1
|
Adami FL, de Castro MV, Almeida BDS, Daher IP, Yamamoto MM, Souza Santos K, Zatz M, Naslavsky MS, Rosa DS, Cunha-Neto E, de Oliveira VL, Kalil J, Boscardin SB. Anti-RBD IgG antibodies from endemic coronaviruses do not protect against the acquisition of SARS-CoV-2 infection among exposed uninfected individuals. Front Immunol 2024; 15:1396603. [PMID: 38846944 PMCID: PMC11153698 DOI: 10.3389/fimmu.2024.1396603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Background The Coronaviridae family comprises seven viruses known to infect humans, classified into alphacoronaviruses (HCoV-229E and HCoV-NL63) and betacoronaviruses (HCoV-OC43 and HCoV-HKU1), which are considered endemic. Additionally, it includes SARS-CoV (severe acute respiratory syndrome), MERS-CoV (Middle East respiratory syndrome), and the novel coronavirus SARS-CoV-2, responsible for COVID-19. SARS-CoV-2 induces severe respiratory complications, particularly in the elderly, immunocompromised individuals and those with underlying diseases. An essential question since the onset of the COVID-19 pandemic has been to determine whether prior exposure to seasonal coronaviruses influences immunity or protection against SARS-CoV-2. Methods In this study, we investigated a cohort of 47 couples (N=94), where one partner tested positive for SARS-CoV-2 infection via real-time PCR while the other remained negative. Plasma samples, collected at least 30 days post-PCR reaction, were assessed using indirect ELISA and competition assays to measure specific antibodies against the receptor-binding domain (RBD) portion of the Spike (S) protein from SARS-CoV-2, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1. Results IgG antibody levels against the four endemic coronavirus RBD proteins were similar between the PCR-positive and PCR-negative individuals, suggesting that IgG against endemic coronavirus RBD regions was not associated with protection from infection. Moreover, we found no significant IgG antibody cross-reactivity between endemic coronaviruses and SARS-CoV-2 RBDs. Conclusions Taken together, results suggest that anti-RBD antibodies induced by a previous infection with endemic HCoVs do not protect against acquisition of COVID-19 among exposed uninfected individuals.
Collapse
Affiliation(s)
- Flávia Lopes Adami
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mateus Vidigal de Castro
- Centro de Estudos do Genoma Humano e Células Tronco, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Bianca da Silva Almeida
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Isabela Pazotti Daher
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Márcio Massao Yamamoto
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Keity Souza Santos
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Mayana Zatz
- Centro de Estudos do Genoma Humano e Células Tronco, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Michel Satya Naslavsky
- Centro de Estudos do Genoma Humano e Células Tronco, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Imunologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Vivian Leite de Oliveira
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Jorge Kalil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| |
Collapse
|
2
|
Devaux CA, Fantini J. Unravelling Antigenic Cross-Reactions toward the World of Coronaviruses: Extent of the Stability of Shared Epitopes and SARS-CoV-2 Anti-Spike Cross-Neutralizing Antibodies. Pathogens 2023; 12:713. [PMID: 37242383 PMCID: PMC10220573 DOI: 10.3390/pathogens12050713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The human immune repertoire retains the molecular memory of a very great diversity of target antigens (epitopes) and can recall this upon a second encounter with epitopes against which it has previously been primed. Although genetically diverse, proteins of coronaviruses exhibit sufficient conservation to lead to antigenic cross-reactions. In this review, our goal is to question whether pre-existing immunity against seasonal human coronaviruses (HCoVs) or exposure to animal CoVs has influenced the susceptibility of human populations to SARS-CoV-2 and/or had an impact upon the physiopathological outcome of COVID-19. With the hindsight that we now have regarding COVID-19, we conclude that although antigenic cross-reactions between different coronaviruses exist, cross-reactive antibody levels (titers) do not necessarily reflect on memory B cell frequencies and are not always directed against epitopes which confer cross-protection against SARS-CoV-2. Moreover, the immunological memory of these infections is short-term and occurs in only a small percentage of the population. Thus, in contrast to what might be observed in terms of cross-protection at the level of a single individual recently exposed to circulating coronaviruses, a pre-existing immunity against HCoVs or other CoVs can only have a very minor impact on SARS-CoV-2 circulation at the level of human populations.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM Institut Hospitalo-Universitaire—Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Jacques Fantini
- Aix-Marseille Université, INSERM UMR_S 1072, 13015 Marseille, France
| |
Collapse
|
3
|
Honrubia JM, Gutierrez-Álvarez J, Sanz-Bravo A, González-Miranda E, Muñoz-Santos D, Castaño-Rodriguez C, Wang L, Villarejo-Torres M, Ripoll-Gómez J, Esteban A, Fernandez-Delgado R, Sánchez-Cordón PJ, Oliveros JC, Perlman S, McCray PB, Sola I, Enjuanes L. SARS-CoV-2-Mediated Lung Edema and Replication Are Diminished by Cystic Fibrosis Transmembrane Conductance Regulator Modulators. mBio 2023; 14:e0313622. [PMID: 36625656 PMCID: PMC9973274 DOI: 10.1128/mbio.03136-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses (CoVs) of genera α, β, γ, and δ encode proteins that have a PDZ-binding motif (PBM) consisting of the last four residues of the envelope (E) protein (PBM core). PBMs may bind over 400 cellular proteins containing PDZ domains (an acronym formed by the combination of the first letter of the names of the three first proteins where this domain was identified), making them relevant for the control of cell function. Three highly pathogenic human CoVs have been identified to date: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. The PBMs of the three CoVs were virulence factors. SARS-CoV mutants in which the E protein PBM core was replaced by the E protein PBM core from virulent or attenuated CoVs were constructed. These mutants showed a gradient of virulence, depending on whether the alternative PBM core introduced was derived from a virulent or an attenuated CoV. Gene expression patterns in the lungs of mice infected with SARS-CoVs encoding each of the different PBMs were analyzed by RNA sequencing of infected lung tissues. E protein PBM of SARS-CoV and SARS-CoV-2 dysregulated gene expression related to ion transport and cell homeostasis. Decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA, essential for alveolar edema resolution, was shown. Reduced CFTR mRNA levels were associated with edema accumulation in the alveoli of mice infected with SARS-CoV and SARS-CoV-2. Compounds that increased CFTR expression and activity, significantly reduced SARS-CoV-2 growth in cultured cells and protected against mouse infection, suggesting that E protein virulence is mediated by a decreased CFTR expression. IMPORTANCE Three highly pathogenic human CoVs have been identified: SARS-CoV, MERS-CoV, and SARS-CoV-2. The E protein PBMs of these three CoVs were virulence factors. Gene expression patterns associated with the different PBM motifs in the lungs of infected mice were analyzed by deep sequencing. E protein PBM motif of SARS-CoV and SARS-CoV-2 dysregulated the expression of genes related to ion transport and cell homeostasis. A decrease in the mRNA expression of the cystic fibrosis transmembrane conductance regulator (CFTR), which is essential for edema resolution, was observed. The reduction of CFTR mRNA levels was associated with edema accumulation in the lungs of mice infected with SARS-CoV-2. Compounds that increased the expression and activity of CFTR drastically reduced the production of SARS-CoV-2 and protected against its infection in a mice model. These results allowed the identification of cellular targets for the selection of antivirals.
Collapse
Affiliation(s)
- Jose M. Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Javier Gutierrez-Álvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Alejandro Sanz-Bravo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ezequiel González-Miranda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Li Wang
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Villarejo-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jorge Ripoll-Gómez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Esteban
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Infectious Diseases and Global Health, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Veterinary Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, CNB-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, USA
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa, USA
- Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Nanoparticle and virus-like particle vaccine approaches against SARS-CoV-2. J Microbiol 2022; 60:335-346. [PMID: 35089583 PMCID: PMC8795728 DOI: 10.1007/s12275-022-1608-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
The global spread of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has provoked an urgent need for prophylactic measures. Several innovative vaccine platforms have been introduced and billions of vaccine doses have been administered worldwide. To enable the creation of safer and more effective vaccines, additional platforms are under development. These include the use of nanoparticle (NP) and virus-like particle (VLP) technology. NP vaccines utilize self-assembling scaffold structures designed to load the entire spike protein or receptor-binding domain of SARS-CoV-2 in a trimeric configuration. In contrast, VLP vaccines are genetically modified recombinant viruses that are considered safe, as they are generally replication-defective. Furthermore, VLPs have indigenous immunogenic potential due to their microbial origin. Importantly, NP and VLP vaccines have shown stronger immunogenicity with greater protection by mimicking the physicochemical characteristics of SARS-CoV-2. The study of NP- and VLP-based coronavirus vaccines will help ensure the development of rapid-response technology against SARS-CoV-2 variants and future coronavirus pandemics.
Collapse
|
5
|
Loubet P, Bouzid D, Debray MP, Visseaux B. Place des virus respiratoires dans les pneumonies aiguës communautaires de l'adulte : quels changements depuis la Covid-19 ? M�DECINE ET MALADIES INFECTIEUSES FORMATION 2022. [PMCID: PMC8815763 DOI: 10.1016/j.mmifmc.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
L’émergence du SARS-CoV-2 a renforcé l'intérêt pour la place des virus respiratoires, dans les pneumonies aiguës communautaires, en mettant en exergue de nombreux points encore mal connus tels que la part des infections asymptomatiques, les interactions entre virus respiratoires et pathogènes non viraux, leurs périodes d'incubation, leur pathogénicité ou encore la durée d'excrétion variable. La présentation clinique et radiologique des pneumonies aiguës communautaires ne permet pas toujours de distinguer l'origine virale de l'origine bactérienne. L'absence de réelle conséquence thérapeutique semble un frein à l'utilisation des PCR multiplex dans la pratique quotidienne. Toutefois, l'amélioration en termes de délai de rendu des résultats et du nombre de pathogènes inclus dans les panels, ainsi que l'accumulation récente de données épidémiologiques et cliniques, devraient aider à rationaliser l'utilisation de ces tests, faciliter l'interprétation de leurs résultats et guider l'utilisation des molécules antivirales en développement.
Collapse
|
6
|
Li T, Rong L, Zhang A. Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail. TRANSPORT POLICY 2021; 106:226-238. [PMID: 33867701 PMCID: PMC8043780 DOI: 10.1016/j.tranpol.2021.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 05/20/2023]
Abstract
This paper demonstrates that transportation networks may be used to assess and predict the regional risk of COVID-19 infection from the outbreak. We use China's high-speed rail (HSR) network at the scale of prefecture level to assess, based on a probabilistic risk model, the risk of COVID-19 infection from Wuhan to the country's 31 province-level regions at the early stage of domestic spread. We find that the high-risk regions are mainly distributed along the southern half of Beijing-Hong Kong HSR line, where a large number of infection cases have been confirmed at the early stage. Furthermore, the two components of the infection risk, namely, the probability (proxied by the region's correlation with Wuhan through HSR) and the impact (proxied by the region's population with mobility), can play different roles in the risk ranking for different regions. For public health administrators, these findings may be used for better decision making, including the preparation of emergency plans and supplies, and the allocation of limited resources, before the extensive spread of the epidemic. Moreover, the administrators should adopt different intervention measures for different regions, so as to better mitigate the epidemic spread according to their own risk scenarios with respect to the probability of occurring and, once occurred, the impact.
Collapse
Affiliation(s)
- Tao Li
- Institute of Systems Engineering, Dalian University of Technology, PR China
| | - Lili Rong
- Institute of Systems Engineering, Dalian University of Technology, PR China
| | - Anming Zhang
- Sauder School of Business, University of British Columbia, Canada
| |
Collapse
|
7
|
Coll E, Fernández-Ruiz M, Sánchez-Álvarez JE, Martínez-Fernández JR, Crespo M, Gayoso J, Bada-Bosch T, Oppenheimer F, Moreso F, López-Oliva MO, Melilli E, Rodríguez-Ferrero ML, Bravo C, Burgos E, Facundo C, Lorenzo I, Yañez Í, Galeano C, Roca A, Cabello M, Gómez-Bueno M, García-Cosío M, Graus J, Lladó L, de Pablo A, Loinaz C, Aguado B, Hernández D, Domínguez-Gil B. COVID-19 in transplant recipients: The Spanish experience. Am J Transplant 2021; 21:1825-1837. [PMID: 33098200 PMCID: PMC9906239 DOI: 10.1111/ajt.16369] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
We report the nationwide experience with solid organ transplant (SOT) and hematopoietic stem cell transplant (HSCT) recipients diagnosed with coronavirus disease 2019 (COVID-19) in Spain until 13 July 2020. We compiled information for 778 (423 kidney, 113 HSCT, 110 liver, 69 heart, 54 lung, 8 pancreas, 1 multivisceral) recipients. Median age at diagnosis was 61 years (interquartile range [IQR]: 52-70), and 66% were male. The incidence of COVID-19 in SOT recipients was two-fold higher compared to the Spanish general population. The median interval from transplantation was 59 months (IQR: 18-131). Infection was hospital-acquired in 13% of cases. No donor-derived COVID-19 was suspected. Most patients (89%) were admitted to the hospital. Therapies included hydroxychloroquine (84%), azithromycin (53%), protease inhibitors (37%), and interferon-β (5%), whereas immunomodulation was based on corticosteroids (41%) and tocilizumab (21%). Adjustment of immunosuppression was performed in 85% of patients. At the time of analysis, complete follow-up was available from 652 patients. Acute respiratory distress syndrome occurred in 35% of patients. Ultimately, 174 (27%) patients died. In univariate analysis, risk factors for death were lung transplantation (odds ratio [OR]: 2.5; 95% CI: 1.4-4.6), age >60 years (OR: 3.7; 95% CI: 2.5-5.5), and hospital-acquired COVID-19 (OR: 3.0; 95% CI: 1.9-4.9).
Collapse
Affiliation(s)
- Elisabeth Coll
- Organización Nacional de Trasplantes (Spanish National Transplant Organization), Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria, Hospital Universitario 12 de Octubre (imas12), President of the Group for the Study of Infection in Transplantation and the Immunocompromised Host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Group for the Study of Infection in Transplantation and the Immunocompromised Host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - J. Emilio Sánchez-Álvarez
- Department of Nephrology, Hospital Universitario de Cabueñes, Gijón, Spain
- Spanish Society of Nephrology (SEN), Gijón, Spain
| | | | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain
- Transplant Working Group of the Spanish Society of Nephrology (SEN), Barcelona, Spain
- REDinREN (RD16/0009/0013), Barcelona, Spain
| | - Jorge Gayoso
- Organización Nacional de Trasplantes (Spanish National Transplant Organization), Madrid, Spain
| | - Teresa Bada-Bosch
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Francesc Moreso
- Kidney Transplant Unit, Department of Nephrology, Hospital Universitario Vall d´Hebrón, Barcelona, Spain
| | | | - Edoardo Melilli
- Kidney Transplant Unit, Department of Nephrology, Hospital Universitario de Bellvitge, Barcelona, Spain
| | | | - Carlos Bravo
- Department of Pulmonology, Lung transplant Unit, Hospital Universitario Vall d´Hebrón, Barcelona, Spain
| | - Elena Burgos
- Department of Nephrology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Carme Facundo
- Kidney Transplant Unit, Fundación Puigvert, Barcelona, Spain
| | - Inmaculada Lorenzo
- Department of Nephrology, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Íñigo Yañez
- Department of Nephrology, Hospital Universitario de Cruces, Barakaldo, Spain
| | - Cristina Galeano
- Kidney Transplant Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ana Roca
- Department of Nephrology, Complejo Hospitalario Universitario de Toledo, Toledo, Spain
| | - Mercedes Cabello
- Department of Nephrology, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Manuel Gómez-Bueno
- Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - MaDolores García-Cosío
- Cardiology Service, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain
| | - Javier Graus
- Department of Gastroenterology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Laura Lladó
- Liver Transplant Unit, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Alicia de Pablo
- Lung Transplant Unit, Department of Pneumology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carmelo Loinaz
- Transplant Unit, Department of General Surgery, Digestive Tract and Abdominal Organ Transplantation, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Beatriz Aguado
- Transplant Unit. Department of Hematology, Hospital Universitario La Princesa, Madrid, Spain
| | - Domingo Hernández
- Department of Nephrology, Hospital Regional Universitario, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Spanish Society of Transplantation (SET), Málaga, Spain
| | - Beatriz Domínguez-Gil
- Organización Nacional de Trasplantes (Spanish National Transplant Organization), Madrid, Spain
| | - the Spanish Group for the Study of COVID-19 in Transplant Recipients
- Organización Nacional de Trasplantes (Spanish National Transplant Organization), Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria, Hospital Universitario 12 de Octubre (imas12), President of the Group for the Study of Infection in Transplantation and the Immunocompromised Host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Group for the Study of Infection in Transplantation and the Immunocompromised Host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Department of Nephrology, Hospital Universitario de Cabueñes, Gijón, Spain
- Spanish Society of Nephrology (SEN), Gijón, Spain
- Department of Nephrology, Hospital del Mar, Barcelona, Spain
- Transplant Working Group of the Spanish Society of Nephrology (SEN), Barcelona, Spain
- REDinREN (RD16/0009/0013), Barcelona, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Nephrology, Hospital Clinic, Barcelona, Spain
- Kidney Transplant Unit, Department of Nephrology, Hospital Universitario Vall d´Hebrón, Barcelona, Spain
- Department oof Nephrology, Hospital Universitario La Paz, Madrid, Spain
- Kidney Transplant Unit, Department of Nephrology, Hospital Universitario de Bellvitge, Barcelona, Spain
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Pulmonology, Lung transplant Unit, Hospital Universitario Vall d´Hebrón, Barcelona, Spain
- Department of Nephrology, Hospital Germans Trias i Pujol, Badalona, Spain
- Kidney Transplant Unit, Fundación Puigvert, Barcelona, Spain
- Department of Nephrology, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Department of Nephrology, Hospital Universitario de Cruces, Barakaldo, Spain
- Kidney Transplant Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Department of Nephrology, Complejo Hospitalario Universitario de Toledo, Toledo, Spain
- Department of Nephrology, Hospital Regional Universitario de Málaga, Málaga, Spain
- Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain
- Cardiology Service, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain
- Department of Gastroenterology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Liver Transplant Unit, Hospital Universitario de Bellvitge, Barcelona, Spain
- Lung Transplant Unit, Department of Pneumology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Transplant Unit, Department of General Surgery, Digestive Tract and Abdominal Organ Transplantation, Hospital Universitario 12 de Octubre, Madrid, Spain
- Transplant Unit. Department of Hematology, Hospital Universitario La Princesa, Madrid, Spain
- Department of Nephrology, Hospital Regional Universitario, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Spanish Society of Transplantation (SET), Málaga, Spain
| |
Collapse
|
8
|
Jevšnik Virant M, Černe D, Petrovec M, Paller T, Toplak I. Genetic Characterisation and Comparison of Three Human Coronaviruses (HKU1, OC43, 229E) from Patients and Bovine Coronavirus (BCoV) from Cattle with Respiratory Disease in Slovenia. Viruses 2021; 13:v13040676. [PMID: 33920821 PMCID: PMC8071153 DOI: 10.3390/v13040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Coronaviruses (CoV) are widely distributed pathogens of human and animals and can cause mild or severe respiratory and gastrointestinal disease. Antigenic and genetic similarity of some CoVs within the Betacoronavirus genus is evident. Therefore, for the first time in Slovenia, we investigated the genetic diversity of partial 390-nucleotides of RNA-dependent-RNA polymerase gene (RdRp) for 66 human (HCoV) and 24 bovine CoV (BCoV) positive samples, collected between 2010 and 2016 from human patients and cattle with respiratory disease. The characterized CoV strains belong to four different clusters, in three separate human clusters HCoV-HKU1 (n = 34), HCoV-OC43 (n = 31) and HCoV 229E (n = 1) and bovine grouping only as BCoVs (n = 24). BCoVs from cattle and HCoV-OC43 were genetically the most closely related and share 96.4-97.1% nucleotide and 96.9-98.5% amino acid identity.
Collapse
Affiliation(s)
- Monika Jevšnik Virant
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.J.V.); (M.P.)
| | - Danijela Černe
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.J.V.); (M.P.)
| | - Tomislav Paller
- National Veterinary Institute, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
| | - Ivan Toplak
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
- Correspondence:
| |
Collapse
|
9
|
Lee N, Smith S, Zelyas N, Klarenbach S, Zapernick L, Bekking C, So H, Yip L, Tipples G, Taylor G, Mubareka S. Burden of noninfluenza respiratory viral infections in adults admitted to hospital: analysis of a multiyear Canadian surveillance cohort from 2 centres. CMAJ 2021; 193:E439-E446. [PMID: 33782171 PMCID: PMC8099164 DOI: 10.1503/cmaj.201748] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Data on the outcomes of noninfluenza respiratory virus (NIRV) infections among hospitalized adults are lacking. We aimed to study the burden, severity and outcomes of NIRV infections in this population. METHODS: We analyzed pooled patient data from 2 hospital-based respiratory virus surveillance cohorts in 2 regions of Canada during 3 consecutive seasons (2015/16, 2016/17, 2017/18; n = 2119). We included patients aged ≥ 18 years who developed influenza-like illness or pneumonia and were hospitalized for management. We included patients confirmed positive for ≥ 1 virus by multiplex polymerase chain reaction assays (respiratory syncytial virus [RSV], human rhinovirus/enterovirus (hRV), human coronavirus (hCoV), metapneumovirus, parainfluenza virus, adenovirus, influenza viruses). We compared patient characteristics, clinical severity conventional outcomes (e.g., hospital length-of stay, 30-day mortality) and ordinal outcomes (5 levels: discharged, receiving convalescent care, acute ward or intensive care unit [ICU] care and death) for patients with NIRV infections and those with influenza. RESULTS: Among 2119 adults who were admitted to hospital, 1156 patients (54.6%) had NIRV infections (hRV 14.9%, RSV 12.9%, hCoV 8.2%) and 963 patients (45.4%) had influenza (n = 963). Patients with NIRVs were younger (mean 66.4 [standard deviation 20.4] yr), and more commonly had immunocompromising conditions (30.3%) and delay in diagnosis (median 4.0 [interquartile range (IQR) 2.0–7.0] days). Overall, 14.6% (12.4%–19.5%) of NIRV infections were acquired in hospital. Admission to ICU (18.2%, median 6.0 [IQR 3.0–13.0] d), hospital length-of-stay (median 5.0 [IQR 2.0–10.0] d) and 30-day mortality (8.4%; RSV 9.5%, hRV 6.6%, hCoV 9.2%) and the ordinal outcomes were similar for patients with NIRV infection and those with influenza. Age > 60 years, immunocompromised state and hospital-acquired viral infection were associated with worse outcomes. The estimated median cost per acute care admission was $6000 (IQR $2000–$16 000). INTERPRETATION: The burden of NIRV infection is substantial in adults admitted to hospital and associated outcomes may be as severe as for influenza, suggesting a need to prioritize therapeutics and vaccines for at-risk people.
Collapse
Affiliation(s)
- Nelson Lee
- Division of Infectious Disease (Lee, Smith, Zapernick, Taylor), Department of Medicine, and Department of Laboratory Medicine and Pathology (Zelyas, Tipples), and Division of Nephrology (Klarenbach, So), Department of Medicine, University of Alberta, Edmonton, Alta.; Sunnybrook Research Institute (Bekking, Yip, Mubareka); Department of Laboratory Medicine and Pathobiology (Mubareka), University of Toronto, Toronto, Ont.
| | - Stephanie Smith
- Division of Infectious Disease (Lee, Smith, Zapernick, Taylor), Department of Medicine, and Department of Laboratory Medicine and Pathology (Zelyas, Tipples), and Division of Nephrology (Klarenbach, So), Department of Medicine, University of Alberta, Edmonton, Alta.; Sunnybrook Research Institute (Bekking, Yip, Mubareka); Department of Laboratory Medicine and Pathobiology (Mubareka), University of Toronto, Toronto, Ont
| | - Nathan Zelyas
- Division of Infectious Disease (Lee, Smith, Zapernick, Taylor), Department of Medicine, and Department of Laboratory Medicine and Pathology (Zelyas, Tipples), and Division of Nephrology (Klarenbach, So), Department of Medicine, University of Alberta, Edmonton, Alta.; Sunnybrook Research Institute (Bekking, Yip, Mubareka); Department of Laboratory Medicine and Pathobiology (Mubareka), University of Toronto, Toronto, Ont
| | - Scott Klarenbach
- Division of Infectious Disease (Lee, Smith, Zapernick, Taylor), Department of Medicine, and Department of Laboratory Medicine and Pathology (Zelyas, Tipples), and Division of Nephrology (Klarenbach, So), Department of Medicine, University of Alberta, Edmonton, Alta.; Sunnybrook Research Institute (Bekking, Yip, Mubareka); Department of Laboratory Medicine and Pathobiology (Mubareka), University of Toronto, Toronto, Ont
| | - Lori Zapernick
- Division of Infectious Disease (Lee, Smith, Zapernick, Taylor), Department of Medicine, and Department of Laboratory Medicine and Pathology (Zelyas, Tipples), and Division of Nephrology (Klarenbach, So), Department of Medicine, University of Alberta, Edmonton, Alta.; Sunnybrook Research Institute (Bekking, Yip, Mubareka); Department of Laboratory Medicine and Pathobiology (Mubareka), University of Toronto, Toronto, Ont
| | - Christian Bekking
- Division of Infectious Disease (Lee, Smith, Zapernick, Taylor), Department of Medicine, and Department of Laboratory Medicine and Pathology (Zelyas, Tipples), and Division of Nephrology (Klarenbach, So), Department of Medicine, University of Alberta, Edmonton, Alta.; Sunnybrook Research Institute (Bekking, Yip, Mubareka); Department of Laboratory Medicine and Pathobiology (Mubareka), University of Toronto, Toronto, Ont
| | - Helen So
- Division of Infectious Disease (Lee, Smith, Zapernick, Taylor), Department of Medicine, and Department of Laboratory Medicine and Pathology (Zelyas, Tipples), and Division of Nephrology (Klarenbach, So), Department of Medicine, University of Alberta, Edmonton, Alta.; Sunnybrook Research Institute (Bekking, Yip, Mubareka); Department of Laboratory Medicine and Pathobiology (Mubareka), University of Toronto, Toronto, Ont
| | - Lily Yip
- Division of Infectious Disease (Lee, Smith, Zapernick, Taylor), Department of Medicine, and Department of Laboratory Medicine and Pathology (Zelyas, Tipples), and Division of Nephrology (Klarenbach, So), Department of Medicine, University of Alberta, Edmonton, Alta.; Sunnybrook Research Institute (Bekking, Yip, Mubareka); Department of Laboratory Medicine and Pathobiology (Mubareka), University of Toronto, Toronto, Ont
| | - Graham Tipples
- Division of Infectious Disease (Lee, Smith, Zapernick, Taylor), Department of Medicine, and Department of Laboratory Medicine and Pathology (Zelyas, Tipples), and Division of Nephrology (Klarenbach, So), Department of Medicine, University of Alberta, Edmonton, Alta.; Sunnybrook Research Institute (Bekking, Yip, Mubareka); Department of Laboratory Medicine and Pathobiology (Mubareka), University of Toronto, Toronto, Ont
| | - Geoff Taylor
- Division of Infectious Disease (Lee, Smith, Zapernick, Taylor), Department of Medicine, and Department of Laboratory Medicine and Pathology (Zelyas, Tipples), and Division of Nephrology (Klarenbach, So), Department of Medicine, University of Alberta, Edmonton, Alta.; Sunnybrook Research Institute (Bekking, Yip, Mubareka); Department of Laboratory Medicine and Pathobiology (Mubareka), University of Toronto, Toronto, Ont
| | - Samira Mubareka
- Division of Infectious Disease (Lee, Smith, Zapernick, Taylor), Department of Medicine, and Department of Laboratory Medicine and Pathology (Zelyas, Tipples), and Division of Nephrology (Klarenbach, So), Department of Medicine, University of Alberta, Edmonton, Alta.; Sunnybrook Research Institute (Bekking, Yip, Mubareka); Department of Laboratory Medicine and Pathobiology (Mubareka), University of Toronto, Toronto, Ont.
