1
|
Canchola J, Donkor GYB, Tawiah PO, Fasawe A, Ayim E, Engelke MF, Dahl JU. Alkyl Pyridinol Compounds Exhibit Antimicrobial Effects against Gram-Positive Bacteria. Antibiotics (Basel) 2024; 13:897. [PMID: 39335070 PMCID: PMC11428593 DOI: 10.3390/antibiotics13090897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives. The rise of antibiotic-resistant pathogens represents a significant global challenge in infectious disease control, which is amplified by the decline in the discovery of novel antibiotics. Staphylococcus aureus continues to be a highly significant pathogen, causing infections in multiple organs and tissues in both healthcare institutions and community settings. The bacterium has become increasingly resistant to all available antibiotics. Consequently, there is an urgent need for novel small molecules that inhibit the growth or impair the survival of bacterial pathogens. Given their large structural and chemical diversity, as well as often unique mechanisms of action, natural products represent an excellent avenue for the discovery and development of novel antimicrobial treatments. Anaephene A and B are two such naturally occurring compounds with significant antimicrobial activity against Gram-positive bacteria. Here, we report the rapid syntheses and biological characterization of five novel anaephene derivatives, which display low cytotoxicity against mammalian cells but potent antibacterial activity against various S. aureus strains, including methicillin-resistant S. aureus (MRSA) and the multi-drug-resistant community-acquired strain USA300LAC. Methods. A Sonogashira cross-coupling reaction served as the key step for the synthesis of the alkyl pyridinol products. Results/Conclusions. Using the compound JC-01-074, which displays bactericidal activity already at low concentrations (MIC: 16 μg/mL), we provide evidence that alkyl pyridinols target actively growing and biofilm-forming cells and show that these compounds cause disruption and deformation of the staphylococcal membrane, indicating a membrane-associated mechanism of action.
Collapse
Affiliation(s)
- Juan Canchola
- Department of Chemistry, Illinois State University, Normal, IL 61761, USA
| | | | - Patrick Ofori Tawiah
- School of Biological Sciences, Microbiology, Illinois State University, Normal, IL 61761, USA
| | - Ayoola Fasawe
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL 61761, USA
| | - Emmanuel Ayim
- Department of Chemistry, Illinois State University, Normal, IL 61761, USA
| | - Martin F. Engelke
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL 61761, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Microbiology, Illinois State University, Normal, IL 61761, USA
| |
Collapse
|
2
|
Arad E, Pedersen KB, Malka O, Mambram Kunnath S, Golan N, Aibinder P, Schiøtt B, Rapaport H, Landau M, Jelinek R. Staphylococcus aureus functional amyloids catalyze degradation of β-lactam antibiotics. Nat Commun 2023; 14:8198. [PMID: 38081813 PMCID: PMC10713593 DOI: 10.1038/s41467-023-43624-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Antibiotic resistance of bacteria is considered one of the most alarming developments in modern medicine. While varied pathways for bacteria acquiring antibiotic resistance have been identified, there still are open questions concerning the mechanisms underlying resistance. Here, we show that alpha phenol-soluble modulins (PSMαs), functional bacterial amyloids secreted by Staphylococcus aureus, catalyze hydrolysis of β-lactams, a prominent class of antibiotic compounds. Specifically, we show that PSMα2 and, particularly, PSMα3 catalyze hydrolysis of the amide-like bond of the four membered β-lactam ring of nitrocefin, an antibiotic β-lactam surrogate. Examination of the catalytic activities of several PSMα3 variants allowed mapping of the active sites on the amyloid fibrils' surface, specifically underscoring the key roles of the cross-α fibril organization, and the combined electrostatic and nucleophilic functions of the lysine arrays. Molecular dynamics simulations further illuminate the structural features of β-lactam association upon the fibril surface. Complementary experimental data underscore the generality of the functional amyloid-mediated catalytic phenomenon, demonstrating hydrolysis of clinically employed β-lactams by PSMα3 fibrils, and illustrating antibiotic degradation in actual S. aureus biofilms and live bacteria environments. Overall, this study unveils functional amyloids as catalytic agents inducing degradation of β-lactam antibiotics, underlying possible antibiotic resistance mechanisms associated with bacterial biofilms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Kasper B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Orit Malka
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Sisira Mambram Kunnath
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Polina Aibinder
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Hanna Rapaport
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Centre for Structural Systems Biology (CSSB), and European Molecular Biology Laboratory (EMBL), Hamburg, 22607, Germany
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
3
|
Streich C, Stein F, Jakobi J, Ingendoh‐Tsakmakidis A, Heine N, Rehbock C, Winkel A, Grade S, Kühnel M, Migunov V, Kovács A, Knura T, Stiesch M, Sures B, Barcikowski S. The Origin of the Intracellular Silver in Bacteria: A Comprehensive Study using Targeting Gold-Silver Alloy Nanoparticles. Adv Healthc Mater 2023; 12:e2302084. [PMID: 37661312 PMCID: PMC11469222 DOI: 10.1002/adhm.202302084] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Indexed: 09/05/2023]
Abstract
The bactericidal effects of silver nanoparticles (Ag NPs) against infectious strains of multiresistant bacteria is a well-studied phenomenon, highly relevant for many researchers and clinicians battling bacterial infections. However, little is known about the uptake of the Ag NPs into the bacteria, the related uptake mechanisms, and how they are connected to antimicrobial activity. Even less information is available on AgAu alloy NPs uptake. In this work, the interactions between colloidal silver-gold alloy nanoparticles (AgAu NPs) and Staphylococcus aureus (S. aureus) using advanced electron microscopy methods are studied. The localization of the nanoparticles is monitored on the membrane and inside the bacterial cells and the elemental compositions of intra- and extracellular nanoparticle species. The findings reveal the formation of pure silver nanoparticles with diameters smaller than 10 nm inside the bacteria, even though those particles are not present in the original colloid. This finding is explained by a local RElease PEnetration Reduction (REPER) mechanism of silver cations emitted from the AgAu nanoparticles, emphasized by the localization of the AgAu nanoparticles on the bacterial membrane by aptamer targeting ligands. These findings can deepen the understanding of the antimicrobial effect of nanosilver, where the microbes are defusing the attacking silver ions via their reduction, and aid in the development of suitable therapeutic approaches.
Collapse
Affiliation(s)
- Carmen Streich
- University Duisburg‐EssenTechnical Chemistry I, Universitaetsstr. 745141EssenGermany
| | - Frederic Stein
- University Duisburg‐EssenTechnical Chemistry I, Universitaetsstr. 745141EssenGermany
| | - Jurij Jakobi
- University Duisburg‐EssenTechnical Chemistry I, Universitaetsstr. 745141EssenGermany
| | - Alexandra Ingendoh‐Tsakmakidis
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Nils Heine
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Christoph Rehbock
- University Duisburg‐EssenTechnical Chemistry I, Universitaetsstr. 745141EssenGermany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Sebastian Grade
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Mark Kühnel
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Vadim Migunov
- Ernst Ruska‐Centre for Microscopy and Spectroscopy with ElectronsForschungszentrum Jülich52425JülichGermany
| | - András Kovács
- Ernst Ruska‐Centre for Microscopy and Spectroscopy with ElectronsForschungszentrum Jülich52425JülichGermany
| | - Thomas Knura
- University Duisburg‐EssenAquatic EcologyUniversitaetsstr. 545141EssenGermany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Bernd Sures
- University Duisburg‐EssenAquatic EcologyUniversitaetsstr. 545141EssenGermany
| | - Stephan Barcikowski
- University Duisburg‐EssenTechnical Chemistry I, Universitaetsstr. 745141EssenGermany
| |
Collapse
|
4
|
Wang J, Xu X, Zhao X, Xu S, Wang M. hptA Mutation May Mediate Fosfomycin Resistance in Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Microb Drug Resist 2023; 29:497-503. [PMID: 37603296 DOI: 10.1089/mdr.2022.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Fosfomycin can be used alone or in combination to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. However, fosfomycin resistance has been observed in MRSA. In S. aureus, fosfomycin resistance is mediated by the fosfomycin-modifying enzyme FosB, or mutations in the target enzyme MurA. Mutations in the chromosomal glpT and uhpT genes, which encode fosfomycin transporters, also result in fosfomycin resistance. The three-component regulatory system HptRSA mediates the expression of uhpT and glpT in S. aureus. This study aimed to investigate the role of hptRSA mutation in fosfomycin resistance in MRSA clinical isolates. We found that hptRSA mutations were common in MRSA strains isolated from our hospital. Most mutations were amino acid substitutions and widely distributed in fosfomycin-sensitive and fosfomycin-resistant strains. However, HptA-truncated mutations were only found in fosB-negative fosfomycin-resistant strains with wild-type uhpT and glpT genes. Quantitative real-time PCR results showed that the transcription level of uhpT decreased by 13.7-25.6-fold in the HptA-truncated strains. Concordantly, the fosfomycin minimum inhibitory concentration (MIC) of HptA-truncated strains was 64-128 μg/mL, while SA240 was 2 μg/mL. The low transcription level of uhpT and high increase in MIC suggest that hptA mutation may lead to fosfomycin resistance in MRSA. We complemented hptA in one of the HptA-truncated clinical strains (SA179), showing reversal of fosfomycin resistance (from 128 to 32 μg/mL). Then we knocked out hptA in S. aureus Newman; fosfomycin MIC increased from 4 to 64 μg/mL, suggesting that HptA mutation may play an important role in fosfomycin resistance.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Su Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Sreejisha M, Shenoy MS, Shenoy MS, Dhanashree B, Chakrapani M, Bhat KG. Molecular and Clinical Features of Heterogeneous Vancomycin-Intermediate Staphylococcus aureus in Tertiary Care Hospitals in South India. Sultan Qaboos Univ Med J 2023; 23:447-454. [PMID: 38090245 PMCID: PMC10712385 DOI: 10.18295/squmj.3.2023.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Objectives This study aimed to detect heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) among methicillin-resistant S. aureus (MRSA) isolated from healthcare-associated infections and identify staphylococcal cassette chromosome mec (SCCmec) types. Methods This study was conducted from February 2019 to March 2020 and included patients admitted in 4 tertiary care hospitals in Karnataka, India. Isolation and identification of MRSA were done using standard bacteriological methods. Antimicrobial susceptibility testing was done using Kirby-Bauer disc diffusion; macrolide-lincosamide-streptogramin B phenotypes were identified using the D test. The minimum inhibitory concentration (MIC) of vancomycin was determined using agar dilution. hVISA were confirmed by the modified population analysis profile-area under the curve test. SCCmec types and the Panton-Valentine leukocidin (pvl) gene were detected using multiplex polymerase chain reaction. Results Of 220 MRSA stains, 14 (6.4%) were hVISA. None of the MRSA isolates was vancomycin-intermediate or -resistant and all hVISA were susceptible to linezolid and teicoplanin. The macrolide-streptogramin B phenotype was present in 42.9% of hVISA; 92.9% of the hVISA strains had vancomycin MIC in the range of 1-2 μg/mL. Majority of the hVISA and vancomycin-susceptible MRSA were isolated from patients with skin and soft tissue infections. SCCmec III and IV were present in 50% and 35.7% of hVISA, respectively; 14.3% of the hVISA harboured SCCmec V. Conclusion The prevalence rate of hVISA among MRSA was 6.4%. Therefore, MRSA strains should be tested for hVISA before starting vancomycin treatment. None of the isolates was vancomycin-intermediate or -resistant and all the hVISA strains were susceptible to linezolid and teicoplanin. The majority of the hVISA were isolated from patients with skin and soft tissue infections and harboured SCCmec III and IV.
