1
|
Phillips AR. Variant calling in polyploids for population and quantitative genetics. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11607. [PMID: 39184203 PMCID: PMC11342233 DOI: 10.1002/aps3.11607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 08/27/2024]
Abstract
Advancements in genome assembly and sequencing technology have made whole genome sequence (WGS) data and reference genomes accessible to study polyploid species. Compared to popular reduced-representation sequencing approaches, the genome-wide coverage and greater marker density provided by WGS data can greatly improve our understanding of polyploid species and polyploid biology. However, biological features that make polyploid species interesting also pose challenges in read mapping, variant identification, and genotype estimation. Accounting for characteristics in variant calling like allelic dosage uncertainty, homology between subgenomes, and variance in chromosome inheritance mode can reduce errors. Here, I discuss the challenges of variant calling in polyploid WGS data and discuss where potential solutions can be integrated into a standard variant calling pipeline.
Collapse
Affiliation(s)
- Alyssa R. Phillips
- Department of Evolution and EcologyUniversity of California, DavisDavis95616CaliforniaUSA
| |
Collapse
|
2
|
Booker WW, Lemmon EM, Lemmon AR, Ptacek MB, Hassinger ATB, Schul J, Gerhardt HC. Biogeography and the evolution of acoustic communication in the polyploid North American grey treefrog complex. Mol Ecol 2023; 32:4863-4879. [PMID: 37401503 DOI: 10.1111/mec.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
After polyploid species are formed, interactions between diploid and polyploid lineages may generate additional diversity in novel cytotypes and phenotypes. In anurans, mate choice by acoustic communication is the primary method by which individuals identify their own species and assess suitable mates. As such, the evolution of acoustic signals is an important mechanism for contributing to reproductive isolation and diversification in this group. Here, we estimate the biogeographical history of the North American grey treefrog complex, consisting of the diploid Hyla chrysoscelis and the tetraploid Hyla versicolor, focusing specifically on the geographical origin of whole genome duplication and the expansion of lineages out of glacial refugia. We then test for lineage-specific differences in mating signals by applying comparative methods to a large acoustic data set collected over 52 years that includes >1500 individual frogs. Along with describing the overall biogeographical history and call diversity, we found evidence that the geographical origin of H. versicolor and the formation of the midwestern polyploid lineage are both associated with glacial limits, and that the southwestern polyploid lineage is associated with a shift in acoustic phenotype relative to the diploid lineage with which they share a mitochondrial lineage. In H. chrysoscelis, we see that acoustic signals are largely split by Eastern and Western lineages, but that northward expansion along either side of the Appalachian Mountains is associated with further acoustic diversification. Overall, results of this study provide substantial clarity on the evolution of grey treefrogs as it relates to their biogeography and acoustic communication.
Collapse
Affiliation(s)
- William W Booker
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emily Moriarty Lemmon
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, Florida, USA
| | - Margaret B Ptacek
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Alyssa T B Hassinger
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, USA
| | - Johannes Schul
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - H Carl Gerhardt
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Liu SH, Hung KH, Hsu TW, Hoch PC, Peng CI, Chiang TY. New insights into polyploid evolution and dynamic nature of Ludwigia section Isnardia (Onagraceae). BOTANICAL STUDIES 2023; 64:14. [PMID: 37269434 DOI: 10.1186/s40529-023-00387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND While polyploids are common in plants, the evolutionary history and natural dynamics of most polyploid groups are still unclear. Owing to plentiful earlier systematic studies, Ludwigia sect. Isnardia (comprising 22 wetland taxa) is an ideal allopolyploid complex to investigate polyploid evolution and natural dynamics within and among taxa. With a considerable sampling, we concentrated on revisiting earlier phylogenies of Isnardia, reevaluating the earlier estimated age of the most recent common ancestor (TMRCA), exploring the correlation between infraspecific genetic diversity and ploidy levels, and inspecting interspecific gene flows among taxa. RESULTS Phylogenetic trees and network concurred with earlier phylogenies and hypothesized genomes by incorporating 192 atpB-rbcL and ITS sequences representing 91% of Isnardia taxa. Moreover, we detected three multi-origin taxa. Our findings on L. repens and L. sphaerocarpa were consistent with earlier studies; L. arcuata was reported as a multi-origin taxon here, and an additional evolutionary scenario of L. sphaerocarpa was uncovered, both for the first time. Furthermore, estimated Isnardia TMRCA ages based on our data (5.9 or 8.9 million years ago) are in accordance with earlier estimates, although younger than fossil dates (Middle Miocene). Surprisingly, infraspecific genetic variations of Isnardia taxa did not increase with ploidy levels as anticipated from many other polyploid groups. In addition, the exuberant, low, and asymmetrical gene flows among Isnardia taxa indicated that the reproductive barriers may be weakened owing to allopolyploidization, which has rarely been reported. CONCLUSIONS The present research gives new perceptions of the reticulate evolution and dynamic nature of Isnardia and points to gaps in current knowledge about allopolyploid evolution.
Collapse
Affiliation(s)
- Shih-Hui Liu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Tsai-Wen Hsu
- Endemic Species Research Institute, Nantou, 552, Taiwan
| | - Peter C Hoch
- Missouri Botanical Garden, St. Louis, MO, 63166, USA
| | - Ching-I Peng
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
4
|
Female preferences for the spectral content of advertisement calls in Cope's gray treefrog (Hyla chrysoscelis). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:31-45. [PMID: 36305902 DOI: 10.1007/s00359-022-01575-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
Amphibians have inner ears with two sensory papillae tuned to different frequency ranges of airborne sounds. In frogs, male advertisement calls possess distinct spectral components that match the tuning of one or both sensory papillae. Female preferences for the spectral content of advertisement calls can depend on signal amplitude and can vary among closely related lineages. In this study of Cope's gray tree frog (Hyla chrysoscelis), we investigated the amplitude dependence of female preferences for the spectral content of male advertisement calls, which have a "bimodal" spectrum with separate low-frequency (1.25 kHz) and high-frequency (2.5 kHz) components. In two-alternative choice tests, females generally preferred synthetic calls with bimodal spectra over "unimodal" calls having only one of the two spectral components. They also preferred unimodal calls with a high-frequency component over one with the low-frequency component. With few exceptions, preferences were largely independent of amplitude across both a 30 dB range of overall signal amplitude and an 11 dB range in the relative amplitudes of the two spectral components. We discuss these results in the context of evolutionary lability in female preferences for the spectral content of advertisement calls in North American tree frogs in the genus Hyla.
Collapse
|
5
|
Abstract
AbstractClimate change is altering species' habitats, phenology, and behavior. Although sexual behaviors impact population persistence and fitness, climate change's effects on sexual signals are understudied. Climate change can directly alter temperature-dependent sexual signals, cause changes in body size or condition that affect signal production, or alter the selective landscape of sexual signals. We tested whether temperature-dependent mating calls of Mexican spadefoot toads (Spea multiplicata) had changed in concert with climate in the southwestern United States across 22 years. We document increasing air temperatures, decreasing rainfall, and changing seasonal patterns of temperature and rainfall in the spadefoots' habitat. Despite increasing air temperatures, spadefoots' ephemeral breeding ponds have been getting colder at most elevations, and male calls have been slowing as a result. However, temperature-standardized call characters have become faster, and male condition has increased, possibly due to changes in the selective environment. Thus, climate change might generate rapid, complex changes in sexual signals with important evolutionary consequences.
