1
|
Balasubramaniam A, Tedbury PR, Mwangi SM, Liu Y, Li G, Merlin D, Gracz AD, He P, Sarafianos SG, Srinivasan S. SARS-CoV-2 Induces Epithelial-Enteric Neuronal Crosstalk Stimulating VIP Release. Biomolecules 2023; 13:207. [PMID: 36830577 PMCID: PMC9953368 DOI: 10.3390/biom13020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Diarrhea is present in up to 30-50% of patients with COVID-19. The mechanism of SARS-CoV-2-induced diarrhea remains unclear. We hypothesized that enterocyte-enteric neuron interactions were important in SARS-CoV-2-induced diarrhea. SARS-CoV-2 induces endoplasmic reticulum (ER) stress in enterocytes causing the release of damage associated molecular patterns (DAMPs). The DAMPs then stimulate the release of enteric neurotransmitters that disrupt gut electrolyte homeostasis. METHODS Primary mouse enteric neurons (EN) were exposed to a conditioned medium from ACE2-expressing Caco-2 colonic epithelial cells infected with SARS-CoV-2 or treated with tunicamycin (ER stress inducer). Vasoactive intestinal peptides (VIP) expression and secretion by EN were assessed by RT-PCR and ELISA, respectively. Membrane expression of NHE3 was determined by surface biotinylation. RESULTS SARS-CoV-2 infection led to increased expression of BiP/GRP78, a marker and key regulator for ER stress in Caco-2 cells. Infected cells secreted the DAMP protein, heat shock protein 70 (HSP70), into the culture media, as revealed by proteomic and Western analyses. The expression of VIP mRNA in EN was up-regulated after treatment with a conditioned medium of SARS-CoV-2-infected Caco-2 cells. CD91, a receptor for HSP70, is abundantly expressed in the cultured mouse EN. Tunicamycin, an inducer of ER stress, also induced the release of HSP70 and Xbp1s, mimicking SARS-CoV-2 infection. Co-treatment of Caco-2 with tunicamycin (apical) and VIP (basolateral) induced a synergistic decrease in membrane expression of Na+/H+ exchanger (NHE3), an important transporter that mediates intestinal Na+/fluid absorption. CONCLUSIONS Our findings demonstrate that SARS-CoV-2 enterocyte infection leads to ER stress and the release of DAMPs that up-regulates the expression and release of VIP by EN. VIP in turn inhibits fluid absorption through the downregulation of brush-border membrane expression of NHE3 in enterocytes. These data highlight the role of epithelial-enteric neuronal crosstalk in COVID-19-related diarrhea.
Collapse
Affiliation(s)
- Arun Balasubramaniam
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- VA Medical Center Atlanta, Decatur, GA 30033, USA
| | | | - Simon M. Mwangi
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- VA Medical Center Atlanta, Decatur, GA 30033, USA
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- VA Medical Center Atlanta, Decatur, GA 30033, USA
| | - Ge Li
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- VA Medical Center Atlanta, Decatur, GA 30033, USA
| | - Didier Merlin
- VA Medical Center Atlanta, Decatur, GA 30033, USA
- Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA
| | - Adam D. Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- VA Medical Center Atlanta, Decatur, GA 30033, USA
| |
Collapse
|
2
|
Poeta M, Cioffi V, Buccigrossi V, Corcione F, Peltrini R, Amoresano A, Magurano F, Viscardi M, Fusco G, Tarallo A, Damiano C, Lo Vecchio A, Bruzzese E, Guarino A. SARS-CoV-2 causes secretory diarrhea with an enterotoxin-like mechanism, which is reduced by diosmectite. Heliyon 2022; 8:e10246. [PMID: 35996551 PMCID: PMC9385603 DOI: 10.1016/j.heliyon.2022.e10246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND AIMS The pathophysiology of SARS-CoV-2-associated diarrhea is unknown. Using an experimental model validated for rotavirus-induced diarrhea, we investigated the effects of SARS-CoV-2 on transepithelial ion fluxes and epithelial integrity of human intestinal cells. The effect of the antidiarrheal agent diosmectite on secretion was also evaluated following its inclusion in COVID-19 management protocols. METHODS We evaluated electrical parameters (intensity of short-circuit current [Isc] and transepithelial electrical resistance [TEER]) in polarized Caco-2 cells and in colonic specimens mounted in Ussing chambers after exposure to heat-inactivated (hi) SARS-CoV-2 and spike protein. Spectrofluorometry was used to measure reactive oxygen species (ROS), a marker of oxidative stress. Experiments were repeated after pretreatment with diosmectite, an antidiarrheal drug used in COVID-19 patients. RESULTS hiSARS-CoV-2 induced an increase in Isc when added to the mucosal (but not serosal) side of Caco-2 cells. The effect was inhibited in the absence of chloride and calcium and by the mucosal addition of the Ca2+-activated Cl- channel inhibitor A01, suggesting calcium-dependent chloride secretion. Spike protein had a lower, but similar, effect on Isc. The findings were consistent when repeated in human colonic mucosa specimens. Neither hiSARS-CoV-2 nor spike protein affected TEER, indicating epithelial integrity; both increased ROS production. Pretreatment with diosmectite inhibited the secretory effect and significantly reduced ROS of both hiSARS-CoV-2 and spike protein. CONCLUSIONS SARS-CoV-2 induces calcium-dependent chloride secretion and oxidative stress without damaging intestinal epithelial structure. The effects are largely induced by the spike protein and are significantly reduced by diosmectite. SARS-CoV-2 should be added to the list of human enteric pathogens.
Collapse
Affiliation(s)
- Marco Poeta
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Vittoria Buccigrossi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Francesco Corcione
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Roberto Peltrini
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Fabio Magurano
- Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, Naples, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, Naples, Italy
| | - Antonietta Tarallo
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Carla Damiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Eugenia Bruzzese
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Cao H, Wu J, Luan N, Wang Y, Lin K, Liu C. Evaluation of a bivalent recombinant vaccine candidate targeting norovirus and rotavirus: Antibodies to rotavirus NSP4 exert antidiarrheal effects without virus neutralization. J Med Virol 2022; 94:3847-3856. [PMID: 35474320 DOI: 10.1002/jmv.27809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/10/2022]
Abstract
We previously found that when tandemly expressed with SR69A -VP8*, nonstructural protein 4 (NSP4) of the rotavirus Wa strain exerts a minor effect on elevating the antibody responses targeting the rotavirus antigen VP8* of the 60-valent nanoparticle SR69A -VP8* but could fully protect mice from diarrhea induced by the rotavirus strain Wa. In this study, we chose comparably less immunogenic norovirus 24-valent P particles with homogenous (i.e., VP8* from rotavirus) and heterogeneous (i.e., protruding domain of norovirus) antigens and in more challenging rotavirus SA11 strain-induced diarrhea mouse models to evaluate its main role in recombinant gastroenteritis virus-specific vaccines. The results showed that although as an adjuvant NSP4 exerted limited effects on the elevation of norovirus-specific or VP8*-specific neutralizing antibody production, as an antigen it could confer potent protection, particularly when synergized with VP8*, in rotavirus SA11 strain-induced diarrhea mouse models, possibly blocking the invasion of the intestinal wall by enterotoxin. NSP4 may be unnecessary for other recombinant vaccines as adjuvants, and its display mode should be evaluated specifically to avoid blocking coexpressed antigens in the norovirus P particles. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Yunfei Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Kangyang Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| |
Collapse
|
4
|
Bruno C, Paparo L, Pisapia L, Romano A, Cortese M, Punzo E, Berni Canani R. Protective effects of the postbiotic deriving from cow's milk fermentation with L. paracasei CBA L74 against Rotavirus infection in human enterocytes. Sci Rep 2022; 12:6268. [PMID: 35428750 PMCID: PMC9012738 DOI: 10.1038/s41598-022-10083-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Rotavirus (RV) is the leading cause of acute gastroenteritis-associated mortality in early childhood. Emerging clinical evidence suggest the efficacy of the postbiotic approach based on cow's milk fermentation with the probiotic Lacticaseibacillus paracasei CBAL74 (FM-CBAL74) in preventing pediatric acute gastroenteritis, but the mechanisms of action are still poorly characterized. We evaluated the protective action of FM-CBAL74 in an in vitro model of RV infection in human enterocytes. The number of infected cells together with the relevant aspects of RV infection were assessed: epithelial barrier damage (tight-junction proteins and transepithelial electrical resistance evaluation), and inflammation (reactive oxygen species, pro-inflammatory cytokines IL-6, IL-8 and TNF-α, and mitogen-activated protein kinase pathway activation). Pre-incubation with FM-CBA L74 resulted in an inhibition of epithelial barrier damage and inflammation mediated by mitogen-activated protein kinase pathway activation induced by RV infection. Modulating several protective mechanisms, the postbiotic FM-CBAL74 exerted a preventive action against RV infection. This approach could be a disrupting nutritional strategy against one of the most common killers for the pediatric age.
Collapse
Affiliation(s)
- Cristina Bruno
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics, CNR, Naples, Italy
| | - Alessia Romano
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Maddalena Cortese
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Erika Punzo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy. .,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy. .,European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy. .,Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy. .,Task Force for Nutraceuticals and Functional Foods, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
5
|
Buccigrossi V, Poeta M, Cioffi V, Terranova S, Nunziata F, Lo Vecchio A, Guarino A. Lacticaseibacillus rhamnosus GG Counteracts Rotavirus-Induced Ion Secretion and Enterocyte Damage by Inhibiting Oxidative Stress and Apoptosis Through Specific Effects of Living and Postbiotic Preparations. Front Cell Infect Microbiol 2022; 12:854989. [PMID: 35425719 PMCID: PMC9001969 DOI: 10.3389/fcimb.2022.854989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
Background Administration of Lacticaseibacillus rhamnosus GG (LGG) to children with gastroenteritis is recommended by universal guidelines. Rotavirus (RV) causes diarrhea through combined cytotoxic and enterotoxic effects. Aim of this study was to evaluate the mechanisms of efficacy of LGG in an in-vitro model of RV diarrhea in its viable form (LGG) and conditioned medium (mLGG). Methods Ion secretion corresponding to the NSP4 enterotoxic effect, was evaluated by short circuit current (Isc) and the cytotoxic effect by transepithelial electrical resistance (TEER) in Ussing chambers, upon exposure to RV in Caco-2 enterocyte monolayers treated or not with living probiotic or its culture supernatant. Mechanisms of enterotoxic and cytotoxic damage were evaluated including oxidative stress measured by reactive oxygen species, apoptosis evaluated by DAPI and nuclear staining, NFkβ immunofluorescence. Results RV induced Isc increase and TEER decrease, respectively indicating ion secretion and epithelial damage, the two established pathways of diarrhea. Both probiotic preparations reduced both diarrheal effects, but their potency was different. Live LGG was equally effective on both enterotoxic and cytotoxic effect whereas mLGG was highly effective on ion secretion and showed minimal protective effects on cytoskeleton, apoptosis and NFkβ. Conclusions LGG counteracts RV-induced diarrhea by inhibiting both cytotoxic and enterotoxic pathogenic mechanisms. Namely, LGG inhibits chloride secretion by specific moieties secreted in the medium with a direct pharmacologic-like action. This is considered a postbiotic effect. Subsequently, live bacteria exert a probiotic effect protecting the enterocyte structure.
Collapse
|
6
|
Liu C, Huang P, Zhao D, Xia M, Zhong W, Jiang X, