1
|
Yang SL, Chiu TY, Tsai KL, Li CH, Yang JY, Liu MT, Wu FT. Epidemiology of human metapneumovirus in Taiwan from 2013 to 2023. Arch Virol 2024; 169:229. [PMID: 39441325 PMCID: PMC11499400 DOI: 10.1007/s00705-024-06147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/24/2024] [Indexed: 10/25/2024]
Abstract
Human metapneumovirus (HMPV) is a member of the genus Metapneumovirus in the family Pneumoviridae of the order Mononegavirales that can cause upper and lower respiratory tract disease. This retrospective study describes the epidemiology of hMPV based on community viral surveillance results from sentinel sites across Taiwan from 2013 to 2023. A total of 114 hMPV strains were isolated and analyzed to assess viral evolution through sequencing of their fusion protein genes. This study revealed that hMPV cases occur almost year-round in Taiwan, with a peak occurring during spring (March to May). Of the 114 infected patients, 68.4% were children under 4 years old. The geographical distribution of hMPV positivity was highest in Penghu County, followed by Changhua County and Hsinchu County. The clinical symptoms of hMPV infection are nonspecific, with fever (56.1%), cough (44.7%), rhinorrhea (21.1%), and sore throat (14.9%) being the most common. However, a few patients also developed severe central nervous system symptoms (1.8%) or dyspnea (0.9%). Phylogenetic analysis revealed genetic diversity among the 114 isolated hMPV strains, with the A2 lineage (57.9%) being the most frequently observed, followed by the B2 lineage (33.3%), in the Taiwanese community from 2013 to 2023. In conclusion, hMPV causes a serious acute respiratory disease in Taiwan that should not be neglected. Further epidemiological surveillance and investigations of the clinical characteristics of hMPV should be performed continually for prevention and control of this virus.
Collapse
Affiliation(s)
- Su-Lin Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Tai-Yuan Chiu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Kun-Lin Tsai
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Chung-Hao Li
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Jyh-Yuan Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Fang-Tzy Wu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China.
| |
Collapse
|
2
|
Jurkowicz M, Cohen H, Nemet I, Keller N, Leibovitz E, Sherman G, Kriger O, Barkai G, Mandelboim M, Stein M. Epidemiological and clinical characteristics of hospitalized human metapneumovirus patients in Israel, 2015-2021: A retrospective cohort study. J Med Virol 2024; 96:e29709. [PMID: 38828947 DOI: 10.1002/jmv.29709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
This study evaluated the epidemiological and clinical characteristics of human metapneumovirus (hMPV) infection among hospitalized patients with acute respiratory infections during 2015-2021 and assessed the impact of the coronavirus disease 2019 pandemic on hMPV infection. A single-center, retrospective cohort study was performed, including pediatric and adult patients with laboratory-confirmed hMPV. Of a total of 990 patients, 253 (25.6%), 105 (10.6%), 121 (12.2%), and 511 (51.6%) belonged to age groups 0-2, 3-17, 18-59, and ≥60 years, respectively. The highest percentage (23.0%) of patients were hospitalized during 2019 and the lowest (4.7%) during 2020. Patients < 18 years experienced high rates of comorbidities (immunodeficiencies: 14.4% and malignancies: 29.9%). Here, 37/39 (94.9%) of all bronchiolitis cases were diagnosed in patients < 2 years, whereas more patients in older age groups were diagnosed with pneumonia. A greater proportion of hMPV patients diagnosed with viral coinfection (mostly respiratory syncytial virus and adenovirus) were <18 years. The highest percentages of intensive care unit admissions were recorded among patients < 18 years. Our findings demonstrate that hMPV is an important cause of morbidity in young children and a possibly underestimated cause of morbidity among older adults.
Collapse
Affiliation(s)
- Menucha Jurkowicz
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Hodaya Cohen
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ital Nemet
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nathan Keller
- Faculty of Medicine, Ariel University, Ariel, Israel
| | - Eugene Leibovitz
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Gilad Sherman
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Or Kriger
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Galia Barkai
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Michal Mandelboim
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Michal Stein
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Zhang Y, Xu J, Miranda-Katz M, Sojati J, Tollefson SJ, Manni ML, Alcorn JF, Sarkar SN, Williams JV. Distinct roles for type I and type III interferons in virulent human metapneumovirus pathogenesis. PLoS Pathog 2024; 20:e1011840. [PMID: 38315735 PMCID: PMC10868789 DOI: 10.1371/journal.ppat.1011840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/15/2024] [Accepted: 11/17/2023] [Indexed: 02/07/2024] Open
Abstract
Human metapneumovirus (HMPV) is an important cause of acute lower respiratory infection in children and adults worldwide. There are four genetic subgroups of HMPV and both neutralizing antibodies and T cells contribute to protection. However, little is known about mechanisms of pathogenesis and most published work is based on a few extensively passaged, laboratory-adapted strains of HMPV. In this study, we isolated and characterized a panel of low passage HMPV clinical isolates representing all four genetic subgroups. The clinical isolates exhibited lower levels of in vitro replication compared to a lab-adapted strain. We compared disease phenotypes using a well-established mouse model. Several virulent isolates caused severe weight loss, lung pathology, airway dysfunction, and fatal disease in mice, which was confirmed in three inbred mouse strains. Disease severity did not correlate with lung viral titer, as virulent strains exhibited restricted replication in the lower airway. Virulent HMPV isolates were associated with markedly increased proinflammatory cytokine production and neutrophil influx; however, depletion of neutrophils or genetic ablation of inflammasome components did not reverse disease. Virulent clinical isolates induced markedly increased type I and type III interferon (IFN) secretion in vitro and in vivo. STAT1/2-deficient mice lacking both type I and type III IFN signaling showed reduced disease severity and increased lung viral replication. Inhibition of type I IFN signaling using a blocking antibody or genetic ablation of the type I IFN receptor reduced pathology with minimal effect on viral replication. Conversely, blockade of type III IFN signaling with a neutralizing antibody or genetic ablation of the IFN-lambda receptor had no effect on pathogenesis but restored viral replication. Collectively, these results demonstrate distinct roles for type I and type III IFN in HMPV pathogenesis and immunity.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jiuyang Xu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Tsinghua University School of Medicine, Beijing, China
| | - Margot Miranda-Katz
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jorna Sojati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sharon J. Tollefson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michelle L. Manni
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John F. Alcorn
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Saumendra N. Sarkar
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pennsylvania, United States of America
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pennsylvania, United States of America
- Institute for Infection, Inflammation, and Immunity in Children, University of Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Sojati J, Zhang Y, Williams JV. Clinical human metapneumovirus isolates show distinct pathogenesis and inflammatory profiles but similar CD8 + T cell impairment. mSphere 2024; 9:e0057023. [PMID: 38197640 PMCID: PMC10826344 DOI: 10.1128/msphere.00570-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024] Open
Abstract
Human metapneumovirus (HMPV) is a negative-sense single-stranded RNA virus in the Pneumoviridae family and a leading cause of acute upper and lower respiratory infections, particularly in children, immunocompromised patients, and the elderly. Although nearly every person is infected with HMPV during early childhood, re-infections occur often, highlighting difficulty in building long-term immunity. Inflammatory responses, including PD-1-mediated impairment of virus-specific CD8+ T cells (TCD8), contribute to HMPV disease severity. HMPV strains are divided into four lineages: A1, A2, B1, and B2. However, little is known about immune responses to different viral subtypes. Here, we characterize responses to four HMPV clinical isolates-TN/94-344 (A1), TN/94-49 (A2), C2-202 (B1), and TN/96-35 (B2)-in vivo in C57BL/6 (B6) mice. TN/94-49 was avirulent, while TN/94-344, C2-202, and TN/96-35 showed varying degrees of weight loss and clinical disease. Differences in disease did not correlate to virus burden in upper or lower tracts. TN/94-49 HMPV exhibited highest nose titers and delayed lung clearance. Cytokine profiles differed between HMPV isolates, with TN/96-35 inducing the broadest lung inflammatory cytokines. TN/96-35 also showed lower HMPV burden and less weight loss than other virulent isolates, suggesting a more efficient antiviral response. Interestingly, disease correlated with higher expression of T-cell chemoattractant CXCL9. All isolates elicited PD-1 upregulation and decreased IFNγ and CD107a expression in virus-specific TCD8, with little difference between HMPV subtypes. This work uncovers previously uncharacterized variations in immune responses to clinical HMPV isolates of different lineages.IMPORTANCEThis study extensively explored differences in T-cell-mediated immunity between human metapneumovirus (HMPV) clinical isolates. Much existing HMPV research has been done with strains passaged extensively in cell lines, likely acquiring mutations advantageous to in vitro replication. Clinical isolates are collected directly from human patients and have undergone <10 passages, serving as more physiologically relevant models of HMPV infection. Additionally, existing animal studies of HMPV disease mainly focus on lung pathogenesis, while HMPV infects both upper and lower airways of humans. This work highlights distinct differences in HMPV burden in upper and lower tracts between clinical isolates. Lastly, this study uniquely explores differences in host immunity between all four HMPV genetic lineages. The predominant HMPV subtype in circulation varies seasonally; thus, understanding host responses to all subgroups is critical for developing effective HMPV vaccines.
Collapse
Affiliation(s)
- Jorna Sojati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Program in Microbiology & Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute for Infection, Immunity, and Inflammation in Children, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Sugimoto S, Kawase M, Suwa R, Kakizaki M, Kume Y, Chishiki M, Ono T, Okabe H, Norito S, Hosoya M, Hashimoto K, Shirato K. Development of a duplex real-time RT-PCR assay for the detection and identification of two subgroups of human metapneumovirus in a single tube. J Virol Methods 2023; 322:114812. [PMID: 37741464 DOI: 10.1016/j.jviromet.2023.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Human metapneumovirus (hMPV) is a common cause of respiratory infections in children. Many genetic diagnostic assays have been developed, but most detect hMPV regardless of the subgroup. In this study, we developed a real-time RT-PCR assay that can detect and identify the two major subgroups of hMPV (A and B) in one tube. Primers and probes were designed based on the sequences of recent clinical isolates in Japan. The assay showed comparable analytical sensitivity to a previously reported real-time RT-PCR assay and specific reactions to hMPV subgroups. The assay also showed no cross-reactivity to clinical isolates of 19 species of other respiratory viruses. In a validation assay using post-diagnosed clinical specimens, 98% (167/170) positivity was confirmed for the duplex assay, and the three specimens not detected were of low copy number. The duplex assay also successfully distinguished the two major subgroups for all 12 clinical specimens, for which the subgroup had already been determined by genomic sequencing analysis. The duplex assay described here will contribute to the rapid and accurate identification and surveillance of hMPV infections.