Collapse
|
6
|
Booker WW, Gerhardt HC, Lemmon AR, Ptacek MB, Hassinger ATB, Schul J, Lemmon EM. The Complex History of Genome Duplication and Hybridization in North American Gray Treefrogs. Mol Biol Evol 2022; 39:msab316. [PMID: 34791374 PMCID: PMC8826561 DOI: 10.1093/molbev/msab316] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Polyploid speciation has played an important role in evolutionary history across the tree of life, yet there remain large gaps in our understanding of how polyploid species form and persist. Although systematic studies have been conducted in numerous polyploid complexes, recent advances in sequencing technology have demonstrated that conclusions from data-limited studies may be spurious and misleading. The North American gray treefrog complex, consisting of the diploid Hyla chrysoscelis and the tetraploid H. versicolor, has long been used as a model system in a variety of biological fields, yet all taxonomic studies to date were conducted with only a few loci from nuclear and mitochondrial genomes. Here, we utilized anchored hybrid enrichment and high-throughput sequencing to capture hundreds of loci along with whole mitochondrial genomes to investigate the evolutionary history of this complex. We used several phylogenetic and population genetic methods, including coalescent simulations and testing of polyploid speciation models with approximate Bayesian computation, to determine that H. versicolor was most likely formed via autopolyploidization from a now extinct lineage of H. chrysoscelis. We also uncovered evidence of significant hybridization between diploids and tetraploids where they co-occur, and show that historical hybridization between these groups led to the re-formation of distinct polyploid lineages following the initial whole-genome duplication event. Our study indicates that a wide variety of methods and explicit model testing of polyploid histories can greatly facilitate efforts to uncover the evolutionary history of polyploid complexes.
Collapse
Affiliation(s)
- William W Booker
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - H Carl Gerhardt
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | - Margaret B Ptacek
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alyssa T B Hassinger
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Johannes Schul
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
7
|
Yang L, Naylor GJP, Mayden RL. Deciphering reticulate evolution of the largest group of polyploid vertebrates, the subfamily cyprininae (Teleostei: Cypriniformes). Mol Phylogenet Evol 2021; 166:107323. [PMID: 34634450 DOI: 10.1016/j.ympev.2021.107323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 02/04/2023]
Abstract
Despite the rarity of polyploidy in animals, some groups with polyploid species exhibit complicated and interesting patterns of reticulate evolution. Here we focus on fishes in the subfamily Cyprininae, the largest polyploid group of vertebrates. The large number of polyploid taxa poses significant challenges for phylogenetic and evolutionary studies on this subfamily. In this study, we cloned and sequenced three single-copy nuclear loci to investigate the evolution of polyploidy in the Cyprininae. Topologies of nuclear gene trees were compared with a newly reconstructed mitochondrial tree. The data provided herein corroborate the hybrid origins of the tribes Torini, Cyprinini, Spinibarbini, Barbini, and also Probarbini. Based on results from this study and previous studies, we hypothesize that at least 13 independent polyploidization events have occurred during the evolution of the Cyprininae. We offer hypotheses on the origin of each polyploid group and show that a diploid group or the diploid ancestor of a polyploid group might have served as progenitor of one or two other polyploid groups. The evolutionary history of Cyprinine (since its first divergence) can be divided into three stages: the "Diploid stage" (69.2-43.4 Ma or million years ago), the "Tetraploidization stage" (43.4-18.9 Ma), and the "Hexaploidization stage" (18.9 Ma to present). The second stage is when all tetraploidization events happened, while the last stage is when all hexaploidization events and most genus- or species-specific polyploidization events occurred. The post-polyploidization dynamics of polyploid groups are complicated and warrant more genomic level studies. We showed that the subfamily Cyprininae may represent a more complicated polyploid system than most, if not all, other vertebrates and some plants, if one or more of the following factors are considered: number of polyploid species, number of different ploidy levels, and number and type of independent polyploidization events.
Collapse
Affiliation(s)
- Lei Yang
- Florida Museum of Natural History, 1659 Museum Rd. University of Florida, Gainesville, FL 32611, USA.
| | - Gavin J P Naylor
- Florida Museum of Natural History, 1659 Museum Rd. University of Florida, Gainesville, FL 32611, USA
| | - Richard L Mayden
- Biology Department, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA
| |
Collapse
|
8
|
Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat Commun 2021; 12:4489. [PMID: 34301952 PMCID: PMC8302630 DOI: 10.1038/s41467-021-24573-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Ancient polyploidization events have had a lasting impact on vertebrate genome structure, organization and function. Some key questions regarding the number of ancient polyploidization events and their timing in relation to the cyclostome-gnathostome divergence have remained contentious. Here we generate de novo long-read-based chromosome-scale genome assemblies for the Japanese lamprey and elephant shark. Using these and other representative genomes and developing algorithms for the probabilistic macrosynteny model, we reconstruct high-resolution proto-vertebrate, proto-cyclostome and proto-gnathostome genomes. Our reconstructions resolve key questions regarding the early evolutionary history of vertebrates. First, cyclostomes diverged from the lineage leading to gnathostomes after a shared tetraploidization (1R) but before a gnathostome-specific tetraploidization (2R). Second, the cyclostome lineage experienced an additional hexaploidization. Third, 2R in the gnathostome lineage was an allotetraploidization event, and biased gene loss from one of the subgenomes shaped the gnathostome genome by giving rise to remarkably conserved microchromosomes. Thus, our reconstructions reveal the major evolutionary events and offer new insights into the origin and evolution of vertebrate genomes.
Collapse
|
9
|
Bogart JP, Burgess P, Fu J. Revisiting the evolution of the North American tetraploid treefrog ( Hyla versicolor). Genome 2020; 63:547-560. [PMID: 32791012 DOI: 10.1139/gen-2020-0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyla chrysoscelis and H. versicolor are common treefrogs in eastern North America and are a cryptic diploid-tetraploid species pair. They are morphologically identical but H. versicolor is a tetraploid. They can be identified acoustically by the male's advertisement mating call, which has a pulse repetition rate that has twice as many pulses per second in the diploid species, H. chrysoscelis. We used isozymes, microsatellite DNA alleles, and mitochondrial cytochrome b sequences to test the hypothesis that gene exchange occurs between the diploid and tetraploid species in sympatric populations. Each method provided results that are best explained by occasional hybridization of female H. versicolor and male H. chrysoscelis. We propose that H. versicolor first arose from an autotriploid H. chrysoscelis female that produced unreduced triploid eggs. After H. versicolor became established, genes could be passed from H. chrysoscelis to H. versicolor in sympatric populations when these species hybridize. Their F1 female progeny produce unreduced triploid eggs that are fertilized by haploid H. chrysoscelis sperm to reconstitute H. versicolor. Genes can be passed from diploid H. chrysoscelis to tetraploid H. versicolor in sympatric populations.
