago, MC3090, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Clive N. Svendsen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Address correspondence to: Clive N. Svendsen, PhD, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Gad D. Vatine
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Address correspondence to: Gad D. Vatine, PhD, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
34
|
Lademann F, Tsourdi E, Hofbauer LC, Rauner M. Bone cell-specific deletion of thyroid hormone transporter Mct8 distinctly regulates bone volume in young versus adult male mice. Bone 2022; 159:116375. [PMID: 35240348 DOI: 10.1016/j.bone.2022.116375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
Abstract
Thyroid hormones are critical regulators of bone metabolism. Their cellular import is guided through transporter proteins, including the monocarboxylate transporter 8 (MCT8). Conditional Mct8 knockout in osteoblast and osteoclast precursors leads to trabecular bone gain in 12-week-old male mice. Given that thyroid hormones regulate both skeletal development and bone maintenance, we investigated the effect of bone cell-specific Mct8 deletion in 6-week-old (young) and 24-week-old (adult) male mice. Mct8 ablation in osteoclast precursors led to trabecular bone gain at the spine in 6-week-old animals compared to age-matched controls, whereas adult animals displayed a shift towards trabecular bone loss in both femur and vertebra. Mct8 deficiency in osteoprogenitors increased osteoblast numbers and trabecular bone mass at the spine of young mice, without skeletal differences between adult knockout mice and littermate controls. In contrast, young mice lacking Mct8 in late osteoblasts/osteocytes exhibited lower trabecular bone volume at the spine and femur compared to respective controls, but no differences were detected at 24 weeks of age. In vitro studies of osteoblasts with Dmp1-Cre promotor driven Mct8 deletion showed no significant alterations of osteogenic marker gene expression and mineralization capacity suggesting that MCT8 is not crucial for osteoblast maturation. Overall, we observed mild effects with conditional Mct8 knockout on bone microarchitecture and bone turnover especially during growth implying a secondary role for MCT8 as a thyroid hormone transporter in bone.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany.
| |
Collapse
|
35
|
Olivati C, Favilla BP, Freitas EL, Santos B, Melaragno MI, Meloni VA, Piazzon F. Allan-Herndon-Dudley syndrome in a female patient and related mechanisms. Mol Genet Metab Rep 2022; 31:100879. [PMID: 35782622 PMCID: PMC9248228 DOI: 10.1016/j.ymgmr.2022.100879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is characterized by neuropsychomotor developmental delay/intellectual disability, neurological impairment with a movement disorder, and an abnormal thyroid hormone profile. This disease is an X-linked disorder that mainly affects men. We described a female patient with a de novo variant in the SLC16A2 gene, a milder AHDS phenotype, and a skewed X chromosome inactivation profile. We discuss the mechanisms associated with the expression of the phenotypic characteristics in female patients, including SLC16A2 gene variants and cytogenomic alterations, as well as preferential inactivation of the normal X chromosome.
Collapse
Affiliation(s)
- Caroline Olivati
- Rare Rosy Clinic, São Paulo, Brazil
- Fleury Medicina e Saúde, São Paulo, Brazil
- Corresponding author at: Rare Rosy Clinic, Rua Borges Lagoa, 1080, CEP 04038-020 São Paulo, SP, Brazil.
| | - Bianca Pereira Favilla
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Rare Rosy Clinic, São Paulo, Brazil
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Flavia Piazzon
- Rare Rosy Clinic, São Paulo, Brazil
- Neuromuscular Reference Center, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
- Neurometabolic Unit, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
37
|
Liu Z, Zhao S, Chen J, Ma L, Shi Q, Zhou Y. A novel frameshift mutation in Allan-Herndon-Dudley syndrome. Int J Legal Med 2022; 136:1181-1187. [PMID: 35391604 DOI: 10.1007/s00414-022-02823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a very rare, X-linked psychomotor disability syndrome with delayed myelination, almost exclusively affecting boys. We present a case of a 4-year-old boy with AHDS who was found cyanotic, with intermittent vomiting and paroxysmal convulsions about 4 h after his parents went out, and was then taken to the hospital, where he eventually died the next day. The autopsy revealed foreign bodies in the tiny bronchi and alveoli of the deceased, congestion, and punctate hemorrhage in multiple organs, consistent with the diagnosis of asphyxia. Compared with a normally developing 4-year-old boy, the deceased showed cerebral atrophy and cerebral edema, and Luxol Fast Blue (LFB) stain indicated delayed cerebellar, hippocampal, and basal ganglia development and myelination. A novel frameshift mutation c.584delG in the SLC16A2 gene was detected. Family lineage investigation showed that the mutation was also detected in the deceased's 8-year-old brother and biological mother. The present work enriches the profile mutations in SLC16A2 related to AHDS and emphasizes the importance of autopsy and postmortem genetic analysis in such cases.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Shuquan Zhao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Jianyi Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Qing Shi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
38
|
Chen X, Liu L, Zeng C. A novel variant in SLC16A2 associated with typical Allan-Herndon-Dudley syndrome: a case report. BMC Pediatr 2022; 22:180. [PMID: 35382784 PMCID: PMC8981932 DOI: 10.1186/s12887-022-03259-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Allan-Herndon-Dudley syndrome (AHDS) is an X-linked recessive neurodegenerative disorder caused by mutations in the SLC16A2 gene that encodes thyroid hormone transporter. AHDS has been rarely reported in China. Case presentation This study reported a novel splicing mutation in the SLC16A2 gene in an 18-month-old male patient with AHDS. The patient was born to non-consanguineous, healthy parents of Chinese origin. He passed new-born screening for hypothyroidism, but failed to reach developmental milestones. He presented with hypotonia, severe mental retardation, dysarthria and ataxia. Genetic analysis identified a novel splicing mutation, NM_006517.4: c.431-2 A > G, in the SLC16A2 gene inherited from his mother. The patient received Triac treatment, (triiodothyroacetic acid), a thyroid hormone analogue for 3 months. Triac treatment effectively reduced serum TSH concentrations and normalized serum T3 concentrations in the patient. Conclusions This study reported the first case of AHDS treated by Triac in China. And the study expanded the mutational spectrum of the SLC16A2 gene in AHDS patients. Supplementary information The online version contains supplementary material available at 10.1186/s12887-022-03259-5.
Collapse
Affiliation(s)
- Xiaodan Chen
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, 510623, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, 510623, Guangzhou, China.
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, 510623, Guangzhou, China.
| |
Collapse
|
39
|
Adams JW, Malicki D, Levy M, Crawford JR. Ganglioglioma with novel molecular features presenting in a child with Allan-Herndon-Dudley syndrome. BMJ Case Rep 2022; 15:e248734. [PMID: 35236707 PMCID: PMC8895953 DOI: 10.1136/bcr-2021-248734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 11/03/2022] Open
Affiliation(s)
- Jason W Adams
- Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Denise Malicki
- Pathology, Rady Children's Hospital University of California San Diego, San Diego, California, USA
| | - Michael Levy
- Neurosurgery, University of California San Diego, San Diego, California, USA
| | - John Ross Crawford
- Neurosciences and Pediatrics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
40
|
van Geest FS, Groeneweg S, van den Akker ELT, Bacos I, Barca D, van den Berg SAA, Bertini E, Brunner D, Brunetti-Pierri N, Cappa M, Cappuccio G, Chatterjee K, Chesover AD, Christian P, Coutant R, Craiu D, Crock P, Dewey C, Dica A, Dimitri P, Dubey R, Enderli A, Fairchild J, Gallichan J, Garibaldi LR, George B, Hackenberg A, Heinrich B, Huynh T, Kłosowska A, Lawson-Yuen A, Linder-Lucht M, Lyons G, Monti Lora F, Moran C, Müller KE, Paone L, Paul PG, Polak M, Porta F, Reinauer C, de Rijke YB, Seckold R, Menevşe TS, Simm P, Simon A, Spada M, Stoupa A, Szeifert L, Tonduti D, van Toor H, Turan S, Vanderniet J, de Waart M, van der Wal R, van der Walt A, van Wermeskerken AM, Wierzba J, Zibordi F, Zung A, Peeters RP, Visser WE. Long-Term Efficacy of T3 Analogue Triac in Children and Adults With MCT8 Deficiency: A Real-Life Retrospective Cohort Study. J Clin Endocrinol Metab 2022; 107:e1136-e1147. [PMID: 34679181 PMCID: PMC8852204 DOI: 10.1210/clinem/dgab750] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Patients with mutations in thyroid hormone transporter MCT8 have developmental delay and chronic thyrotoxicosis associated with being underweight and having cardiovascular dysfunction. OBJECTIVE Our previous trial showed improvement of key clinical and biochemical features during 1-year treatment with the T3 analogue Triac, but long-term follow-up data are needed. METHODS In this real-life retrospective cohort study, we investigated the efficacy of Triac in MCT8-deficient patients in 33 sites. The primary endpoint was change in serum T3 concentrations from baseline to last available measurement. Secondary endpoints were changes in other thyroid parameters, anthropometric parameters, heart rate, and biochemical markers of thyroid hormone action. RESULTS From October 15, 2014 to January 1, 2021, 67 patients (median baseline age 4.6 years; range, 0.5-66) were treated up to 6 years (median 2.2 years; range, 0.2-6.2). Mean T3 concentrations decreased from 4.58 (SD 1.11) to 1.66 (0.69) nmol/L (mean decrease 2.92 nmol/L; 95% CI, 2.61-3.23; P < 0.0001; target 1.4-2.5 nmol/L). Body-weight-for-age exceeded that of untreated historical controls (mean difference 0.72 SD; 95% CI, 0.36-1.09; P = 0.0002). Heart-rate-for-age decreased (mean difference 0.64 SD; 95% CI, 0.29-0.98; P = 0.0005). SHBG concentrations decreased from 245 (99) to 209 (92) nmol/L (mean decrease 36 nmol/L; 95% CI, 16-57; P = 0.0008). Mean creatinine concentrations increased from 32 (11) to 39 (13) µmol/L (mean increase 7 µmol/L; 95% CI, 6-9; P < 0.0001). Mean creatine kinase concentrations did not significantly change. No drug-related severe adverse events were reported. CONCLUSIONS Key features were sustainably alleviated in patients with MCT8 deficiency across all ages, highlighting the real-life potential of Triac for MCT8 deficiency.
Collapse
Affiliation(s)
- Ferdy S van Geest
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Stefan Groeneweg
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Erica L T van den Akker
- Division of Endocrinology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Iuliu Bacos
- Centrul Medical Dr. Bacos Cosma, Timisoara 307200, Romania
| | - Diana Barca
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Paediatric Neurology Discipline II, Bucharest 050474, Romania
- Paediatric Neurology Clinic, Reference Center for Rare Paediatric Neurological Disorders, ENDO-ERN member, Alexandru Obregia Hospital, Bucharest 041914, Romania
| | - Sjoerd A A van den Berg
- Diagnostic Laboratory for Endocrinology, Department of Internal Medicine, Erasmus Medical Center , 3015 GD Rotterdam, The Netherlands
- Department of Clinical chemistry, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital IRCCS, 00165 Rome, Italy
| | - Doris Brunner
- Gottfried Preyer's Children Hospital, 1100 Vienna, Austria
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078 Naples, Italy
| | - Marco Cappa
- Division of Endocrinology, Bambino Gesu' Children's Research Hospital IRCCS, 00165 Rome, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078 Naples, Italy
| | - Krishna Chatterjee
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alexander D Chesover
- Division of Endocrinology, The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, M5G 1X8, Canada
| | - Peter Christian
- East Kent Hospitals University NHS Foundation Trust, Ashford TN24 0LZ, UK
| | - Régis Coutant
- Department of Pediatric Endocrinology and Diabetology, University Hospital, 49100 Angers, France
| | - Dana Craiu
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Paediatric Neurology Discipline II, Bucharest 050474, Romania
- Paediatric Neurology Clinic, Reference Center for Rare Paediatric Neurological Disorders, ENDO-ERN member, Alexandru Obregia Hospital, Bucharest 041914, Romania
| | - Patricia Crock
- John Hunter Children's Hospital, New Lambton Heights, NSW 2305, Australia
- Hunter Medical Research Institute, University of Newcastle Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Cheyenne Dewey
- Genomics Institute Mary Bridge Children's Hospital, MultiCare Health System Tacoma, WA 98403, USA
| | - Alice Dica
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Paediatric Neurology Discipline II, Bucharest 050474, Romania
- Paediatric Neurology Clinic, Reference Center for Rare Paediatric Neurological Disorders, ENDO-ERN member, Alexandru Obregia Hospital, Bucharest 041914, Romania
| | - Paul Dimitri
- Sheffield Children's NHS Foundation Trust, Sheffield Hallam University and University of Sheffield, Sheffield, S10 2TH, UK
| | - Rachana Dubey
- Medanta Superspeciality Hospital, Indore 800020, India
| | - Anina Enderli
- Department of Neuropediatrics, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland
- Neurology Department, Children's Hospital, St. Gallen, 9000, Switzerland
| | - Jan Fairchild
- Department of Diabetes and Endocrinology, Women's and Children's Hospital, North Adelaide 5066 SouthAustralia
| | | | | | - Belinda George
- Department of Endocrinology, St. John's Medical College Hospital, Bengaluru 560034, India
| | - Annette Hackenberg
- Department of Neuropediatrics, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland
| | - Bianka Heinrich
- Department of Neuropediatrics, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland
| | - Tony Huynh
- Department of Endocrinology & Diabetes, Queensland Children's Hospital, South Brisbane Queensland 4101, Australia
- Department of Chemical Pathology, Mater Pathology, South Brisbane, Queensland 4101, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anna Kłosowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Amy Lawson-Yuen
- Genomics Institute Mary Bridge Children's Hospital, MultiCare Health System Tacoma, WA 98403, USA
| | - Michaela Linder-Lucht
- Division of Neuropediatrics and Muscular Disorders, Department of Pediatrics and Adolescent Medicine, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Greta Lyons
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Felipe Monti Lora
- Pediatric Endocrinology Group, Santa Catarina Hospital, São Paulo, 01310-000, Brazil
| | - Carla Moran
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katalin E Müller
- Heim Pal National Institute of Pediatrics, Budapest, 1089, Hungary
- Institute of Translational Medicine, University of Pécs, Pécs, 7622, Hungary
| | - Laura Paone
- Division of Endocrinology, Bambino Gesu' Children's Research Hospital IRCCS, 00165 Rome, Italy
| | - Praveen G Paul
- Department of Paediatrics, Christian Medical College, Vellore 632004, India
| | - Michel Polak
- Paediatric Endocrinology, Diabetology and Gynaecology Department, Necker Children's University Hospital, Imagine Institute, Université de Paris, Paris 75015, France
| | - Francesco Porta
- Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Torino 10126,Italy
| | - Christina Reinauer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Duesseldorf 40225, Germany
| | - Yolanda B de Rijke
- Department of Clinical chemistry, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rowen Seckold
- John Hunter Children's Hospital, New Lambton Heights, NSW 2305, Australia
- Hunter Medical Research Institute, University of Newcastle Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Tuba Seven Menevşe
- Marmara University School of Medicine Department of Pediatric Endocrinology, Istanbul 34854, Turkey
| | - Peter Simm
- Royal Children's Hospital/University of Melbourne, Parkville 3052,Australia
| | - Anna Simon
- Department of Paediatrics, Christian Medical College, Vellore 632004, India
| | - Marco Spada
- Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Torino 10126,Italy
| | - Athanasia Stoupa
- Paediatric Endocrinology, Diabetology and Gynaecology Department, Necker Children's University Hospital, Imagine Institute, Université de Paris, Paris 75015, France
| | - Lilla Szeifert
- 1st Department of Pediatrics, Semmelweis University, Budapest, 1083, Hungary
| | - Davide Tonduti
- Child Neurology Unit - C.O.A.L.A. (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milano 20154, Italy
| | - Hans van Toor
- Diagnostic Laboratory for Endocrinology, Department of Internal Medicine, Erasmus Medical Center , 3015 GD Rotterdam, The Netherlands
| | - Serap Turan
- Marmara University School of Medicine Department of Pediatric Endocrinology, Istanbul 34854, Turkey
| | - Joel Vanderniet
- John Hunter Children's Hospital, New Lambton Heights, NSW 2305, Australia
- Hunter Medical Research Institute, University of Newcastle Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Monique de Waart
- Department of Clinical chemistry, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ronald van der Wal
- Diagnostic Laboratory for Endocrinology, Department of Internal Medicine, Erasmus Medical Center , 3015 GD Rotterdam, The Netherlands
| | - Adri van der Walt
- Private Paediatric Neurology Practice of Dr A van der Walt, Durbanville, South Africa
| | | | - Jolanta Wierzba
- Department of Internal and Pediatric Nursing, Institute of Nursing and Midwifery, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Federica Zibordi
- Child Neurology Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Amnon Zung
- Pediatric Endocrinology Unit, Kaplan Medical Center, University of Jerusalem, Rehovot 76100, Israel
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - W Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
41
|
Mayerl S, Alcaide Martin A, Bauer R, Schwaninger M, Heuer H, ffrench-Constant C. Distinct Actions of the Thyroid Hormone Transporters Mct8 and Oatp1c1 in Murine Adult Hippocampal Neurogenesis. Cells 2022; 11:524. [PMID: 35159334 PMCID: PMC8834272 DOI: 10.3390/cells11030524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Inactivating mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) result in Allan-Herndon-Dudley Syndrome, a severe form of psychomotor retardation, while inactivating mutations in another TH transporter, organic anion transporting polypeptide 1c1 (OATP1C1), are linked to juvenile neurodegeneration. These diseases point to essential roles for TH transporters in CNS function. We recently defined the presence of Mct8 in adult hippocampal progenitors and mature granule cell neurons and unraveled cell-autonomous and indirect requirements for Mct8 in adult hippocampal neurogenesis. Here, we investigated whether Oatp1c1 is involved in the hippocampal neurogenic process in concert with Mct8. We detected Oatp1c1 gene expression activity and transcripts in subsets of progenitors, neurons and niche cells in the dentate gyrus. Absence of Oatp1c1 resulted in increased neuroblast and reduced immature neuron numbers in 6-month-old Oatp1c1ko and Mct8/Oatp1c1 double knockout (M/Odko) mice. Reduced EdU-label retention in Mct8ko and M/Odko mice confirmed the impact of Mct8 on neuron formation. In contrast, no significant effect of Oatp1c1 loss on granule cell neuron production and anxiety-like behavior in the open field arena were seen. Together, our results reinforce that distinct actions of each TH transporter are required at multiple stages to ensure proper adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Steffen Mayerl
- Department of Endocrinology, Diabetes & Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.A.M.); (H.H.)
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Andrea Alcaide Martin
- Department of Endocrinology, Diabetes & Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.A.M.); (H.H.)
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, 07745 Jena, Germany;
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562 Lübeck, Germany;
| | - Heike Heuer
- Department of Endocrinology, Diabetes & Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.A.M.); (H.H.)
| | - Charles ffrench-Constant
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK;
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
42
|
Beheshti R, Aprile J, Lee C. Allan-Herndon-Dudley Syndrome: A Novel Pathogenic Variant of the SLC16A2 gene. Cureus 2022; 14:e21771. [PMID: 35251841 PMCID: PMC8890594 DOI: 10.7759/cureus.21771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/05/2022] Open
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a rare disorder characterized by thyroid irregularities, neurological issues, and developmental delay. In this article, we reported a patient with AHDS who presented with severe developmental delay and failure to thrive in the setting of thyroid irregularities. The patient had missense mutations in the SLC16A2 gene, which codes for monocarboxylate transporter 8 (MCT8). We identified two single-nucleotide variants, including guanine to alanine substitution at position +1 of intron 5 (IVS5+1 G>A) and guanine to alanine substitution at position 1400 of intron 1 (c.1400G>A). This variant has not been previously reported as pathogenic in a patient diagnosed with AHDS, as missense and in-frame single amino-acid deletions have not generally been associated with severe neurodevelopment sequela. We review the clinical and laboratory findings of this rare condition. We will discuss the value of early recognition and diagnosis based on promising clinical trials to treat the neurological and developmental sequela associated with AHDS.
Collapse
|
43
|
Marko HL, Hornig NC, Betz RC, Holterhus PM, Altmüller J, Thiele H, Fabiano M, Schweikert HU, Braun D, Schweizer U. Genomic variants reducing expression of two endocytic receptors in 46,XY differences of sex development. Hum Mutat 2022; 43:420-433. [PMID: 34979047 DOI: 10.1002/humu.24325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/12/2021] [Accepted: 12/30/2021] [Indexed: 11/07/2022]
Abstract
Transporter-dependent steroid hormone uptake into target cells was demonstrated in genetically engineered mice and fruit flies. We hypothesized that mutations in such transporters may cause differences in sex development (DSD) in humans. Exome sequencing was performed in 16 genetically unsolved cases of 46,XY DSD selected from an anonymized collection of 708 lines of genital fibroblasts (GF) that were taken from individuals with incomplete virilization. Selection criteria were based on available biochemical characterization of GF compatible with reduced androgen uptake. Two unrelated individuals were identified with mutations in LDL receptor-related protein 2 (LRP2), a gene previously associated with partial sex steroid insensitivity in mice. Like Lrp2-/- mice, affected individuals had non-descended testes. Western blots on GF confirmed reduced LRP2 expression, and endocytosis of sex hormone-binding globulin was reduced. In three unrelated individuals, two with undescended testes, mutations in another endocytic receptor gene, limb development membrane protein 1 like (LMBR1L), were detected. Two of these individuals had mutations affecting the same codon. In a transfected cell model, mutated LMBR1L showed reduced cell surface expression. Our findings suggest that endocytic androgen uptake in complex with sex hormone-binding globulin is relevant in human. LMBR1L may play a similar role in androgen uptake.
Collapse
Affiliation(s)
- Hannah L Marko
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Nadine C Hornig
- Klinik für Kinder und Jugendmedizin I, Bereich Pädiatrische Endokrinologie und Diabetologie, Universitätsklinikum Schleswig-Holstein, UKSH, Campus Kiel,, Kiel, Germany
| | - Regina C Betz
- Institute of Human Genetics, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Paul-Martin Holterhus
- Klinik für Kinder und Jugendmedizin I, Bereich Pädiatrische Endokrinologie und Diabetologie, Universitätsklinikum Schleswig-Holstein, UKSH, Campus Kiel,, Kiel, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Marietta Fabiano
- Department of Neurology, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hans-Udo Schweikert
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
44
|
Lademann F, Mayerl S, Tsourdi E, Verrey F, Leitch VD, Williams GR, Bassett JHD, Hofbauer LC, Heuer H, Rauner M. The Thyroid Hormone Transporter MCT10 Is a Novel Regulator of Trabecular Bone Mass and Bone Turnover in Male Mice. Endocrinology 2022; 163:bqab218. [PMID: 34669927 PMCID: PMC8598386 DOI: 10.1210/endocr/bqab218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/19/2022]
Abstract
Thyroid hormones (TH) are essential for skeletal development and adult bone homeostasis. Their bioavailability is determined by specific transporter proteins at the cell surface. The TH-specific transporter monocarboxylate transporter 8 (MCT8) was recently reported as a regulator of bone mass in mice. Given that high systemic triiodothyronine (T3) levels in Mct8 knockout (KO) mice are still able to cause trabecular bone loss, alternative TH transporters must substitute for MCT8 function in bone. In this study, we analyzed the skeletal phenotypes of male Oatp1c1 KO and Mct10 KO mice, which are euthyroid, and male Mct8/Oatp1c1 and Mct8/Mct10 double KO mice, which have elevated circulating T3 levels, to unravel the role of TH transport in bone. MicroCT analysis showed no significant trabecular bone changes in Oatp1c1 KO mice at 4 weeks and 16 weeks of age compared with wild-type littermate controls, whereas 16-week-old Mct8/Oatp1c1 double KO animals displayed trabecular bone loss. At 12 weeks, Mct10 KO mice, but not Mct8/Mct10 double KO mice, had decreased trabecular femoral bone volume with reduced osteoblast numbers. By contrast, lack of Mct10 in 24-week-old mice led to trabecular bone gain at the femur with increased osteoblast numbers and decreased osteoclast numbers whereas Mct8/Mct10 double KO did not alter bone mass. Neither Mct10 nor Mct8/Mct10 deletion affected vertebral bone structures at both ages. In vitro, osteoblast differentiation and activity were impaired by Mct10 and Mct8/Mct10-deficiency. These data demonstrate that MCT10, but not OATP1C1, is a site- and age-dependent regulator of bone mass and turnover in male mice.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Steffen Mayerl
- Department of Endocrinology, University of Duisburg-Essen, University Hospital Essen, D-45147 Essen, Germany
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Francois Verrey
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Heike Heuer
- Department of Endocrinology, University of Duisburg-Essen, University Hospital Essen, D-45147 Essen, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
45
|
Wolff TM, Veil C, Dietrich JW, Müller MA. Mathematical modeling and simulation of thyroid homeostasis: Implications for the Allan-Herndon-Dudley syndrome. Front Endocrinol (Lausanne) 2022; 13:882788. [PMID: 36568087 PMCID: PMC9772020 DOI: 10.3389/fendo.2022.882788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION A mathematical model of the pituitary-thyroid feedback loop is extended to deepen the understanding of the Allan-Herndon-Dudley syndrome (AHDS). The AHDS is characterized by unusual thyroid hormone concentrations and a mutation in the SLC16A2 gene encoding for the monocarboxylate transporter 8 (MCT8). This mutation leads to a loss of thyroid hormone transport activity. One hypothesis to explain the unusual hormone concentrations of AHDS patients is that due to the loss of thyroid hormone transport activity, thyroxine (T 4) is partially retained in thyroid cells. METHODS This hypothesis is investigated by extending a mathematical model of the pituitary-thyroid feedback loop to include a model of the net effects of membrane transporters such that the thyroid hormone transport activity can be considered. A nonlinear modeling approach based on the Michaelis-Menten kinetics and its linear approximation are employed to consider the membrane transporters. The unknown parameters are estimated through a constrained parameter optimization. RESULTS In dynamic simulations, damaged membrane transporters result in a retention of T 4 in thyroid cells and ultimately in the unusual hormone concentrations of AHDS patients. The Michaelis-Menten modeling approach and its linear approximation lead to similar results. DISCUSSION The results support the hypothesis that a partial retention of T 4 in thyroid cells represents one mechanism responsible for the unusual hormone concentrations of AHDS patients. Moreover, our results suggest that the retention of T 4 in thyroid cells could be the main reason for the unusual hormone concentrations of AHDS patients.
Collapse
Affiliation(s)
- Tobias M. Wolff
- Institute of Automatic Control, Leibniz University Hannover, Hannover, Germany
- *Correspondence: Tobias M. Wolff,
| | - Carina Veil
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Johannes W. Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Diabetes Centre Bochum-Hattingen, St. Elisabeth-Hospital Blankenstein, Hattingen, Germany
- Ruhr Center for RareDiseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| | - Matthias A. Müller
- Institute of Automatic Control, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
46
|
Masnada S, Sarret C, Antonello CE, Fadilah A, Krude H, Mura E, Mordekar S, Nicita F, Olivotto S, Orcesi S, Porta F, Remerand G, Siri B, Wilpert NM, Amir-Yazdani P, Bertini E, Schuelke M, Bernard G, Boespflug-Tanguy O, Tonduti D. Movement disorders in MCT8 deficiency/Allan-Herndon-Dudley Syndrome. Mol Genet Metab 2022; 135:109-113. [PMID: 34969638 DOI: 10.1016/j.ymgme.2021.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES MCT8 deficiency is a rare genetic leukoencephalopathy caused by a defect of thyroid hormone transport across cell membranes, particularly through blood brain barrier and into neural cells. It is characterized by a complex neurological presentation, signs of peripheral thyrotoxicosis and cerebral hypothyroidism. Movement disorders (MDs) have been frequently mentioned in this condition, but not systematically studied. METHODS Each patient recruited was video-recorded during a routine outpatient visit according to a predefined protocol. The presence and the type of MDs were evaluated. The type of MD was blindly scored by two child neurologists experts in inherited white matter diseases and in MD. Dystonia was scored according to Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). When more than one MD was present, the predominant one was scored. RESULTS 27 patients were included through a multicenter collaboration. In many cases we saw a combination of different MDs. Hypokinesia was present in 25/27 patients and was the predominant MD in 19. It was often associated with hypomimia and global hypotonia. Dystonia was observed in 25/27 patients, however, in a minority of cases (5) it was deemed the predominant MD. In eleven patients, exaggerated startle reactions and/or other paroxysmal non-epileptic events were observed. CONCLUSION MDs are frequent clinical features of MCT8 deficiency, possibly related to the important role of thyroid hormones in brain development and functioning of normal dopaminergic circuits of the basal ganglia. Dystonia is common, but usually mild to moderate in severity, while hypokinesia was the predominant MD in the majority of patients.
Collapse
Affiliation(s)
- Silvia Masnada
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.
| | - Catherine Sarret
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.
| | - Clara Eleonora Antonello
- C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy; Department of Paediatric Orthopaedics, V. Buzzi Children's Hospital, Milan, Italy.
| | - Ala Fadilah
- Department of Paediatric Neurology, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom.
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Eleonora Mura
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| | - Santosh Mordekar
- Department of Paediatric Neurology, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom.
| | - Francesco Nicita
- Genetics and Rare Diseases Research Division, Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Sara Olivotto
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.
| | - Simona Orcesi
- Department of Brain and Behavioural Neurosciences, University of Pavia, Pavia, Italy; Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy.
| | - Francesco Porta
- Pediatric Department, Regina Margherita Hospital, Turin, Italy
| | - Ganaelle Remerand
- Service de Néonatologie, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Barbara Siri
- Pediatric Department, Regina Margherita Hospital, Turin, Italy; Metabolic Unit, Department Pediatrics, Bambino Gesù Children's Hospital, Italy.
| | - Nina-Maria Wilpert
- Department of Neuropediatrics, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Pouneh Amir-Yazdani
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montréal, Québec, Canada; Université Laval, Québec, Québec, Canada.
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Markus Schuelke
- Department of Neuropediatrics, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Geneviève Bernard
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montréal, Québec, Canada; Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Canada; Department Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Canada.
| | - Odile Boespflug-Tanguy
- Department of Pediatric Neurology and Metabolic Disorders, French Reference Center for Leukodystrophies, Robert Debré Hospital, Paris, France; Inserm UMR1141 Neuroprotect, Paris Diderot University, Sorbonne Cite, Paris, France
| | - Davide Tonduti
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.
| |
Collapse
|
47
|
Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. The role of SLC transporters for brain health and disease. Cell Mol Life Sci 2021; 79:20. [PMID: 34971415 PMCID: PMC11071821 DOI: 10.1007/s00018-021-04074-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The brain exchanges nutrients and small molecules with blood via the blood-brain barrier (BBB). Approximately 20% energy intake for the body is consumed by the brain. Glucose is known for its critical roles for energy production and provides substrates for biogenesis in neurons. The brain takes up glucose via glucose transporters GLUT1 and 3, which are expressed in several neural cell types. The brain is also equipped with various transport systems for acquiring amino acids, lactate, ketone bodies, lipids, and cofactors for neuronal functions. Unraveling the mechanisms by which the brain takes up and metabolizes these nutrients will be key in understanding the nutritional requirements in the brain. This could also offer opportunities for therapeutic interventions in several neurological disorders. For instance, emerging evidence suggests a critical role of lactate as an alternative energy source for neurons. Neuronal cells express monocarboxylic transporters to acquire lactate. As such, treatment of GLUT1-deficient patients with ketogenic diets to provide the brain with alternative sources of energy has been shown to improve the health of the patients. Many transporters are present in the brain, but only a small number has been characterized. In this review, we will discuss about the roles of solute carrier (SLC) transporters at the blood brain barrier (BBB) and neural cells, in transport of nutrients and metabolites in the brain.