Collapse
Affiliation(s)
- Satoko Sugimoto
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Management Department of Biosafety, Laboratory Animals, and Pathogen Bank, National Institute of Infectious Disease, Musashimurayama, Tokyo, Japan
| | - Miyuki Kawase
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Reiko Suwa
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masatoshi Kakizaki
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hisao Okabe
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Sakurako Norito
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.
| |
Collapse
|
6
|
Ye H, Zhang S, Zhang K, Li Y, Chen D, Tan Y, Liang L, Liu M, Liang J, An S, Wu J, Zhu X, Li M, He Z. Epidemiology, genetic characteristics, and association with meteorological factors of human metapneumovirus infection in children in southern China: A 10-year retrospective study. Int J Infect Dis 2023; 137:40-47. [PMID: 37816430 DOI: 10.1016/j.ijid.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVES This study aimed to determine the epidemiological and genetic features of human metapneumovirus (HMPV) infection in children in southern China, and the effect of meteorological factors on infection. METHODS 14,817 children (≤14 years) with acute respiratory tract infections from 2010 to 2019 were examined for HMPV and other respiratory viruses by real-time quantitative polymerase chain reaction. Full-length F gene of 54 positive samples were sequenced and subjected to phylogenetic analysis. The correlation between the HMPV-positive rate and meteorological factors was analyzed by linear regression analysis. RESULTS HMPV was detected in 524 (3.5%) children, who were mostly younger than 1 year. The seasonal peak of HMPV prevalence mainly occurred in spring. Respiratory syncytial virus was the most common virus coinfected with HMPV (5.3%). Phylogenetic analysis revealed that the sequenced HMPV strains belonged to four sublineages, including A2b (1.9%), A2c (31.5%), B1 (50.0%), and B2 (16.7%). After adjusting for all meteorological factors, sunshine duration was inversely correlated with the HMPV-positive rate. CONCLUSION HMPV is an important respiratory pathogen that causes acute respiratory tract infections in children in southern China, particularly in children ≤5 years old. The prevalence peak of HMPV in this area appeared in spring, and the predominant subtype was B1. Meteorological factors, especially long sunshine duration, might decrease the HMPV prevalence.
Collapse
Affiliation(s)
- Hengming Ye
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Public Health Service Center of Bao'an District, Shenzhen, China
| | - Shuqing Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kexin Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yizhe Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Delin Chen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongyao Tan
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linyue Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minjie Liu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingyao Liang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shu An
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jueheng Wu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xun Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengfeng Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Cancer Institute, Southern Medical University, Guangzhou, China
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
7
|
Lamichhane J, Upreti M, Nepal K, Upadhyay BP, Maharjan U, Shrestha RK, Chapagain RH, Banjara MR, Shrestha UT. Burden of human metapneumovirus infections among children with acute respiratory tract infections attending a Tertiary Care Hospital, Kathmandu. BMC Pediatr 2023; 23:388. [PMID: 37550689 PMCID: PMC10405573 DOI: 10.1186/s12887-023-04208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Acute respiratory infections (ARIs) are one of the most common causes of mortality and morbidity worldwide. Every year millions of children suffer from viral respiratory tract infections (RTIs) ranging from mild to severe illnesses. Human Metapneumovirus (HMPV) is among the most frequent viruses responsible for RTIs. However, HMPV infections and their severity among children have not been explored yet in Nepal. PURPOSE Therefore, the study was focused on HMPV infections and other potential viral etiologies or co-infections using multiplex PCR among children attending Kanti Children's Hospital and assessed the clinical characteristics of the infections as well as found the co-infections. A hospital-based cross-sectional study was designed and a convenience sampling method was used to enroll children of less than 15 years with flu-like symptoms from both outpatients and inpatients departments over three months of the study period. RESULTS HMPV infection (13.3%) was the most predominant infection among the different viral infections in children with ARIs in Kanti Children's Hospital. The HMPV was more prevalent in the age group less than three years (21.8%). Cough and fever were the most common clinical features present in all children infected with HMPV followed by rhinorrhea, sore throat, and wheezing. HMPV-positive children were diagnosed with pneumonia (42.9%), bronchiolitis (28.5%), upper respiratory tract infections (14.3%), and asthma (14.3%). The prevalence of HMPV was high in late winter (14.3%) followed by early spring (13.5%). CONCLUSIONS This study provides the baseline information on HMPV and associated co-infection with other respiratory viruses for the differential diagnosis based on molecular methods and also the comparison of clinical presentations among the different respiratory syndromes.
Collapse
Affiliation(s)
- Jyoti Lamichhane
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Milan Upreti
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Krishus Nepal
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | | | - Urusha Maharjan
- Central Diagnostic Laboratory & Research Center, Kamalpokhari, Kathmandu, Nepal
| | | | | | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | |
Collapse
|
8
|
Emergence and Potential Extinction of Genetic Lineages of Human Metapneumovirus between 2005 and 2021. mBio 2023; 14:e0228022. [PMID: 36507832 PMCID: PMC9973309 DOI: 10.1128/mbio.02280-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human metapneumovirus (HMPV) is one of the leading causes of respiratory illness (RI), primarily in infants. Worldwide, two genetic lineages (A and B) of HMPV are circulating that are antigenically distinct and can each be further divided into genetic sublineages. Surveillance combined with large-scale whole-genome sequencing studies of HMPV are scarce but would help to identify viral evolutionary dynamics. Here, we analyzed 130 whole HMPV genome sequences obtained from samples collected from individuals hospitalized with RI and partial fusion (n = 144) and attachment (n = 123) protein gene sequences obtained from samples collected from patients with RI visiting general practitioners between 2005 and 2021 in the Netherlands. Phylogenetic analyses demonstrated that HMPV continued to group in the four sublineages described in 2004 (A1, A2, B1, and B2). However, one sublineage (A1) was no longer detected in the Netherlands after 2006, while the others continued to evolve. No differences were observed in dominant (sub)lineages between samples obtained from patients with RI being hospitalized and those consulting general practitioners. In both populations, viruses of lineage A2 carrying a 180-nucleotide or 111-nucleotide duplication in the attachment protein gene became the most frequently detected genotypes. In the past, different names for the newly energing lineages have been proposed, demonstrating the need for a consistent naming convention. Here, criteria are proposed for the designation of new genetic lineages to aid in moving toward a systematic HMPV classification. IMPORTANCE Human metapneumovirus (HMPV) is one of the major causative agents of human respiratory tract infections. Monitoring of virus evolution could aid toward the development of new antiviral treatments or vaccine designs. Here, we studied HMPV evolution between 2005 and 2021, with viruses obtained from samples collected from hospitalized individuals and patients with respiratory infections consulting general practitioners. Phylogenetic analyses demonstrated that HMPV continued to group in the four previously described sublineages (A1, A2, B1, and B2). However, one sublineage (A1) was no longer detected after 2006, while the others continued to evolve. No differences were observed in dominant (sub)lineages between patients being hospitalized and those consulting general practitioners. In both populations, viruses of lineage A2 carrying a 180-nucleotide or 111-nucleotide duplication in the attachment protein gene became the most frequently detected genotypes. These data were used to propose criteria for the designation of new genetic lineages to aid toward a systematic HMPV classification.
Collapse
|
9
|
Yim KC, Mousa JJ, Blanco JCG, Kim S, Boukhvalova MS. Human Metapneumovirus (hMPV) Infection and MPV467 Treatment in Immunocompromised Cotton Rats Sigmodon hispidus. Viruses 2023; 15:476. [PMID: 36851691 PMCID: PMC9966515 DOI: 10.3390/v15020476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Human metapneumovirus (hMPV) is an important cause of respiratory disease in immunocompromised individuals, yet hMPV infection has not been modeled before in immunocompromised animals. In this work, cotton rats S. hispidus immunosuppressed by cyclophosphamide were infected with hMPV, and viral replication and pulmonary inflammation in these animals were compared to those in normal hMPV-infected S. hispidus. The efficacy of prophylactic and therapeutic administration of the anti-hMPV antibody MPV467 was also evaluated. Immunosuppressed animals had higher pulmonary and nasal titers of hMPV on day 5 post-infection compared to normal animals, and large amounts of hMPV were still present in the respiratory tract of immunosuppressed animals on days 7 and 9 post-infection, indicating prolonged viral replication. Immunosuppression was accompanied by reduced pulmonary histopathology in hMPV-infected cotton rats compared to normal animals; however, a delayed increase in pathology and pulmonary chemokine expression was seen in immunosuppressed cotton rats. Prophylactic and therapeutic MPV467 treatments protected both upper and lower respiratory tracts against hMPV infection. The lung pathology and pulmonary expression of IP-10 and MIP-1α mRNA were reduced by therapeutic MPV467 administration. These results indicate that immunosuppressed cotton rats represent a useful model for studying hMPV pathogenesis and for evaluating therapeutics that could alleviate hMPV-induced disease in immunocompromised subjects.