Collapse
Affiliation(s)
- James P Bogart
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Patrick Burgess
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
Novikova PY, Brennan IG, Booker W, Mahony M, Doughty P, Lemmon AR, Moriarty Lemmon E, Roberts JD, Yant L, Van de Peer Y, Keogh JS, Donnellan SC. Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus. PLoS Genet 2020; 16:e1008769. [PMID: 32392206 PMCID: PMC7259803 DOI: 10.1371/journal.pgen.1008769] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/29/2020] [Accepted: 04/08/2020] [Indexed: 01/13/2023] Open
Abstract
Polyploidy has played an important role in evolution across the tree of life but it is still unclear how polyploid lineages may persist after their initial formation. While both common and well-studied in plants, polyploidy is rare in animals and generally less understood. The Australian burrowing frog genus Neobatrachus is comprised of six diploid and three polyploid species and offers a powerful animal polyploid model system. We generated exome-capture sequence data from 87 individuals representing all nine species of Neobatrachus to investigate species-level relationships, the origin and inheritance mode of polyploid species, and the population genomic effects of polyploidy on genus-wide demography. We describe rapid speciation of diploid Neobatrachus species and show that the three independently originated polyploid species have tetrasomic or mixed inheritance. We document higher genetic diversity in tetraploids, resulting from widespread gene flow between the tetraploids, asymmetric inter-ploidy gene flow directed from sympatric diploids to tetraploids, and isolation of diploid species from each other. We also constructed models of ecologically suitable areas for each species to investigate the impact of climate on differing ploidy levels. These models suggest substantial change in suitable areas compared to past climate, which correspond to population genomic estimates of demographic histories. We propose that Neobatrachus diploids may be suffering the early genomic impacts of climate-induced habitat loss, while tetraploids appear to be avoiding this fate, possibly due to widespread gene flow. Finally, we demonstrate that Neobatrachus is an attractive model to study the effects of ploidy on the evolution of adaptation in animals.
Collapse
Affiliation(s)
- Polina Yu. Novikova
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Ian G. Brennan
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - William Booker
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Michael Mahony
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Paul Doughty
- Western Australian Museum, Welshpool, Perth, Australia
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, Florida, United States of America
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - J. Dale Roberts
- School of Biological Sciences, and, Centre for Evolutionary Biology, University of Western Australia, Albany, Western Australia, Australia
| | - Levi Yant
- School of Life Sciences and Future Food Beacon, University of Nottingham, Nottingham, United Kingdom
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - J. Scott Keogh
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Stephen C. Donnellan
- South Australian Museum, North Terrace, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, Australia
| |
Collapse
|
11
|
Fields SE. Amphibians of the Central and Southwestern Piedmont Province of South Carolina. SOUTHEAST NAT 2019. [DOI: 10.1656/058.018.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Steven E. Fields
- Culture and Heritage Museums, Museum of York County, 4621 Mount Gallant Road, Rock Hill, SC 29732, and Department of Biology, Winthrop University, Rock Hill, SC 29733;
| |
Collapse
|
12
|
Zhong J, Yi S, Ma L, Wang W. Evolution and phylogeography analysis of diploid and polyploid Misgurnus anguillicaudatus populations across China. Proc Biol Sci 2019; 286:20190076. [PMID: 31014220 PMCID: PMC6501937 DOI: 10.1098/rspb.2019.0076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
The origin and evolution of polyploid organisms have been extensively studied in plants, but this topic remains only partially understood in vertebrates, where polyploidy is relatively rare. In this study, we used Misgurnus anguillicaudatus, a fish that comprises five ploidy levels in nature, as a model animal to improve our understanding of biogeographic history and evolution of polyploid vertebrates. After collecting samples from different geographical populations in China, their ploidy levels were determined using flow cytometry. Two mitochondrial markers ( cytochrome b and control region) were then used for phylogeographic analyses to unravel the possible origins of diploids and tetraploids in China. The results showed that diploids have wider geographical distribution than tetraploids and triploids. There was no clear allopatric geographical range or boundary to divide diploid and polyploid populations. Rather, the analysis of mitochondrial DNA sequences indicated that tetraploids were autopolyploids, with lower genetic diversity than diploids. This suggests that tetraploids originated from sympatric diploids via multiple independent polyploidization events. Genetic structure patterns were similar between diploids and tetraploids, whereas complex genetic differentiation was found among different regions. The potential origin of M. anguillicaudatus was deduced to be in the Pearl River basin, which exhibited the highest nucleotide diversity and genetic differentiation. These findings provide insights into the evolution of polyploidy in vertebrates.
Collapse
Affiliation(s)
| | | | | | - Weimin Wang
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
13
|
Morales-Briones DF, Tank DC. Extensive allopolyploidy in the neotropical genus Lachemilla (Rosaceae) revealed by PCR-based target enrichment of the nuclear ribosomal DNA cistron and plastid phylogenomics. AMERICAN JOURNAL OF BOTANY 2019; 106:415-437. [PMID: 30882906 DOI: 10.1002/ajb2.1253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Polyploidy has been long recognized as an important force in plant evolution. Previous studies had suggested widespread occurrence of polyploidy and the allopolyploid origin of several species in the diverse neotropical genus Lachemilla (Rosaceae). Nonetheless, this evidence has relied mostly on patterns of cytonuclear discordance, and direct evidence from nuclear allelic markers is still needed. METHODS Here we used PCR target enrichment in combination with high throughput sequencing to obtain multiple copies of the nuclear ribosomal (nr) DNA cistron and 45 regions of the plastid genome (cpDNA) from 219 accessions representing 48 species of Lachemilla and to explore the allopolyploid origin of species in this group. KEY RESULTS We were able to identify multiple nrDNA ribotypes and establish clear evidence of allopolyploidy in 33 species of Lachemilla, showing that this condition is common and widespread in the genus. Additionally, we found evidence for three autopolyploid species. We also established multiple, independent origins of several allopolyploid species. Finally, based solely on the cpDNA phylogeny, we identified that the monotypic genus Farinopsis is the sister group of Lachemilla and allied genera within subtribe Fragariinae. CONCLUSIONS Our study demonstrates the utility of the nuclear ribosomal DNA cistron to detect allopolyploidy when concerted evolution of this region is not complete. Additionally, with a robust chloroplast phylogeny in place, the direction of hybridization events can be established, and multiple, independent origins of allopolyploid species can be identified.
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, ID, 83844-1133, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, ID, 83844-1133, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
| |
Collapse
|
14
|
|
15
|
Morgado-Santos M, Magalhães MF, Vicente L, Collares-Pereira MJ. Mate choice driven by genome in an allopolyploid fish complex. Behav Ecol 2018. [DOI: 10.1093/beheco/ary117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- M Morgado-Santos
- Centro de Ecologia, Evolução e Alterações Climáticas (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - M F Magalhães
- Centro de Ecologia, Evolução e Alterações Climáticas (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - L Vicente
- Centro de Filosofia das Ciências da Universidade de Lisboa (CFCUL), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - M J Collares-Pereira
- Centro de Ecologia, Evolução e Alterações Climáticas (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Betto-Colliard C, Hofmann S, Sermier R, Perrin N, Stöck M. Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads. Proc Biol Sci 2018; 285:rspb.2017.2667. [PMID: 29436499 PMCID: PMC5829204 DOI: 10.1098/rspb.2017.2667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 01/19/2023] Open
Abstract
The evolutionary causes and consequences of allopolyploidization, an exceptional pathway to instant hybrid speciation, are poorly investigated in animals. In particular, when and why hybrid polyploids versus diploids are produced, and constraints on sources of paternal and maternal ancestors, remain underexplored. Using the Palearctic green toad radiation (including bisexually reproducing species of three ploidy levels) as model, we generate a range-wide multi-locus phylogeny of 15 taxa and present four new insights: (i) at least five (up to seven) distinct allotriploid and allotetraploid taxa have evolved in the Pleistocene; (ii) all maternal and paternal ancestors of hybrid polyploids stem from two deeply diverged nuclear clades (6 Mya, 3.1-9.6 Mya), with distinctly greater divergence than the parental species of diploid hybrids found at secondary contact zones; (iii) allotriploid taxa possess two conspecific genomes and a deeply diverged allospecific one, suggesting that genomic imbalance and divergence are causal for their partly clonal reproductive mode; (iv) maternal versus paternal genome contributions exhibit asymmetry, with the maternal nuclear (and mitochondrial) genome of polyploids always coming from the same clade, and the paternal genome from the other. We compare our findings with similar patterns in diploid/polyploid vertebrates, and suggest deep ancestral divergence as a precondition for successful allopolyploidization.