Collapse
Affiliation(s)
- M. Sreejisha
- Department of Microbiology, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| | - M. Shalini Shenoy
- Department of Microbiology, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| | - M. Suchitra Shenoy
- Department of Microbiology, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| | - B. Dhanashree
- Department of Microbiology, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| | - M. Chakrapani
- Department of Medicine, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| | - K. Gopalakrishna Bhat
- Department of Microbiology, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| |
Collapse
|
6
|
The Christian Nurse's Role in Antibiotic Stewardship. J Christ Nurs 2023; 40:E14-E18. [PMID: 36872549 DOI: 10.1097/cnj.0000000000001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
ABSTRACT Antibiotic resistance is a growing health threat globally. Nurses can play key roles in combatting antibiotic resistance through participation in antibiotic stewardship programs and educating colleagues, other healthcare professionals, and the public. Improved education is necessary for nurses and healthcare institutions to effectively improve antibiotic use and reduce resistant organisms. Biblical elements of stewardship are described in this article.
Collapse
|
7
|
Fatima M, Amin A, Alharbi M, Ishtiaq S, Sajjad W, Ahmad F, Ahmad S, Hanif F, Faheem M, Khalil AAK. Quorum Quenchers from Reynoutria japonica in the Battle against Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules 2023; 28:molecules28062635. [PMID: 36985607 PMCID: PMC10056526 DOI: 10.3390/molecules28062635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Over the past decade, methicillin-resistant Staphylococcus aureus (MRSA) has become a major source of biofilm formation and a major contributor to antimicrobial resistance. The genes that govern biofilm formation are regulated by a signaling mechanism called the quorum-sensing system. There is a need for new molecules to treat the infections caused by dangerous pathogens like MRSA. The current study focused on an alternative approach using juglone derivatives from Reynoutria japonica as quorum quenchers. Ten bioactive compounds from this plant, i.e., 2-methoxy-6-acetyl-7-methyljuglone, emodin, emodin 8-o-b glucoside, polydatin, resveratrol, physcion, citreorosein, quercetin, hyperoside, and coumarin were taken as ligands and docked with accessory gene regulator proteins A, B, and C and the signal transduction protein TRAP. The best ligand was selected based on docking score, ADMET properties, and the Lipinski rule. Considering all these parameters, resveratrol displayed all required drug-like properties with a docking score of −8.9 against accessory gene regulator protein C. To further assess the effectiveness of resveratrol, it was compared with the commercially available antibiotic drug penicillin. A comparison of all drug-like characteristics showed that resveratrol was superior to penicillin in many aspects. Penicillin showed a binding affinity of −6.7 while resveratrol had a score of −8.9 during docking. This was followed by molecular dynamic simulations wherein inhibitors in complexes with target proteins showed stability inside the active site during the 100 ns simulations. Structural changes due to ligand movement inside the cavity were measured in the protein targets, but they remained static due to hydrogen bonds. The results showed acceptable pharmacokinetic properties for resveratrol as compared to penicillin. Thus, we concluded that resveratrol has protective effects against Staphylococcus aureus infections and that it suppresses the quorum-sensing ability of this bacterium by targeting its infectious proteins.
Collapse
Affiliation(s)
- Maliha Fatima
- Department of Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Arshia Amin
- Department of Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sundas Ishtiaq
- Department of Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
- Correspondence: ; Tel.: +92-51-927-0677
| | - Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
- Department of Computer Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Faisal Hanif
- Department of Microbiology Military Hospital, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Atif Ali Khan Khalil
- Department of Pharmacognosy, Institute of Pharmacy, Lahore College for Women University, Lahore 54000, Pakistan
| |
Collapse
|
8
|
Li W, Hadjigol S, Mazo AR, Holden J, Lenzo J, Shirbin SJ, Barlow A, Shabani S, Huang T, Reynolds EC, Qiao GG, O'Brien-Simpson NM. Star-Peptide Polymers are Multi-Drug-Resistant Gram-Positive Bacteria Killers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25025-25041. [PMID: 35500245 DOI: 10.1021/acsami.1c23734] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance in bacteria, especially Gram-positive bacteria like Staphylococcus aureus, is gaining considerable momentum worldwide and unless checked will pose a global health crisis. With few new antibiotics coming on the market, there is a need for novel antimicrobial materials that target and kill multi-drug-resistant (MDR) Gram-positive pathogens like methicillin-resistant Staphylococcus aureus (MRSA). In this study, using a novel mixed-bacteria antimicrobial assay, we show that the star-peptide polymers preferentially target and kill Gram-positive pathogens including MRSA. A major effect on the activity of the star-peptide polymer was structure, with an eight-armed structure inducing the greatest bactericidal activity. The different star-peptide polymer structures were found to induce different mechanisms of bacterial death both in vitro and in vivo. These results highlight the potential utility of peptide/polymers to fabricate materials for therapeutic development against MDR Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Wenyi Li
- ACTV Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sara Hadjigol
- ACTV Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alicia Rasines Mazo
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - James Holden
- Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason Lenzo
- Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Steven J Shirbin
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anders Barlow
- Materials Characterisation and Fabrication Platform, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sadegh Shabani
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Huang
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eric C Reynolds
- Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Sultana A, Hassan N, Lu S, Xu W, Abbas M, Ilays M, Firdoos S, Khan MA. Fabrication of stable ZnO/Zn–Al/Al2O3 superhydrophobic material on aluminum substrate for high photocatalytic and antibacterial activity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Staphylococcus aureus with inducible clindamycin resistance and methicillin resistance in a tertiary hospital in Nepal. Trop Med Health 2021; 49:99. [PMID: 34961568 PMCID: PMC8711148 DOI: 10.1186/s41182-021-00392-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background Staphylococcus aureus is a global public health issue in both community and hospital settings. Management of methicillin-resistant S. aureus (MRSA) infections are tough owing to its resistance to many antibiotics. Macrolide-lincosamide-streptogramin B (MLSB) antibiotics are commonly used for the management of MRSA. This study was aimed to determine the occurrence of inducible clindamycin- and methicillin-resistant S. aureus at a tertiary care hospital in Kathmandu, Nepal. Methods A total of 1027 clinical samples were processed following standard laboratory procedures and antibiotic susceptibility testing of S. aureus was performed by disc diffusion method. MRSA isolates were detected phenotypically using cefoxitin disc, and inducible clindamycin resistance was detected phenotypically using the D-zone test. Results Of 1027 samples, 321 (31.2%) were culture positive, of which 38 (11.8%) were S. aureus. All S. aureus isolates were susceptible to vancomycin, and 25 (67%) of S. aureus isolates were multidrug-resistant. Similarly, 15 (39.5%) of S. aureus were MRSA and 14 (36.5%) were inducible clindamycin-resistant phenotypes. Conclusion Inducible clindamycin and methicillin resistance were common in S. aureus. This emphasizes that the methicillin resistance test and the D-zone test should be incorporated into the routine antibiotic susceptibility testing in hospital settings.
Collapse
|
11
|
Manandhar S, Shrestha R, Tuladhar RS, Lekhak S. Inducible Clindamycin Resistance and Biofilm Production among Staphylococci Isolated from Tertiary Care Hospitals in Nepal. Infect Dis Rep 2021; 13:1043-1052. [PMID: 34940405 PMCID: PMC8702181 DOI: 10.3390/idr13040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Resistance to antibiotics, biofilm formation and the presence of virulence factors play important roles in increased mortality associated with infection by staphylococci. The macrolide lincosamide streptogramin B (MLSB) family of antibiotics is commonly used to treat infections by methicillin-resistant isolates. Clinical failure of clindamycin therapy has been reported due to multiple mechanisms that confer resistance to MLSB. This study aims to find the incidence of different phenotypes of MLSB resistance and biofilm production among staphylococci. A total of 375 staphylococci were isolated from different clinical samples, received from two tertiary care hospitals in Nepal. Methicillin resistance was detected by cefoxitin disc diffusion method and inducible clindamycin resistance by D test, according to CLSI guidelines. Biofilm formation was detected by the tissue culture plate method and PCR was used to detect ica genes. Of the total staphylococci isolates, 161 (42.9%) were Staphylococcus aureus, with 131 (81.4%) methicillin-resistant strains, and 214 (57.1%) isolates were coagulase-negative staphylococci, with 143 (66.8%) methicillin-resistant strains. The overall prevalence of constitutive MLSB (cMLSB) and inducible MLSB (iMLSB) phenotypes was 77 (20.5%) and 87 (23.2%), respectively. Both iMLSB and cMLSB phenotypes predominated in methicillin-resistant isolates. The tissue culture plate method detected biofilm formation in 174 (46.4%) isolates and ica genes in 86 (22.9%) isolates. Among biofilm producing isolates, cMLSB and iMLSB phenotypes were 35 (20.1%) and 27 (15.5%), respectively. The cMLSB and iMLSB were 11 (12.8%) and 19 (22.1%), respectively, in isolates possessing ica genes. Clindamycin resistance in the form of cMLSB and iMLSB, especially among MRSA, emphasizes the need for routine D tests to be performed in the lab.
Collapse
Affiliation(s)
- Sarita Manandhar
- Department of Microbiology, TriChandra Multiple College, Tribhuvan University, Kathmandu 44600, Nepal;
- Correspondence:
| | - Raju Shrestha
- Department of Microbiology, National College, Khushibun, Kathmandu 44611, Nepal;
| | - Ratna Shova Tuladhar
- Department of Microbiology, TriChandra Multiple College, Tribhuvan University, Kathmandu 44600, Nepal;
| | - Sunil Lekhak
- Decode Genomics and Research Center, Sinamangal, Kathmandu 310327, Nepal;
| |
Collapse
|
12
|
Rahmani B, Astani A, Zarei Jaliani H, Kheirandish MH, Mosaddegh A. Evaluation of kinetic stability and anti-staphylococcal activity of recombinant LasA protein produced in Escherichia coli. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:851-855. [PMID: 34630963 PMCID: PMC8487604 DOI: 10.22038/ijbms.2021.54563.12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/27/2021] [Indexed: 11/19/2022]
Abstract
Objective(s): Staphylococcus aureus has become a major clinical concern due to the growing prevalence of multi-drug resistant (MDR) strains. Enzybioticts are peptidoglycan hydrolases that are recently introduced as an alternative agent to confront the MDR strains with a more effective mechanism than conventional antibiotics. In this regard, our study aimed to evaluate the kinetic stability of LasA protease as a potent enzybiotic in the specific destruction of the S. aureus cell wall. Materials and Methods: The catalytic domain of the Codon-optimized LasA gene was sub-cloned into pET28a vector, and BL21 DE3 cells were used for protein expression. Recombinant LasA protein was affinity purified by Ni-NTA column and staphylolytic activity of the LasA protein against methicillin-resistant strains was evaluated by disk diffusion and MIC test. The kinetic stability was evaluated in different temperatures during 48 hr. Results: Our results revealed that LasA protein can completely prevent the growth of Methicillin-resistant S. aureus (MRSA) strain and inhibit the examined strain at the amount of 4 µg. furthermore, the catalytic domain of LasA protein can tolerate higher temperatures as well. Conclusion: With regard to the failure of conventional antibiotics in treatment of MRSA infections, novel agents to combat multidrug-resistant strains are needed. The present study shows that LasA protein can eradicate MRSA strains, so it can be promising for the treatment of antibiotic-resistant staphylococci infection. The kinetic stability of LasA has also confirmed the possibility of industrial-scale manufacturing for the subsequent use of the enzyme clinically.
Collapse
Affiliation(s)
- Behnaz Rahmani
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Astani
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Kheirandish
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Mosaddegh
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
13
|
Degu S, Abebe A, Gemeda N, Bitew A. Evaluation of antibacterial and acute oral toxicity of Impatiens tinctoria A. Rich root extracts. PLoS One 2021; 16:e0255932. [PMID: 34379681 PMCID: PMC8357124 DOI: 10.1371/journal.pone.0255932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
The high prevalence of morbidity and mortality from bacterial infections, together with the growing threat of antibacterial resistance, necessitated the development of alternative new drugs from traditional medicine. In Ethiopia, Impatiens tinctoria A. Rich has been traditionally used for the treatment of fungal infections such as ringworms that cause tinea pedis and it have also different medical values. Scientific information on its biological activity against a broad range of bacteria and safety data is scant, compared to its folklore data. In this study, we evaluated antibacterial activities and acute oral toxicity of aqueous, ethanol and ethyl acetate root extracts of Impatiens tinctoria A. Rich. Aqueous, ethanol and ethyl acetate extracts of the plant were evaluated using agar hole diffusion and agar dilution methods. Biological activities of the plant extracts were expressed as a zone of inhibition diameter, minimum inhibitory concentration (mg/ml), and minimum bactericidal concentration (mg/ml). The safety studies were performed by oral acute toxicity study according to the organization of economic cooperation and development test Guidelines 420.Gram-positive bacteria were more susceptible to the extracts compared to gram-negative bacteria, especially against S. aureus and S. epidermidis, which are commonly found in the skin. Ethyl acetate extract was more potent than ethanol and aqueous extracts. The 50% lethal dose (LD50) of tested mice was above 9600 mg/kg. This study provides a scientific basis for the antibacterial activity of the root extracts of I. tinctoria A. Rich, where, the ethyl acetate extract showed the most promising activity. Therefore, the antibacterial potential and practical non-toxicity of the study plant extracts suggested the possibility of using it for the development of antimicrobial drugs by further studying the plant in different directions.
Collapse
Affiliation(s)
- Sileshi Degu
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Negero Gemeda
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Adane Bitew
- School of Medical Laboratory Science, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
14
|
Moglad EH. Loranthus acaciae: Alternative medicine for β-lactamase producer and methicillin-resistant Staphylococcus aureus. Saudi J Biol Sci 2021; 28:1835-1839. [PMID: 33732069 PMCID: PMC7938108 DOI: 10.1016/j.sjbs.2020.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/02/2022] Open
Abstract
Recently, we reported high antibacterial efficiency of Loranthus acaciae (LA) against different standard strains of bacteria including Methicillin-Resistant Staphylococcus aureus (MRSA). Therefore, this study aimed to confirm the effectiveness of LA against clinically isolated Staphylococcus aureus (SA) including β-lactamase producer (Blac) and MRSA. Forty-eight SA isolates collected from various clinical samples were used in this study. Antibiotics susceptibility profile was determined for twenty different antibiotics using automated Microscan Walkaway 96 Plus system as recommended by Clinical and Laboratory Standards Institute (CLSI) guidelines. This system also identified β-lactamase producers and MRSA. In the meantime, LA ethanolic extract was fractionated using liquid-liquid fraction method to hexane, dichloromethane DCM and methanol 80% fractions. Antimicrobial activities of LA extract and fraction were performed with agar well diffusion method for all SA isolates, MIC and MBC were also recorded. Phytochemical screening for various phyto-constituent classes of LA ethanolic extract was determined. Out of 48 SA isolates, Cefoxitin-positive MRSA represent 31 (64.6%), Blac 17 (35.4%), and 41 (85.4%) were multidrug-resistant SA, which was resistant at least to one antibiotic from three different categories. All isolates were resistant to ampicillin and penicillin. Antimicrobial activities of LA extract and fractions revealed that ethanol extract was active against all isolated SA with inhibition zone ranged from 33 ± 2.00 to 25 ± 3.05 mm. While DCM exhibited the largest inhibition zone range from 37 ± 3.00 to 33 ± 2.00 mm. This study is first of its kind conforming the high antibacterial activity of LA against SA isolated from a different source of infection. The study concluded that LA extract and fractions are active and give positive result for all isolated SA. Therefore, suitable pharmacological formulation of LA extract as a promising antibacterial agent for the treatment of SA infection should be given extreme priority.
Collapse
Key Words
- ATCC, American type culture collection
- Antimicrobial activities
- Blac, β-lactamase producer
- CLSI, clinical and laboratory standards institute
- DCM, Dichloromethane
- LA, Loranthus acaciae
- Loranthus acaciae
- MBC, bactericidal concentration
- MIC, minimum inhibitory concentration
- MRSA
- MRSA, methicillin-resistant Staphylococcus aureus
- MeOH, methanol
- Multi-drug resistant
- Plicosepalus acaciae
- SA, Staphylococcus aureus
- β-lactamase enzyme
Collapse
Affiliation(s)
- Ehssan H Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia.,Department of Microbiology, Medicinal and Aromatic Plants and Traditional Medicine Research Institute (MAPTMRI), National Center for Research, Khartoum, Sudan
| |
Collapse
|
15
|
Kaczorová D, Karalija E, Dahija S, Bešta-Gajević R, Parić A, Ćavar Zeljković S. Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species. Molecules 2021; 26:molecules26061601. [PMID: 33805815 PMCID: PMC7999971 DOI: 10.3390/molecules26061601] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
The phenolic composition, as well as the antioxidant and antimicrobial activities of two poorly investigated Achillea species, Achillea lingulata Waldst. and the endemic Achillea abrotanoides Vis., were studied. To obtain a more detailed phytochemical profile, four solvents with different polarities were used for the preparation of the plant extracts whose phenolic composition was analyzed using UHPLC-MS/MS (ultra-high performance liquid chromatography-tandem mass spectrometry). The results indicate that both of the investigated Achillea species are very rich in both phenolic acids and flavonoids, but that their profiles differ significantly. Chloroform extracts from both species had the highest yields and were the most chemically versatile. The majority of the examined extracts showed antimicrobial activity, while ethanolic extracts from both species were potent against all tested microorganisms. Furthermore, the antioxidant activity of the extracts was evaluated. It was found that the ethanolic extracts possessed the strongest antioxidant activities, although these extracts did not contain the highest amounts of detected phenolic compounds. In addition, several representatives of phenolic compounds were also assayed for these biological activities. Results suggest that ethanol is a sufficient solvent for the isolation of biologically active compounds from both Achillea species. Moreover, it was shown that the flavonoids naringenin and morin are mainly responsible for these antimicrobial activities, while caffeic, salicylic, chlorogenic, p-coumaric, p-hydroxybenzoic, and rosmarinic acid are responsible for the antioxidant activities of the Achillea extracts.
Collapse
Affiliation(s)
- Dominika Kaczorová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic;
- Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Erna Karalija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.); (A.P.)
| | - Sabina Dahija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.); (A.P.)
| | - Renata Bešta-Gajević
- Laboratory for Microbiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina;
| | - Adisa Parić
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.); (A.P.)
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic;
- Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Correspondence: or or
| |
Collapse
|
16
|
van den Honert MS, Gouws PA, Hoffman LC. A Preliminary Study: Antibiotic Resistance of Escherichia coli and Staphylococcus aureus from the Meat and Feces of Various South African Wildlife Species. Food Sci Anim Resour 2021; 41:135-144. [PMID: 33506223 PMCID: PMC7810393 DOI: 10.5851/kosfa.2020.e62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/30/2022] Open
Abstract
This study determined the antibiotic resistance patterns of Escherichia coli and Staphylococcus aureus from the raw meat and feces of three game species from three different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. E. coli was tested against ampicillin, ceftazidime, chloramphenicol, streptomycin, sulphafurazole and tetracycline. S. aureus was tested against tetracycline, erthromycin, vancomycin, penicillin, oxacillin and cefoxitin. There were no significant differences in the E. coli antibiotic resistance profiles between the meat and fecal samples (except towards ceftazidime where 5% of the meat isolates were resistant and 0% of the fecal isolates). The S. aureus meat isolates showed high (75%) resistance towards penicillin and on average, 13% were resistant to oxacillin/ cefoxitin, indicating methicillin resistance. The results from this study indicate that there is incidence of antibiotic resistant bacteria from the feces and meat of wildlife species across South Africa, suggesting that cross contamination of the meat occurred during slaughter by antibiotic resistant bacteria from the abattoir personnel or equipment and or from carcass fecal matter. In addition, the results highlight the importance of food safety and hygiene procedures during slaughter to prevent cross-contamination of antibiotic resistant bacteria, as well as pathogens, onto raw meat.
Collapse
Affiliation(s)
- Michaela Sannettha van den Honert
- Centre for Food Safety, Department of Food Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.,Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Pieter Andries Gouws
- Centre for Food Safety, Department of Food Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Louwrens Christiaan Hoffman
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia
| |
Collapse
|
17
|
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep 2020; 21:e51034. [PMID: 33400359 PMCID: PMC7726816 DOI: 10.15252/embr.202051034] [Citation(s) in RCA: 323] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) and persistence are associated with an elevated risk of treatment failure and relapsing infections. They are thus important drivers of increased morbidity and mortality rates resulting in growing healthcare costs. Antibiotic resistance is readily identifiable with standard microbiological assays, and the threat imposed by antibiotic resistance has been well recognized. Measures aiming to reduce resistance development and spreading of resistant bacteria are being enforced. However, the phenomenon of bacteria surviving antibiotic exposure despite being fully susceptible, so-called antibiotic persistence, is still largely underestimated. In contrast to antibiotic resistance, antibiotic persistence is difficult to measure and therefore often missed, potentially leading to treatment failures. In this review, we focus on bacterial mechanisms allowing evasion of antibiotic killing and discuss their implications on human health. We describe the relationship between antibiotic persistence and bacterial heterogeneity and discuss recent studies that link bacterial persistence and tolerance with the evolution of antibiotic resistance. Finally, we review persister detection methods, novel strategies aiming at eradicating bacterial persisters and the latest advances in the development of new antibiotics.
Collapse
Affiliation(s)
- Markus Huemer
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| |
Collapse
|
18
|
Safdari H, Aryan E, Sadeghian H, Shams SF, Aganj M. Frequency of methicillin-resistant Staphylococcus aureus (MRSA) in nose and cellular phone of medical and non-medical personnel of emergency departments of Ghaem hospital in Mashhad city. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2020. [DOI: 10.1016/j.cegh.2020.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Aćimović M, Zorić M, Zheljazkov VD, Pezo L, Čabarkapa I, Stanković Jeremić J, Cvetković M. Chemical Characterization and Antibacterial Activity of Essential Oil of Medicinal Plants from Eastern Serbia. Molecules 2020; 25:molecules25225482. [PMID: 33238598 PMCID: PMC7700605 DOI: 10.3390/molecules25225482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to evaluate wild growing Satureja kitaibelii, Thymus serpyllum, Origanum vulgare, Achillea millefolium and Achillea clypeolata with respect to their essential oil (EO) content, composition and antimicrobial activity. The five species were collected at Mt. Rtanj and the village of Sesalac, Eastern Serbia. The main EO constituents of Lamiaceae plants were p-cymene (24.4%), geraniol (63.4%) and germacrene D (21.5%) in Satureja kitaibelii, Thymus serpyllum and Origanum vulgare ssp. vulgare, respectively. A. millefolium EO had multiple constituents with major ones being camphor (9.8%), caryophyllene oxide (6.5%), terpinen-4-ol (6.3%) and 1,8-cineole (5.6%), while the main EO constituents of A. clypeolata were 1,8-cineole (45.1%) and camphor (18.2%). Antimicrobial testing of the EO showed that Staphylococcus aureus (Gram-positive) was more sensitive to all of the tested EOs than Escherichia coli (Gram-negative). S. kitaibelii EO showed the highest antimicrobial activity against both tested bacterial strains. This is the first study to characterize the EO composition and antimicrobial activity of these five medicinal species from Eastern Serbia in comparison with comprehensive literature data. The results can be utilized by the perfumery, cosmetics, food and pharmaceutical industries, but also for healing purposes in self-medication.
Collapse
Affiliation(s)
- Milica Aćimović
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
- Correspondence:
| | - Miroslav Zorić
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Valtcho D. Zheljazkov
- College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentskitrg 12-16, 11000 Belgrade, Serbia;
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Jovana Stanković Jeremić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (J.S.J.); (M.C.)
| | - Mirjana Cvetković
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (J.S.J.); (M.C.)
| |
Collapse
|
20
|
Naorem RS, Urban P, Goswami G, Fekete C. Characterization of methicillin-resistant Staphylococcus aureus through genomics approach. 3 Biotech 2020; 10:401. [PMID: 32864286 PMCID: PMC7441129 DOI: 10.1007/s13205-020-02387-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023] Open
Abstract
In the present study, a total of 35 S. aureus isolates collected from two different geographical locations viz., Germany and Hungary were tested for their methicillin-resistant phenotype which revealed a high incidence of methicillin-resistant S. aureus. The quantitative test for biofilm production revealed that 73.3% of isolates were biofilm producers. The isolates were further characterized using a set of biochemical and genotypic methods such as amplification and analysis of S. aureus species-specific sequence and mecA gene. The 33 mecA positive isolates were then characterized by the amplification of SCCmec and pvl toxin genes. Further, based on the biofilm-forming phenotype, 15 isolates were selected and characterized through PCR–RFLP of coa gene, polymorphism of spa gene and amplification of biofilm-associated genes. The dendrogram prepared from the results of both biochemical and genotypic analyses of the 15 isolates showed that except for the isolates SA G5 and SA H29, the rest of the isolates grouped themselves according to their locations. Thus, the two isolates were selected for further characterization through whole-genome sequencing. Comparative genome analysis revealed that SA G5 and SA H29 have 97.20% ANI values with 2344 gene clusters (core-genome) of which 16 genes were related to antibiotic resistance genes and 57 genes encode virulence factors. The highest numbers of singleton genes were found in SA H29 that encodes proteins for virulence, resistance, mobile elements, and lanthionine biosynthesis. The high-resolution phylogenetic trees generated based on shared proteins and SNPs revealed a clear difference between the two strains and can be useful in distinguishing closely related genomes. The present study demonstrated that the whole-genome sequence analysis technique is required to get a better insight into the MRSA strains which would be helpful in improving diagnostic investigations in real-time to improve patient care.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Pécs, 7624 Hungary
| | - Peter Urban
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Pécs, 7624 Hungary
- Microbial Biotechnology Research Group, Szentágothai Research Centre, Pécs, 7624 Hungary
| | - Gunajit Goswami
- Department of Life Sciences, Dibrugarh University, Dibrugarh, 786004 Assam India
| | - Csaba Fekete
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Pécs, 7624 Hungary
| |
Collapse
|
21
|
Anti-staphylococcal activity of quaternized mannan from the yeast Candida albicans. Carbohydr Polym 2020; 240:116288. [PMID: 32475569 DOI: 10.1016/j.carbpol.2020.116288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
Global increase of antibiotic-resistant pathogens as well as elevated content of drug residues in the foodstuffs and the environment urgently calls for new biocompatible antimicrobial biomaterials. Yeast mannans represent readily available source of biodegradable materials for tailor-made derivatives that could be effective in biomedical applications. Here, antimicrobial properties of quaternized mannans (DSQ 0.12, 0.24, 0.30, 0.62) from Candida albicans against clinical multi-resistant strains of Staphylococcus aureus are confronted with possible cytotoxicity against human cells. As expected, both effects increase with increasing degree of quaternization. However, it is possible to define the "window", at quaternized mannan with DSQ 0.30 with good anti-microbial effectiveness and low cytotoxicity. This derivative exhibit minimum inhibitory (MIC) and minimum bactericidal (MBC) concentration from 62.5 to 250 μg/mL and demonstrate good biofilm inhibition effect. Also acceptable values were obtained in hemagglutination and hemolytic activity assays and also in cytotoxicity tests on human fibroblasts.
Collapse
|
22
|
Antibiotic Resistance and Virulence Gene Characteristics of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from Healthy Edible Marine Fish. Int J Microbiol 2020; 2020:9803903. [PMID: 32565817 PMCID: PMC7292986 DOI: 10.1155/2020/9803903] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/06/2020] [Accepted: 05/19/2020] [Indexed: 01/12/2023] Open
Abstract
Thirty-three (33) isolates of methicillin-resistant Staphylococcus aureus (MRSA) from healthy edible marine fish harvested from two aquaculture settings and the Kariega estuary, South Africa, were characterised in this study. The phenotypic antimicrobial susceptibility profiles to 13 antibiotics were determined, and their antibiotic resistance determinants were assessed. A multiplex PCR was used to determine the epidemiological groups based on the type of SCCmec carriage followed by the detection of staphylococcal enterotoxin-encoding genes sea-sed and the Panton Valentine leucocidin gene (pvl). A high antibiotic resistance percentage (67–81%) was observed for Erythromycin, Ampicillin, Rifampicin, and Clindamycin, while maximum susceptibility to Chloramphenicol (100%), Imipenem (100%), and Ciprofloxacin (94%) was recorded. Nineteen (58%) of the MRSA strains had Vancomycin MICs of ≤2 μg/mL, 4 (12%) with MICs ranging from 4–8 μg/mL, and 10 (30%) with values ≥16 μg/mL. Overall, 27 (82%) isolates were multidrug-resistant (MDR) with Erythromycin-Ampicillin-Rifampicin-Clindamycin (E-AMP-RIP-CD) found to be the dominant antibiotic-resistance phenotype observed in 4 isolates. Resistance genes such as tetM, tetA, ermB, blaZ, and femA were detected in two or more resistant strains. A total of 19 (58%) MRSA strains possessed SCCmec types I, II, or III elements, characteristic of healthcare-associated MRSA (HA-MRSA), while 10 (30%) isolates displayed SCCmec type IVc, characteristic of community-associated MRSA (CA-MRSA). Six (18%) of the multidrug-resistant strains of MRSA were enterotoxigenic, harbouring the see, sea, or sec genes. A prevalence of 18% (6/33) was also recorded for the luk-PVL gene. The findings of this study showed that marine fish contained MDR-MRSA strains that harbour SCCmec types, characteristic of either HA-MRSA or CA-MRSA, but with a low prevalence of enterotoxin and pvl genes. Thus, there is a need for continuous monitoring and implementation of better control strategies within the food chain to minimise contamination of fish with MDR-MRSA and the ultimate spread of the bug.
Collapse
|
23
|
Chávez-Jacobo VM. La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
La resistencia a los antimicrobianos es uno de los más grandes retos de la medicina moderna. Durante la última década, un grupo de seis bacterias han probado no sólo su capacidad para relativamente “escapar” de los efectos de casi cualquier antimicrobiano, sino también por ser la causa principal de las infecciones hospitalarias. Estos organismos en conjunto se les conoce como ESKAPE, siglas que derivan de la primera letra de la categoría taxonómica género, o sea, del nombre científico de cada una de estas bacterias (Enterococcus spp, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa y Enterobacter spp.). La presente revisión tiene como objetivo describir los principales mecanismos de resistencia asociados a este grupo de bacterias y el impacto que han tenido en el desarrollo de nuevas estrategias antimicrobianas.
Collapse
|
24
|
Erol M, Celik I, Temiz-Arpaci O, Goker H, Kaynak-Onurdag F, Okten S. 1 H-Benzimidazole-5-carboxamidine derivatives: design, synthesis, molecular docking, DFT and antimicrobial studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj01899f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
15 new 1H-benzimidazole-5-carboxamidine derivatives were synthesized, their antimicrobial effects were evaluated, and molecular docking and DFT studies were performed.
Collapse
Affiliation(s)
- Meryem Erol
- Erciyes University
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- Kayseri
- Turkey
| | - Ismail Celik
- Erciyes University
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- Kayseri
- Turkey
| | - Ozlem Temiz-Arpaci
- Ankara University
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- Ankara
- Turkey
| | - Hakan Goker
- Ankara University
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- Ankara
- Turkey
| | - Fatma Kaynak-Onurdag
- Trakya University
- Faculty of Pharmacy
- Department of Pharmaceutical Microbiology
- Edirne
- Turkey
| | - Suzan Okten
- Trakya University
- Faculty of Pharmacy
- Department of Pharmaceutical Microbiology
- Edirne
- Turkey
| |
Collapse
|
25
|
Sarhan SR, Hashim HO, Al-Shuhaib MBS. The Gly152Val mutation possibly confers resistance to beta-lactam antibiotics in ovine Staphylococcus aureus isolates. Open Vet J 2019; 9:339-348. [PMID: 32042657 PMCID: PMC6971359 DOI: 10.4314/ovj.v9i4.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Background: The mecA gene is a key factor that allows bacterial cells to resist several antibiotics. Aim: This study was conducted to detect the mecA gene polymorphism in ovine wounds and its possible association with the structure and function of penicillin binding protein A2 (PBP2A). Methods: One genetic locus of 1,967 bp that covered the majority of the coding regions of the mecA gene within methicillin-resistant Staphylococcus aureus (MRSA) DNA sequences was designed. Results: In addition to standard microbiological tests, PCR-sequencing reactions and phylogenetic analyses confirmed the identity of the targeted MRSA bacteria. Seven novel missense SNPs, including N57T, N115Y, D120N, D139N, G152V, E189K, and F211V, were observed in the mecA amplicons. Multiple state-of-the-art in silico tools were utilized to assess the consequences of each observed SNP in terms of its effect on the corresponding PBP2A protein structure and function. It was shown that some MRSA isolates exhibited a highly PBP2A-damaging SNP, G152V, which showed an entirely deleterious effect on the PBP2A. Furthermore, G152V induced an alteration in the PBP2A interaction with its receptor, which presumably reduced its affinity to bind with the beta-lactams. Conclusion: The present report indicated a possible role for the observed deleterious G152V SNP in the reduction of PBP2A binding with beta-lactams, which has led to a remarkable increase in MRSA’s resistance to antibiotics.
Collapse
Affiliation(s)
- Sarhan R Sarhan
- Department of Pharmacology and Physiology, College of Veterinary Medicine, Wasit University, Wasit, Iraq
| | - Hayder O Hashim
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Babylon, Iraq
| | - Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil 51001, Iraq
| |
Collapse
|
26
|
Dayal N, Opoku-Temeng C, Mohammad H, Abutaleb NS, Hernandez D, Onyedibe KI, Wang M, Zeller M, Seleem MN, Sintim HO. Inhibitors of Intracellular Gram-Positive Bacterial Growth Synthesized via Povarov-Doebner Reactions. ACS Infect Dis 2019; 5:1820-1830. [PMID: 31512848 DOI: 10.1021/acsinfecdis.9b00022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus can survive both inside and outside of phagocytic and nonphagocytic host cells. Once in the intracellular milieu, most antibiotics have reduced ability to kill S. aureus, thus resulting in relapse of infection. Consequently, there is a need for antibacterial agents that can accumulate to lethal concentrations within host cells to clear intracellular infections. We have identified tetrahydrobenzo[a or c]phenanthridine and tetrahydrobenzo[a or c]acridine compounds, synthesized via a one-flask Povarov-Doebner operation from readily available amines, aldehydes, and cyclic ketones, as potent agents against drug-resistant S. aureus. Importantly, the tetrahydrobenzo[a or c]phenanthridine and tetrahydrobenzo[a or c]acridine compounds can accumulate in macrophage cells and reduce the burden of intracellular MRSA better than the drug of choice, vancomycin. We observed that MRSA could not develop resistance (by passage 30) against tetrahydrobenzo[a or c]acridine compound 15. Moreover, tetrahydrobenzo[c]acridine compound 15 and tetrahydrobenzo[c]phenanthridine compound 16 were nontoxic to red blood cells and were nonmutagenic. Preliminary data indicated that compound 16 reduced bacterial load (MRSA USA300) in mice (thigh infection model) to the same degree as vancomycin. These observations suggest that compounds 15 and 16 and analogues thereof could become therapeutic agents for the treatment of chronic MRSA infections.
Collapse
Affiliation(s)
- Neetu Dayal
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Clement Opoku-Temeng
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Chemistry and Biochemistry Department, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Delmis Hernandez
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Kenneth Ikenna Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Modi Wang
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Herman O. Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Bakthavatchalam YD, Rao SV, Isaac B, Manesh A, Nambi S, Swaminathan S, Nagvekar V, Nangia V, John PV, Veeraraghavan B. A comparative assessment of clinical, pharmacological and antimicrobial profile of novel anti-methicillin-resistant Staphylococcus aureus agent levonadifloxacin: Therapeutic role in nosocomial and community infections. Indian J Med Microbiol 2019; 37:478-487. [PMID: 32436868 DOI: 10.4103/ijmm.ijmm_20_34] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Staphylococcus aureus is of significant clinical concern in both community- and hospital-onset infections. The key to the success of S. aureus as a pathogen is its ability to swiftly develop antimicrobial resistance. Methicillin-resistant S. aureus (MRSA) is not only resistant to nearly all beta-lactams but also demonstrates resistance to several classes of antibiotics. A high prevalence of MRSA is seen across worldwide. For many decades, vancomycin remained as gold standard antibiotic for the treatment of MRSA infections. In the past decades, linezolid, daptomycin, ceftaroline and telavancin received regulatory approval for the treatment of infections caused by resistant Gram-positive pathogens. Although these drugs may offer some advantages over vancomycin, they also have significant limitations. These includes vancomycin's slow bactericidal activity, poor lung penetration and nephrotxicity;linezolid therapy induced myelosuppression and high cost of daptomycin greatly limits their clinical use. Moreover, daptomycin also gets inactivated by lung naturally occurring surfactants. Thus, currently available therapeutic options are unable to provide safe and efficacious treatment for those patients suffering from hospital-acquired pneumonia, bloodstream infections (BSIs), bone and joint infections and diabetic foot infections (DFI). An unmet need also exists for a safe and efficacious oral option for switch-over convenience and community treatment. Herein, the review is intended to describe the supporting role of anti-staphylococcal antibiotics used in the management of S. aureus infections with a special reference to levonadifloxacin. Levonadifloxacin and its prodrug alalevonadifloxacin are novel benzoquinolizine subclass of quinolone with broad-spectrum of anti-MRSA activity. It has been recently approved for the treatment of complicated skin and soft-tissue infection as well as concurrent bacteraemia and DFI in India.
Collapse
Affiliation(s)
| | - Shoma Vinay Rao
- Department of Critical Care Unit, Christian Medical College, Vellore, Tamil Nadu, India
| | - Barney Isaac
- Department of Pulmonary Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Abi Manesh
- Department of Internal Medicine and Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Senthur Nambi
- Department of Infectious Disease, Apollo Hospital, Chennai, Tamil Nadu, India
| | | | - Vasanth Nagvekar
- Department of Infectious disease, Lilavati Hospital, Mumbai, Maharashtra, India
| | - Vivek Nangia
- Department of Infectious Disease, Fortis Hospital, New Delhi, India
| | - Peter Victor John
- Critical Care Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
28
|
Shehata MMK, Radwan SM, Ali SAM. Effects of gamma-irradiation on antibiotic resistance and diagnostic molecular markers of methicillin-resistant Staphylococcus aureus in Egyptian cancer patients. Int J Radiat Biol 2019; 95:1728-1743. [PMID: 31502912 DOI: 10.1080/09553002.2019.1664785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: This in-vitro study aimed to assess in 120 [40 community-acquired (CA-MRSA) & 80 hospital-acquired (HA-MRSA)] isolates from cancer patients whether the transmissible staphylococcal cassette chromosome mec (SCCmec) typing, and the Panton-Valentine leukocidin (PVL) virulence genes detection could be employed as tools for molecular diagnostic purposes to distinguish both methicillin-resistant Staphylococcus aureus (MRSA) categories in radiotherapy treated cancer patients.Materials and methods: SCCmec typing was determined by the combination of the type of the cassette chromosome recombinase genes (ccr) gene complex and the class of the methicillin resistance (mec) gene complex. Besides, a rapid slide latex agglutination test (LAT) and antibiotic resistance spectrum determination before and after irradiation were performed.Results: In the strict sense, with the effect of irradiation; the presence of SCCmec subtypes IVa (22.5% vs. 10.0%), b (47.5% vs. 25.0%), & d (7.5 vs. 2.5%) or type V (15.0% vs. 7.5%) genetic elements and PVL genes (p < .001) were not proved as a signature for CA-MRSA. While, the larger SCCmec types II, and III elements were not detected in 14, and 19 from the 38, and 36 typed HA-MRSA isolates (p < .001), respectively. Remarkable effects on class A & class B mec gene complex and type2, type 3 & type 5 ccr gene complex and an increase in agglutination reaction strength in response to gamma irradiation external stimulus were observed.Conclusions: Different heterogeneous genetic composition with upregulation mecA gene expression was detected after irradiation in the HA- MRSA studied population. CA-MRSA showed remarkable ability to acquire multi-antibiotic resistance after irradiation and propose a novel paradigm for future chemotherapy against the multi-resistant pathogens whose proliferation especially among immunocompromised cancer patients is on the increase.
Collapse
Affiliation(s)
- Mona M K Shehata
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | | - Sahar A M Ali
- Microbiology and Immunology Department, Faculty of Medicine, Menufia University, Al Minufiyah, Egypt
| |
Collapse
|
29
|
Sezgin FM, Avcu M, Sevim E, Babaoglu UT. In vitro activity of fosfomycin on biofilm in community-acquired Staphylococcus aureus isolates. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2019. [DOI: 10.33808/clinexphealthsci.599855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Karki S, Sah AK, Lamichhane J, Maharjan A, Sharma L, Rajbhandari R, Parajuli S, Acharya S, Khanal S. Biofilm Formation and Detection of icaD Gene in Staphylococcus aureus Isolated from Clinical Specimens. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:S. aureusis found to be a major source of community as well as hospital acquired infections. The increase in antimicrobial resistance and emergence of multidrug resistance has become a big threat worldwide. The biofilm formation ofS. aureusinfluenced the survival and persistence in both environment and host.Aim:The study was conducted with the aim to evaluatein-vitrobiofilm formation and the presence oficaDgene inS. aureusfrom clinical isolates ofS. aureus.Methods:A total of 570 wound/pus samples were processed by standard microbiological techniques. Colony morphology, Gram’s staining and biochemical tests were used for the identification ofS. aureus. Antimicrobial susceptibility test was performed by Kirby-Bauer disc diffusion technique and methicillin-resistantS. aureuswas detected by using cefoxitin antibiotics. The production of biofilm was screened by Congo Red Agar and finally, the presence oficaDgene was determined by PCR.Results:Out of 570 samples, a total 19.3% (110/570) samples showed the growth ofS. aureus. Among which 59.1% (65/110) were multi-drug resistant. Similarly, 26.4% (29/110) isolates were methicillin-resistantS. aureus. Among MRSA isolates 93.1% (27/29) were MDR with more than 3 classes of antibiotics. Biofilm production was shown by 95.45% (105/110) and 77.3% (85/110) isolates on Congo Red Agar and presence oficaDgene respectively.Conclusion:In this study, the significant association was observed in phenotypic production of biofilm and the presence oficaDgene for the genotypic expression of biofilm. There were also increasing rates of MRSA and multidrug resistanceS. aureus.
Collapse
|
31
|
Akil N, Muhlebach MS. Biology and management of methicillin resistant Staphylococcus aureus in cystic fibrosis. Pediatr Pulmonol 2018; 53:S64-S74. [PMID: 30073802 DOI: 10.1002/ppul.24139] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus is one of the earliest bacteria isolated from the respiratory tract in people with cystic fibrosis (CF). Its methicillin resistant form, MRSA, has gained attention due to the rapid increase in the last decades and worse outcomes with chronic infection. In the United States, prevalence of MRSA in CF is around 27%, but is much lower (3-18%) in most other countries. Methicillin is typically genetically encoded by the mecA gene, which encodes for an alternative penicillin binding protein (PRBa). This PRBa has low affinity to β-lactams, thereby enabling growth of S. aureus in the presence of penicillinase resistant penicillins and most other β-lactams. Non-mecA positive strains of MRSA, so-called borderline resistant (BORSA) have also been described. In addition to production of toxins, the virulence of S. aureus is conferred by its adaptability allowing persistence in face of antibiotic therapies and host defense. These adaptive growth mechanisms include small colony variants, biofilms, and growth under anaerobic conditions. Several reports have described successful eradication of MRSA, yet only two randomized trials of eradication during early infection have been conducted. A list of MRSA specific antibiotics with dosing relevant to CF patients is presented here. Many of these require special dosing in people with CF. Novel antibiotics are in trials for skin and soft tissue infections and it is unclear if and when those might be available for lung infections. Thus the best strategies for MRSA would be primary prevention.
Collapse
Affiliation(s)
- Nour Akil
- Division of Pulmonology, Department of Pediatrics, University of NC at Chapel Hill, Chapel Hill, North Carolina
| | - Marianne S Muhlebach
- Division of Pulmonology, Department of Pediatrics, University of NC at Chapel Hill, Chapel Hill, North Carolina.,Marisco Lung Institute, University of NC at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
32
|
Shahin M, Moghim S, Havaei SR, Ghanbari F, Havaei SA. Determination of antimicrobial resistance pattern and molecular characteristics of methicillin-resistant Staphylococcus aureus strains isolated from patients in a teaching hospital of Isfahan, Iran. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Increasing Rates of Penicillin Sensitivity in Staphylococcus aureus. Antimicrob Agents Chemother 2018; 62:AAC.00680-18. [PMID: 29686148 DOI: 10.1128/aac.00680-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Molecular Typing and Antimicrobial Susceptibility of Methicillin-Resistant Staphylococcus aureus Isolated from Bovine Milk in Tanzania. Int J Microbiol 2018; 2018:4287431. [PMID: 29721021 PMCID: PMC5867597 DOI: 10.1155/2018/4287431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/30/2018] [Accepted: 02/11/2018] [Indexed: 12/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) in raw milk can be transmitted from animals to humans, and in Tanzania raw milk is sold in local markets and consumed as purchased. This study was performed to determine the molecular characteristics and antimicrobial susceptibility pattern of MRSA strains isolated from raw bovine milk sold at local markets in Tanzania. A total of 117 raw milk samples were cultured on Baird-Parker medium to isolate S. aureus and PCR was used for amplification of gltB gene for S. aureus identification and the presence of mecA gene for methicillin-resistant strains. Coagulase-negative (CN) S. aureus were reconfirmed using tube coagulase, DNase, and API Staph tests. MRSA isolates were spa typed whereas antimicrobial susceptibility testing was performed by the disc diffusion method. Forty-six coagulase positives (CP) and two CN S. aureus were identified. Most strains were resistant to penicillin (72%), and 3 isolates: 2 CN S. aureus and 1 coagulase-negative Staphylococci (CNS), were phenotypically resistant to vancomycin, oxacillin, and cefoxitin and were confirmed to carry mecA. Resistance to clindamycin, trimethoprim-sulfamethoxazole, and tetracycline was 23.9%, 30.4%, and 41.3%, respectively. Twelve isolates exhibited multidrug resistance; however, only one mecA positive strain among the three was typeable and belonged to spa type t2603. This study reports for the first time the presence of CN variant of MRSA, which was assigned the spa type t2603, and the presence of multidrug resistant S. aureus isolates from bovine milk in Morogoro, Tanzania.
Collapse
|
35
|
Chew YL, Mahadi AM, Wong KM, Goh JK. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:70. [PMID: 29463252 PMCID: PMC5819667 DOI: 10.1186/s12906-018-2137-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bauhinia kockiana originates from Peninsular Malaysia and it is grown as a garden ornamental plant. Our previous study reported that this plant exhibited fairly strong antioxidant and antimicrobial activities. This paper focused on the assessment of the antibacterial activity of B. kockiana towards methicillin-resistance Staphylococcus aureus (MRSA), to purify and to identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. METHODS Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated. RESULTS B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds. CONCLUSION Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.
Collapse
Affiliation(s)
- Yik Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, No. 1 Jalan Menara Gading, UCSI Heights, 56000 Kuala Lumpur, Malaysia
| | - Adlina Maisarah Mahadi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Kak Ming Wong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Joo Kheng Goh
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| |
Collapse
|
36
|
Aqib AI, Ijaz M, Farooqi SH, Ahmed R, Shoaib M, Ali MM, Mehmood K, Zhang H. Emerging discrepancies in conventional and molecular epidemiology of methicillin resistant Staphylococcus aureus isolated from bovine milk. Microb Pathog 2018; 116:38-43. [PMID: 29325865 DOI: 10.1016/j.micpath.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 01/03/2023]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) is an emerging public health concern from dairy milk, and its diagnosis by phenotypic methodology is experiencing higher discrepancies. The present study was planned to estimate discrepancies in phenotypic identification of MRSA and MSSA (Methicillin sensitive Staphylococcus aureus) in relation to mecA, and prevalent risk factors from various localities. In-vitro oxacilline antibiotic disks were used for phenotypic identification of MRSA, whereas mecA gene was used as MRSA marker in Staph aureus by PCR. Total of 900 bovine milk samples from private and public farms located in district Faisalabad using convinent sampling technique were collected. Potential risk factors for MRSA prevalence identified by non-parametric statistical tests were compared among different subdistricts. Discrepancy in MRSA was calculated as percentage of mecA negative strains while that of MSSA was determined as percentage of mecA positive strains. Molecular identification presented 17.97% (55/306) of discrepancy in MRSA in terms of negative mecA strains from district Faisalabad while sub-district Faisalabad, sub-district Jaranwala, and sub-district Samundary presented 13.98% (13/93), 18.28% (17/93), and 20.83% (25/120) discrepant results, respectively. On the other hand, 29.1% (55/189) of discrepancy in MSSA in terms of mecA positive strains from MSSA isolates was noted. MSSA results were more discrepant than that of MRSA. Hence discrepancy ratio of MSSA over MRSA was noted to be 1.53, 1.50, and 1.21 from tehsil Faislabad, Samundary, and Jaranwala. Tick infestation, lactation stage, frequency of milking, dirty milker's hands, unhygienic milking procedures, and higher use of beta lactam of antibiotics were risk factors that were prevalent in increasing order from sub-district Faisalabad > Jaranwala > Samundary. The study concluded higher prevalence of MRSA in bovine milk samples, and found remarkable discrepancies in phenotypic and genotypic identification which demand immediate attention to tackle exacerbation in resistance patterns.
Collapse
Affiliation(s)
- Amjad Islam Aqib
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad-Pakistan, 38000, Pakistan
| | - Muhammad Ijaz
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Shahid Hussain Farooqi
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Rais Ahmed
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Shoaib
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Khalid Mehmood
- University College of Veterinary and Animal Sciences, Islamia University of Bahawalpur-Pakistan, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
37
|
Draft Genome Sequence of USA100 Methicillin-Resistant Staphylococcus aureus Strain 209. GENOME ANNOUNCEMENTS 2018; 6:6/1/e01399-17. [PMID: 29301880 PMCID: PMC5754489 DOI: 10.1128/genomea.01399-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
USA100 strains are significant contributors to the overall burden of health care-associated methicillin-resistant Staphylococcus aureus (MRSA) infections. Strain 209 is a representative MRSA isolate that serves as a model organism for agr type II studies and USA100 virulence assessments. We present a draft genome sequence of this strain.
Collapse
|
38
|
Moosavian M, Shahin M, Navidifar T, Torabipour M. Typing of staphylococcal cassette chromosome mec encoding methicillin resistance in Staphylococcus aureus isolates in Ahvaz, Iran. New Microbes New Infect 2017; 21:90-94. [PMID: 29379604 PMCID: PMC5773478 DOI: 10.1016/j.nmni.2017.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen. We sought to determine the frequency of the different types of SCCmec in MRSA isolates by performing a cross-sectional study. A total of 72 S. aureus isolates were collected from Imam Khomeini and Golestan hospitals and analysed for MRSA and SCCmec typing by multiplex PCR. The pattern of antibiotic resistance among S. aureus isolates was determined by disc diffusion analysis. Of the 72 S. aureus isolates, 29 (40.27%) were recognized as MRSA. SCCmec type III was the most common type, with 55.17% (16/29), followed by type II with 27.58% (8/29); type IV with 10.34% (3/29); and type I with 6.89% (2/29). All 29 MRSA isolates were resistant to chloramphenicol and erythromycin. In addition, resistance to cephalothin, gentamicin, clindamycin, ciprofloxacin, tetracycline and rifampicin was seen in 24 (75%), 26 (63.4%), 17 (94.4%), 27 (71.05%), 10 (71.42%) and 13 (68.42%) MRSA isolates, respectively. A decreased sensitivity of MRSA to the antibiotics used was observed, with type III SCCmec being the predominant isolate.
Collapse
Affiliation(s)
- M Moosavian
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Shahin
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - T Navidifar
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Torabipour
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
39
|
Same-day Detection of Methicillin Resistance in Staphylococcus aureus Isolates by StaResMet® Kit. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.14937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
40
|
Hryniewicz MM, Garbacz K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA) – a more common problem than expected? J Med Microbiol 2017; 66:1367-1373. [DOI: 10.1099/jmm.0.000585] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Maria M. Hryniewicz
- Department of Oral Microbiology, Medical University of Gdansk, Dębowa 25, 80-204 Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical University of Gdansk, Dębowa 25, 80-204 Gdansk, Poland
| |
Collapse
|
41
|
Nyangacha RM, Odongo D, Oyieke F, Ochwoto M, Korir R, Ngetich RK, Nginya G, Makwaga O, Bii C, Mwitari P, Tolo F. Secondary bacterial infections and antibiotic resistance among tungiasis patients in Western, Kenya. PLoS Negl Trop Dis 2017; 11:e0005901. [PMID: 28886013 PMCID: PMC5607213 DOI: 10.1371/journal.pntd.0005901] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/20/2017] [Accepted: 08/23/2017] [Indexed: 01/21/2023] Open
Abstract
Tungiasis or jigger infestation is a parasitic disease caused by the female sand flea Tunga penetrans. Secondary infection of the lesions caused by this flea is common in endemic communities. This study sought to shed light on the bacterial pathogens causing secondary infections in tungiasis lesions and their susceptibility profiles to commonly prescribed antibiotics. Participants were recruited with the help of Community Health Workers. Swabs were taken from lesions which showed signs of secondary infection. Identification of suspected bacteria colonies was done by colony morphology, Gram staining, and biochemical tests. The Kirby Bauer disc diffusion test was used to determine the drug susceptibility profiles. Out of 37 participants, from whom swabs were collected, specimen were positive in 29 and 8 had no growth. From these, 10 different strains of bacteria were isolated. Two were Gram positive bacteria and they were, Staphylococcus epidermidis (38.3%) and Staphylococcus aureus (21.3%). Eight were Gram negative namely Enterobacter cloacae (8.5%), Proteus species (8.5%), Klebsiellla species (6.4%), Aeromonas sobria (4.3%), Citrobacter species (4.3%), Proteus mirabillis(4.3%), Enterobacter amnigenus (2.1%) and Klebsiella pneumoniae (2.1%). The methicillin resistant S. aureus (MRSA) isolated were also resistant to clindamycin, kanamycin, erythromycin, nalidixic acid, trimethorprim sulfamethoxazole and tetracycline. All the Gram negative and Gram positive bacteria isolates were sensitive to gentamicin and norfloxacin drugs. Results from this study confirms the presence of resistant bacteria in tungiasis lesions hence highlighting the significance of secondary infection of the lesions in endemic communties. This therefore suggests that antimicrobial susceptibility testing may be considered to guide in identification of appropriate antibiotics and treatment therapy among tungiasis patients.
Collapse
Affiliation(s)
- Ruth Monyenye Nyangacha
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - David Odongo
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Florence Oyieke
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Missiani Ochwoto
- Production Department, Kenya Medical Research Institute, Nairobi, Kenya
| | - Richard Korir
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Gladys Nginya
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Olipher Makwaga
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Christine Bii
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Peter Mwitari
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Festus Tolo
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
42
|
Hassoun A, Linden PK, Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit Care 2017; 21:211. [PMID: 28807042 PMCID: PMC5557425 DOI: 10.1186/s13054-017-1801-3] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection is still a major global healthcare problem. Of concern is S. aureus bacteremia, which exhibits high rates of morbidity and mortality and can cause metastatic or complicated infections such as infective endocarditis or sepsis. MRSA is responsible for most global S. aureus bacteremia cases, and compared with methicillin-sensitive S. aureus, MRSA infection is associated with poorer clinical outcomes. S. aureus virulence is affected by the unique combination of toxin and immune-modulatory gene products, which may differ by geographic location and healthcare- or community-associated acquisition. Management of S. aureus bacteremia involves timely identification of the infecting strain and source of infection, proper choice of antibiotic treatment, and robust prevention strategies. Resistance and nonsusceptibility to first-line antimicrobials combined with a lack of equally effective alternatives complicates MRSA bacteremia treatment. This review describes trends in epidemiology and factors that influence the incidence of MRSA bacteremia. Current and developing diagnostic tools, treatments, and prevention strategies are also discussed.
Collapse
Affiliation(s)
- Ali Hassoun
- Alabama Infectious Disease Center, 420 Lowell Drive, Suite 301, Huntsville, AL 35801 USA
| | - Peter K. Linden
- Allegheny General Hospital, Division of Surgical Critical Care, Allegheny Professional Building, 490 East North Ave, Suite 309, Pittsburgh, PA 15212 USA
| | - Bruce Friedman
- Joseph M. Still Burn Center, 3675 J. Dewey Gray Circle, Suite 200B, Augusta, GA 30909 USA
| |
Collapse
|
43
|
Adhikari RP, Shrestha S, Barakoti A, Amatya R. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. BMC Infect Dis 2017; 17:483. [PMID: 28693489 PMCID: PMC5504788 DOI: 10.1186/s12879-017-2584-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/03/2017] [Indexed: 11/15/2022] Open
Abstract
Background Staphylococcus aureus, an important nosocomial pathogen, is frequently associated with infections in human. The management of the infections by it especially methicillin resistant ones is often difficult because methicillin resistant S. aureus is usually resistant to multiple antibiotics. Macrolide-lincosamide streptogramin B family of antibiotics is commonly used to treat such infections as an alternative to vancomycin. Methods This study was conducted over the period of one and half year from November 2013–April 2015 in Microbiology laboratory of Nepal Medical College and Teaching Hospital, Kathmandu, Nepal to find the incidence of different phenotypes of MLSB resistance among S. aureus from clinical samples and their association with methicillin resistance. Two hundred seventy isolates of S. aureus were included in the study. Methicillin resistance was detected by cefoxitin disc diffusion method and inducible clindamycin resistance by erythromycin and clindamycin disc approximation test (D-test). Results Of the 270 clinical isolates of S. aureus, 25.1% (68/270) were MRSA. Erythromycin and clindamycin resistance was seen in 54.4% (147/270) and 41.8% (113/270) isolates respectively. Resistance to erythromycin and clindamycin were higher in MRSA as compared to MSSA (erythromycin-resistance: 88.2% Vs 39.1% and clindamycin-resistance: 79.4% Vs 41.8%). The overall prevalence of iMLSB and cMLSB phenotype was 11.48% (31/270) and 29.25% (79/270) respectively. Both iMLSB and cMLSB phenotypes predominated in MRSA strains. Conclusions Detection rate of MRSA in our study shows the necessity to improve in healthcare practices and to formulate new policy for the control of MRSA infections. Clindamycin resistance in the form of iMLSB and cMLSB especially among MRSA emphasizes the need of D-test to be performed routinely in our set up while using clindamycin as an alternative choice to anti-staphylococcal antibiotics like vancomycin and linezolid in the treatment of staphylococcal infections.
Collapse
Affiliation(s)
- R P Adhikari
- Department of Microbiology, Nepal Medical College and Teaching Hospital, Jorpati, Kathmandu, Nepal.
| | - S Shrestha
- Department of Microbiology, Nepal Medical College and Teaching Hospital, Jorpati, Kathmandu, Nepal
| | - A Barakoti
- Department of Microbiology, Nepal Medical College and Teaching Hospital, Jorpati, Kathmandu, Nepal
| | - R Amatya
- Department of Microbiology, Nepal Medical College and Teaching Hospital, Jorpati, Kathmandu, Nepal
| |
Collapse
|
44
|
Novel Multiplex PCR Assay for Detection of Chlorhexidine-Quaternary Ammonium, Mupirocin, and Methicillin Resistance Genes, with Simultaneous Discrimination of Staphylococcus aureus from Coagulase-Negative Staphylococci. J Clin Microbiol 2017; 55:1857-1864. [PMID: 28381601 DOI: 10.1128/jcm.02488-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/25/2017] [Indexed: 12/31/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a clinically significant pathogen that is resistant to a wide variety of antibiotics and responsible for a large number of nosocomial infections worldwide. The Agency for Healthcare Research and Quality and the Centers for Disease Control and Prevention recently recommended the adoption of universal mupirocin-chlorhexidine decolonization of all admitted intensive care unit patients rather than MRSA screening with targeted treatments, which raises a serious concern about the selection of resistance to mupirocin and chlorhexidine in strains of staphylococci. Thus, a simple, rapid, and reliable approach is paramount in monitoring the prevalence of resistance to these agents. We developed a simple multiplex PCR assay capable of screening Staphylococcus isolates for the presence of antiseptic resistance genes for chlorhexidine and quaternary ammonium compounds, as well as mupirocin and methicillin resistance genes, while simultaneously discriminating S. aureus from coagulase-negative staphylococci (CoNS). The assay incorporates 7 PCR targets, including the Staphylococcus 16S rRNA gene (specifically detecting Staphylococcus spp.), nuc (distinguishing S. aureus from CoNS), mecA (distinguishing MRSA from methicillin-susceptible S. aureus), mupA and mupB (identifying high-level mupirocin resistance), and qac and smr (identifying chlorhexidine and quaternary ammonium resistance). Our assay demonstrated 100% sensitivity, specificity, and accuracy in a total of 23 variant antiseptic- and/or antibiotic-resistant control strains. Further validation of our assay using 378 randomly selected and previously well-characterized local clinical isolates confirmed its feasibility and practicality. This may prove to be a useful tool for multidrug-resistant Staphylococcus monitoring in clinical laboratories, particularly in the wake of increased chlorhexidine and mupirocin treatments.
Collapse
|
45
|
Wang X, Ouyang L, Luo L, Liu J, Song C, Li C, Yan H, Wang P. Methicillin-resistant staphylococcus aureus isolates in a hospital of shanghai. Oncotarget 2017; 8:6079-6084. [PMID: 28030828 PMCID: PMC5351614 DOI: 10.18632/oncotarget.14036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are now common both in the health care setting and in the community. Active surveillance is critical for MRSA control and prevention. Specimens of patients (200 patients with 1119 specimens) as well as medical staff and hospital setting (1000 specimens) were randomly sampled in a level 2 hospital in Shanghai from September 2011 to August 2012. Isolation, cultivation and identification of S. aureus were performed. Totally, 67 S. aureus strains were isolated. 32 S. aureus strains were isolated from patient samples; 13 (13/32, 40.6%) of the 32 S. aureus isolates were MRSA; sputum sample and patients in the department of general internal medicine were the most frequent specimen and patient group for S. aureus strains isolation. Remaining 35 S. aureus strains were isolated from the medical staff and hospital setting; 20 (20/35, 57.1%) of the 35 S. aureus isolates were MRSA; specimens sampled from doctors and nurses' hands and nose and hospital facilities were the most frequent samples to isolate S. aureus. Resistant and virulent genes detection showed that, all 33 MRSA strains were mecA positive which accounts for 49.3% of the 67 S. aureus strains; 38 isolates were Panton-Valentine leukocidin (PVL) gene positive which accounts for 56.7% of the 67 S. aureus strains; and 17 (17/67, 25.4%) isolates are mecA and PVL genes dual positive. Multidrug-resistant strains of MRSA and PVL positive S. aureus are common in patients, medical staff and hospital setting, the potential health threat is worthy of our attention.
Collapse
Affiliation(s)
- Xiaoguang Wang
- The Center for Disease Control and Prevention of Minghang District, Minghang District, Shanghai 201101, P.R. China
| | - Lin Ouyang
- The Center for Disease Control and Prevention of Minghang District, Minghang District, Shanghai 201101, P.R. China
| | - Lingfei Luo
- The Center for Disease Control and Prevention of Minghang District, Minghang District, Shanghai 201101, P.R. China
| | - Jiqian Liu
- The Center for Disease Control and Prevention of Minghang District, Minghang District, Shanghai 201101, P.R. China
| | - Chiping Song
- The Center for Disease Control and Prevention of Minghang District, Minghang District, Shanghai 201101, P.R. China
| | - Cuizhen Li
- The Center for Disease Control and Prevention of Minghang District, Minghang District, Shanghai 201101, P.R. China
| | - Hongjing Yan
- The Center for Disease Control and Prevention of Minghang District, Minghang District, Shanghai 201101, P.R. China
| | - Ping Wang
- The Center for Disease Control and Prevention of Minghang District, Minghang District, Shanghai 201101, P.R. China
| |
Collapse
|
46
|
Rahbarnia L, Farajnia S, Babaei H, Majidi J, Veisi K, Ahmadzadeh V, Akbari B. Evolution of phage display technology: from discovery to application. J Drug Target 2016; 25:216-224. [DOI: 10.1080/1061186x.2016.1258570] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Leila Rahbarnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamal Veisi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tabriz, Iran
| | - Vahideh Ahmadzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, University Of Medical Sciences Tabriz, Tabriz, Iran
| |
Collapse
|
47
|
Prevalence of methicillin resistant Staphylococcus aureus [MRSA] colonization or carriage among health-care workers. J Infect Public Health 2016; 9:571-6. [DOI: 10.1016/j.jiph.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/14/2015] [Accepted: 12/11/2015] [Indexed: 11/17/2022] Open
|
48
|
Tran CD, Prosenc F, Franko M, Benzi G. Synthesis, structure and antimicrobial property of green composites from cellulose, wool, hair and chicken feather. Carbohydr Polym 2016; 151:1269-1276. [PMID: 27474680 DOI: 10.1016/j.carbpol.2016.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
Novel composites between cellulose (CEL) and keratin (KER) from three different sources (wool, hair and chicken feather) were successfully synthesized in a simple one-step process in which butylmethylimidazolium chloride (BMIm(+)Cl(-)), an ionic liquid, was used as the sole solvent. The method is green and recyclable because [BMIm(+)Cl(-)] used was recovered for reuse. Spectroscopy (FTIR, XRD) and imaging (SEM) results confirm that CEL and KER remain chemically intact and homogeneously distributed in the composites. KER retains some of its secondary structure in the composites. Interestingly, the minor differences in the structure of KER in wool, hair and feather produced pronounced differences in the conformation of their corresponding composites with wool has the highest α-helix content and feather has the lowest content. These results correlate well with mechanical and antimicrobial properties of the composites. Specifically, adding CEL into KER substantially improves mechanical strength of [CEL+KER] composites made from all three different sources, wool, hair and chicken feathers i.e., [CEL+wool], [CEL+hair] and [CEL+feather]. Since mechanical strength is due to CEL, and CEL has only random structure, [CEL+feather] has, expectedly, the strongest mechanical property because feather has the lowest content of α-helix. Conversely, [CEL+wool] composite has the weakest mechanical strength because wool has the highest α-helix content. All three composites exhibit antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA). The antibacterial property is due not to CEL but to the protein and strongly depends on the type of the keratin, namely, the bactericidal effect is strongest for feather and weakest for wool. These results together with our previous finding that [CEL+KER] composites can control release of drug such as ciprofloxacin clearly indicate that these composites can potentially be used as wound dressing.
Collapse
Affiliation(s)
- Chieu D Tran
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA.
| | - Franja Prosenc
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - Mladen Franko
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - Gerald Benzi
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| |
Collapse
|
49
|
Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2475067. [PMID: 27274985 PMCID: PMC4871955 DOI: 10.1155/2016/2475067] [Citation(s) in RCA: 891] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/23/2016] [Accepted: 04/17/2016] [Indexed: 11/18/2022]
Abstract
The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the leading cause of nosocomial infections throughout the world. Most of them are multidrug resistant isolates, which is one of the greatest challenges in clinical practice. Multidrug resistance is amongst the top three threats to global public health and is usually caused by excessive drug usage or prescription, inappropriate use of antimicrobials, and substandard pharmaceuticals. Understanding the resistance mechanisms of these bacteria is crucial for the development of novel antimicrobial agents or other alternative tools to combat these public health challenges. Greater mechanistic understanding would also aid in the prediction of underlying or even unknown mechanisms of resistance, which could be applied to other emerging multidrug resistant pathogens. In this review, we summarize the known antimicrobial resistance mechanisms of ESKAPE pathogens.
Collapse
|
50
|
Becker SC, Roach DR, Chauhan VS, Shen Y, Foster-Frey J, Powell AM, Bauchan G, Lease RA, Mohammadi H, Harty WJ, Simmons C, Schmelcher M, Camp M, Dong S, Baker JR, Sheen TR, Doran KS, Pritchard DG, Almeida RA, Nelson DC, Marriott I, Lee JC, Donovan DM. Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus. Sci Rep 2016; 6:25063. [PMID: 27121552 PMCID: PMC4848530 DOI: 10.1038/srep25063] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over used conventional antibiotics. Here we describe engineered triple-acting staphylolytic peptidoglycan hydrolases wherein three unique antimicrobial activities from two parental proteins are combined into a single fusion protein. This effectively reduces the incidence of resistant strain development. The fusion protein reduced colonization by Staphylococcus aureus in a rat nasal colonization model, surpassing the efficacy of either parental protein. Modification of a triple-acting lytic construct with a protein transduction domain significantly enhanced both biofilm eradication and the ability to kill intracellular S. aureus as demonstrated in cultured mammary epithelial cells and in a mouse model of staphylococcal mastitis. Interestingly, the protein transduction domain was not necessary for reducing the intracellular pathogens in cultured osteoblasts or in two mouse models of osteomyelitis, highlighting the vagaries of exactly how protein transduction domains facilitate protein uptake. Bacterial cell wall degrading enzyme antimicrobials can be engineered to enhance their value as potent therapeutics.
Collapse
Affiliation(s)
| | | | | | - Yang Shen
- Institute for Bioscience and Biotechnology Research, University of MD, Rockville, MD, USA.,Department of Veterinary Medicine, University of MD, College Park, MD, USA
| | | | | | - Gary Bauchan
- ARS, USDA, 10300 Baltimore Ave, Beltsville, MD, USA
| | | | | | | | - Chad Simmons
- ARS, USDA, 10300 Baltimore Ave, Beltsville, MD, USA
| | | | - Mary Camp
- ARS, USDA, 10300 Baltimore Ave, Beltsville, MD, USA
| | - Shengli Dong
- Biochemistry, Univ. Alabama, Birmingham, Birmingham, AL, USA
| | - John R Baker
- Biochemistry, Univ. Alabama, Birmingham, Birmingham, AL, USA
| | | | - Kelly S Doran
- Biology, San Diego State University, San Diego, CA, USA
| | | | | | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of MD, Rockville, MD, USA.,Department of Veterinary Medicine, University of MD, College Park, MD, USA
| | - Ian Marriott
- Biology, Univ. North Carolina, Charlotte, Charlotte, NC, USA
| | - Jean C Lee
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|