| |
Collapse
|
10
|
Timberlake DT, Strothman K, Grayson MH. Asthma, severe acute respiratory syndrome coronavirus-2 and coronavirus disease 2019. Curr Opin Allergy Clin Immunol 2021; 21:182-187. [PMID: 33399389 DOI: 10.1097/aci.0000000000000720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW In December 2019, a novel respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first described and named coronavirus disease 2019 (COVID-19). Although the knowledge base surrounding COVID-19 and SARS-CoV-2 has grown rapidly, significant gaps in our knowledge remain and inaccurate information continues to circulate. This review will discuss the interaction between asthma and COVID-19 to provide a comprehensive understanding based on the currently available published data. RECENT FINDINGS Non-SARS human coronaviruses (HCoVs) are a significant cause of asthma exacerbations, but SARS-CoV-2 does not appear to exacerbate asthma. Data thus far strongly suggest that patients with asthma are at no increased risk of infection with SARS-CoV-2 or more severe disease if infected with COVID-19. Although the data are extremely limited on inhaled corticosteroids and biologic medications, there remain no data suggesting that these therapeutics positively or negatively impact the severity or outcome of COVID-19. SUMMARY Data are rapidly evolving regarding COVID-19 and asthma. At this time, asthma does not appear to positively or negatively affect outcomes of COVID-19; however, it is imperative that practitioners keep abreast of the changing literature as we await a vaccine and control of this pandemic.
Collapse
Affiliation(s)
- Dylan T Timberlake
- Division of Allergy/Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | | |
Collapse
|
11
|
Sermet-Gaudelus I, Temmam S, Huon C, Behillil S, Gajdos V, Bigot T, Lurier T, Chrétien D, Backovic M, Delaunay-Moisan A, Donati F, Albert M, Foucaud E, Mesplées B, Benoist G, Faye A, Duval-Arnould M, Cretolle C, Charbit M, Aubart M, Auriau J, Lorrot M, Kariyawasam D, Fertitta L, Orliaguet G, Pigneur B, Bader-Meunier B, Briand C, Enouf V, Toubiana J, Guilleminot T, van der Werf S, Leruez-Ville M, Eloit M. Prior infection by seasonal coronaviruses, as assessed by serology, does not prevent SARS-CoV-2 infection and disease in children, France, April to June 2020. Euro Surveill 2021; 26. [PMID: 33797390 PMCID: PMC8017906 DOI: 10.2807/1560-7917.es.2021.26.13.2001782] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/07/2021] [Indexed: 01/10/2023] Open
Abstract
BackgroundChildren have a low rate of COVID-19 and secondary severe multisystem inflammatory syndrome (MIS) but present a high prevalence of symptomatic seasonal coronavirus infections.AimWe tested if prior infections by seasonal coronaviruses (HCoV) NL63, HKU1, 229E or OC43 as assessed by serology, provide cross-protective immunity against SARS-CoV-2 infection.MethodsWe set a cross-sectional observational multicentric study in pauci- or asymptomatic children hospitalised in Paris during the first wave for reasons other than COVID (hospitalised children (HOS), n = 739) plus children presenting with MIS (n = 36). SARS-CoV-2 antibodies directed against the nucleoprotein (N) and S1 and S2 domains of the spike (S) proteins were monitored by an in-house luciferase immunoprecipitation system assay. We randomly selected 69 SARS-CoV-2-seropositive patients (including 15 with MIS) and 115 matched SARS-CoV-2-seronegative patients (controls (CTL)). We measured antibodies against SARS-CoV-2 and HCoV as evidence for prior corresponding infections and assessed if SARS-CoV-2 prevalence of infection and levels of antibody responses were shaped by prior seasonal coronavirus infections.ResultsPrevalence of HCoV infections were similar in HOS, MIS and CTL groups. Antibody levels against HCoV were not significantly different in the three groups and were not related to the level of SARS-CoV-2 antibodies in the HOS and MIS groups. SARS-CoV-2 antibody profiles were different between HOS and MIS children.ConclusionPrior infection by seasonal coronaviruses, as assessed by serology, does not interfere with SARS-CoV-2 infection and related MIS in children.
Collapse
Affiliation(s)
- Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U 1171, Paris, France
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Université de Paris, Paris, France
- These authors contributed equally to the work
| | - Sarah Temmam
- These authors contributed equally to the work
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Christèle Huon
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Sylvie Behillil
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Vincent Gajdos
- Hôpital Antoine Beclere, Clamart, France
- Centre for Research in Epidemiology and Population Health, INSERM UMR1018, Villejuif, France
| | - Thomas Bigot
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Thibaut Lurier
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université de Lyon, INRAE, VetAgro Sup, Usc 1233 UR RS2GP, Marcy l'Etoile, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Marija Backovic
- Unité de Virologie Structurale, Institut Pasteur, Département de Virologie, CNRS, UMR3569, Paris, France
| | - Agnès Delaunay-Moisan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Flora Donati
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Mélanie Albert
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | | | | | | | | | | | - Célia Cretolle
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Marina Charbit
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mélodie Aubart
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Johanne Auriau
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | | | - Laura Fertitta
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gilles Orliaguet
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Bénédicte Pigneur
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | | | - Vincent Enouf
- Plateforme de microbiologie mutualisée (P2M), Pasteur International Bioresources Network (PIBnet), Institut Pasteur, Paris, France
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Julie Toubiana
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Unité Biodiversité et Epidemiologie des Bacteries Pathogènes, Institut Pasteur, Paris, France
- Université de Paris, Paris, France
| | | | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | | | - Marc Eloit
- Ecole Nationale Vétérinaire d'Alfort, Maisons Alfort, France
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Phadke VK, Scanlon N, Jordan SC, Rouphael NG. Immune Responses to SARS-CoV-2 in Solid Organ Transplant Recipients. CURRENT TRANSPLANTATION REPORTS 2021; 8:127-139. [PMID: 33688459 PMCID: PMC7931983 DOI: 10.1007/s40472-021-00322-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Coronavirus disease 2019 (COVID-19) is caused by a complex interplay between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dynamics and host immune responses. Hosts with altered immunity, including solid organ transplant recipients, may be at increased risk of complications and death due to COVID-19. A synthesis of the available data on immune responses to SARS-CoV-2 infection is needed to inform therapeutic and preventative strategies in this special population. RECENT FINDINGS Few studies have directly compared immune responses to SARS-CoV-2 between transplant recipients and the general population. Like non-transplant patients, transplant recipients mount an exuberant inflammatory response following initial SARS-CoV2 infection, with IL-6 levels correlating with disease severity in some, but not all studies. Transplant recipients display anti-SARS-CoV-2 antibodies and activated B cells in a time frame and magnitude similar to non-transplant patients-limited data suggest these antibodies can be detected within 15 days of symptom onset and may be durable for several months. CD4+ and CD8+ T lymphopenia, a hallmark of COVID-19, is more profound in transplant recipients, but SARS-CoV-2-reactive T cells can be detected among patients with both mild and severe disease. SUMMARY The limited available data indicate that immune responses to SARS-CoV-2 are similar between transplant recipients and the general population, but no studies have been sufficiently comprehensive to understand nuances between organ types or level of immunosuppression to meaningfully inform individualized therapeutic decisions. The ongoing pandemic provides an opportunity to generate higher-quality data to support rational treatment and vaccination strategies in this population.
Collapse
Affiliation(s)
- Varun K. Phadke
- Emory University Vaccine and Treatment Evaluation Unit (VTEU), Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, 500 Irvin Court, Suite 200, Decatur, GA 30030 USA
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Emory University, Decatur, GA USA
| | - Nicholas Scanlon
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Emory University, Decatur, GA USA
| | - Stanley C. Jordan
- Department of Medicine, Division of Nephrology, Transplant Immunology Laboratory, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Nadine G. Rouphael
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Emory University, Decatur, GA USA
| |
Collapse
|
13
|
V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19:155-170. [PMID: 33116300 PMCID: PMC7592455 DOI: 10.1038/s41579-020-00468-6] [Citation(s) in RCA: 1767] [Impact Index Per Article: 589.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 pandemic and its unprecedented global societal and economic disruptive impact has marked the third zoonotic introduction of a highly pathogenic coronavirus into the human population. Although the previous coronavirus SARS-CoV and MERS-CoV epidemics raised awareness of the need for clinically available therapeutic or preventive interventions, to date, no treatments with proven efficacy are available. The development of effective intervention strategies relies on the knowledge of molecular and cellular mechanisms of coronavirus infections, which highlights the significance of studying virus-host interactions at the molecular level to identify targets for antiviral intervention and to elucidate critical viral and host determinants that are decisive for the development of severe disease. In this Review, we summarize the first discoveries that shape our current understanding of SARS-CoV-2 infection throughout the intracellular viral life cycle and relate that to our knowledge of coronavirus biology. The elucidation of similarities and differences between SARS-CoV-2 and other coronaviruses will support future preparedness and strategies to combat coronavirus infections.
Collapse
Affiliation(s)
- Philip V'kovski
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Annika Kratzel
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Silvio Steiner
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Choi WI, Kim IB, Park SJ, Ha EH, Lee CW. Comparison of the clinical characteristics and mortality of adults infected with human coronaviruses 229E and OC43. Sci Rep 2021; 11:4499. [PMID: 33627764 PMCID: PMC7904943 DOI: 10.1038/s41598-021-83987-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
The purpose of the study was to compare clinical characteristics and mortality among adults infected with human coronaviruses (HCoV) 229E and OC43. We conducted a retrospective cohort study of adults (≥ 18 years) admitted to the ward of a university teaching hospital for suspected viral infection from October 2012 to December 2017. Multiplex real-time polymerase chain reaction (PCR) was used to test for respiratory viruses. Multivariate logistic regression was used to compare mortality among patients with HCoV 229E and HCoV OC43 infections. The main outcome was 30-day all-cause mortality. Of 8071 patients tested, 1689 were found to have a respiratory virus infection. Of these patients, 133 had HCoV infection, including 12 mixed infections, 44 HCoV 229E infections, and 77 HCoV OC43 infections. HCoV 229E infections peaked in January and February, while HCoV OC43 infections occurred throughout the year. The 30-day all-cause mortality was 25.0% among patients with HCoV 229E infection, and 9.1% among patients with HCoV OC43 infection (adjusted odds ratio: 3.58, 95% confidence interval: 1.19–10.75). Infections with HCoVs 229E and OC43 appear to have different seasonal patterns, and HCoV 229E might be more virulent than HCoV OC43.