Collapse
Affiliation(s)
- Caroline Betto-Colliard
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Sylvia Hofmann
- Department of Conservation Biology, UFZ Helmholtz-Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| |
Collapse
|
17
|
Are ploidy and age size-related? A comparative study on tetraploid Pleurodema kriegi and octoploid P. cordobae (Anura: Leptodactylidae) from Central Argentina. ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Edwards DD, Steele A, Gordon NM. A Comparison of Helminth Faunas of Cope's Gray ( Hyla chrysoscelis ) and Green ( Hyla cinerea ) Treefrogs in Areas of Recent Niche Overlap. J Parasitol 2017; 103:170-175. [PMID: 28067112 DOI: 10.1645/15-840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study compares the helminth faunas between Cope's gray treefrogs ( Hyla chrysoscelis ) and green treefrogs ( Hyla cinerea ), in areas where they have recently overlapped due to range expansion by H. cinerea , to determine whether or not 2 species of frogs with a high degree of similarity in many of their life history traits also exhibit similarities in the composition of their helminth assemblages. Results of this study did not find significant differences in helminth species diversity when sympatric and allopatric populations of the same species of frog were compared. There was, however, a significant difference in helminth diversity among sympatric populations of H. chrysoscelis and H. cinerea , and this difference was in large part attributable to the significantly higher abundance of the gastrointestinal nematode Cosmocercoides variabilis among H. chrysoscelis . Additional studies will be required to determine whether the observed patterns are due to differences in arrival time, perch locations within the chorus, or parasite-mediated competition.
Collapse
Affiliation(s)
- Dale D Edwards
- Department of Biology, University of Evansville, Evansville, Indiana 47722
| | - Anne Steele
- Department of Biology, University of Evansville, Evansville, Indiana 47722
| | - Noah M Gordon
- Department of Biology, University of Evansville, Evansville, Indiana 47722
| |
Collapse
|
19
|
Hoffmann A, Plötner J, Pruvost NBM, Christiansen DG, Röthlisberger S, Choleva L, Mikulíček P, Cogălniceanu D, Sas-Kovács I, Shabanov D, Morozov-Leonov S, Reyer HU. Genetic diversity and distribution patterns of diploid and polyploid hybrid water frog populations (Pelophylax esculentus complex) across Europe. Mol Ecol 2015; 24:4371-91. [PMID: 26308154 DOI: 10.1111/mec.13325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 11/29/2022]
Abstract
Polyploidization is a rare yet sometimes successful way for animals to rapidly create geno- and phenotypes that may colonize new habitats and quickly adapt to environmental changes. In this study, we use water frogs of the Pelophylax esculentus complex, comprising two species (Pelophylax lessonae, genotype LL; Pelophylax ridibundus, RR) and various diploid (LR) and triploid (LLR, LRR) hybrid forms, summarized as P. esculentus, as a model for studying recent hybridization and polyploidization in the context of speciation. Specifically, we compared the geographic distribution and genetic diversity of diploid and triploid hybrids across Europe to understand their origin, maintenance and potential role in hybrid speciation. We found that different hybrid and parental genotypes are not evenly distributed across Europe. Rather, their genetic diversity is structured by latitude and longitude and the presence/absence of parental species but not of triploids. Highest genetic diversity was observed in central and eastern Europe, the lowest in the northwestern parts of Europe. This gradient can be explained by the decrease in genetic diversity during postglacial expansion from southeastern glacial refuge areas. Genealogical relationships calculated on the basis of microsatellite data clearly indicate that hybrids are of multiple origin and include a huge variety of parental genomes. Water frogs in mixed-ploidy populations without any parental species (i.e. all-hybrid populations) can be viewed as evolutionary units that may be on their way towards hybrid speciation. Maintenance of such all-hybrid populations requires a continuous exchange of genomes between diploids and triploids, but scenarios for alternative evolutionary trajectories are discussed.
Collapse
Affiliation(s)
- Alexandra Hoffmann
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Jörg Plötner
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, 10115, Germany
| | - Nicolas B M Pruvost
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Ditte G Christiansen
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Sandra Röthlisberger
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Lukáš Choleva
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Rumburská 89, Liběchov, 277 21, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Peter Mikulíček
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B-1, Bratislava, SK-84215, Slovak Republic
| | - Dan Cogălniceanu
- Faculty of Natural Sciences and Agricultural Sciences, University Ovidius Constanţa, Al. Universităţii 1, corp B, Constanţa, Romania
| | - István Sas-Kovács
- Department of Biology, Faculty of Sciences, University of Oradea, Universitatii str. 1, Oradea, 410087, Romania
| | - Dmitry Shabanov
- Karazin Kharkiv National University, Svobody sq 4, Kharkiv, 62077, Ukraine
| | - Svyatoslav Morozov-Leonov
- Department of Evolutionary Genetic Basics of Systematics, Schmalhausen Institute of Zoology, B. Khmelnitskogo st., 15 Kyiv-30, Kyiv, MSP UA-01601, Ukraine
| | - Heinz-Ulrich Reyer
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| |
Collapse
|
20
|
Hanson JL, Rose GJ, Leary CJ, Graham JA, Alluri RK, Vasquez-Opazo GA. Species specificity of temporal processing in the auditory midbrain of gray treefrogs: long-interval neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 202:67-79. [PMID: 26614093 DOI: 10.1007/s00359-015-1054-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/01/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
Abstract
In recently diverged gray treefrogs (Hyla chrysoscelis and H. versicolor), advertisement calls that differ primarily in pulse shape and pulse rate act as an important premating isolation mechanism. Temporally selective neurons in the anuran inferior colliculus may contribute to selective behavioral responses to these calls. Here we present in vivo extracellular and whole-cell recordings from long-interval-selective neurons (LINs) made during presentation of pulses that varied in shape and rate. Whole-cell recordings revealed that interplay between excitation and inhibition shapes long-interval selectivity. LINs in H. versicolor showed greater selectivity for slow-rise pulses, consistent with the slow-rise pulse characteristics of their calls. The steepness of pulse-rate tuning functions, but not the distributions of best pulse rates, differed between the species in a manner that depended on whether pulses had slow or fast-rise shape. When tested with stimuli representing the temporal structure of the advertisement calls of H. chrysoscelis or H. versicolor, approximately 27 % of LINs in H. versicolor responded exclusively to the latter stimulus type. The LINs of H. chrysoscelis were less selective. Encounter calls, which are produced at similar pulse rates in both species (≈5 pulses/s), are likely to be effective stimuli for the LINs of both species.