Collapse
Affiliation(s)
- Yen T K Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Hoa T T Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Tra H Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- SLING/Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Translational and Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
48
|
Ipek R, Bozdogan ST, Kömür M, Okuyaz C. A Novel Mutation Diagnosing in Allan–Herndon–Dudley's Syndrome. J Pediatr Genet 2021. [DOI: 10.1055/s-0041-1740457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAllan–Herndon–Dudley's syndrome (AHDS) is a rare X-linked recessive disease that causes abnormal serum thyroid function tests, severe hypotonia, intellectual disability, and motor deficit due to a mutation in the monocarboxylate transporter 8, which is a thyroid hormone transporter. A 6-month-old male patient presented to our outpatient clinic with a serious hypotonia complaint. With a preliminary diagnosis of AHDS, a molecular genetic examination was performed. The molecular genetic analysis detected a new previously unidentified variant in the SLC16A2 gene. This case has been presented to report the AHDS, which is a rare cause of hypotonia in patients presenting/consulting with severe hypotonia, global developmental delay, and abnormal thyroid function test results. Besides, a novel pathogenic mutation in the SLC16A2 gene has been described in the present article.
Collapse
Affiliation(s)
- Rojan Ipek
- Department of Pediatrics, Division of Neurology, Training and Research Hospital, Adıyaman University, Adıyaman, Turkey
| | - Sevcan Tug Bozdogan
- Department of Medical Genetics, Medical Faculty, Çukurova University, Adana, Turkey
| | - Mustafa Kömür
- Department of Pediatrics, Division of Neurology, Medical Faculty, Mersin University, Mersin, Turkey
| | - Cetin Okuyaz
- Department of Pediatrics, Division of Neurology, Medical Faculty, Mersin University, Mersin, Turkey
| |
Collapse
|
49
|
Han JY, Lee S, Woo H, Kim SY, Kim H, Lim BC, Hwang H, Choi J, Kim KJ, Chae JH. Heterogeneous Clinical Characteristics of Allan-Herndon-Dudley Syndrome with SLC16A2 Mutations. ANNALS OF CHILD NEUROLOGY 2021. [DOI: 10.26815/acn.2021.00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose: The purpose of this study was to expand our understanding of phenotypic and genetic variation in Allan-Herndon-Dudley syndrome (AHDS), which is a rare X-linked mental retardation syndrome characterized by hypotonia, generalized spasticity, and moderate-to-severe psychomotor retardation. AHDS is caused by a mutation of solute carrier family 16 member 2 (SLC16A2), which encodes monocarboxylate transporter 8 (MCT8), the transporter of triiodothyronine (T3) into neurons. Methods: We enrolled nine patients with AHDS from unrelated families, except for two patients who were cousins, through a retrospective chart review. Clinical features, brain imaging, electroencephalograms, thyroid hormone profiles, and genetic data were reviewed retrospectively and compared with previously reported cases. Results: We found three novel and five previously reported pathogenic variants in nine patients from eight families. All patients presented with hypotonia, spasticity, severe developmental delay, and elevated serum T3 levels. Cataplexy, which is a previously unreported phenotype, was found in two patients with the same mutation. In our cohort, seizures were uncommon (n=1) but intractable. Conclusion: This study broadens the known phenotypic variations of AHDS, ranging from relatively mild global developmental delay to a severe form of encephalopathy with hypotonia, spasticity, and no acquisition of independent sitting. The syndromic classification or genetic etiology of global developmental delay is extremely heterogeneous; therefore, early clinical suspicion is challenging for clinicians. However, severe mental retardation with hypotonia, spasticity, and elevated serum T3 levels in male patients is a highly suspicious clinical clue for the early diagnosis of AHDS.
Collapse
|
50
|
Gowda VK, Gupta P, Shivappa SK, Benakappa N. Thyroid Hormone Transporter Defect: Allan Herndon Dudley Syndrome, Masquerading as Dyskinetic Cerebral Palsy. J Pediatr Neurosci 2021; 16:293-295. [PMID: 36531774 PMCID: PMC9757515 DOI: 10.4103/jpn.jpn_135_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 11/22/2020] [Indexed: 06/17/2023] Open
Abstract
Allan Herndon Dudley syndrome (AHDS) is a rare X-linked recessive disorder due to mutation in the SLC16A2 gene, which encodes a thyroid hormone (TH) transporter that facilitates the movement of TH across the neurons. Mutation in this gene leads to a lack of T3 and T4 entry in the brain, which causes central hypothyroidism and dysthyroidism in the peripheral tissue. We report a child, a 21-month-old boy, who presented with developmental delay and stiffness. The child had facial dysmorphism with dystonia. MRI of the brain was normal. Thyroid profile showed low free T4, and normal TSH but high free T3. Hence, AHDS was suspected and was confirmed by targeted next-generation testing and Sanger sequencing.
Collapse
Affiliation(s)
| | - Priya Gupta
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Sanjay K Shivappa
- Department of Pediatric Medicine, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Naveen Benakappa
- Department of Pediatric Medicine, Indira Gandhi Institute of Child Health, Bangalore, India
| |
Collapse
|