Collapse
Affiliation(s)
- Won-Il Choi
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, 55 Hwasu-ro, 14 beon-gil, Deogyang-gu, Goyang-si, Gyeongji-do, 10475, Republic of Korea.
| | - In Byung Kim
- Department of Emergency Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Sang Joon Park
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, 55 Hwasu-ro, 14 beon-gil, Deogyang-gu, Goyang-si, Gyeongji-do, 10475, Republic of Korea
| | - Eun-Hye Ha
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, 55 Hwasu-ro, 14 beon-gil, Deogyang-gu, Goyang-si, Gyeongji-do, 10475, Republic of Korea
| | - Choong Won Lee
- Department of Occupational and Environmental Medicine, Sungso Hospital, Andong, Republic of Korea
| |
Collapse
|
15
|
Esagian SM, Giannis D, Ziogas IA, Gianni P, Sala E, Döhner H. Challenges of Hematopoietic Stem Cell Transplantation in the Era of COVID-19. EXP CLIN TRANSPLANT 2021; 20:237-245. [PMID: 33641657 DOI: 10.6002/ect.2020.0326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic raised unprecedented concerns in the hematopoietic stem cell transplant community. The diagnosis of COVID-19 in these transplant recipients may require extensive laboratory testing and high clinical suspicion, as atypical clinical manifestations or other respiratory viral infections are common in this patient population. The underlying malignancies, immunosuppressed state, frequently observed coinfections, and advanced age in some patients may also predispose them to worse clinical outcomes. Similar outcomes have been previously described with other human coronaviruses, including the severe acute respiratory syndrome coronavirus and the Middle East respiratory syndrome coronavirus. Many hematopoietic stem cell transplant organizations have issued elaborative guidelines that aim to prevent transmission and hence adverse patient outcomes. All potential donors are thoroughly screened, and donated products are cryopreserved in advance. Potential hematopoietic stem cell transplant recipients are also screened, and most nonurgent transplant cases with low risk of progression and/or death are deferred. Current hematopoietic stem cell transplant recipients should adhere to precaution and isolation measures, while their transplant units should also follow strict safety protocols, similar to other infectious outbreaks. The prolonged susceptibility of hematopoietic stem cell transplant recipients to respiratory viral infections might necessitate extending these measures even after the peak of the outbreak until a gradually return to normality is possible.
Collapse
Affiliation(s)
- Stepan M Esagian
- From the Surgery Working Group, Society of Junior Doctors, Athens, Greece
| | | | | | | | | | | |
Collapse
|
16
|
Dilip Pandkar P, Sachdeva V. Pathophysiology of COVID-19 and Host centric approaches of Ayurveda. J Ayurveda Integr Med 2020; 13:100380. [PMID: 33519134 PMCID: PMC7833327 DOI: 10.1016/j.jaim.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
The world is facing a global crisis and health emergency of COVID-19. Understanding of COVID-19 pathophysiology in ayurvedic host centric framework is prerequisite for apt use of Ayurveda. This paper reviews COVID-19 pathophysiology, clinical presentations and prognosis in ayurvedic perspective. Concept of exogenous pathogenic diseases can be traced in fever, microbes, toxins, epidemics and seasonal regimens chapters of Ayurveda. Such exogenous diseases later manifest multi-system presentation according to involvement of different ‘Dosha’ and derangement of ‘Agni’. The pathology of COVID-19 is primarily that of Sannipata Jwara (fever) with involvement of respiratory system. Secondary manifestations include coagulopathies, cardiovascular, neural, and renal complications. Gastrointestinal system is closely associated with respiratory mechanism in ayurvedic pathophysiological conceptualization of Srotas. Abnormal immune responses in COVID-19 are result of abnormalities of Tridosha, Rakta (blood) and Ojus (Vital nectar). The initial phase is Vata-Kapha dominant whereas later stage of aggravated immune response is Vata-Pitta dominant. Alveolar damage, coagulopathies indicate Rakta dhatu vitiation. With this integrative understanding of COVID-19, we propose novel strategies for therapeutics and prophylaxis. Measures for ‘Conservation of Agni-bala’, ‘Attainment of Rakta- Pitta-Prana homeostasis and ‘Protection of Tri-Marma i.e. vital organs’ can be important Host based strategies for reduction in the mortality in COVID-19 and for better clinical outcomes. This host centric approach can make paradigm shift in management of this epidemic.
Collapse
Affiliation(s)
- Prasad Dilip Pandkar
- Department of Kriya sharir (Ayurveda Physiology), Bharati Vidyapeeth Deemed University, College of Ayurveda, Pune, 411043.,Ayurveda Physician, Pune
| | | |
Collapse
|
17
|
López-Pereira P, Iturrate I, de La Cámara R, Cardeñoso L, Alegre A, Aguado B. Can COVID-19 cause severe neutropenia? Clin Case Rep 2020; 8:3349-3351. [PMID: 33363932 PMCID: PMC7752313 DOI: 10.1002/ccr3.3369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/13/2023] Open
Abstract
This is the first case of acquired severe neutropenia in the context of COVID-19 reported to date. This could illustrate another less frequent hematological disorder related to this novel viral infection.
Collapse
Affiliation(s)
| | - Isabel Iturrate
- Hematology Department Hospital Universitario La Princesa Madrid Spain
| | | | - Laura Cardeñoso
- Microbiology Department Hospital Universitario La Princesa Madrid Spain
| | - Adrián Alegre
- Hematology Department Hospital Universitario La Princesa Madrid Spain
| | - Beatriz Aguado
- Hematology Department Hospital Universitario La Princesa Madrid Spain
| |
Collapse
|
18
|
Domínguez-Gil B, Coll E, Fernández-Ruiz M, Corral E, del Río F, Zaragoza R, Rubio JJ, Hernández D. COVID-19 in Spain: Transplantation in the midst of the pandemic. Am J Transplant 2020; 20:2593-2598. [PMID: 32359194 PMCID: PMC7267131 DOI: 10.1111/ajt.15983] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Spain has been one of the most affected countries by the COVID-19 outbreak. As of April 28, 2020, the number of confirmed cases is 210 773, including 102 548 patients recovered, more than 10 300 admitted to the ICU, and 23 822 deaths, with a global case fatality rate of 11.3%. From the perspective of donation and transplantation, the Spanish system first focused on safety issues, providing recommendations for donor evaluation and testing, and to rule out SARS-CoV-2 infection in potential recipients prior to transplantation. Since the country entered into an epidemiological scenario of sustained community transmission and saturation of intensive care, developing donation and transplantation procedures has become highly complex. Since the national state of alarm was declared in Spain on March 13, 2020, the mean number of donors has declined from 7.2 to 1.2 per day, and the mean number of transplants from 16.1 to 2.1 per day. Increased mortality on the waiting list may become a collateral damage of this terrible pandemic.
Collapse
Affiliation(s)
| | | | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Chair of the Group for the Study of Infection in Transplantation and the Immunocompromised Host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Spain
| | - Esther Corral
- Transplant Coordination of the Autonomous Region of the Basque Country, Vitoria, Spain
| | - Francisco del Río
- Transplant Coordination of the Autonomous Region of Madrid, Madrid, Spain
| | - Rafael Zaragoza
- Transplant Coordination of the Autonomous Region of Valencia, Valencia, Spain
| | - Juan J. Rubio
- Intensive Care Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Chair of the Transplant Group of the Spanish Society of Intensive and Critical Care and Coronary Units (SEMICYUC), Spain
| | - Domingo Hernández
- Nephrology Service, Hospital Regional Universitario de Málaga, Málaga, Spain
- IBIMA, RD16/0009/0006, Málaga, Spain
- President of the Spanish Society of Transplantation (SET), Spain
| |
Collapse
|
19
|
Domínguez-Gil B, Coll E, Ferrer-Fàbrega J, Briceño J, Ríos A. Dramatic Impact of the COVID-19 Outbreak on Donation and Transplantation Activities in Spain. CIRUGÍA ESPAÑOLA (ENGLISH EDITION) 2020. [PMCID: PMC7368909 DOI: 10.1016/j.cireng.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Joana Ferrer-Fàbrega
- Cirugía Hepatobiliopancreática y Trasplante Hepático y Pancreático, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Barcelona, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clínic Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Javier Briceño
- Unidad de Cirugía Hepatobiliopancreática y Trasplante Hepático y pancreático, Servicio de Cirugía General y del Aparato Digestivo, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Antonio Ríos
- Unidad de Trasplantes, Hospital Clínico Universitario Virgen de la Arrixaca-IMIB, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
20
|
Domínguez-Gil B, Coll E, Ferrer-Fàbrega J, Briceño J, Ríos A. Dramatic impact of the COVID-19 outbreak on donation and transplantation activities in Spain. Cir Esp 2020; 98:412-414. [PMID: 32362364 PMCID: PMC7164910 DOI: 10.1016/j.ciresp.2020.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Joana Ferrer-Fàbrega
- Cirugía Hepatobiliopancreática y Trasplante Hepático y Pancreático, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Barcelona, España; Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clínic, Barcelona, España; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Universidad de Barcelona, Barcelona, España
| | - Javier Briceño
- Unidad de Cirugía Hepatobiliopancreática y Trasplante Hepático y Pancreático, Servicio de Cirugía General y del Aparato Digestivo, Hospital Universitario Reina Sofía, Córdoba, España
| | - Antonio Ríos
- Unidad de Trasplantes, Hospital Clínico Universitario Virgen de la Arrixaca-IMIB, Universidad de Murcia, Murcia, España
| |
Collapse
|
21
|
Mirjalili M, Shafiekhani M, Vazin A. Coronavirus Disease 2019 (COVID-19) and Transplantation: Pharmacotherapeutic Management of Immunosuppression Regimen. Ther Clin Risk Manag 2020; 16:617-629. [PMID: 32694915 PMCID: PMC7340365 DOI: 10.2147/tcrm.s256246] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
The 2019 novel coronavirus disease (COVID-19) was first detected in Wuhan, Hubei Province, China, in late 2019. Since then, COVID-19 has spread to more than 200 countries in the world, and a global pandemic has been declared by the World Health Organization (WHO). At present, no vaccines or therapeutic regimens with proven efficacy are available for the management of COVID-19. Hydroxychloroquine/chloroquine, lopinavir/ritonavir, ribavirin, interferons, umifenovir, remdesivir, and interleukin antagonists, such as tocilizumab, have been recommended as potential treatment options in COVID-19. Transplant patients receiving immunosuppressant medications are at the highest risk of severe illness from COVID-19. At the same time, with regard to receiving polypharmacy and immunosuppressants, treatment options should be chosen with more attention in this population. Considering drug-drug interactions and adverse effects of medications used for the treatment of COVID-19, such as QT prolongation, the dose reduction of some immunosuppressants or avoidance is recommended in transplant recipients with COVID-19. Thus, this narrative review describes clinically important considerations about the treatment of COVID-19 and immunosuppressive regimens regarding modifications, side effects, and interactions in adult kidney or liver allograft recipients.
Collapse
Affiliation(s)
- Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shafiekhani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Organ Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Ho JSY, Tambyah PA, Ho AFW, Chan MYY, Sia CH. Effect of coronavirus infection on the human heart: A scoping review. Eur J Prev Cardiol 2020; 27:1136-1148. [PMID: 32423250 PMCID: PMC7717245 DOI: 10.1177/2047487320925965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The global coronavirus disease 2019 pandemic has highlighted the importance of understanding the cardiovascular implications of coronavirus infections, with more severe disease in those with cardiovascular co-morbidities, and resulting cardiac manifestations such as myocardial injury, arrhythmias, and heart failure. DESIGN A systematic review of the current knowledge on the effects of coronavirus infection on the cardiovascular system in humans was performed and results were summarized. METHODS Databases such as MEDLINE, EMBASE, CENTRAL, Scopus, Web of Science, ClinicalTrials.gov, Chinese Knowledge Resource Integrated Database and Chinese Clinical Trial Registry were searched on 20 March 2020. RESULTS In total, 135 studies were included, involving severe acute respiratory syndrome, Middle East respiratory syndrome, coronavirus disease 2019 and other coronaviruses. Most were case reports, case series and cohort studies of poor to fair quality. In post-mortem examinations of subjects who died from infection, around half had virus identified in heart tissues in severe acute respiratory syndrome, but none in Middle East respiratory syndrome and coronavirus disease 2019. Cardiac manifestations reported include tachycardia, bradycardia, arrhythmias, and myocardial injury, secondary to both systemic infection and treatment. Cardiac injury and arrhythmias are more prevalent in coronavirus disease 2019, and elevated cardiac markers are associated with intensive care unit admission and death. In severe acute respiratory syndrome, Middle East respiratory syndrome, and coronavirus disease 2019, comorbidities such as hypertension, diabetes mellitus, and heart disease are associated with intensive care unit admission, mechanical ventilation, and mortality. There were cases of misdiagnosis due to overlapping presentations of cardiovascular diseases and coronavirus infections, leading to hospital spread and delayed management of life-threatening conditions. CONCLUSION This review highlighted the ways in which coronaviruses affect cardiovascular function and interacts with pre-existing cardiovascular diseases.
Collapse
Affiliation(s)
- Jamie SY Ho
- />School of Clinical Medicine, University of Cambridge, UK
| | - Paul A Tambyah
- />Division of Infectious Diseases, National University Hospital, Singapore
- />Department of Medicine, National University of Singapore, Singapore
| | - Andrew FW Ho
- />SingHealth Duke-NUS Emergency Medicine Academic Clinical Programme, Singapore
- />Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- />National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Mark YY Chan
- />Department of Medicine, National University of Singapore, Singapore
- />Department of Cardiology, National University Heart Centre, Singapore
| | - Ching-Hui Sia
- />Department of Medicine, National University of Singapore, Singapore
- />Department of Cardiology, National University Heart Centre, Singapore
| |
Collapse
|
23
|
Devaux CA, Rolain JM, Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:425-435. [PMID: 32414646 PMCID: PMC7201239 DOI: 10.1016/j.jmii.2020.04.015] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged in Chinese people in December 2019 and has currently spread worldwide causing the COVID-19 pandemic with more than 150,000 deaths. In order for a SARS-CoV like virus circulating in wild life for a very long time to infect the index case-patient, a number of conditions must be met, foremost among which is the encounter with humans and the presence in homo sapiens of a cellular receptor allowing the virus to bind. Recently it was shown that the SARS-CoV-2 spike protein, binds to the human angiotensin I converting enzyme 2 (ACE2). This molecule is a peptidase expressed at the surface of lung epithelial cells and other tissues, that regulates the renin-angiotensin-aldosterone system. Humans are not equal with respect to the expression levels of the cellular ACE2. Moreover, ACE2 polymorphisms were recently described in human populations. Here we review the most recent evidence that ACE2 expression and/or polymorphism could influence both the susceptibility of people to SARS-CoV-2 infection and the outcome of the COVID-19 disease. Further exploration of the relationship between the virus, the peptidase function of ACE2 and the levels of angiotensin II in SARS-CoV-2 infected patients should help to better understand the pathophysiology of the disease and the multi-organ failures observed in severe COVID-19 cases, particularly heart failure.
Collapse
Affiliation(s)
- Christian A Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
24
|
Jia Q, Shi S, Yuan G, Shi J, Shi S, Hu Y. Analysis of knowledge bases and research hotspots of coronavirus from the perspective of mapping knowledge domain. Medicine (Baltimore) 2020; 99:e20378. [PMID: 32481423 DOI: 10.1097/md.0000000000020378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Coronaviruses have drawn attention since the beginning of the 21st century. Over the past 17 years, coronaviruses have triggered several outbreaks of epidemic in people, which brought great threats to global public health security. We analyzed the publications on coronavirus with bibliometrics software and qualitatively and quantitatively evaluated the knowledge base and hot topics of coronavirus research from 2003 to 2020. METHODS We explored the publications on coronavirus in the Web of Science core collection (WOSCC) from 2003 to 2020. Bibliometric analysis, evaluating knowledge base, and research hotspots were performed based on CiteSpace V (Drexel University, Chaomei Chen). RESULTS There were a total of 8433 publications of coronavirus. The research on coronavirus boomed when a novel coronavirus triggered outbreaks in people. The leading country was the United States, and the leading institution was the University of Hong Kong. The most productive researchers were: Yuen KY, Drosten C, Baric RS. The keywords analysis showed that SARS-CoV, infection, acute respiratory syndrome, antibody, receptor, and spike protein were research hotspots. The research categories analysis showed that virology, microbiology, veterinary sciences, infectious diseases, and biochemistry and molecular biology were hot research categories. CONCLUSIONS Bibliometric analysis of the literature shows the research on coronavirus boomed when a novel coronavirus triggered outbreaks in people. With the end of the epidemic, the research tended to be cooling. Virus identification, pathogenesis, and coronavirus-mediated diseases attracted much attention. We must continue studying the viruses after an outbreak ended.
Collapse
Affiliation(s)
- Qiulei Jia
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shuqing Shi
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Jingjing Shi
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Shuai Shi
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Yuanhui Hu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| |
Collapse
|
25
|
Bianchi F, Bennett D, Alderighi L, Pieroni M, Refini RM, Fossi A, Bargagli E, Mazzei MA, Guazzi G, Cusi MG, Sestini P. Coronavirus HKU 1 infection with bronchiolitis, pericardial effusion and acute respiratory failure in obese adult female. J Asthma 2020; 58:1128-1131. [PMID: 32336170 DOI: 10.1080/02770903.2020.1761981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Seven species of coronavirus cause acute respiratory illness in humans. Coronavirus HKU 1 (CoV HKU 1) was first described in 2005 in an adult patient with pneumonia in Hong Kong. Although it is a well-known respiratory tract pathogen, there is not much information about its role in hospitalized adults, especially in southern Europe. Here, we describe a case of radiologically demonstrated CoV HKU 1-related bronchiolitis with acute respiratory failure in an adult female without significant comorbidities except obesity.
Collapse
Affiliation(s)
- Francesco Bianchi
- Respiratory Diseases Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - David Bennett
- Respiratory Diseases Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Lorenzo Alderighi
- Respiratory Diseases Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Maria Pieroni
- Respiratory Diseases Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Rosa Metella Refini
- Respiratory Diseases Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Antonella Fossi
- Respiratory Diseases Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Maria Antonietta Mazzei
- Diagnostic Imaging Unit, Department of Radiological Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Gianni Guazzi
- Emergency Diagnostic, Department of Emergency and Urgency and Transplants, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Maria Grazia Cusi
- Microbiology and Virology Unit, Department of Innovation, Experimentation and Clinical Research, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Piersante Sestini
- Respiratory Diseases Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| |
Collapse
|
26
|
Sweet SC, Chin H, Conrad C, Hayes D, Heeger PS, Faro A, Goldfarb S, Melicoff-Portillo E, Mohanakumar T, Odim J, Schecter M, Storch GA, Visner G, Williams NM, Kesler K, Danziger-Isakov L. Absence of evidence that respiratory viral infections influence pediatric lung transplantation outcomes: Results of the CTOTC-03 study. Am J Transplant 2019; 19:3284-3298. [PMID: 31216376 PMCID: PMC6883118 DOI: 10.1111/ajt.15505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 01/25/2023]
Abstract
Based on reports in adult lung transplant recipients, we hypothesized that community-acquired respiratory viral infections (CARVs) would be a risk factor for poor outcome after pediatric lung transplant. We followed 61 pediatric lung transplant recipients for 2+ years or until they met a composite primary endpoint including bronchiolitis obliterans syndrome/obliterative bronchiolitis, retransplant, or death. Blood, bronchoalveolar lavage, and nasopharyngeal specimens were obtained with standard of care visits. Nasopharyngeal specimens were obtained from recipients with respiratory viral symptoms. Respiratory specimens were interrogated for respiratory viruses by using multiplex polymerase chain reaction. Donor-specific HLA antibodies, self-antigens, and ELISPOT reactivity were also evaluated. Survival was 84% (1 year) and 68% (3 years). Bronchiolitis obliterans syndrome incidence was 20% (1 year) and 38% (3 years). The primary endpoint was met in 46% of patients. CARV was detected in 156 patient visits (74% enterovirus/rhinovirus). We did not find a relationship between CARV recovery from respiratory specimens and the primary endpoint (hazard ratio 0.64 [95% confidence interval: 0.25-1.59], P = .335) or between CARV and the development of alloimmune or autoimmune humoral or cellular responses. These findings raise the possibility that the immunologic impact of CARV following pediatric lung transplant is different than that observed in adults.
Collapse
Affiliation(s)
| | | | - Carol Conrad
- Lucile Packard Children’s Hospital, Palo Alto, California
| | - Don Hayes
- Nationwide Children’s Hospital, Columbus, Ohio
| | - Peter S. Heeger
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Albert Faro
- Cystic Fibrosis Foundation, Bethesda, Maryland
| | - Samuel Goldfarb
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | - Jonah Odim
- National Institutes of Health, NIAID, Bethesda, Maryland
| | - Marc Schecter
- Cincinnati Children’s Hospital Medical, Center, Cincinnati, OH, USA
| | | | - Gary Visner
- Boston Children’s Hospital, Boston, Massachusetts
| | | | - Karen Kesler
- Rho Federal Systems, Chapel Hill, North Carolina
| | | |
Collapse
|
27
|
Use of whole-genome sequencing in the molecular investigation of care-associated HCoV-OC43 infections in a hematopoietic stem cell transplant unit. J Clin Virol 2019; 122:104206. [PMID: 31783264 PMCID: PMC7106382 DOI: 10.1016/j.jcv.2019.104206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Abstract
HCoV−OC43 is involved in healthcare–associated infections. HCoV−OC43 genotypes B, E, F and G are identified. Asian and European strains of HCoV−OC43 circulate among patients.
Background While respiratory viral infections are recognized as a frequent cause of illness in hematopoietic stem cell transplantation (HSCT) recipients, HCoV−OC43 infections have rarely been investigated as healthcare-associated infections in this population. Objectives In this report, HCoV−OC43 isolates collected from HSCT patients were retrospectively characterized to identify potential clusters of infection that may stand for a hospital transmission. Study design Whole-genome and S gene sequences were obtained from nasal swabs using next-generation sequencing and phylogenetic trees were constructed. Similar identity matrix and determination of the most common ancestor were used to compare clusters of patient’s sequences. Amino acids substitutions were analysed. Results Genotypes B, E, F and G were identified. Two clusters of patients were defined from chronological data and phylogenetic trees. Analyses of amino acids substitutions of the S protein sequences identified substitutions specific for genotype F strains circulating among European people. Conclusions HCoV−OC43 may be implicated in healthcare-associated infections.
Collapse
|
28
|
Ison MG, Hirsch HH. Community-Acquired Respiratory Viruses in Transplant Patients: Diversity, Impact, Unmet Clinical Needs. Clin Microbiol Rev 2019; 32:e00042-19. [PMID: 31511250 PMCID: PMC7399564 DOI: 10.1128/cmr.00042-19] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients undergoing solid-organ transplantation (SOT) or allogeneic hematopoietic cell transplantation (HCT) are at increased risk for infectious complications. Community-acquired respiratory viruses (CARVs) pose a particular challenge due to the frequent exposure pre-, peri-, and posttransplantation. Although influenza A and B viruses have a top priority regarding prevention and treatment, recent molecular diagnostic tests detecting an array of other CARVs in real time have dramatically expanded our knowledge about the epidemiology, diversity, and impact of CARV infections in the general population and in allogeneic HCT and SOT patients. These data have demonstrated that non-influenza CARVs independently contribute to morbidity and mortality of transplant patients. However, effective vaccination and antiviral treatment is only emerging for non-influenza CARVs, placing emphasis on infection control and supportive measures. Here, we review the current knowledge about CARVs in SOT and allogeneic HCT patients to better define the magnitude of this unmet clinical need and to discuss some of the lessons learned from human influenza virus, respiratory syncytial virus, parainfluenzavirus, rhinovirus, coronavirus, adenovirus, and bocavirus regarding diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Michael G Ison
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Respiratory viruses are common in solid organ transplant (SOT) recipients and recognized as a significant cause of mortality and morbidity. This review examines the literature on influenza and noninfluenza viruses in the SOT recipient. RECENT FINDINGS Advances in immunosuppression and antimicrobial prophylaxis have led to improved patient and graft survival, yet respiratory viruses continue to be a common cause of disease in this population. Influenza viruses have received top priority regarding prevention and treatment, whereas advances in molecular diagnostic tests detecting an array of other respiratory viruses have expanded our knowledge about the epidemiology and impact of these viruses in both the general population and SOT patients. Effective treatment and prevention for noninfluenza respiratory viruses are only emerging. SUMMARY Respiratory viruses can contribute to a wide array of symptoms in SOT, particularly in lung transplant recipients. The clinical manifestations, diagnosis, and treatment options for influenza and noninfluenza viruses in SOT patients are reviewed. PCR and related molecular techniques represent the most sensitive diagnostic modalities for detection of respiratory viruses. Early therapy is associated with improved outcomes. Newer classes of antivirals and antibodies are under continuous development for many of these community acquired respiratory viruses.
Collapse
Affiliation(s)
- Hannah H Nam
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
30
|
Kiyuka PK, Agoti CN, Munywoki PK, Njeru R, Bett A, Otieno JR, Otieno GP, Kamau E, Clark TG, van der Hoek L, Kellam P, Nokes DJ, Cotten M. Human Coronavirus NL63 Molecular Epidemiology and Evolutionary Patterns in Rural Coastal Kenya. J Infect Dis 2018; 217:1728-1739. [PMID: 29741740 PMCID: PMC6037089 DOI: 10.1093/infdis/jiy098] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Background Human coronavirus NL63 (HCoV-NL63) is a globally endemic pathogen causing mild and severe respiratory tract infections with reinfections occurring repeatedly throughout a lifetime. Methods Nasal samples were collected in coastal Kenya through community-based and hospital-based surveillance. HCoV-NL63 was detected with multiplex real-time reverse transcription PCR, and positive samples were targeted for nucleotide sequencing of the spike (S) protein. Additionally, paired samples from 25 individuals with evidence of repeat HCoV-NL63 infection were selected for whole-genome virus sequencing. Results HCoV-NL63 was detected in 1.3% (75/5573) of child pneumonia admissions. Two HCoV-NL63 genotypes circulated in Kilifi between 2008 and 2014. Full genome sequences formed a monophyletic clade closely related to contemporary HCoV-NL63 from other global locations. An unexpected pattern of repeat infections was observed with some individuals showing higher viral titers during their second infection. Similar patterns for 2 other endemic coronaviruses, HCoV-229E and HCoV-OC43, were observed. Repeat infections by HCoV-NL63 were not accompanied by detectable genotype switching. Conclusions In this coastal Kenya setting, HCoV-NL63 exhibited low prevalence in hospital pediatric pneumonia admissions. Clade persistence with low genetic diversity suggest limited immune selection, and absence of detectable clade switching in reinfections indicates initial exposure was insufficient to elicit a protective immune response.
Collapse
Affiliation(s)
- Patience K Kiyuka
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Charles N Agoti
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
- School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - Patrick K Munywoki
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Regina Njeru
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Anne Bett
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - James R Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Grieven P Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Everlyn Kamau
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Academic Medical Center of the University of Amsterdam, the Netherlands
| | - Paul Kellam
- Department of Medicine, Division of Infectious Diseases, Imperial College London
- Kymab Ltd., Babraham Research Campus, Cambridge
| | - D James Nokes
- Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme
- School of Life Sciences and Zeeman Institute, University of Warwick, Coventry
| | - Matthew Cotten
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
31
|
Ogimi C, Waghmare AA, Kuypers JM, Xie H, Yeung CC, Leisenring WM, Seo S, Choi SM, Jerome KR, Englund JA, Boeckh M. Clinical Significance of Human Coronavirus in Bronchoalveolar Lavage Samples From Hematopoietic Cell Transplant Recipients and Patients With Hematologic Malignancies. Clin Infect Dis 2018; 64:1532-1539. [PMID: 28329354 PMCID: PMC5434339 DOI: 10.1093/cid/cix160] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Background. The possible role of human coronavirus (HCoV) in lower respiratory tract disease (LRTD) in hematopoietic cell transplant (HCT) recipients and patients with hematologic malignancies (HM) has not been well studied. Methods. We conducted a retrospective review of HCT/HM patients with HCoV detected in bronchoalveolar lavage (BAL). HCoV strains were identified in BAL samples using strain-specific polymerase chain reaction. Mortality rates were compared among HCT recipients with LRTD caused by HCoV, respiratory syncytial virus (RSV), influenza virus, or parainfluenza virus (PIV) by multivariable Cox regression analysis. Results. We identified 35 patients (37 episodes) with HCoV LRTD. Among 23 available BAL samples, 48% were strain OC43, 22% were NL63, 17% were 229E, and 13% were HKU1. Overall, 21 patients (60%) required oxygen therapy at diagnosis and 19 (54%) died within 90 days of diagnosis. Respiratory copathogens were detected in 21 episodes (57%), including viruses (n = 12), fungi (n = 10), and bacteria (n = 8). Mortality rates were not different between patients with and without copathogens (P = .65). In multivariable models, mortality associated with HCoV LRTD was similar to that seen with RSV, influenza, and PIV LRTD in HCT recipients (adjusted hazard ratio, 1.34 [95% confidence interval, .66–2.71], P = .41 vs RSV, adjusted for cell source, cytopenia, copathogens, oxygen use, and steroid use). Conclusions. HCoV LRTD in patients with HCT or HM is associated with high rates of oxygen use and mortality. Mortality associated with HCoV LRTD in HCT recipients appears to be similar to that seen with RSV, influenza virus, and PIV.
Collapse
Affiliation(s)
- Chikara Ogimi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Pediatrics, University of Washington.,Pediatric Infectious Diseases Division, Seattle Children's Hospital
| | - Alpana A Waghmare
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Pediatrics, University of Washington.,Pediatric Infectious Diseases Division, Seattle Children's Hospital
| | - Jane M Kuypers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Laboratory Medicine, University of Washington
| | - Hu Xie
- Clinical Research Division and
| | - Cecilia C Yeung
- Clinical Research Division and.,Molecular Oncology Laboratory, Fred Hutchinson Cancer Research Center, and
| | - Wendy M Leisenring
- Clinical Research Division and.,Department of Biostatistics, University of Washington, Seattle, Washington
| | - Sachiko Seo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Hematology and Oncology, National Cancer Research Center East, Chiba, Japan
| | - Su-Mi Choi
- Department of Internal Medicine, College of Medicine, Catholic University of Korea, Seoul; and
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Laboratory Medicine, University of Washington
| | - Janet A Englund
- Department of Pediatrics, University of Washington.,Pediatric Infectious Diseases Division, Seattle Children's Hospital
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Clinical Research Division and.,Department of Medicine, University of Washington, Seattle
| |
Collapse
|
32
|
Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 2017; 23:130-137. [PMID: 29052924 PMCID: PMC7169239 DOI: 10.1111/resp.13196] [Citation(s) in RCA: 633] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/28/2017] [Accepted: 09/17/2017] [Indexed: 11/29/2022]
Abstract
Human coronaviruses (HCoVs) have been considered to be relatively harmless respiratory pathogens in the past. However, after the outbreak of the severe acute respiratory syndrome (SARS) and emergence of the Middle East respiratory syndrome (MERS), HCoVs have received worldwide attention as important pathogens in respiratory tract infection. This review focuses on the epidemiology, pathogenesis and clinical characteristics among SARS-coronaviruses (CoV), MERS-CoV and other HCoV infections.
Collapse
Affiliation(s)
- Yudong Yin
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
33
|
Kanwar A, Selvaraju S, Esper F. Human Coronavirus-HKU1 Infection Among Adults in Cleveland, Ohio. Open Forum Infect Dis 2017; 4:ofx052. [PMID: 28616442 PMCID: PMC5466428 DOI: 10.1093/ofid/ofx052] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/20/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human coronaviruses (CoV) have been long recognized as a common cause of respiratory tract disease including severe respiratory tract illness. Coronavirus-HKU1 has been described predominantly among children less than 5 years of age in the United States with few studies characterizing the disease spectrum among adults. METHODS Nasopharyngeal specimens of patients with respiratory symptoms were analyzed for CoV-HKU1 by NxTAG Respiratory Pathogen Panel multiplex assay from February 7, 2016 to April 30, 2016. Epidemiologic, clinical, and laboratory data were collected on adults (patients >18 years) whose samples screened positive. RESULTS Of 832 adult respiratory specimens screened, 13 (1.6%) cases of CoV-HKU1 were identified. Adults age ranged between 23 and 75 years and 6 (46%) were males. All of whom had 1 or more respiratory symptoms, and 5 (38%) also reported 1 or more gastrointestinal symptoms. Eleven (85%) reported history of smoking and 5 (38%) used inhaled steroids. Seven (54%) required hospitalization, 5 (71%) of these needed supplemental oxygen, and 2 (29%) were admitted to intensive care. Median length of hospitalization was 5 days. Eight (62%) received antibiotics despite identification of CoV-HKU1. Infectious work-up in 1 patient who died did not reveal any other pathogen. In 2 (15%) CoV-HKU1-positive adults, the only viral coinfection detected was influenza A. CONCLUSIONS Coronavirus-HKU1 accounted for 1.6% of adult respiratory infections and should be considered in differential diagnosis of severe respiratory illnesses among adults.
Collapse
Affiliation(s)
- Anubhav Kanwar
- Department of Internal Medicine, Division of Infectious Diseases and HIV Medicine and
| | - Suresh Selvaraju
- Department of Pathology, MetroHealth Medical Center, Cleveland, Ohio
| | - Frank Esper
- Department of Pediatrics, Division of Infectious Diseases, University Hospitals, Cleveland Medical Center, Ohio
| |
Collapse
|
34
|
Al-Khannaq MN, Ng KT, Oong XY, Pang YK, Takebe Y, Chook JB, Hanafi NS, Kamarulzaman A, Tee KK. Diversity and Evolutionary Histories of Human Coronaviruses NL63 and 229E Associated with Acute Upper Respiratory Tract Symptoms in Kuala Lumpur, Malaysia. Am J Trop Med Hyg 2016; 94:1058-64. [PMID: 26928836 DOI: 10.4269/ajtmh.15-0810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/13/2016] [Indexed: 01/06/2023] Open
Abstract
The human alphacoronaviruses HCoV-NL63 and HCoV-229E are commonly associated with upper respiratory tract infections (URTI). Information on their molecular epidemiology and evolutionary dynamics in the tropical region of southeast Asia however is limited. Here, we analyzed the phylogenetic, temporal distribution, population history, and clinical manifestations among patients infected with HCoV-NL63 and HCoV-229E. Nasopharyngeal swabs were collected from 2,060 consenting adults presented with acute URTI symptoms in Kuala Lumpur, Malaysia, between 2012 and 2013. The presence of HCoV-NL63 and HCoV-229E was detected using multiplex polymerase chain reaction (PCR). The spike glycoprotein, nucleocapsid, and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference. A total of 68/2,060 (3.3%) subjects were positive for human alphacoronavirus; HCoV-NL63 and HCoV-229E were detected in 45 (2.2%) and 23 (1.1%) patients, respectively. A peak in the number of HCoV-NL63 infections was recorded between June and October 2012. Phylogenetic inference revealed that 62.8% of HCoV-NL63 infections belonged to genotype B, 37.2% was genotype C, while all HCoV-229E sequences were clustered within group 4. Molecular dating analysis indicated that the origin of HCoV-NL63 was dated to 1921, before it diverged into genotype A (1975), genotype B (1996), and genotype C (2003). The root of the HCoV-229E tree was dated to 1955, before it diverged into groups 1-4 between the 1970s and 1990s. The study described the seasonality, molecular diversity, and evolutionary dynamics of human alphacoronavirus infections in a tropical region.
Collapse
Affiliation(s)
- Maryam Nabiel Al-Khannaq
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kim Tien Ng
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Xiang Yong Oong
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yong Kek Pang
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yutaka Takebe
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jack Bee Chook
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nik Sherina Hanafi
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Keng Tee
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Al-Khannaq MN, Ng KT, Oong XY, Pang YK, Takebe Y, Chook JB, Hanafi NS, Kamarulzaman A, Tee KK. Molecular epidemiology and evolutionary histories of human coronavirus OC43 and HKU1 among patients with upper respiratory tract infections in Kuala Lumpur, Malaysia. Virol J 2016; 13:33. [PMID: 26916286 PMCID: PMC4766700 DOI: 10.1186/s12985-016-0488-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/11/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Despite the worldwide circulation of human coronavirus OC43 (HCoV-OC43) and HKU1 (HCoV-HKU1), data on their molecular epidemiology and evolutionary dynamics in the tropical Southeast Asia region is lacking. METHODS The study aimed to investigate the genetic diversity, temporal distribution, population history and clinical symptoms of betacoronavirus infections in Kuala Lumpur, Malaysia between 2012 and 2013. A total of 2,060 adults presented with acute respiratory symptoms were screened for the presence of betacoronaviruses using multiplex PCR. The spike glycoprotein, nucleocapsid and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference. RESULTS A total of 48/2060 (2.4 %) specimens were tested positive for HCoV-OC43 (1.3 %) and HCoV-HKU1 (1.1 %). Both HCoV-OC43 and HCoV-HKU1 were co-circulating throughout the year, with the lowest detection rates reported in the October-January period. Phylogenetic analysis of the spike gene showed that the majority of HCoV-OC43 isolates were grouped into two previously undefined genotypes, provisionally assigned as novel lineage 1 and novel lineage 2. Sign of natural recombination was observed in these potentially novel lineages. Location mapping showed that the novel lineage 1 is currently circulating in Malaysia, Thailand, Japan and China, while novel lineage 2 can be found in Malaysia and China. Molecular dating showed the origin of HCoV-OC43 around late 1950s, before it diverged into genotypes A (1960s), B (1990s), and other genotypes (2000s). Phylogenetic analysis revealed that 27.3 % of the HCoV-HKU1 strains belong to genotype A while 72.7 % belongs to genotype B. The tree root of HCoV-HKU1 was similar to that of HCoV-OC43, with the tMRCA of genotypes A and B estimated around the 1990s and 2000s, respectively. Correlation of HCoV-OC43 and HCoV-HKU1 with the severity of respiratory symptoms was not observed. CONCLUSIONS The present study reported the molecular complexity and evolutionary dynamics of human betacoronaviruses among adults with acute respiratory symptoms in a tropical country. Two novel HCoV-OC43 genetic lineages were identified, warranting further investigation on their genotypic and phenotypic characteristics.
Collapse
Affiliation(s)
| | - Kim Tien Ng
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Xiang Yong Oong
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Yong Kek Pang
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Yutaka Takebe
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
- AIDS Research Center, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan.
- School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan.
| | - Jack Bee Chook
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Nik Sherina Hanafi
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
36
|
Fischer SA. Emerging and Rare Viral Infections in Transplantation. TRANSPLANT INFECTIONS 2016. [PMCID: PMC7122901 DOI: 10.1007/978-3-319-28797-3_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunocompromised patients such as those undergoing solid organ or hematopoietic stem cell transplantation are at substantial risk for infection with numerous pathogens. Infections with cytomegalovirus (CMV), herpes simplex virus (HSV), Epstein–Barr virus (EBV), and human herpesvirus-6 (HHV-6) are well-described complications of transplantation. As viruses previously believed to be quiescent through widespread vaccination (e.g., measles and mumps) reemerge and molecular diagnostic techniques are refined, rare and emerging viral infections are increasingly diagnosed in transplant recipients. This chapter will review the clinical manifestations, diagnosis, and potential antiviral therapies for these viruses in the transplant population.
Collapse
|
37
|
Gorse GJ, Donovan MM, Patel GB, Balasubramanian S, Lusk RH. Coronavirus and Other Respiratory Illnesses Comparing Older with Young Adults. Am J Med 2015; 128:1251.e11-20. [PMID: 26087047 PMCID: PMC7093847 DOI: 10.1016/j.amjmed.2015.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 11/01/2022]
Abstract
BACKGROUND Study of human coronavirus and other virus-associated respiratory illnesses is needed to describe their clinical effects on chronically ill, older adults. METHODS A prospective study during 2009 to 2013 clinically assessed acute respiratory illnesses soon after onset and 3 to 4 weeks later in patients aged ≥60 years with chronic lung and heart diseases (group 1, 100 subjects) and healthy adults aged 18 to 40 years (group 2, 101 subjects). Respiratory secretions were tested for nucleic acids of a panel of respiratory viruses. An increase in antibody titer was assessed for 4 coronavirus strains. RESULTS Virus-associated illnesses (29 [39.1%] of 74 illnesses in group 1 and 59 [48.7%] of 121 illnesses in group 2) occurred in all calendar quarters, most commonly in the first and fourth quarters. Coronaviruses (group 1: 14 [18.9%] illnesses; group 2: 26 [21.5%] illnesses) and enteroviruses/rhinoviruses (group 1: 14 [18.9%] illnesses; group 2: 37 [30.6%] illnesses) were most common. Virus co-infections occurred in 10 illnesses. Illnesses with 9 to 11 symptoms were more common in group 1 (17 [23.0%]) than in group 2 (15 [12.4%]) (P < .05). Compared with group 2, more group 1 subjects reported dyspnea, more severe disease of longer duration, and treatment for acute illness with prednisone and antibiotics. Coronavirus-associated illnesses (percent of illnesses, group 1 vs group 2) were characterized by myalgias (21% vs 68%, P < .01), chills (50% vs 52%), dyspnea (71% vs 24%, P < .01), headache (64% vs 72%), malaise (64% vs 84%), cough (86% vs 68%), sputum production (86% vs 60%), sore throat (64% vs 80%), and nasal congestion (93% vs 96%). CONCLUSIONS Respiratory illnesses were commonly associated with coronaviruses and enteroviruses/rhinoviruses affecting chronically ill, older patients more than healthy, young adults.
Collapse
Affiliation(s)
- Geoffrey J Gorse
- Section of Infectious Diseases, VA St Louis Health Care System, and Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St Louis, Mo.
| | - Mary M Donovan
- Research Service, VA St Louis Health Care System, and Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St Louis, Mo
| | - Gira B Patel
- Research Service, VA St Louis Health Care System, and Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St Louis, Mo
| | - Sumitra Balasubramanian
- Research Service, VA St Louis Health Care System, and Washington University in St Louis, St Louis, Mo
| | - Rodney H Lusk
- Section of Infectious Diseases, VA St Louis Health Care System, and Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St Louis, Mo
| |
Collapse
|
38
|
Eccles R, Winther B, Johnston SL, Robinson P, Trampisch M, Koelsch S. Efficacy and safety of iota-carrageenan nasal spray versus placebo in early treatment of the common cold in adults: the ICICC trial. Respir Res 2015; 16:121. [PMID: 26438038 PMCID: PMC4595062 DOI: 10.1186/s12931-015-0281-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/18/2015] [Indexed: 12/03/2022] Open
Abstract
Abstract Iota-carrageenan (I-C) is active against respiratory viruses in vitro and was effective as nasal spray in three previous clinical trials. The current trial served to further investigate I-C in patients with early common cold symptoms. Methods This randomized, placebo-controlled, double-blind phase IV trial was conducted in 200 adult patients with self-diagnosed colds of <48 h’ duration that were confirmed by baseline cold symptom scores. Patients were to self-administer 0.12 % I-C or placebo spray (NaCl 0.5 %) four times daily for four to ten days and record symptom information for ten days. Common respiratory viruses were quantified by RT-PCR during pretreatment and on Day 3 or 4. The primary endpoint was the mean total symptom score (TSS) of eight cold symptoms on Days 2–4 (TSS2–4). Results Patients in both treatment groups had similar baseline TSSs (mean TSS: 6.75 for I-C and 6.79 for placebo). Viruses were detected in baseline samples from 53 of 98 I-C patients (54.1 %) and 54 of 97 placebo patients (55.7 %). Mean ± SE for TSS2–4 was 5.78 ± 0.25 for I-C patients and 6.39 ± 0.25 for placebo (p = 0.0895). Exploratory analyses after unblinding (TSS2–4 excluding a patient with aberrantly high symptom scores [TSS2–4, ex 1pt]; mean of TSS over Days 1–4 [TSS1–4]; change in TSS1–4 relative to baseline [TSS1–4, rel]) demonstrated treatment differences in favor of I-C (p = 0.0364, p = 0.0495 and p = 0.0421, respectively). For patients with quantifiable rhinovirus/enterovirus at baseline, there was a trend towards greater reduction of virus load at Day 3 or 4 (p = 0.0958; I-C: 90.2 % reduction in viral load; placebo: 72.0 %). Treatments were well tolerated with no differences in adverse event rates. Conclusions The primary endpoint did not demonstrate a statistically significant difference between I-C and placebo but showed a trend towards I-C benefit. Exploratory analyses indicated significant reduction of cold symptoms in the I-C group relative to placebo during the first four days when symptoms were most severe, and also substantiated I-C’s activity against rhinovirus/enterovirus. Trial registration NCT01944631 (clinicaltrials.gov)
Collapse
Affiliation(s)
- R Eccles
- Common Cold Centre, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - B Winther
- Respiratory Disease Study Center, University of Virginia, Charlottesville, VA, USA
| | - S L Johnston
- Airway Disease Infection Section & MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College, London, UK
| | - P Robinson
- Boehringer Ingelheim Pharmaceuticals Inc., Therapeutic Area Virology, Ridgefield, CT, USA
| | - M Trampisch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biometrics & Data Management, Ingelheim/Rhein, 55216, Germany
| | - S Koelsch
- Boehringer Ingelheim Pharma GmbH & Co. KG, CHC Development, Medicine & Regulatory Affairs, Ingelheim/Rhein, 55216, Germany.
| |
Collapse
|
39
|
Hakki M, Rattray RM, Press RD. The clinical impact of coronavirus infection in patients with hematologic malignancies and hematopoietic stem cell transplant recipients. J Clin Virol 2015; 68:1-5. [PMID: 26071326 PMCID: PMC7106547 DOI: 10.1016/j.jcv.2015.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Compared to other respiratory viruses, relatively little is known about the clinical impact of coronavirus (CoV) infection after hematopoietic stem cell transplant (HSCT) or in patients with hematologic malignancies. OBJECTIVES To characterize the role of CoV in respiratory tract infections among HSCT and hematologic malignancy patients. STUDY DESIGN We conducted a retrospective review of all cases of CoV infection documented by polymerase chain reaction, (PCR)-based testing on nasopharyngeal and bronchoalveolar lavage fluid samples between June 2010 and 2013. Cases of CoV infection occurring in HSCT and hematologic malignancy patients were identified and the clinical characteristics of these cases were compared to other respiratory viruses. RESULTS CoV was identified in 2.6% (n=43) of all samples analyzed (n=1661) and in 6.8% of all samples testing positive for a respiratory virus (n=631). 33 of 38 (86.8%) of patients in whom CoV was identified were HSCT and hematologic malignancy patients. Among these patients, CoV was detected in 9.7% of unique infection episodes, with only rhinovirus/enterovirus (RhV/EnV) infection being more common. Group I CoV subtypes accounted for 76.3% of cases, and 57% of infections were diagnosed between December and March. CoV infection was associated with upper respiratory tract symptoms in most patients, similar to other respiratory viruses. Possible and proven lower respiratory tract disease was less common compared to other respiratory viruses except RhV/EnV. CONCLUSIONS CoV is frequently detected in HSCT and hematologic malignancy patients in whom suspicion for a respiratory viral infection exists, but is less likely to progress to lower respiratory tract disease than most other respiratory viruses.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Infectious Diseases, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L457, 97239 Portland, OR, USA.
| | - Rogan M Rattray
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Richard D Press
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
40
|
Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance. J Virol 2014; 88:11886-98. [PMID: 25100843 DOI: 10.1128/jvi.01528-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Viral protease inhibitors are remarkably effective at blocking the replication of viruses such as human immunodeficiency virus and hepatitis C virus, but they inevitably lead to the selection of inhibitor-resistant mutants, which may contribute to ongoing disease. Protease inhibitors blocking the replication of coronavirus (CoV), including the causative agents of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), provide a promising foundation for the development of anticoronaviral therapeutics. However, the selection and consequences of inhibitor-resistant CoVs are unknown. In this study, we exploited the model coronavirus, mouse hepatitis virus (MHV), to investigate the genotype and phenotype of MHV quasispecies selected for resistance to a broad-spectrum CoV 3C-like protease (3CLpro) inhibitor. Clonal sequencing identified single or double mutations within the 3CLpro coding sequence of inhibitor-resistant virus. Using reverse genetics to generate isogenic viruses with mutant 3CLpros, we found that viruses encoding double-mutant 3CLpros are fully resistant to the inhibitor and exhibit a significant delay in proteolytic processing of the viral replicase polyprotein. The inhibitor-resistant viruses also exhibited postponed and reduced production of infectious virus particles. Biochemical analysis verified double-mutant 3CLpro enzyme as impaired for protease activity and exhibiting reduced sensitivity to the inhibitor and revealed a delayed kinetics of inhibitor hydrolysis and activity restoration. Furthermore, the inhibitor-resistant virus was shown to be highly attenuated in mice. Our study provides the first insight into the pathogenicity and mechanism of 3CLpro inhibitor-resistant CoV mutants, revealing a low genetic barrier but high fitness cost of resistance. Importance: RNA viruses are infamous for their ability to evolve in response to selective pressure, such as the presence of antiviral drugs. For coronaviruses such as the causative agent of Middle East respiratory syndrome (MERS), protease inhibitors have been developed and shown to block virus replication, but the consequences of selection of inhibitor-resistant mutants have not been studied. Here, we report the low genetic barrier and relatively high deleterious consequences of CoV resistance to a 3CLpro protease inhibitor in a coronavirus model system, mouse hepatitis virus (MHV). We found that although mutations that confer resistance arise quickly, the resistant viruses replicate slowly and do not cause lethal disease in mice. Overall, our study provides the first analysis of the low barrier but high cost of resistance to a CoV 3CLpro inhibitor, which will facilitate the further development of protease inhibitors as anti-coronavirus therapeutics.
Collapse
|
41
|
The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol Biol Rep 2014; 41:1703-11. [PMID: 24413991 PMCID: PMC3933739 DOI: 10.1007/s11033-014-3019-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
Extracts of Anthemis hyalina (Ah), Nigella sativa (Ns) and peels of Citrus sinensis (Cs) have been used as folk medicine to fight antimicrobial diseases. To evaluate the effect of extracts of Ah, Ns and Cs on the replication of coronavirus (CoV) and on the expression of TRP genes during coronavirus infection, HeLa-CEACAM1a (HeLa-epithelial carcinoembryonic antigen-related cell adhesion molecule 1a) cells were inoculated with MHV-A59 (mouse hepatitis virus–A59) at moi of 30. 1/50 dilution of the extracts was found to be the safe active dose. ELISA kits were used to detect the human IL-8 levels. Total RNA was isolated from the infected cells and cDNA was synthesized. Fluidigm Dynamic Array nanofluidic chip 96.96 was used to analyze the mRNA expression of 21 TRP genes and two control genes. Data was analyzed using the BioMark digital array software. Determinations of relative gene expression values were carried out by using the 2−∆∆Ct method (normalized threshold cycle (Ct) value of sample minus normalized Ct value of control). TCID50/ml (tissue culture infectious dose that will produce cytopathic effect in 50 % of the inoculated tissue culture cells) was found for treatments to determine the viral loads. The inflammatory cytokine IL-8 level was found to increase for both 24 and 48 h time points following Ns extract treatment. TRPA1, TRPC4, TRPM6, TRPM7, TRPM8 and TRPV4 were the genes which expression levels changed significantly after Ah, Ns or Cs extract treatments. The virus load decreased when any of the Ah, Ns or Cs extracts was added to the CoV infected cells with Ah extract treatment leading to undetectable virus load for both 6 and 8hpi. Although all the extract treatments had an effect on IL-8 secretion, TRP gene expression and virus load after CoV infection, it was the Ah extract treatment that showed the biggest difference in virus load. Therefore Ah extract is the best candidate in our hands that contains potential treatment molecule(s).
Collapse
|
42
|
Drieghe S, Ryckaert I, Beuselinck K, Lagrou K, Padalko E. Epidemiology of respiratory viruses in bronchoalveolar lavage samples in a tertiary hospital. J Clin Virol 2014; 59:208-11. [PMID: 24447853 PMCID: PMC7172540 DOI: 10.1016/j.jcv.2013.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/28/2013] [Accepted: 12/23/2013] [Indexed: 01/26/2023]
Abstract
Background The prevalence of respiratory viruses in adults is largely underexplored, as most studies focus on children. Additionally, in severely ill or immunocompromised adults, where respiratory infections are mostly attributed to bacteria and fungi; respiratory viruses can lead to severe complications. Objectives To evaluate the epidemiology of respiratory viruses in bronchoalveolar lavage fluid (BAL) specimens from patients with lower respiratory tract disease. The study population consisted of different groups including immunocompetent patients (control patients), solid organ transplant recipients, patients with haematological malignancies and other immunocompromised adults. Study design A total of 134 BAL fluid specimens collected during 2009–2011 were retrospectively assessed with the new commercial multiplex real-time PCR FTD Respiratory 21 Plus®, targeting 18 different viruses and 2 atypical bacterial pathogens. Results Viral or atypical bacterial pathogens were detected in 29.1% of BAL fluid specimens. Coronaviruses were most prevalent (13.4%), followed by rhinoviruses (5.2%), RSV (4.5%) and bocaviruses (3.7%). Comparing the total number of viruses detected, a statistically significant difference was observed between the control group and patients with haematological malignancies (27.5% vs. 57.1%, p < 0.05). Conclusion In conclusion, our study highlights the high prevalence of respiratory viruses in BAL fluid specimens from adult patients with lower respiratory tract disease. The methods to be used should be sensitive and cover a wide range of potential pathogens. The specific patient population can also influence the detection rates of respiratory viruses.
Collapse
Affiliation(s)
- Stefanie Drieghe
- Department of Clinical Chemistry, Microbiology and Immunology, University Hospital Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | - Inge Ryckaert
- Department of Clinical Chemistry, Microbiology and Immunology, University Hospital Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | - Kurt Beuselinck
- Department of Microbiology & Immunology, KU Leuven and Clinical Department Laboratory Medicine University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology & Immunology, KU Leuven and Clinical Department Laboratory Medicine University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Elizaveta Padalko
- Department of Clinical Chemistry, Microbiology and Immunology, University Hospital Ghent, De Pintelaan 185, 9000 Ghent, Belgium; School of Life Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
43
|
Wang SM, Huang KJ, Wang CT. BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface. Virology 2013; 449:287-96. [PMID: 24418563 PMCID: PMC7111910 DOI: 10.1016/j.virol.2013.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/09/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
Abstract
Bone marrow stromal antigen 2 (BST2), an interferon-inducible antiviral factor, has been shown to block the release of various enveloped viruses from cells. It has also been identified as an innate immune system component. Most enveloped viruses subject to BST2 restriction bud at the plasma membrane. Here we report our findings that (a) the production of human coronavirus 229E (HCoV-229E) progeny viruses, whose budding occurs at the ER-Golgi intermediate compartment (ERGIC), markedly decreases in the presence of BST2; and (b) BST2 knockdown expression results in enhanced HCoV-229E virion production. Electron microscopy analyses indicate that HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. Our results suggest that BST2 exerts a broad blocking effect against enveloped virus release, regardless of whether budding occurs at the plasma membrane or intracellular compartments.
Collapse
Affiliation(s)
- Shiu-Mei Wang
- Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuo-Jung Huang
- Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan
| | - Chin-Tien Wang
- Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
44
|
Armour PA, Nguyen LM, Lutman ML, Middaugh JP. Evaluation of the novel respiratory virus surveillance program: Pediatric Early Warning Sentinel Surveillance (PEWSS). Public Health Rep 2013; 128 Suppl 2:88-96. [PMID: 23997308 DOI: 10.1177/00333549131280s213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Infections caused by respiratory viruses are associated with recurrent epidemics and widespread morbidity and mortality. Routine surveillance of these pathogens is necessary to determine virus activity, monitor for changes in circulating strains, and plan for public health preparedness. The Southern Nevada Health District in Las Vegas, Nevada, recruited five pediatric medical practices to serve as sentinel sites for the Pediatric Early Warning Sentinel Surveillance (PEWSS) program. METHODS Sentinel staff collected specimens throughout the year from ill children who met the influenza-like illness case definition and submitted specimens to the Southern Nevada Public Health Laboratory for molecular testing for influenza and six non-influenza viruses. RESULTS Laboratory results were analyzed and reported to the medical and general communities in weekly bulletins year-round. PEWSS data were also used to establish viral respiratory seasonal baselines and in influenza vaccination campaigns. The surveillance program was evaluated using the Centers for Disease Control and Prevention's (CDC's) Updated Guidelines for Evaluating Public Health Surveillance Systems. PEWSS met three of six program usefulness criteria and seven of nine surveillance system attributes, which exceeded the CDC Guidelines evaluation criteria for a useful and complete public health surveillance program. CONCLUSION We found that PEWSS is a useful and complete public health surveillance system that is simple, flexible, accessible, and stable.
Collapse
|
45
|
Elevated inflammatory markers combined with positive pneumococcal urinary antigen are a good predictor of pneumococcal community-acquired pneumonia in children. Pediatr Infect Dis J 2013; 32:1175-9. [PMID: 23694836 DOI: 10.1097/inf.0b013e31829ba62a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Our objective was to evaluate procalcitonin (PCT) and C-reactive protein (CRP) as predictors of a pneumococcal etiology in community-acquired pneumonia (CAP) in hospitalized children. METHODS Children requiring hospitalization for CAP were prospectively enrolled. The following indices were determined: antibodies against pneumococcal surface proteins (anti-PLY, pneumococcal histidine triad D, pneumococcal histidine triad E, LytB and pneumococcal choline-binding protein A), viral serology, nasopharyngeal cultures and polymerase chain reaction for 13 respiratory viruses, blood pneumococcal polymerase chain reaction, pneumococcal urinary antigen, PCT and CRP. Presumed pneumococcal CAP (P-CAP) was defined as a positive blood culture or polymerase chain reaction for Streptococcus pneumoniae or as a pneumococcal surface protein seroresponse (≥2-fold increase). RESULTS Seventy-five patients were included from which 37 (49%) met the criteria of P-CAP. Elevated PCT and CRP values were strongly associated with P-CAP with odds ratios of 23 (95% confidence interval: 5-117) for PCT and 19 (95% confidence interval: 5-75) for CRP in multivariate analysis. The sensitivity was 94.4% for PCT (cutoff: 1.5 ng/mL) and 91.9% for CRP (cutoff: 100 mg/L). A value≤0.5 ng/mL of PCT ruled out P-CAP in >90% of cases (negative likelihood ratio: 0.08). Conversely, a PCT value≥1.5 ng/mL associated with a positive pneumococcal urinary antigen had a diagnostic probability for P-CAP of almost 80% (positive likelihood ratio: 4.59). CONCLUSIONS PCT and CRP are reliable predictors of P-CAP. Low cutoff values of PCT allow identification of children at low risk of P-CAP. The association of elevated PCT or CRP with a positive pneumococcal urinary antigen is a strong predictor of P-CAP.
Collapse
|
46
|
Zhou W, Wang W, Wang H, Lu R, Tan W. First infection by all four non-severe acute respiratory syndrome human coronaviruses takes place during childhood. BMC Infect Dis 2013; 13:433. [PMID: 24040960 PMCID: PMC3848659 DOI: 10.1186/1471-2334-13-433] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 08/27/2013] [Indexed: 11/24/2022] Open
Abstract
Background Non-severe acute respiratory syndrome (non-SARS)-related human coronaviruses (HCoVs), including HCoV-229E, -HKU1, -NL63, and -OC43, have been detected in respiratory tract samples from children and adults. However, the natural prevalence of antibodies against these viruses in serum among population is unknown. Methods To measure antibodies to the spike (S) protein of the four common non-SARS HCoVs, recombinant S proteins of the four HCoVs were expressed and characterised in 293 T cell. An S-protein-based indirect immunofluorescence assay (IFA) was then developed to detect anti-S IgG and IgM for the four individual HCoVs and applied to serum samples from a general asymptomatic population (218 children and 576 adults) in Beijing. Results Of 794 blood samples tested, only 29 (3.65%) were negative for anti-S IgG. The seropositivity of the four anti-S IgG antibodies was >70% within the general population. The majority of seroconversions to four-HCoV positivity first occurred in children. Both S-IgG and S-IgM antibodies were detectable among children and increased with age, reaching a plateau at 6 years of age. However, no anti-S IgM was detected in healthy adults. Conclusion Large proportions of children and adults in Beijing have evidence of anti-S IgG against four the HCoVs, and first infections by all four non-SARS HCoVs takes place during childhood.
Collapse
Affiliation(s)
- Weimin Zhou
- Key Laboratory of Medical Virology, Ministry of Health; National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Beijing 102206, China.
| | | | | | | | | |
Collapse
|
47
|
Walsh EE, Shin JH, Falsey AR. Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations. J Infect Dis 2013; 208:1634-42. [PMID: 23922367 PMCID: PMC3805243 DOI: 10.1093/infdis/jit393] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background. The incidence and clinical impact of coronavirus (CoV) infection in elderly persons and those with underlying cardiopulmonary disease over a long duration is not well described. We determined the incidence and clinical impact of 229E and OC43 CoV in this population during 4 consecutive winters, and compared illnesses to influenza A, respiratory syncytial virus, and human metapneumovirus. Methods. CoV 229E and OC43 were detected by reverse transcription polymerase chain reaction and serology in 4 adult populations under surveillance for acute respiratory illness during the winters of 1999–2003. Cohorts included healthy young adults, healthy elderly adults, high-risk adults with underlying cardiopulmonary disease, and a hospitalized group. Results. Three hundred ninety-eight CoV infections were identified, with annual infection rates ranging from 2.8% to 26% in prospective cohorts, and prevalence ranging from 3.3% to 11.1% in the hospitalized cohort. The incidence of infections with each strain was similar, although asymptomatic infection and viral coinfection was significantly more common with 229E than OC43 infection. Although the incidence and clinical manifestations were similar for each strain, OC43-infected subjects tended to seek more medical care, as OC43 was twice as common as 229E among the hospitalized cohort. Conclusions. CoV infections in the elderly are frequent, likely causing substantial medical disease burden.
Collapse
|
48
|
Waggoner JJ, Soda EA, Deresinski S. Rare and emerging viral infections in transplant recipients. Clin Infect Dis 2013; 57:1182-8. [PMID: 23839998 PMCID: PMC7107977 DOI: 10.1093/cid/cit456] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Emerging viral pathogens include newly discovered viruses as well as previously known viruses that are either increasing, or threatening to increase in incidence. While often first identified in the general population, they may affect transplant recipients, in whom their manifestations may be atypical or more severe. Enhanced molecular methods have increased the rate of viral discovery but have not overcome the problem of demonstrating pathogenicity. At the same time, improved clinical diagnostic methods have increased the detection of reemerging viruses in immunocompromised patients. In this review, we first discuss viral diagnostics and the developing field of viral discovery and then focus on rare and emerging viruses in the transplant population: human T-cell leukemia virus type 1; hepatitis E virus; bocavirus; KI and WU polyomaviruses; coronaviruses HKU1 and NL63; influenza, H1N1; measles; dengue; rabies; and lymphocytic choriomeningitis virus. Detection and reporting of such rare pathogens in transplant recipients is critical to patient care and improving our understanding of posttransplant infections.
Collapse
Affiliation(s)
- Jesse J Waggoner
- Division of Infectious Diseases and Geographic Medicine, Stanford University Department of Medicine, Stanford, California
| | | | | |
Collapse
|
49
|
Jevšnik M, Uršič T, Zigon N, Lusa L, Krivec U, Petrovec M. Coronavirus infections in hospitalized pediatric patients with acute respiratory tract disease. BMC Infect Dis 2012; 12:365. [PMID: 23256846 PMCID: PMC3557153 DOI: 10.1186/1471-2334-12-365] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/18/2012] [Indexed: 11/16/2022] Open
Abstract
Background Acute viral respiratory infections are an important cause of morbidity and mortality in humans worldwide. The etiological backgrounds of these infections remain unconfirmed in most clinical cases. The aim of this study was to estimate the prevalence of human coronavirus infections in a series of children hospitalized with symptoms of acute respiratory tract disease in a one-year period in Slovenia. Methods The 664 specimens from 592 children under six years of age hospitalized at the University Children’s Hospital in Ljubljana were sent for the routine laboratory detection of respiratory viruses. Respiratory viruses were detected with a direct immunofluorescence assay and human coronaviruses were detected with a modified real-time RT–PCR. Results HCoV RNA was detected in 40 (6%, 95% CI: 4.3%–8.1%) of 664 samples. Of these specimens, 21/40 (52.5%) were identified as species HKU1, 7/40 (17.5%) as OC43, 6/40 (15%) as 229E, and 6/40 (15%) as NL63. Infection with HCoV occurred as a coinfection with one or more other viruses in most samples (70%). Of the HCoV-positive children, 70.3% had lower respiratory tract infections. Conclusion The results of our study show that HCoV are frequently detected human pathogens, often associated with other respiratory viruses and acute respiratory tract infections in hospitalized children. An association between age and the viral load was found. The highest viral load was detected in children approximately 10 months of age.
Collapse
Affiliation(s)
- Monika Jevšnik
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana 1000, Slovenia.
| | | | | | | | | | | |
Collapse
|
50
|
Pavia AT. What is the role of respiratory viruses in community-acquired pneumonia?: What is the best therapy for influenza and other viral causes of community-acquired pneumonia? Infect Dis Clin North Am 2012; 27:157-75. [PMID: 23398872 PMCID: PMC3572787 DOI: 10.1016/j.idc.2012.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Andrew T Pavia
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.
| |
Collapse
|