Collapse
|
21
|
Ward JL, Love EK, Baugh AT, Gordon NM, Tanner JC, Bee MA. Progesterone and prostaglandin F2α induce species-typical female preferences for male sexual displays in Cope's gray treefrog (Hyla chrysoscelis). Physiol Behav 2015; 152:280-7. [PMID: 26454212 DOI: 10.1016/j.physbeh.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/28/2023]
Abstract
Endocrine systems play critical roles in facilitating sexual behavior in seasonally breeding vertebrates. Much of the research exploring this topic has focused on the endocrine correlates of signaling behavior in males and sexual proceptivity in females. What is less understood is how hormones promote the expression of the often complex and highly selective set of stimulus-response behaviors that are observed in naturally breeding animals. In female frogs, phonotaxis is a robust and sensitive bioassay of mate choice and is exhibited by gravid females during the breeding season. In stark contrast, females exhibit low phonotactic responsiveness outside the breeding season, but the administration of hormones can induce sexual proceptivity. Here we test the hypothesis that manipulation of a minimal set of reproductive hormones-progesterone and prostaglandin F2α-are capable of evoking not only proceptive behavior in non-breeding females, but also the patterns of intraspecific selectivity for male sexual displays observed in gravid females tested during the breeding season. Specifically, we investigated whether preferences for faster call rates, longer call durations, and higher call efforts were similar between breeding and hormone-treated females of Cope's gray treefrog (Hyla chrysoscelis). Hormone injections induced patterns of selective phonotaxis in non-breeding females that were remarkably similar to those observed in breeding females. These results suggest that there may be an important contribution of hormonal pleiotropy in regulating this complex, acoustically-guided sexual behavior. Our findings also support the idea that hormonal induction could be used to evaluate hypotheses about selective mate choice, and its underlying mechanisms, using non-breeding females.
Collapse
Affiliation(s)
- Jessica L Ward
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Elliot K Love
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | | | - Noah M Gordon
- Department of Biology, University of Evansville, Evansville, IN, USA
| | - Jessie C Tanner
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
22
|
Abstract
This review summarizes the current status of the known extant genuine polyploid anuran and urodelan species, as well as spontaneously originated and/or experimentally produced amphibian polyploids. The mechanisms by which polyploids can originate, the meiotic pairing configurations, the diploidization processes operating in polyploid genomes, the phenomenon of hybridogenesis, and the relationship between polyploidization and sex chromosome evolution are discussed. The polyploid systems in some important amphibian taxa are described in more detail.
Collapse
|
23
|
Species-specificity of temporal processing in the auditory midbrain of gray treefrogs: interval-counting neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:485-503. [DOI: 10.1007/s00359-015-0997-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
|
24
|
Bryson RW, Smith BT, Nieto-Montes de Oca A, García-Vázquez UO, Riddle BR. The role of mitochondrial introgression in illuminating the evolutionary history of Nearctic treefrogs. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12169] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert W. Bryson
- School of Life Sciences; University of Nevada Las Vegas; Las Vegas NV 89154-4004 USA
- Department of Biology and Burke Museum of Natural History and Culture; University of Washington; Seattle WA 98195-1800 USA
| | - Brian Tilston Smith
- Museum of Natural Science; Louisiana State University; Baton Rouge LA 70803 USA
| | - Adrian Nieto-Montes de Oca
- Museo de Zoología Alfonso L. Herrera; Facultad de Ciencias; Universidad Nacional Autónoma de México; Circuito exterior s/n, Cd. Universitaria México 04510 Distrito Federal Mexico
| | - Uri Omar García-Vázquez
- Museo de Zoología Alfonso L. Herrera; Facultad de Ciencias; Universidad Nacional Autónoma de México; Circuito exterior s/n, Cd. Universitaria México 04510 Distrito Federal Mexico
| | - Brett R. Riddle
- School of Life Sciences; University of Nevada Las Vegas; Las Vegas NV 89154-4004 USA
| |
Collapse
|
25
|
Reichert MS, Gerhardt HC. Behavioral strategies and signaling in interspecific aggressive interactions in gray tree frogs. Behav Ecol 2014. [DOI: 10.1093/beheco/aru016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Bee MA. Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. Int J Psychophysiol 2014; 95:216-37. [PMID: 24424243 DOI: 10.1016/j.ijpsycho.2014.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/10/2013] [Accepted: 01/01/2014] [Indexed: 01/18/2023]
Abstract
The perceptual analysis of acoustic scenes involves binding together sounds from the same source and separating them from other sounds in the environment. In large social groups, listeners experience increased difficulty performing these tasks due to high noise levels and interference from the concurrent signals of multiple individuals. While a substantial body of literature on these issues pertains to human hearing and speech communication, few studies have investigated how nonhuman animals may be evolutionarily adapted to solve biologically analogous communication problems. Here, I review recent and ongoing work aimed at testing hypotheses about perceptual mechanisms that enable treefrogs in the genus Hyla to communicate vocally in noisy, multi-source social environments. After briefly introducing the genus and the methods used to study hearing in frogs, I outline several functional constraints on communication posed by the acoustic environment of breeding "choruses". Then, I review studies of sound source perception aimed at uncovering how treefrog listeners may be adapted to cope with these constraints. Specifically, this review covers research on the acoustic cues used in sequential and simultaneous auditory grouping, spatial release from masking, and dip listening. Throughout the paper, I attempt to illustrate how broad-scale, comparative studies of carefully considered animal models may ultimately reveal an evolutionary diversity of underlying mechanisms for solving cocktail-party-like problems in communication.
Collapse
Affiliation(s)
- Mark A Bee
- Department of Ecology, Evolution and Behavior, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.
| |
Collapse
|
27
|
Tempo and mode of recurrent polyploidization in the Carassius auratus species complex (Cypriniformes, Cyprinidae). Heredity (Edinb) 2014; 112:415-27. [PMID: 24398883 DOI: 10.1038/hdy.2013.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 11/09/2022] Open
Abstract
Polyploidization is an evolutionarily rare but important mechanism in both plants and animals because it increases genetic diversity. Goldfish of the Carassius auratus species complex can be tetraploids, hexaploids and octaploids. Polyploidization events have occurred repeatedly in goldfish, yet the extent of this phenomenon and its phyletic history are poorly understood. We explore the origin, tempo and frequency of polyploidization in Chinese and Japanese goldfish using both mitochondrial (mtDNA) and nuclear DNA sequences from up to 1202 individuals including the outgroup taxon, Cyprinus carpio. Analyses of de novo nuclear gene data resolve two clusters of alleles and the pattern supports the prior hypothesis of an ancient allotetraploidization for Carassius. Alleles shared by tetraploid and hexaploid individuals indicate recent autoploidizations within the C. auratus complex. Sympatric tetraploids and hexaploids share mtDNA haplotypes and these frequently occur independently within six well-supported lineages and sublineages on a small spatial scale. Gene flow estimates (Fst values) indicate that hexaploids differ only slightly from sympatric tetraploids, if at all. In contrast, allopatric populations of tetraploids and hexaploids differ from one another to a far greater extent. Gene flow between sampled localities appears to be limited. Coalescence-based time estimations for hexaploids reveal that the oldest lineage within any sampled locality is around one million years old, which is very young. Sympatric, recurrent autoploidization occurs in all sampled populations of the C. auratus complex. Goldfish experience polyploidization events more frequently than any other vertebrate.
Collapse
|
28
|
Hoffmann A, Reyer HU. Genomic effects on advertisement call structure in diploid and triploid hybrid waterfrogs (Anura, Pelophylax esculentus). BMC Ecol 2013; 13:47. [PMID: 24304922 PMCID: PMC4235041 DOI: 10.1186/1472-6785-13-47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 11/23/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In anurans, differences in male mating calls have intensively been studied with respect to taxonomic classification, phylogeographic comparisons among different populations and sexual selection. Although overall successful, there is often much unexplained variation in these studies. Potential causes for such variation include differences among genotypes and breeding systems, as well as differences between populations. We investigated how these three factors affect call properties in male water frogs of Pelophylax lessonae (genotype LL), P. ridibundus (RR) and their interspecific hybrid P. esculentus which comes in diploid (LR) and triploid types (LLR, LRR). RESULTS We investigated five call parameters that all showed a genomic dosage effect, i.e. they either decreased or increased with the L/R ratio in the order LL-LLR-LR-LRR-RR. Not all parameters differentiated equally well between the five genotypes, but combined they provided a good separation. Two of the five call parameters were also affected by the breeding system. Calls of diploid LR males varied, depending on whether these males mated with one or both of the parental species (diploid systems) or triploid hybrids (mixed ploidy systems). With the exception of the northernmost mixed-ploidy population, call differences were not related to the geographic location of the population and they were not correlated with genetic distances in the R and L genomes. CONCLUSIONS We found an influence of all three tested factors on call parameters, with the effect size decreasing from genotype through breeding system to geographic location of the population. Overall, results were in line with predictions from a dosage effect in L/R ratios, but in three call parameters all three hybrid types were more similar to one or the other parental species. Also calls of diploid hybrids varied between breeding systems in agreement with the sexual host required for successful reproduction. The lack of hybrid call differences in a mixed-ploidy population at the northern edge of the water frog distribution is likely to be associated with genetic particularities, including a) low genetic variability and/or b) a local loss of genes coding for genotype-dependent call differentiation under conditions where female discrimination between diploid and triploid males is not beneficial.
Collapse
Affiliation(s)
- Alexandra Hoffmann
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Heinz-Ulrich Reyer
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Dufresne F, Stift M, Vergilino R, Mable BK. Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 2013; 23:40-69. [DOI: 10.1111/mec.12581] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Affiliation(s)
- France Dufresne
- Département de Biologie; Université du Québec à Rimouski; Québec QC Canada G5L 3A1
| | - Marc Stift
- Department of Biology; University of Konstanz; Konstanz D 78457 Germany
| | - Roland Vergilino
- Department of Integrative Biology; University of Guelph; Guelph ON Canada N1G 2W1
| | - Barbara K. Mable
- Institute of Biodiversity; Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
30
|
The Response of Gray Treefrogs to Anesthesia by Tricaine Methanesulfonate (TMS or MS-222). ACTA ACUST UNITED AC 2013; 2013:635704. [PMID: 24851186 PMCID: PMC4025944 DOI: 10.1155/2013/635704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The design of anesthetic protocols for frogs is commonly hindered by lack of information. Results from fishes and rodents do not always apply to frogs, and the literature in anurans is concentrated on a few species. We report on the response of treefrogs (Hyla chrysoscelis and H. versicolor) to tricaine methanesulfonate. Body mass did not differ significantly between the species or between sexes. In the first exposure of a frog to TMS, variation in induction time was best explained by species (H. chrysoscelis resisted longer) and body mass (larger animals resisted longer). Multiple exposures revealed a strong effect of individual variation on induction time and a significant increase of induction time with number of previous anesthesia events within the same day. Recovery time was mostly explained by individual variation, but it increased with total time in anesthetic and decreased with induction time. It also increased with number of days since the last series of anesthesias and decreased with number of previous uses of the anesthetic bath. This is one of the first studies of anesthesia in hylids and also one of the first assessments of the factors that influence the variability of the response to anesthesia within a species.
Collapse
|
31
|
Ward JL, Buerkle NP, Bee MA. Spatial release from masking improves sound pattern discrimination along a biologically relevant pulse-rate continuum in gray treefrogs. Hear Res 2013; 306:63-75. [PMID: 24055623 DOI: 10.1016/j.heares.2013.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/05/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Many frogs form large choruses during their mating season in which males produce loud advertisement calls to attract females and repel rival males. High background noise levels in these social aggregations can impair vocal perception. In humans, spatial release from masking contributes to our ability to understand speech in noisy social groups. Here, we tested the hypothesis that spatial separation between target signals and 'chorus-shaped noise' improves the ability of female gray treefrogs (Hyla chrysoscelis) to perform a behavioral discrimination task based on perceiving differences in the pulsatile structure of advertisement calls. We used two-stimulus choice tests to measure phonotaxis (approach toward sound) in response to calls differing in pulse rate along a biologically relevant continuum between conspecific (50 pulses s(-1)) and heterospecific (20 pulses s(-1)) calls. Signals were presented in quiet, in colocated noise, and in spatially separated noise. In quiet conditions, females exhibited robust preferences for calls with relatively faster pulse rates more typical of conspecific calls. Behavioral discrimination between calls differing in pulse rate was impaired in the presence of colocated noise but similar between quiet and spatially separated noise conditions. Our results indicate that spatial release from energetic masking facilitates a biologically important temporal discrimination task in frogs. We discuss these results in light of previous work on spatial release from masking in frogs and other animals.
Collapse
Affiliation(s)
- Jessica L Ward
- Department of Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 100 Ecology, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
32
|
Multitasking males and multiplicative females: dynamic signalling and receiver preferences in Cope's grey treefrog. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.05.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Bogart JP, Bi K. Genetic and genomic interactions of animals with different ploidy levels. Cytogenet Genome Res 2013; 140:117-36. [PMID: 23751376 DOI: 10.1159/000351593] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polyploid animals have independently evolved from diploids in diverse taxa across the tree of life. We review a few polyploid animal species or biotypes where recently developed molecular and cytogenetic methods have significantly improved our understanding of their genetics, reproduction and evolution. Mitochondrial sequences that target the maternal ancestor of a polyploid show that polyploids may have single (e.g. unisexual salamanders in the genus Ambystoma) or multiple (e.g. parthenogenetic polyploid lizards in the genus Aspidoscelis) origins. Microsatellites are nuclear markers that can be used to analyze genetic recombinations, reproductive modes (e.g. Ambystoma) and recombination events (e.g. polyploid frogs such as Pelophylax esculentus). Hom(e)ologous chromosomes and rare intergenomic exchanges in allopolyploids have been distinguished by applying genome-specific fluorescent probes to chromosome spreads. Polyploids arise, and are maintained, through perturbations of the 'normal' meiotic program that would include pre-meiotic chromosome replication and genomic integrity of homologs. When possible, asexual, unisexual and bisexual polyploid species or biotypes interact with diploid relatives, and genes are passed from diploid to polyploid gene pools, which increase genetic diversity and ultimately evolutionary flexibility in the polyploid. When diploid relatives do not exist, polyploids can interact with another polyploid (e.g. species of African Clawed Frogs in the genus Xenopus). Some polyploid fish (e.g. salmonids) and frogs (Xenopus) represent independent lineages whose ancestors experienced whole genome duplication events. Some tetraploid frogs (P. esculentus) and fish (Squaliusalburnoides) may be in the process of becoming independent species, but diploid and triploid forms of these 'species' continue to genetically interact with the comparatively few tetraploid populations. Genetic and genomic interaction between polyploids and diploids is a complex and dynamic process that likely plays a crucial role for the evolution and persistence of polyploid animals. See also other articles in this themed issue.
Collapse
Affiliation(s)
- J P Bogart
- Department of Integrative Biology, University of Guelph, Guelph, Ont., Canada. jbogart @ uoguelph.ca
| | | |
Collapse
|
34
|
Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D. Hybridization and speciation. J Evol Biol 2013; 26:229-46. [DOI: 10.1111/j.1420-9101.2012.02599.x] [Citation(s) in RCA: 1370] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/25/2012] [Accepted: 07/16/2012] [Indexed: 12/17/2022]
|
35
|
Collares-Pereira M, Matos I, Morgado-Santos M, Coelho M. Natural Pathways towards Polyploidy in Animals: TheSqualius alburnoidesFish Complex as a Model System to Study Genome Size and Genome Reorganization in Polyploids. Cytogenet Genome Res 2013; 140:97-116. [DOI: 10.1159/000351729] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Choleva L, Janko K. Rise and Persistence of Animal Polyploidy: Evolutionary Constraints and Potential. Cytogenet Genome Res 2013; 140:151-70. [DOI: 10.1159/000353464] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Stenberg P, Saura A. Meiosis and Its Deviations in Polyploid Animals. Cytogenet Genome Res 2013; 140:185-203. [DOI: 10.1159/000351731] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Klymus KE, Carl Gerhardt H. AFLP markers resolve intra-specific relationships and infer genetic structure among lineages of the canyon treefrog, Hyla arenicolor. Mol Phylogenet Evol 2012; 65:654-67. [DOI: 10.1016/j.ympev.2012.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/22/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
|
39
|
Alam MS, Islam MM, Khan MR, Hasan M, Wanichanon R, Sumida M. Postmating Isolation in Six Species of Three Genera (Hoplobatrachus, EuphlyctisandFejervarya) from Family Dicroglossidae (Anura), with Special Reference to Spontaneous Production of Allotriploids. Zoolog Sci 2012; 29:743-52. [DOI: 10.2108/zsj.29.743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Schrode KM, Ward JL, Vélez A, Bee MA. Female preferences for spectral call properties in the western genetic lineage of Cope's gray treefrog ( Hyla chrysoscelis). Behav Ecol Sociobiol 2012; 66:1595-1606. [PMID: 24496093 DOI: 10.1007/s00265-012-1413-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Female frogs discriminate among potential mates based on individual variation in male advertisement calls. While considerable data have accumulated allowing comparisons of female preference functions among species, we still lack fundamental knowledge about how and why the shapes of preference functions for particular call properties vary among populations within all but a few species. Here, we report results from a study aimed at describing female preference functions for spectral call properties in Cope's gray treefrog (Hyla chrysoscelis). Widespread throughout the eastern half of North America, Cope's gray treefrog is the diploid member of the cryptic diploid-tetraploid Hyla versicolor species complex, and its populations are divided into two distinct genetic lineages (eastern and western). In this study of a western lineage population, we recorded and analyzed the spectral properties of 1000 advertisement calls from 50 males and conducted two-choice phonotaxis experiments to estimate a population-level preference function. Females preferred calls with average frequencies over calls with frequencies that were 2 or 3 semitones (1.4 or 2.1 standard deviations, respectively) lower than the population mean. We observed no behavioral discrimination between calls with average and higher-than-average frequencies. Preferences discriminating against low-frequency calls were weak and were abolished by attenuating the preferred average call by 3 dB. We discuss these results in light of previous studies of eastern lineage populations, geographic variation in female preference functions, and the potential adaptive value of discriminating against calls with low frequencies.
Collapse
Affiliation(s)
- Katrina M Schrode
- Graduate Program in Neuroscience, University of Minnesota, Twin Cities, Minneapolis, MN USA
| | - Jessica L Ward
- Department of Ecology, Evolution and Behavior and Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN USA
| | - Alejandro Vélez
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN USA
| | - Mark A Bee
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN USA. Department of Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, St. Paul, MN 55108, U.S.A. Tel.: +1-612-624-6749
| |
Collapse
|
41
|
Modliszewski JL, Willis JH. Allotetraploid Mimulus sookensis are highly interfertile despite independent origins. Mol Ecol 2012; 21:5280-98. [PMID: 22831280 DOI: 10.1111/j.1365-294x.2012.05706.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyploidy (whole-genome duplication) has contributed significantly to angiosperm evolution and diversification. To date, it has been found that most polyploids are the result of multiple formation events, which may contribute to genetic diversity and affect interfertility among polyploid lineages of independent origin. A recently discovered allotetraploid derivative of Mimulus guttatus and M. nasutus, Mimulus sookensis, is found throughout the valleys of western Oregon and Vancouver Island. Here, we analyse the patterns of nucleotide diversity at three chloroplast and six nuclear loci in M. guttatus, M. nasutus and M. sookensis, to gain insight into the formation of M. sookensis. By analysing the patterns of genetic variation seen in the diploid progenitors in comparison with the variation seen in M. sookensis, we are able to show that M. sookensis has recurrently formed. We also observed that most M. sookensis individuals are fixed heterozygotes at all of the nuclear loci examined, suggesting that duplicate gene loss is not extensive in M. sookensis. To assess the possibility that hybridization among M. sookensis has contributed to genetic diversity, we conducted crossing experiments within M. sookensis. We found that M. sookensis of independent origin are highly interfertile, suggesting that crossing barriers do not exist within M. sookensis, and that hybridization among M. sookensis may result in new recombinant genotypes. Together, the data suggest that although recurrent origins may be common, they can contribute to genetic diversity without contributing to reproductive isolation among independently arisen polyploid lineages.
Collapse
|
42
|
Faivovich J, Ferraro DP, Basso NG, Haddad CF, Rodrigues MT, Wheeler WC, Lavilla EO. A phylogenetic analysis of Pleurodema (Anura: Leptodactylidae: Leiuperinae) based on mitochondrial and nuclear gene sequences, with comments on the evolution of anuran foam nests. Cladistics 2012; 28:460-482. [DOI: 10.1111/j.1096-0031.2012.00406.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Rosenblum EB, Sarver BAJ, Brown JW, Des Roches S, Hardwick KM, Hether TD, Eastman JM, Pennell MW, Harmon LJ. Goldilocks Meets Santa Rosalia: An Ephemeral Speciation Model Explains Patterns of Diversification Across Time Scales. Evol Biol 2012; 39:255-261. [PMID: 22707806 PMCID: PMC3364415 DOI: 10.1007/s11692-012-9171-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/24/2012] [Indexed: 11/30/2022]
Abstract
Understanding the rate at which new species form is a key question in studying the evolution of life on earth. Here we review our current understanding of speciation rates, focusing on studies based on the fossil record, phylogenies, and mathematical models. We find that speciation rates estimated from these different studies can be dramatically different: some studies find that new species form quickly and often, while others find that new species form much less frequently. We suggest that instead of being contradictory, differences in speciation rates across different scales can be reconciled by a common model. Under the "ephemeral speciation model", speciation is very common and very rapid but the new species produced almost never persist. Evolutionary studies should therefore focus on not only the formation but also the persistence of new species.
Collapse
Affiliation(s)
- Erica Bree Rosenblum
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114 USA
- BEACON Center for the Study of Evolution in Action, East Lansing, MI USA
| | - Brice A. J. Sarver
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Joseph W. Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Simone Des Roches
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Kayla M. Hardwick
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Tyler D. Hether
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Jonathan M. Eastman
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Matthew W. Pennell
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Luke J. Harmon
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
- BEACON Center for the Study of Evolution in Action, East Lansing, MI USA
| |
Collapse
|
44
|
Tucker MA, Gerhardt HC. Parallel changes in mate-attracting calls and female preferences in autotriploid tree frogs. Proc Biol Sci 2012; 279:1583-7. [PMID: 22113033 PMCID: PMC3282346 DOI: 10.1098/rspb.2011.1968] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/31/2011] [Indexed: 11/12/2022] Open
Abstract
For polyploid species to persist, they must be reproductively isolated from their diploid parental species, which coexist at the same time and place at least initially. In a complex of biparentally reproducing tetraploid and diploid tree frogs in North America, selective phonotaxis--mediated by differences in the pulse-repetition (pulse rate) of their mate-attracting vocalizations--ensures assortative mating. We show that artificially produced autotriploid females of the diploid species (Hyla chrysoscelis) show a shift in pulse-rate preference in the direction of the pulse rate produced by males of the tetraploid species (Hyla versicolor). The estimated preference function is centred near the mean pulse rate of the calls of artificially produced male autotriploids. Such a parallel shift, which is caused by polyploidy per se and whose magnitude is expected to be greater in autotetraploids, may have facilitated sympatric speciation by promoting reproductive isolation of the initially formed polyploids from their diploid parental forms. This process also helps to explain why tetraploid lineages with different origins have similar advertisement calls and freely interbreed.
Collapse
Affiliation(s)
| | - H. C. Gerhardt
- Division of Biological Sciences, Tucker Hall, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
45
|
GUIGNARD MAÏTÉ, BÜCHI LUCIE, GÉTAZ MICHAEL, BETTO-COLLIARD CAROLINE, STÖCK MATTHIAS. Genome size rather than content might affect call properties in toads of three ploidy levels (Anura: Bufonidae: Bufo viridis subgroup). Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2011.01837.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Mable BK, Alexandrou MA, Taylor MI. Genome duplication in amphibians and fish: an extended synthesis. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00829.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Bee MA. Spectral preferences and the role of spatial coherence in simultaneous integration in gray treefrogs (Hyla chrysoscelis). ACTA ACUST UNITED AC 2011; 124:412-24. [PMID: 20853948 DOI: 10.1037/a0020307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The perceptual analysis of acoustic scenes may often require the integration of simultaneous sounds arising from a single source. Few studies have investigated the cues that promote simultaneous integration in the context of acoustic communication in nonhuman animals. This study of Cope's gray treefrog (Hyla chrysoscelis) examined female preferences based on spectral features of conspecific male advertisement calls to test the hypothesis that cues related to common spatial origin promote the perceptual integration of simultaneous signal elements (harmonics). The typical advertisement call comprises two harmonically related spectral peaks near 1.1 kHz and 2.2 kHz. Females generally exhibited preferences for calls with two spatially coherent harmonics over alternatives with just one harmonic. When given a choice between a spatially coherent call (both harmonics originating from the same speaker) and a spatially incoherent call (each harmonic from different spatially separated speakers), females preferentially chose the former in the same relative proportions in which it was chosen over single-harmonic alternatives. Preferences for spatially coherent calls over spatially incoherent alternatives did not appear to result from greater difficulty localizing the spatially incoherent sources. These results are consistent with the hypothesis that spatial coherence promotes perceptual integration of simultaneous signal elements in frogs.
Collapse
Affiliation(s)
- Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.
| |
Collapse
|
48
|
Abstract
For most frogs, advertisement calls are essential for reproductive success, conveying information on species identity, male quality, sexual state and location. While the evolutionary divergence of call characters has been examined in a number of species, the relative impacts of genetic drift or natural and sexual selection remain unclear. Insights into the evolutionary trajectory of vocal signals can be gained by examining how advertisement calls vary in a phylogenetic context. Evolution by genetic drift would be supported if more closely related species express more similar songs. Conversely, a poor correlation between evolutionary history and song expression would suggest evolution shaped by natural or sexual selection. Here, we measure seven song characters in 20 described and two undescribed species of African clawed frogs (genera Xenopus and Silurana) and four populations of X. laevis. We identify three call types - click, burst and trill - that can be distinguished by click number, call rate and intensity modulation. A fourth type is biphasic, consisting of two of the above. Call types vary in complexity from the simplest, a click, to the most complex, a biphasic call. Maximum parsimony analysis of variation in call type suggests that the ancestral type was of intermediate complexity. Each call type evolved independently more than once and call type is typically not shared by closely related species. These results indicate that call type is homoplasious and has low phylogenetic signal. We conclude that the evolution of call type is not due to genetic drift, but is under selective pressure.
Collapse
Affiliation(s)
- Martha L. Tobias
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ben J. Evans
- Department of Ecology, Evolutionary and Environmental Biology, Columbia University, New York, NY, USA
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Darcy B. Kelley
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Ecology, Evolutionary and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
49
|
An experimental test of noise-dependent voice amplitude regulation in Cope's grey treefrog (Hyla chrysoscelis). Anim Behav 2010; 80:509-515. [PMID: 20823939 DOI: 10.1016/j.anbehav.2010.05.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
One strategy for coping with the constraints on acoustic signal reception posed by ambient noise is to signal louder as noise levels increase. Termed the 'Lombard effect', this reflexive behaviour is widespread among birds and mammals and occurs with a diversity of signal types, leading to the hypothesis that voice amplitude regulation represents a general vertebrate mechanism for coping with environmental noise. Support for this evolutionary hypothesis, however, remains limited due to a lack of studies in taxa other than birds and mammals. Here, we report the results of an experimental test of the hypothesis that male grey treefrogs increase the amplitude of their advertisement calls in response to increasing levels of chorus-shaped noise. We recorded spontaneously produced calls in quiet and in the presence of noise broadcast at sound pressure levels ranging between 40 dB and 70 dB. While increasing noise levels induced predictable changes in call duration and rate, males did not regulate call amplitude. These results do not support the hypothesis that voice amplitude regulation is a generic vertebrate mechanism for coping with noise. We discuss the possibility that intense sexual selection and high levels of competition for mates in choruses place some frogs under strong selection to call consistently as loudly as possible.
Collapse
|
50
|
Perrie LR, Shepherd LD, De Lange PJ, Brownsey PJ. Parallel polyploid speciation: distinct sympatric gene-pools of recurrently derived allo-octoploid Asplenium ferns. Mol Ecol 2010; 19:2916-32. [PMID: 20579287 DOI: 10.1111/j.1365-294x.2010.04705.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although polyploidy is widespread, its significance to the generation of biodiversity remains unclear. Many polyploids have been derived recurrently. For a particular polyploid, gene-flow between the products of independent origin is typical where they come into contact. Here, we use AFLP DNA-fingerprinting and chloroplast DNA sequences to demonstrate parallel polyploid speciation within both of the ferns Asplenium cimmeriorum and A. gracillimum. Both of these taxa comprise at least two allopolyploids, recurrently derived from the same progenitor pair. Each of these allopolyploids remain genetically distinguishable even with extensive sympatry, and could therefore be considered distinct species. To our knowledge, parallel speciation on this scale amongst recurrent polyploids has not been previously reported. With their parallel origins, these 'evolutionary replicates' provide an unrivalled opportunity to investigate how the reproductive barriers and ecological differentiation necessary for speciation arise following polyploidy.
Collapse
Affiliation(s)
- Leon R Perrie
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand.
| | | | | | | |
Collapse
|