Collapse
Affiliation(s)
- Kevin C. Yim
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| | - Jorge C. G. Blanco
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - Sonnie Kim
- NIH/NIAID, Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, Rockville, MD 20852, USA
| | - Marina S. Boukhvalova
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| |
Collapse
|
10
|
Hacker K, Kuan G, Vydiswaran N, Chowell‐Puente G, Patel M, Sanchez N, Lopez R, Ojeda S, Lopez B, Mousa J, Maier HE, Balmaseda A, Gordon A. Pediatric burden and seasonality of human metapneumovirus over 5 years in Managua, Nicaragua. Influenza Other Respir Viruses 2022; 16:1112-1121. [PMID: 35965382 PMCID: PMC9530515 DOI: 10.1111/irv.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Human metapneumovirus (hMPV) is an important cause of pediatric respiratory infection. We leveraged the Nicaraguan Pediatric Influenza Cohort Study (NPICS) to assess the burden and seasonality of symptomatic hMPV infection in children. METHODS NPICS is an ongoing prospective study of children in Managua, Nicaragua. We assessed children for hMPV infection via real-time reverse-transcription polymerase chain reaction (RT-PCR). We used classical additive decomposition analysis to assess the temporal trends, and generalized growth models (GGMs) were used to estimate effective reproduction numbers. RESULTS From 2011 to 2016, there were 564 hMPV symptomatic infections, yielding an incidence rate of 5.74 cases per 100 person-years (95% CI 5.3, 6.2). Children experienced 3509 acute lower respiratory infections (ALRIs), of which 160 (4.6%) were associated with hMPV infection. Children under the age of one had 55% of all symptomatic hMPV infections (62/112) develop into hMPV-associated ALRIs and were five times as likely as children over one to have an hMPV-associated ALRI (rate ratio 5.5 95% CI 4.1, 7.4 p < 0.001). Additionally, symptomatic reinfection with hMPV was common. In total, 87 (15%) of all observed symptomatic infections were detected reinfections. The seasonality of symptomatic hMPV outbreaks varied considerably. From 2011 to 2016, four epidemic periods were observed, following a biennial seasonal pattern. The mean ascending phase of the epidemic periods were 7.7 weeks, with an overall mean estimated reproductive number of 1.2 (95% CI 1.1, 1.4). CONCLUSIONS Symptomatic hMPV infection was associated with substantial burden among children in the first year of life. Timing and frequency of symptomatic hMPV incidence followed biennial patterns.
Collapse
Affiliation(s)
- Kathryn Hacker
- School of Public Health, Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Guillermina Kuan
- Sustainable Sciences InstituteManaguaNicaragua
- Centro de Salud Sócrates Flores VivasMinistry of HealthManaguaNicaragua
| | - Nivea Vydiswaran
- School of Public Health, Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Gerardo Chowell‐Puente
- School of Public Health, Department of Population Health SciencesGeorgia State UniversityAtlantaGeorgiaUSA
| | - Mayuri Patel
- School of Public Health, Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Roger Lopez
- Sustainable Sciences InstituteManaguaNicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y ReferenciaMinistry of HealthManaguaNicaragua
| | | | | | - Jarrod Mousa
- College of Veterinary Medicine, Center for Vaccines and ImmunologyUniversity of GeorgiaAthensGeorgiaUSA
- College of Veterinary Medicine, Department of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Hannah E. Maier
- School of Public Health, Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Angel Balmaseda
- Sustainable Sciences InstituteManaguaNicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y ReferenciaMinistry of HealthManaguaNicaragua
| | - Aubree Gordon
- School of Public Health, Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
11
|
Evidence against the Human Metapneumovirus G, SH, and M2-2 Proteins as Bona Fide Interferon Antagonists. J Virol 2022; 96:e0072322. [PMID: 35975999 PMCID: PMC9472654 DOI: 10.1128/jvi.00723-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The production of type I interferon (IFN) is the hallmark of the innate immune response. Most, if not all, mammalian viruses have a way to circumvent this response. Fundamental knowledge on viral evasion of innate immune responses may facilitate the design of novel antiviral therapies. To investigate how human metapneumovirus (HMPV) interacts with the innate immune response, recombinant viruses lacking G, short hydrophobic (SH), or M2-2 protein expression were assessed for IFN induction in A549 cells. HMPV lacking G or SH protein expression induced similarly low levels of IFN, compared to the wild-type virus, whereas HMPV lacking M2-2 expression induced significantly more IFN than the wild-type virus. However, sequence analysis of the genomes of M2-2 mutant viruses revealed large numbers of mutations throughout the genome. Over 70% of these nucleotide substitutions were A-to-G and T-to-C mutations, consistent with the properties of the adenosine deaminase acting on RNA (ADAR) protein family. Knockdown of ADAR1 by CRISPR interference confirmed the role of ADAR1 in the editing of M2-2 deletion mutant virus genomes. More importantly, Northern blot analyses revealed the presence of defective interfering RNAs (DIs) in M2-2 mutant viruses and not in the wild-type virus or G and SH deletion mutant viruses. DIs are known to be potent inducers of the IFN response. The presence of DIs in M2-2 mutant virus stocks and hypermutated virus genomes interfere with studies on HMPV and the innate immune response and should be addressed in future studies. IMPORTANCE Understanding the interaction between viruses and the innate immune response is one of the barriers to the design of antiviral therapies. Here, we investigated the role of the G, SH, and M2-2 proteins of HMPV as type I IFN antagonists. In contrast to other studies, no IFN-antagonistic functions could be observed for the G and SH proteins. HMPV with a deletion of the M2-2 protein did induce type I IFN production upon infection of airway epithelial cells. However, during generation of virus stocks, these viruses rapidly accumulated DIs, which are strong activators of the type I IFN response. Additionally, the genomes of these viruses were hypermutated, which was prevented by generating stocks in ADAR knockdown cells, confirming a role for ADAR in hypermutation of HMPV genomes or DIs. These data indicate that a role of the HMPV M2-2 protein as a bona fide IFN antagonist remains elusive.
Collapse
|
12
|
Velayutham TS, Ivanciuc T, Garofalo RP, Casola A. Role of human metapneumovirus glycoprotein G in modulation of immune responses. Front Immunol 2022; 13:962925. [PMID: 35958551 PMCID: PMC9357950 DOI: 10.3389/fimmu.2022.962925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Human metapneumovirus (hMPV) is an important pathogen responsible for acute respiratory tract infections in children, the elderly, and immunocompromised patients, with no effective treatment or vaccine currently available. Knowledge of virus- and host-specific mechanisms contributing to the pathogenesis of hMPV infection is still limited. Studies have shown that hMPV surface glycoprotein G is an important virulence factor, by inhibiting innate immune signaling in airway epithelial cells and immune cells. In this study, we investigated the role of G protein in modulating innate and adaptive immune responses in mice infected with a recombinant virus with deletion of G protein (rhMPV-ΔG). Results show that rhMPV-ΔG was strongly attenuated, as it did not induce significant clinical disease, airway obstruction and airway hyperresponsiveness (AHR), compared to infection with a control strain (rhMPV-WT). By analysis of cells in bronchoalveolar fluid and lung tissue, as well as cytokine production, we found that G protein mediates aspects of both innate and adaptive immune responses, including neutrophils, dendritic cells, natural killer cells and B cells. Lung T cells recruited in response to rhMPV-ΔG had a significantly higher activated phenotype compared to those present after rhMPV-WT infection. Despite highly attenuation characterized by low levels of replication in the lung, rhMPV-ΔG was able to induce neutralizing antibodies and to protect mice from a secondary hMPV challenge. However, challenged mice that had received rhMPV-ΔG as primary infection showed some signs of lung disease at the earliest time points, which were less evident in mice that had received the rhMPV-WT strain as primary infection. These results demonstrate some of the mechanisms by which G protein could contribute to airway disease and modulate immune response to hMPV infection.
Collapse
Affiliation(s)
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Antonella Casola, ; Roberto P. Garofalo,
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Antonella Casola, ; Roberto P. Garofalo,
| |
Collapse
|
13
|
Eddens T, Parks OB, Williams JV. Neonatal Immune Responses to Respiratory Viruses. Front Immunol 2022; 13:863149. [PMID: 35493465 PMCID: PMC9047724 DOI: 10.3389/fimmu.2022.863149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Respiratory tract infections are a leading cause of morbidity and mortality in newborns, infants, and young children. These early life infections present a formidable immunologic challenge with a number of possibly conflicting goals: simultaneously eliminate the acute pathogen, preserve the primary gas-exchange function of the lung parenchyma in a developing lung, and limit long-term sequelae of both the infection and the inflammatory response. The latter has been most well studied in the context of childhood asthma, where multiple epidemiologic studies have linked early life viral infection with subsequent bronchospasm. This review will focus on the clinical relevance of respiratory syncytial virus (RSV), human metapneumovirus (HMPV), and rhinovirus (RV) and examine the protective and pathogenic host responses within the neonate.
Collapse
Affiliation(s)
- Taylor Eddens
- Pediatric Scientist Development Program, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- Division of Allergy/Immunology, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Olivia B. Parks
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - John V. Williams
- Division of Pediatric Infectious Diseases, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Abstract
BACKGROUND Respiratory syncytial virus (RSV) and influenza infections are a major cause of hospitalization and intensive care unit (ICU) admission to children's hospitals and are closely tracked. We compared data over 6 seasons of human metapneumovirus (hMPV), RSV and influenza infections. METHODS During the 2014-2019 winter viral seasons, hMPV, RSV and influenza infections were tracked. For hMPV admissions, rates of hospitalizations, ICU admissions, hospital-acquired infections (HAIs) and mortalities were assessed and compared with RSV and influenza admissions. Retrospective data was used to study patients infected with hMPV. RESULTS During the winter seasons of 2014-2019, the rates of hospitalization due to hMPV were significantly higher than both RSV and influenza. ICU admissions, deaths and HAIs for hMPV were similar to RSV and influenza.Of the 471 total cases with hMPV, 58 (12.3%) had chronic lung disease (CLD) and 23 (4.9%) were tracheostomy dependent. Among 104 hMPV ICU admissions from 2013 to 2019, 86 (82%) had an underlying medical diagnosis, 30 (29%) had CLD, 21 (20%) had tracheostomies and 33 (32%) required mechanical ventilation. The average age of hMPV infected children in our ICU is 3 years and 10 months. CONCLUSIONS Our large descriptive study of hMPV infected children over 6 seasons showed higher rates of hospitalization compared with RSV and influenza, similar ICU and HAI rates, and deaths. ICU admitted children often had associated co-morbidities, including CLD. Further studies for focused disease surveillance and potential vaccine development for high-risk children are needed.
Collapse
|
15
|
Malekshahi SS, Yavarian J, Shafiei-Jandaghi NZ, Mokhtari-Azad T, Farahmand M. Prevalence of Human Metapneumovirus Infections in Iran: A Systematic Review and Meta-Analysis. Fetal Pediatr Pathol 2021; 40:663-673. [PMID: 32081050 DOI: 10.1080/15513815.2020.1725939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BackgroundWe sought to systematically review the literature and perform a meta-analysis by assessing the prevalence of human metapneumovirus (hMPV) infections from a number of studies conducted in Iran. Methods: Entire studies addressing epidemiology of hMPV in Iran using data from PubMed, Scopus, Science Direct, Web of science, Google Scholar, Embase, and national Persian databases up to June 2019 were included. Results: The estimated prevalence of hMPV was 8.9% (95% CI 5.4-14.2) in different regions in Iran. Compared to the global rate, in Iran hMPV infection presented an intermediate prevalence rate. The majority of hMPV positive patients were pediatric populations with pooled prevalence of 7.6% (I2 = 95%, 95% CI 3.5-15.6). Conclusion: This first comprehensive review covering researches over the last 11 years expanded our knowledge about hMPV circulating in Iran. Future large epidemiological studies are needed for the evaluation of hMPV prevalence and genotype distribution in different unanalyzed regions in Iran.
Collapse
Affiliation(s)
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Miranda-Katz M, Erickson JJ, Lan J, Ecker A, Zhang Y, Joyce S, Williams JV. Novel HLA-B7-restricted human metapneumovirus epitopes enhance viral clearance in mice and are recognized by human CD8 + T cells. Sci Rep 2021; 11:20769. [PMID: 34675220 PMCID: PMC8531189 DOI: 10.1038/s41598-021-00023-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Human metapneumovirus (HMPV) is a leading cause of acute lower respiratory tract illness in children and adults. Repeated infections are common and can be severe in young, elderly, and immunocompromised persons due to short-lived protective humoral immunity. In turn, few protective T cell epitopes have been identified in humans. Thus, we infected transgenic mice expressing the common human HLA MHC-I allele B*07:02 (HLA-B7) with HMPV and screened a robust library of overlapping and computationally predicted HLA-B7 binding peptides. Six HLA-B7-restricted CD8+ T cell epitopes were identified using ELISPOT screening in the F, M, and N proteins, with M195-203 (M195) eliciting the strongest responses. MHC-tetramer flow cytometric staining confirmed HLA-B7 epitope-specific CD8+ T cells migrated to lungs and spleen of HMPV-immune mice. Immunization with pooled HLA-B7-restricted peptides reduced viral titer and protected mice from virulent infection. Finally, we confirmed that CD8+ T cells from HLA-B7 positive humans also recognize the identified epitopes. These results enable identification of HMPV-specific CD8+ T cells in humans and help to inform future HMPV vaccine design.
Collapse
Affiliation(s)
- Margot Miranda-Katz
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - John J Erickson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, USA
| | - Jie Lan
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Alwyn Ecker
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, USA
- Vanderbilt Institute for Infection, Immunity, and Inflammation (VI4), Nashville, TN, 37232, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA.
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, 15224, USA.
| |
Collapse
|
17
|
Groen K, van Nieuwkoop S, Bestebroer TM, Fraaij PL, Fouchier RAM, van den Hoogen BG. Whole genome sequencing of human metapneumoviruses from clinical specimens using MinION nanopore technology. Virus Res 2021; 302:198490. [PMID: 34146613 DOI: 10.1016/j.virusres.2021.198490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
Human metapneumovirus (HMPV), a member of the Pneumoviridae family, is a causative agent of respiratory illness in young children, the elderly, and immunocompromised individuals. Globally, viruses belonging to two main genetic lineages circulate, A and B, which are further divided into four genetic sublineages (A1, A2, B1, B2). Classical genotyping of HMPV is based on the sequence of the fusion (F) and attachment (G) glycoprotein genes, which are under direct antibody-mediated immune pressure. Whole genome sequencing provides more information than sequencing of subgenomic fragments and is therefore a powerful tool for studying virus evolution and disease epidemiology and for identifying transmission events and nosocomial outbreaks. Here, we report a robust method to obtain whole genome sequences for HMPV using MinION Nanopore technology. This assay is able to generate HMPV whole genome sequences from clinical specimens with good coverage of the highly variable G gene and is equally sensitive for strains of all four genetic HMPV sublineages. This method can be used for studying HMPV genetics, epidemiology, and evolutionary dynamics.
Collapse
Affiliation(s)
- Kevin Groen
- Department of Viroscience, Erasmus MC, Wijtemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Stefan van Nieuwkoop
- Department of Viroscience, Erasmus MC, Wijtemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Erasmus MC, Wijtemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Pieter L Fraaij
- Department of Viroscience, Erasmus MC, Wijtemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Wijtemaweg 80, 3015 CN Rotterdam, The Netherlands
| | | |
Collapse
|
18
|
Gray GC, Robie ER, Studstill CJ, Nunn CL. Mitigating Future Respiratory Virus Pandemics: New Threats and Approaches to Consider. Viruses 2021; 13:637. [PMID: 33917745 PMCID: PMC8068197 DOI: 10.3390/v13040637] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite many recent efforts to predict and control emerging infectious disease threats to humans, we failed to anticipate the zoonotic viruses which led to pandemics in 2009 and 2020. The morbidity, mortality, and economic costs of these pandemics have been staggering. We desperately need a more targeted, cost-efficient, and sustainable strategy to detect and mitigate future zoonotic respiratory virus threats. Evidence suggests that the transition from an animal virus to a human pathogen is incremental and requires a considerable number of spillover events and considerable time before a pandemic variant emerges. This evolutionary view argues for the refocusing of public health resources on novel respiratory virus surveillance at human-animal interfaces in geographical hotspots for emerging infectious diseases. Where human-animal interface surveillance is not possible, a secondary high-yield, cost-efficient strategy is to conduct novel respiratory virus surveillance among pneumonia patients in these same hotspots. When novel pathogens are discovered, they must be quickly assessed for their human risk and, if indicated, mitigation strategies initiated. In this review, we discuss the most common respiratory virus threats, current efforts at early emerging pathogen detection, and propose and defend new molecular pathogen discovery strategies with the goal of preempting future pandemics.
Collapse
Affiliation(s)
- Gregory C. Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore 169856, Singapore
- Global Health Center, Duke Kunshan University, Kunshan 215316, China
| | - Emily R. Robie
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
| | - Caleb J. Studstill
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
| | - Charles L. Nunn
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
19
|
Rogers MC, Miranda-Katz M, Zhang Y, Oury TD, Uccellini MB, García-Sastre A, Williams JV. STAT2 Limits Host Species Specificity of Human Metapneumovirus. Viruses 2020; 12:E724. [PMID: 32635475 PMCID: PMC7412095 DOI: 10.3390/v12070724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
The host tropism of viral infection is determined by a variety of factors, from cell surface receptors to innate immune signaling. Many viruses encode proteins that interfere with host innate immune recognition in order to promote infection. STAT2 is divergent between species and therefore has a role in species restriction of some viruses. To understand the role of STAT2 in human metapneumovirus (HMPV) infection of human and murine tissues, we first infected STAT2-/- mice and found that HMPV could be serially passaged in STAT2-/-, but not WT, mice. We then used in vitro methods to show that HMPV inhibits expression of both STAT1 and STAT2 in human and primate cells, but not in mouse cells. Transfection of the murine form of STAT2 into STAT2-deficient human cells conferred resistance to STAT2 inhibition. Finally, we sought to understand the in vivo role of STAT2 by infecting hSTAT2 knock-in mice with HMPV, and found that mice had increased weight loss, inhibition of type I interferon signaling, and a Th2-polarized cytokine profile compared to WT mice. These results indicate that STAT2 is a target of HMPV in human infection, while the murine version of STAT2 restricts tropism of HMPV for murine cells and tissue.
Collapse
Affiliation(s)
- Meredith C. Rogers
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (M.C.R.); (M.M.-K.); (Y.Z.)
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Margot Miranda-Katz
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (M.C.R.); (M.M.-K.); (Y.Z.)
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (M.C.R.); (M.M.-K.); (Y.Z.)
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Melissa B. Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.U.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.U.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (M.C.R.); (M.M.-K.); (Y.Z.)
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
20
|
Babaei A, Malekshahi SS, Pirbonyeh N, Sarvari J, Moattari A. Phylogenetic analysis and circulation pattern of human metapneumovirus strains in children with acute respiratory infection in Iran, 2014–2015. Future Virol 2020. [DOI: 10.2217/fvl-2020-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The aim of the present study was to investigate the prevalence and genetic variation of the human metapneumovirus (HMPV) G gene in children less than 8 years old with acute respiratory tract infections in Iran during 2014–2015. Materials & methods: To this end, 110 nasal swabs were tested for HMPV F gene. All positive samples were tested for the full length of HMPV G gene, then sequenced and analyzed for phylogenetic grouping. Results: Six (5.45%) out of 110 samples were positive for HMPV gene. Our HMPV sequences clustered into two main clusters: A2b (five isolates) and B1 (one isolate). The dN/dS ratio showed the presence of negative selective pressure. Conclusion: A2b was the predominant genotype during the study period in southwest of Iran.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Neda Pirbonyeh
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afagh Moattari
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Human Metapneumovirus Establishes Persistent Infection in Lung Microvascular Endothelial Cells and Primes a Th2-Skewed Immune Response. Microorganisms 2020; 8:microorganisms8060824. [PMID: 32486193 PMCID: PMC7357125 DOI: 10.3390/microorganisms8060824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
Human Metapneumovirus (HMPV) is a major cause of lower respiratory tract infections. HMPV infection has been hypothesized to alter dendritic cell (DC) immune response; however, many questions regarding HMPV pathogenesis within the infected lung remain unanswered. Here, we show that HMPV productively infects human lung microvascular endothelial cells (L-HMVECs). The release of infectious virus occurs for up to more than 30 days of culture without producing overt cytopathic effects and medium derived from persistently HMPV-infected L-HMVECs (secretome) induced monocyte-derived DCs to prime naïve CD4 T-cells toward a Th2 phenotype. Moreover, we demonstrated that infected secretomes trigger DCs to up-regulate OX40L expression and OX40L neutralization abolished the pro-Th2 effect that is induced by HMPV-secretome. We clarified secretome from HMPV by size exclusion and ultracentrifugation with the aim to characterize the role of viral particles in the observed pro-Th2 effect. In both cases, the percentage of IL-4-producing cells and expression of OX40L returned at basal levels. Finally, we showed that HMPV, per se, could reproduce the ability of secretome to prime pro-Th2 DCs. These results suggest that HMPV, persistently released by L-HMVECs, might take part in the development of a skewed, pro-Th2 lung microenvironment.
Collapse
|
22
|
Ballegeer M, Saelens X. Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:v12050542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
Affiliation(s)
- Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
23
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542&set/a 882111696+808152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
24
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020. [DOI: 10.3390/v12050542
expr 836379838 + 819716165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
25
|
Prevalence, clinical outcomes and rainfall association of acute respiratory infection by human metapneumovirus in children in Bogotá, Colombia. BMC Pediatr 2019; 19:345. [PMID: 31601181 PMCID: PMC6785857 DOI: 10.1186/s12887-019-1734-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/20/2019] [Indexed: 11/17/2022] Open
Abstract
Background Acute respiratory infections (ARIs) are one of the main causes of morbidity and mortality in children. Viruses are the main etiological agents, and their behavior tends to be seasonal and vary by geographical location. Human metapneumovirus (HMPV) has recently been described as a cause of severe acute respiratory infection and its prevalence and clinical behavior in children at moderate altitudes is unknown. Methods A cross-sectional study was carried out on patients seen at a university hospital in Bogotá, Colombia between October 2015 and December 2017 in a city at a moderate altitude above sea level. Children with acute respiratory infections who had had a multiplex RT-PCR assay were selected. The prevalence of HMPV infection, its clinical outcomes and its relationship to rainfall were evaluated. Results Out of a total of 14,760 discharged patients, multiplex RT-PCR was performed on 502 and a virus was detected in 420 children with acute respiratory infection (ARI). The study group had a median age of 21 months (IQR 7–60), with similar proportion of males and females (56.4 and 43.6% respectively) and 5.2% (CI 95 3.3–7.8%) prevalence of HMPV infection. The group with HMPV infection showed a greater frequency of viral coinfection (22.7% vs 14% P = 0.03) compared with ARI caused by other viruses. The rate of bacterial coinfection (P = 0.31), presence of comorbidities (p = 0.75), length of hospital stay (P = 0.42), need for mechanical ventilation (P = 0.75) and mortality (P = 0.22) were similar for HMPV and other viral infections. A moderate correlation was established between HMPV infection and rainfall peaks (Spearman’s Rho 0.44 p = 0.02). Conclusions Human metapneumovirus was the fifth most frequently isolated virus in children with ARI, had similar clinical behavior and severity to other viruses but a higher rate of viral coinfection. Its peaks seem to correlate to rainy seasons.
Collapse
|
26
|
Del Valle-Mendoza J, Orellana-Peralta F, Del Valle LJ, Verne E, Ugarte C, Weilg C, Silva-Caso W, Valverde-Ezeta J, Carrillo-Ng H, Peña-Tuesta I, Palomares-Reyes C, Cornejo-Tapia A, Aguilar-Luis MA. Detection of human Metapneumovirus infection in children under 18 years old hospitalized in Lima-Peru. PeerJ 2019; 7:e7266. [PMID: 31380147 PMCID: PMC6661132 DOI: 10.7717/peerj.7266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/06/2019] [Indexed: 12/26/2022] Open
Abstract
Background Human Metapneumovirus (hMPV) is a negative single-stranded RNA virus. Infection by hMPV mainly affects the pediatric population and can cause upper or lower respiratory tract pathologies which can develop life threating complications. This study was carried out between 2009 and 2010 in a high complexity national hospital in Lima, Peru. The time frame corresponds to the pandemic of influenza A H1N1. Methods A prospective study was performed between September 2009 and September 2010. Patients with a clinical diagnosis suggestive of an acute respiratory infection were included. RT-PCR was utilized to attain the amplification and identification of the hMPV. Results A total of 539 samples were analyzed from patients with a clinical context suggestive of an acute respiratory tract infection. Of these samples 73, (13.54%) were positive for hMPV. Out of the positive cases, 63% were under one year old, and increased to nearly 80% when considering children younger than two years old. Cough was the most frequent symptom presented by our population with a number of 62 cases (84.93%). Viral seasonality was also established, noting its predominance during the months of summer in the southern hemisphere. The infection by hMPV has an important prevalence in Peru. It mainly affects children under one year old and should be considered an important differential diagnosis in a patient with an acute respiratory infection.
Collapse
Affiliation(s)
- Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences., Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional (IIN), Lima, Peru
| | - Fiorella Orellana-Peralta
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences., Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Luis J Del Valle
- Barcelona Research Center for Multiscale Science and Engineering, Departament d'Enginyeria Química, EEBE, Universitat Politecnica de Catalunya (UPC), Barcelona Tech, Barcelona, Spain
| | - Eduardo Verne
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru.,Servicio de Pediatria, Hospital Nacional Cayetano Heredia, Lima, Peru
| | - Claudia Ugarte
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru.,Servicio de Pediatria, Hospital Nacional Cayetano Heredia, Lima, Peru
| | - Claudia Weilg
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences., Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences., Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional (IIN), Lima, Peru
| | - Jorge Valverde-Ezeta
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences., Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Hugo Carrillo-Ng
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional (IIN), Lima, Peru.,Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Isaac Peña-Tuesta
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences., Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Carlos Palomares-Reyes
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences., Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Angela Cornejo-Tapia
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences., Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences., Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional (IIN), Lima, Peru
| |
Collapse
|
27
|
Becker JC, Tollefson SJ, Weaver D, Williams JV. A medium-throughput screen for inhibitors of human metapneumovirus. Antivir Chem Chemother 2019; 27:2040206619830197. [PMID: 30759993 PMCID: PMC6376503 DOI: 10.1177/2040206619830197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Human metapneumovirus, a paramyxovirus discovered in 2001, is a major cause of lower respiratory infection in adults and children worldwide. There are no licensed vaccines or drugs for human metapneumovirus. We developed a fluorescent, cell-based medium-throughput screening assay for human metapneumovirus that captures inhibitors of all stages of the viral lifecycle except budding of progeny virus particles from the cell membrane. We optimized and validated the assay and performed a successful medium-throughput screening. A number of hits were identified, several of which were confirmed to inhibit viral replication in secondary assays. This assay offers potential to discover new antivirals for human metapneumovirus and related respiratory viruses. Compounds discovered using the medium-throughput screening may also provide useful probes of viral biology.
Collapse
Affiliation(s)
- Jennifer C Becker
- 1 Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sharon J Tollefson
- 2 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Weaver
- 3 Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John V Williams
- 2 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA.,4 Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Synthetic sulfonated derivatives of poly(allylamine hydrochloride) as inhibitors of human metapneumovirus. PLoS One 2019; 14:e0214646. [PMID: 30921418 PMCID: PMC6438514 DOI: 10.1371/journal.pone.0214646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/18/2019] [Indexed: 11/29/2022] Open
Abstract
Human metapneumovirus (hMPV) is a widely distributed pathogen responsible for acute upper and lower respiratory infections of varying severity. Previously, we reported that N-sulfonated derivatives of poly(allylamine hydrochloride) (NSPAHs) efficiently inhibit replication of the influenza virus in vitro and ex vivo. Here, we show a dose dependent inhibition of hMPV infection by NSPAHs in LLC-MK2 cells. The results showed strong antiviral properties of NSPAHs. While the activity of NSPAHs is comparable to those of carrageenans, they show better physicochemical properties and may be delivered at high concentrations. The functional assays showed that tested polymers block hMPV release from infected cells and, consequently, constrain virus spread. Moreover, further studies on viruses utilizing different egress mechanisms suggest that observed antiviral effect depend on selective inhibition of viruses budding from the cell surface.
Collapse
|
29
|
Uche IK, Guerrero-Plata A. Interferon-Mediated Response to Human Metapneumovirus Infection. Viruses 2018; 10:v10090505. [PMID: 30231515 PMCID: PMC6163993 DOI: 10.3390/v10090505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 12/13/2022] Open
Abstract
Human metapneumovirus (HMPV) is one of the leading causes of respiratory diseases in infants and children worldwide. Although this pathogen infects mainly young children, elderly and immunocompromised people can be also seriously affected. To date, there is no commercial vaccine available against it. Upon HMPV infection, the host innate arm of defense produces interferons (IFNs), which are critical for limiting HMPV replication. In this review, we offer an updated landscape of the HMPV mediated-IFN response in different models as well as some of the defense tactics employed by the virus to circumvent IFN response.
Collapse
Affiliation(s)
- Ifeanyi K Uche
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
- Center for Experimental Infectious Disease Research, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
30
|
Darniot M, Pitoiset C, Millière L, Aho-Glélé LS, Florentin E, Bour JB, Manoha C. Different meteorological parameters influence metapneumovirus and respiratory syncytial virus activity. J Clin Virol 2018; 104:77-82. [DOI: 10.1016/j.jcv.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 10/17/2022]
|
31
|
Schmidt ME, Varga SM. The CD8 T Cell Response to Respiratory Virus Infections. Front Immunol 2018; 9:678. [PMID: 29686673 PMCID: PMC5900024 DOI: 10.3389/fimmu.2018.00678] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Department of Pathology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
32
|
Lappan R, Imbrogno K, Sikazwe C, Anderson D, Mok D, Coates H, Vijayasekaran S, Bumbak P, Blyth CC, Jamieson SE, Peacock CS. A microbiome case-control study of recurrent acute otitis media identified potentially protective bacterial genera. BMC Microbiol 2018; 18:13. [PMID: 29458340 PMCID: PMC5819196 DOI: 10.1186/s12866-018-1154-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022] Open
Abstract
Background Recurrent acute otitis media (rAOM, recurrent ear infection) is a common childhood disease caused by bacteria termed otopathogens, for which current treatments have limited effectiveness. Generic probiotic therapies have shown promise, but seem to lack specificity. We hypothesised that healthy children with no history of AOM carry protective commensal bacteria that could be translated into a specific probiotic therapy to break the cycle of re-infection. We characterised the nasopharyngeal microbiome of these children (controls) in comparison to children with rAOM (cases) to identify potentially protective bacteria. As some children with rAOM do not appear to carry any of the known otopathogens, we also hypothesised that characterisation of the middle ear microbiome could identify novel otopathogens, which may also guide the development of more effective therapies. Results Middle ear fluids, middle ear rinses and ear canal swabs from the cases and nasopharyngeal swabs from both groups underwent 16S rRNA gene sequencing. The nasopharyngeal microbiomes of cases and controls were distinct. We observed a significantly higher abundance of Corynebacterium and Dolosigranulum in the nasopharynx of controls. Alloiococcus, Staphylococcus and Turicella were abundant in the middle ear and ear canal of cases, but were uncommon in the nasopharynx of both groups. Gemella and Neisseria were characteristic of the case nasopharynx, but were not prevalent in the middle ear. Conclusions Corynebacterium and Dolosigranulum are characteristic of a healthy nasopharyngeal microbiome. Alloiococcus, Staphylococcus and Turicella are possible novel otopathogens, though their rarity in the nasopharynx and prevalence in the ear canal means that their role as normal aural flora cannot be ruled out. Gemella and Neisseria are unlikely to be novel otopathogens as they do not appear to colonise the middle ear in children with rAOM. Electronic supplementary material The online version of this article (10.1186/s12866-018-1154-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachael Lappan
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia. .,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - Kara Imbrogno
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Chisha Sikazwe
- Department of Microbiology, PathWest, Perth, WA, Australia
| | - Denise Anderson
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Danny Mok
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Harvey Coates
- School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Shyan Vijayasekaran
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Princess Margaret Hospital for Children, Perth, WA, Australia
| | - Paul Bumbak
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Princess Margaret Hospital for Children, Perth, WA, Australia
| | - Christopher C Blyth
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,Department of Microbiology, PathWest, Perth, WA, Australia.,School of Medicine, The University of Western Australia, Perth, WA, Australia.,Princess Margaret Hospital for Children, Perth, WA, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Christopher S Peacock
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia. .,Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
33
|
Diab M, Vitenshtein A, Drori Y, Yamin R, Danziger O, Zamostiano R, Mandelboim M, Bacharach E, Mandelboim O. Suppression of human metapneumovirus (HMPV) infection by the innate sensing gene CEACAM1. Oncotarget 2018; 7:66468-66479. [PMID: 27634893 PMCID: PMC5341814 DOI: 10.18632/oncotarget.11979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
The innate sensing system is equipped with PRRs specialized in recognizing molecular structures (PAMPs) of various pathogens. This leads to the induction of anti-viral genes and inhibition of virus growth. Human Metapneumovirus (HMPV) is a major respiratory virus that causes an upper and lower respiratory tract infection in children. In this study we show that upon HMPV infection, the innate sensing system detects the viral RNA through the RIG-I sensor leading to induction of CEACAM1 expression. We further show that CEACAM1 is induced via binding of IRF3 to the CEACAM1 promoter. We demonstrate that induction of CEACAM1 suppresses the viral loads via inhibition of the translation machinery in the infected cells in an SHP2-dependent manner. In summary, we show here that HMPV-infected cells upregulates CEACAM1 to restrict HMPV infection.
Collapse
Affiliation(s)
- Mohammad Diab
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Alon Vitenshtein
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yaron Drori
- Central Virology Laboratory, Ministry of Health, Public Health Services, Chaim, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel.,Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Oded Danziger
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Zamostiano
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Public Health Services, Chaim, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel.,Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eran Bacharach
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
34
|
Abstract
Human metapneumovirus (HMPV) is a leading cause of acute respiratory infection, particularly in children, immunocompromised patients, and the elderly. HMPV, which is closely related to avian metapneumovirus subtype C, has circulated for at least 65 years, and nearly every child will be infected with HMPV by the age of 5. However, immunity is incomplete, and re-infections occur throughout adult life. Symptoms are similar to those of other respiratory viral infections, ranging from mild (cough, rhinorrhea, and fever) to more severe (bronchiolitis and pneumonia). The preferred method for diagnosis is reverse transcription-polymerase chain reaction as HMPV is difficult to culture. Although there have been many advances made in the past 16 years since its discovery, there are still no US Food and Drug Administration-approved antivirals or vaccines available to treat HMPV. Both small animal and non-human primate models have been established for the study of HMPV. This review will focus on the epidemiology, transmission, and clinical manifestations in humans as well as the animal models of HMPV pathogenesis and host immune response.
Collapse
Affiliation(s)
- Nazly Shafagati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Hilmes MA, Dunnavant FD, Singh SP, Ellis WD, Payne DC, Zhu Y, Griffin MR, Edwards KM, Williams JV. Chest radiographic features of human metapneumovirus infection in pediatric patients. Pediatr Radiol 2017; 47:1745-1750. [PMID: 28831577 PMCID: PMC5901753 DOI: 10.1007/s00247-017-3943-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/28/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Human metapneumovirus (HMPV) was identified in 2001 and is a common cause of acute respiratory illness in young children. The radiologic characteristics of laboratory-confirmed HMPV acute respiratory illness in young children have not been systematically assessed. OBJECTIVE We systematically evaluated the radiographic characteristics of acute respiratory illness associated with HMPV in a prospective cohort of pediatric patients. MATERIALS AND METHODS We included chest radiographs from children <5 years old with acute respiratory illness who were enrolled in the prospective New Vaccine Surveillance Network (NVSN) study from 2003 to 2009 and were diagnosed with HMPV by reverse transcription-polymerase chain reaction (RT-PCR). Of 215 HMPV-positive subjects enrolled at our tertiary care children's hospital, 68 had chest radiographs obtained by the treating clinician that were available for review. Two fellowship-trained pediatric radiologists, independently and then in consensus, retrospectively evaluated these chest radiographs for their radiographic features. RESULTS Parahilar opacities were the most commonly observed abnormality, occurring in 87% of children with HMPV. Hyperinflation also occurred frequently (69%). Atelectasis (40%) and consolidation (18%) appeared less frequently. Pleural effusion and pneumothorax were not seen on any radiographs. CONCLUSION The clinical presentations of HMPV include bronchiolitis, croup and pneumonia. Dominant chest radiographic abnormalities include parahilar opacities and hyperinflation, with occasional consolidation. Recognition of the imaging patterns seen with common viral illnesses like respiratory syncytial virus (RSV) and HMPV might facilitate diagnosis and limit unnecessary antibiotic treatment.
Collapse
Affiliation(s)
- Melissa A. Hilmes
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - F. Daniel Dunnavant
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sudha P. Singh
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wendy D. Ellis
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marie R. Griffin
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kathryn M. Edwards
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| |
Collapse
|
36
|
Abstract
Globally, as a leading agent of acute respiratory tract infections in children <5 years of age and the elderly, the human metapneumovirus (HMPV) has gained considerable attention. As inferred from studies comparing vaccinated and experimentally infected mice, the acquired immune response elicited by this pathogen fails to efficiently clear the virus from the airways, which leads to an exaggerated inflammatory response and lung damage. Furthermore, after disease resolution, there is a poor development of T and B cell immunological memory, which is believed to promote reinfections and viral spread in the community. In this article, we discuss the molecular mechanisms that shape the interactions of HMPV with host tissues that lead to pulmonary pathology and to the development of adaptive immunity that fails to protect against natural infections by this virus.
Collapse
|
37
|
Cheemarla NR, Baños-Lara MDR, Naidu S, Guerrero-Plata A. Neutrophils regulate the lung inflammatory response via γδ T cell infiltration in an experimental mouse model of human metapneumovirus infection. J Leukoc Biol 2017; 101:1383-1392. [PMID: 28336678 DOI: 10.1189/jlb.4a1216-519rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/28/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human circulation. They are the first immune cell population recruited to the sites of infection. However, the role of neutrophils to regulate host immune responses during respiratory viral infections is largely unknown. To elucidate the role of neutrophils in respiratory antiviral defense, we used an experimental mouse model of human metapneumovirus (HMPV) infection. HMPV, a member of the Paramyxoviridae family, is a leading respiratory pathogen causing severe symptoms, such as bronchiolitis and pneumonia, in young, elderly, and immunocompromised patients. We demonstrate that neutrophils are the predominant population of immune cells recruited into the lungs after HMPV infection. This led us to hypothesize that neutrophils represent a key player of the immune response during HMPV infection, thereby regulating HMPV-induced lung pathogenesis. Specific depletion of neutrophils in vivo using a mAb and simultaneous infection with HMPV exhibited higher levels of inflammatory cytokines, pulmonary inflammation, and severe clinical disease compared with HMPV-infected, competent mice. Interestingly, the lack of neutrophils altered γδ T cell accumulation in the lung. The absence of γδ T cells during HMPV infection led to reduced pulmonary inflammation. These novel findings demonstrate that neutrophils play a critical role in controlling HMPV-induced inflammatory responses by regulating γδ T cell infiltration to the site of infection.
Collapse
Affiliation(s)
- Nagarjuna R Cheemarla
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA; and
| | - Ma Del Rocío Baños-Lara
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA; and
| | - Shan Naidu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA; and
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA; and .,Center for Experimental Infectious Disease Research, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
38
|
Samuel S, Nanjappa S, Cooper CD, Greene JN. Human Metapneumovirus Infection in Immunocompromised Patients. Cancer Control 2017; 23:442-445. [PMID: 27842334 DOI: 10.1177/107327481602300416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human metapneumovirus (HMPV) is a pathogen associated with respiratory tract infection and is related to avian pneumovirus. Typically, children, the elderly, and those who are immunocompromised are the most susceptible to HMPV infection; however, the virus can infect persons of all ages. In otherwise healthy individuals, HMPV infection is generally self-limiting, but immunocompromised individuals can develop fatal complications. We present a case series of 3 severely immunocompromised patients who were infected with HMPV and describe their clinical course. All 3 patients had acute myeloid leukemia, histories of neutropenic fever, and prolonged hospitalization stays. This case series highlights the severe sequelae observed in individuals infected with HMPV, particularly among those who are immunocompromised.
Collapse
Affiliation(s)
- Sharmeen Samuel
- Department of Infectious Diseases, Moffitt Cancer Center, Tampa, FL, USA.
| | | | | | | |
Collapse
|
39
|
Chen Y, Deng X, Deng J, Zhou J, Ren Y, Liu S, Prusak DJ, Wood TG, Bao X. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion. Virology 2016; 499:361-368. [PMID: 27743962 PMCID: PMC5102771 DOI: 10.1016/j.virol.2016.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 01/12/2023]
Abstract
Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. This manuscript describes a molecular mechanism underlying the immune evasion of hMPV. Results create the design basis for safer and more effective hMPV vaccines/therapeutic molecules. We demonstrate the contribution of TRAFs in antiviral responses to hMPV infection.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoling Deng
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Junfang Deng
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Jiehua Zhou
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China
| | - Yuping Ren
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Shengxuan Liu
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Deborah J Prusak
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States; The Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, United States; The Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
40
|
Pellegrini-Belinchón J, Lorente-Toledano F, Galindo-Villardón P, González-Carvajal I, Martín-Martín J, Mallol J, García-Marcos L. Factors associated to recurrent wheezing in infants under one year of age in the province of Salamanca, Spain: Is intervention possible? A predictive model. Allergol Immunopathol (Madr) 2016; 44:393-9. [PMID: 26810119 DOI: 10.1016/j.aller.2015.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Wheezing is a very common problem in infants in the first months of life. The objective of this study is to identify risk factors that may be acted upon in order to modify the evolution of recurrent wheezing in the first months of life, and to develop a model based on certain factors associated to recurrent wheezing in nursing infants capable of predicting the probability of developing recurrent wheezing in the first year of life. METHODS The sample was drawn from a cross-sectional, multicentre, descriptive epidemiological study based on the general population. A total of 1164 children were studied, corresponding to a questionnaire response rate of 71%. The questionnaire of the Estudio Internacional de Sibilancias en Lactantes (EISL) was used. Multiple logistic regression analysis was used to estimate the probability of developing recurrent wheezing and to quantify the contribution of each individual variable in the presence of the rest. RESULTS Infants presenting eczema and attending nursery school, with a mother who has asthma, smoked during the third trimester of pregnancy, and did not consume a Mediterranean diet during pregnancy were found to have a probability of 79.7% of developing recurrent wheezing in the first year of life. In contrast, infants with none of these factors were seen to have a probability of only 4.1% of developing recurrent wheezing in the first year of life. These results in turn varied according to modifications in the risk or protective factors. CONCLUSIONS The mathematical model estimated the probability of developing recurrent wheezing in infants under one year of age in the province of Salamanca (Spain), according to the risk or protective factors associated to recurrent wheezing to which the infants are or have been exposed.
Collapse
|
41
|
Esposito S, Mastrolia MV. Metapneumovirus Infections and Respiratory Complications. Semin Respir Crit Care Med 2016; 37:512-21. [PMID: 27486733 PMCID: PMC7171707 DOI: 10.1055/s-0036-1584800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute respiratory tract infections (ARTIs) are the most common illnesses experienced by people of all ages worldwide. In 2001, a new respiratory pathogen called human metapneumovirus (hMPV) was identified in respiratory secretions. hMPV is an RNA virus of the Paramyxoviridae family, and it has been isolated on every continent and from individuals of all ages. hMPV causes 7 to 19% of all cases of ARTIs in both hospitalized and outpatient children, and the rate of detection in adults is approximately 3%. Symptoms of hMPV infection range from a mild cold to a severe disease requiring a ventilator and cardiovascular support. The main risk factors for severe disease upon hMPV infection are the presence of a high viral load, coinfection with other agents (especially human respiratory syncytial virus), being between 0 and 5 months old or older than 65 years, and immunodeficiency. Currently, available treatments for hMPV infections are only supportive, and antiviral drugs are employed in cases of severe disease as a last resort. Ribavirin and immunoglobulins have been used in some patients, but the real efficacy of these treatments is unclear. At present, the direction of research on therapy for hMPV infection is toward the development of new approaches, and a variety of vaccination strategies are being explored and tested in animal models. However, further studies are required to define the best treatment and prevention strategies.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Vincenza Mastrolia
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
42
|
Maitre NL, Williams JV. Human metapneumovirus in the preterm neonate: current perspectives. RESEARCH AND REPORTS IN NEONATOLOGY 2016; 6:41-49. [PMID: 27891060 PMCID: PMC5120728 DOI: 10.2147/rrn.s76270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Premature birth (<37 weeks gestation) occurs in ~11% of all births in the US. These infants are at risk of chronic lung disease and respiratory conditions, including bronchopulmonary dysplasia. Respiratory viruses are important causes of acute respiratory illness (ARI) in preterm infants, leading to rehospitalization, increased health care burden, and long-term morbidity. Human metapneumovirus (HMPV) is a paramyxovirus discovered in 2001 that is related to respiratory syncytial virus. Epidemiologic studies show that HMPV is a leading cause of ARI in children and adults worldwide. Prematurity is a major risk factor for severe HMPV disease, requiring hospitalization. Moreover, limited data suggest that HMPV infection during infancy is associated with asthma and recurrent wheezing, which are common long-term pulmonary complication of prematurity. HMPV causes nosocomial outbreaks of ARI in hospitals and long-term care facilities, although there are few studies of the prevalence of HMPV in neonatal intensive care unit populations. HMPV is a common and important virus in premature infants, and caregivers for preterm infants should consider this virus in patients with acute respiratory symptoms.
Collapse
Affiliation(s)
- Nathalie L Maitre
- Center for Perinatal Research, Department of Pediatrics, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis. J Virol 2016; 90:7323-7338. [PMID: 27252537 DOI: 10.1128/jvi.00755-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Human metapneumovirus (hMPV) is a major causative agent of upper- and lower-respiratory-tract infections in infants, the elderly, and immunocompromised individuals worldwide. Like all pneumoviruses, hMPV encodes the zinc binding protein M2-1, which plays important regulatory roles in RNA synthesis. The M2-1 protein is phosphorylated, but the specific role(s) of the phosphorylation in viral replication and pathogenesis remains unknown. In this study, we found that hMPV M2-1 is phosphorylated at amino acid residues S57 and S60. Subsequent mutagenesis found that phosphorylation is not essential for zinc binding activity and oligomerization, whereas inhibition of zinc binding activity abolished the phosphorylation and oligomerization of the M2-1 protein. Using a reverse genetics system, recombinant hMPVs (rhMPVs) lacking either one or both phosphorylation sites in the M2-1 protein were recovered. These recombinant viruses had a significant decrease in both genomic RNA replication and mRNA transcription. In addition, these recombinant viruses were highly attenuated in cell culture and cotton rats. Importantly, rhMPVs lacking phosphorylation in the M2-1 protein triggered high levels of neutralizing antibody and provided complete protection against challenge with wild-type hMPV. Collectively, these data demonstrated that phosphorylation of the M2-1 protein upregulates hMPV RNA synthesis, replication, and pathogenesis in vivo IMPORTANCE The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Currently, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that phosphorylation of M2-1 is essential for virus replication and pathogenesis in vivo Recombinant hMPVs lacking phosphorylation in M2-1 exhibited limited replication in the upper and lower respiratory tract and triggered strong protective immunity in cotton rats. This work highlights the important role of M2-1 phosphorylation in viral replication and that inhibition of M2-1 phosphorylation may serve as a novel approach to develop live attenuated vaccines as well as antiviral drugs for pneumoviruses.
Collapse
|
44
|
Scheuerman O, Barkai G, Mandelboim M, Mishali H, Chodick G, Levy I. Human metapneumovirus (hMPV) infection in immunocompromised children. J Clin Virol 2016; 83:12-6. [PMID: 27522636 DOI: 10.1016/j.jcv.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Human metapneumovirus (hMPV) is a major cause of upper and lower respiratory tract infection (URTI, LRTI) in children. The prognosis of hMPV is unclear in immunocompromised patients. OBJECTIVES To describe the characteristics of hMPV infection in immunocompromised pediatric patients and to review the literature. STUDY DESIGN This retrospective study included 39 immunocompromised children (age 0-18 years) with proven hMPV infection attending two tertiary pediatric medical centers in 2004-2014. Demographic, clinical, laboratory, and radiological data were collected from the medical files. RESULTS Median age was 6 years. Seven patients had primary immune deficiency and 32, secondary immune deficiency, including 9 patients who underwent hematopoietic stem cell transplantation (HSCT). Most cases (92%) occurred in January-May. Twenty patients (51%) had lower respiratory tract infection and 17 (44%), upper respiratory tract infection; 2 patients (5%) had fever only. Presenting symptoms were fever (70%), cough (54%), and rhinorrhea (35%). Severe lymphopenia (<1000lymphocytes/mL) was noted in 64% of patients and elevated liver enzyme levels in 49%. Seventeen patients had pneumonia: bilateral and alveolar in 13 patients, each. HSCT was not associated with more severe disease. Respiratory failure occurred in 6 patients, of whom 4 died (10% of cohort). All children who died had severe lymphopenia. On multivariate analysis, bacterial or fungal co-infection was the only major risk factor for death. Review of the literature showed variable clinical presentations and severity in pediatric patients with hMPV infection. CONCLUSIONS Infection with hMPV may be associated with relatively high morbidity and mortality in immunocompromised children. Death was associated with bacterial and fungal co-infection.
Collapse
Affiliation(s)
- Oded Scheuerman
- Pediatric Infectious Diseases Unit, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel; Department of Pediatrics B, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel.
| | - Galia Barkai
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Tel Hashomer, Ramat Gan 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel
| | - Michal Mandelboim
- Department of Virology, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Hagit Mishali
- National Center for Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Gabriel Chodick
- Department of Epidemiology & Preventive Medicine, Tel Aviv, Ramat Aviv 6997801, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel
| | - Itzhak Levy
- Department of Pediatrics B, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel
| |
Collapse
|
45
|
Owor BE, Masankwa GN, Mwango LC, Njeru RW, Agoti CN, Nokes DJ. Human metapneumovirus epidemiological and evolutionary patterns in Coastal Kenya, 2007-11. BMC Infect Dis 2016; 16:301. [PMID: 27316548 PMCID: PMC4912817 DOI: 10.1186/s12879-016-1605-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human metapneumovirus (HMPV) is an important global cause of severe acute respiratory infections in young children and the elderly. The epidemiology of HMPV in sub-Saharan Africa is poorly described and factors that allow its recurrent epidemics in communities not understood. METHODS We undertook paediatric inpatient surveillance for HMPV in Kilifi County Hospital (KCH) of Coastal Kenya between 2007 and 2011. Nasopharyngeal samples collected from children aged 1 day-59 months admitted with severe or very severe pneumonia, were tested for HMPV using real-time polymerase chain reaction (RT-PCR). Partial nucleotide sequences of the attachment (G) and fusion (F) surface proteins of positive samples were determined and phylogenetically analyzed. RESULTS HMPV was detected in 4.8 % (160/3320) of children [73.8 % (118/160) of these less than one year of age], ranging between 2.9 and 8.8 % each year over the 5 years of study. HMPV infections were seasonal in occurrence, with cases predominant in the months of November through April. These months frequently coincided with low rainfall, high temperature and low relative humidity in the location. Phylogenetic analysis of partial F and G sequences revealed three subgroups of HMPV, A2 (74 %, 91/123), B1 (3.2 %, 4/123) and B2 (22.8 %, 28/123) in circulation, with subgroup A2 predominant in majority of the epidemic seasons. Comparison of G sequences (local and global) provided a greater phylogenetic resolution over comparison of F sequences and indicated presence of probable multiple G antigenic variants within the subgroups due to differences in amino acid sequence, encoded protein length and glycosylation patterns. CONCLUSION The present study reveals HMPV is an important seasonal contributor to respiratory disease hospitalization in coastal Kenya, with an evolutionary pattern closely relating to that of respiratory syncytial virus.
Collapse
Affiliation(s)
- Betty E Owor
- Kenya Medical Research Institute (KEMRI) -Wellcome Trust Research Programme, Kilifi, KEMRI Centre for Geographic Medicine Research - Coast, Kilifi, Kenya.
| | - Geoffrey N Masankwa
- Kenya Medical Research Institute (KEMRI) -Wellcome Trust Research Programme, Kilifi, KEMRI Centre for Geographic Medicine Research - Coast, Kilifi, Kenya
| | - Lilian C Mwango
- Kenya Medical Research Institute (KEMRI) -Wellcome Trust Research Programme, Kilifi, KEMRI Centre for Geographic Medicine Research - Coast, Kilifi, Kenya
| | - Regina W Njeru
- Kenya Medical Research Institute (KEMRI) -Wellcome Trust Research Programme, Kilifi, KEMRI Centre for Geographic Medicine Research - Coast, Kilifi, Kenya
| | - Charles N Agoti
- Kenya Medical Research Institute (KEMRI) -Wellcome Trust Research Programme, Kilifi, KEMRI Centre for Geographic Medicine Research - Coast, Kilifi, Kenya.,Department of Biomedical Sciences, Pwani University, Kilifi, Kenya
| | - D James Nokes
- Kenya Medical Research Institute (KEMRI) -Wellcome Trust Research Programme, Kilifi, KEMRI Centre for Geographic Medicine Research - Coast, Kilifi, Kenya. .,School of Life Sciences and WIDER, University of Warwick, Coventry, UK.
| |
Collapse
|
46
|
Erickson JJ, Rogers MC, Tollefson SJ, Boyd KL, Williams JV. Multiple Inhibitory Pathways Contribute to Lung CD8+ T Cell Impairment and Protect against Immunopathology during Acute Viral Respiratory Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:233-43. [PMID: 27259857 DOI: 10.4049/jimmunol.1502115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
Abstract
Viruses are frequent causes of lower respiratory infection (LRI). Programmed cell death-1 (PD-1) signaling contributes to pulmonary CD8(+) T cell (TCD8) functional impairment during acute viral LRI, but the role of TCD8 impairment in viral clearance and immunopathology is unclear. We now find that human metapneumovirus infection induces virus-specific lung TCD8 that fail to produce effector cytokines or degranulate late postinfection, with minimally increased function even in the absence of PD-1 signaling. Impaired lung TCD8 upregulated multiple inhibitory receptors, including PD-1, lymphocyte activation gene 3 (LAG-3), T cell Ig mucin 3, and 2B4. Moreover, coexpression of these receptors continued to increase even after viral clearance, with most virus-specific lung TCD8 expressing three or more inhibitory receptors on day 14 postinfection. Viral infection also increased expression of inhibitory ligands by both airway epithelial cells and APCs, further establishing an inhibitory environment. In vitro Ab blockade revealed that multiple inhibitory receptors contribute to TCD8 impairment induced by either human metapneumovirus or influenza virus infection. In vivo blockade of T cell Ig mucin 3 signaling failed to enhance TCD8 function or reduce viral titers. However, blockade of LAG-3 in PD-1-deficient mice restored TCD8 effector functions but increased lung pathology, indicating that LAG-3 mediates lung TCD8 impairment in vivo and contributes to protection from immunopathology during viral clearance. These results demonstrate that an orchestrated network of pathways modifies lung TCD8 functionality during viral LRI, with PD-1 and LAG-3 serving prominent roles. Lung TCD8 impairment may prevent immunopathology but also contributes to recurrent lung infections.
Collapse
Affiliation(s)
- John J Erickson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Meredith C Rogers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224; and
| | - Sharon J Tollefson
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224; and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
47
|
Haynes AK, Fowlkes AL, Schneider E, Mutuc JD, Armstrong GL, Gerber SI. Human Metapneumovirus Circulation in the United States, 2008 to 2014. Pediatrics 2016; 137:peds.2015-2927. [PMID: 27244790 DOI: 10.1542/peds.2015-2927] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Human metapneumovirus (HMPV) infection causes respiratory illness, including bronchiolitis and pneumonia. However, national HMPV seasonality, as it compares with respiratory syncytial virus (RSV) and influenza seasonality patterns, has not been well described. METHODS Hospital and clinical laboratories reported weekly aggregates of specimens tested and positive detections for HMPV, RSV, and influenza to the National Respiratory and Enteric Virus Surveillance System from 2008 to 2014. A season was defined as consecutive weeks with ≥3% positivity for HMPV and ≥10% positivity for RSV and influenza during a surveillance year (June through July). For each virus, the season, onset, offset, duration, peak, and 6-season medians were calculated. RESULTS Among consistently reporting laboratories, 33 583 (3.6%) specimens were positive for HMPV, 281 581 (15.3%) for RSV, and 401 342 (18.2%) for influenza. Annually, 6 distinct HMPV seasons occurred from 2008 to 2014, with onsets ranging from November to February and offsets from April to July. Based on the 6-season medians, RSV, influenza, and HMPV onsets occurred sequentially and season durations were similar at 21 to 22 weeks. HMPV demonstrated a unique biennial pattern of early and late seasonal onsets. RSV seasons (onset, offset, peak) were most consistent and occurred before HMPV seasons. There were no consistent patterns between HMPV and influenza circulations. CONCLUSIONS HMPV circulation begins in winter and lasts until spring and demonstrates distinct seasons each year, with the onset beginning after that of RSV. HMPV, RSV, and influenza can circulate simultaneously during the respiratory season.
Collapse
Affiliation(s)
| | - Ashley L Fowlkes
- Influenza, National Center for Immunization and Respiratory Diseases, and
| | | | | | - Gregory L Armstrong
- Office of Advanced Molecular Detection, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
48
|
Hastings AK, Amato KR, Wen SC, Peterson LS, Williams JV. Human metapneumovirus small hydrophobic (SH) protein downregulates type I IFN pathway signaling by affecting STAT1 expression and phosphorylation. Virology 2016; 494:248-56. [PMID: 27131212 DOI: 10.1016/j.virol.2016.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
Abstract
Type I interferon (IFN) is a key mediator of antiviral immunity. Human metapneumovirus (HMPV) inhibits IFN signaling, but does not encode homologues of known IFN antagonists. We tested the hypothesis that a specific viral protein prevents type I IFN signaling by targeting signal transducer and activator of transcription-1 (STAT1). We found that human airway epithelial cells (capable of expressing IFNs) became impaired for STAT1 phosphorylation even without direct infection due to intrinsic negative feedback. HMPV-infected Vero cells (incapable of expressing IFN) displayed lower STAT1 expression and impaired STAT1 phosphorylation in response to type I IFN treatment compared to mock-infected cells. Transient overexpression of HMPV small hydrophobic (SH) protein significantly inhibited STAT1 phosphorylation and signaling, and recombinant virus lacking SH protein was unable to inhibit STAT1 phosphorylation. Our results indicate a role for the SH protein of HMPV in the downregulation of type I IFN signaling through the targeting of STAT1.
Collapse
Affiliation(s)
- Andrew K Hastings
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Katherine R Amato
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Sherry C Wen
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Laura S Peterson
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, United States.
| |
Collapse
|
49
|
Hastings AK, Gilchuk P, Joyce S, Williams JV. Novel HLA-A2-restricted human metapneumovirus epitopes reduce viral titers in mice and are recognized by human T cells. Vaccine 2016; 34:2663-70. [PMID: 27105560 DOI: 10.1016/j.vaccine.2016.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 11/25/2022]
Abstract
Human metapneumovirus (HMPV) is a major cause of morbidity and mortality from acute lower respiratory tract illness, with most individuals seropositive by age five. Despite the presence of neutralizing antibodies, secondary infections are common and can be severe in young, elderly, and immunocompromised persons. Preclinical vaccine studies for HMPV have suggested a need for a balanced antibody and T cell immune response to enhance protection and avoid lung immunopathology. We infected transgenic mice expressing human HLA-A*0201 with HMPV and used ELISPOT to screen overlapping and predicted epitope peptides. We identified six novel HLA-A2 restricted CD8(+) T cell (TCD8) epitopes, with M39-47 (M39) immunodominant. Tetramer staining detected M39-specific TCD8 in lungs and spleen of HMPV-immune mice. Immunization with adjuvant-formulated M39 peptide reduced lung virus titers upon challenge. Finally, we show that TCD8 from HLA-A*0201 positive humans recognize M39 by IFNγ ELISPOT and tetramer staining. These results will facilitate HMPV vaccine development and human studies.
Collapse
Affiliation(s)
- Andrew K Hastings
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Administration Tennessee Valley Healthcare System, Nashville, TN 37332, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, USA.
| |
Collapse
|
50
|
Abstract
Human metapneumovirus (HMPV), a paramyxovirus identified in 2001, is a leading cause of respiratory tract infections in both children and adults. Seroprevalence studies demonstrate that the primary infection occurs before the age of 5 years, and humans are reinfected throughout life. The four subgroups of HMPV occur with year-to-year variability, and infection with one subgroup confers some serologic cross-protection. Experimental vaccines elicit a humoral response in both animal and human models and have been used to identify antigenic determinants. The main target of protective antibodies is the fusion (F) protein, although many of the remaining eight proteins are immunogenic. Monoclonal antibodies (mAbs) targeting the F protein are both protective and therapeutic in animal models. Most recently, the identification of broadly neutralizing antibodies against HMPV and respiratory syncytial virus demonstrates that common epitopes are present between the two viruses. Broadly neutralizing mAbs have significant clinical implications for prophylaxis and treatment of high-risk hosts as well as vaccine development.
Collapse
|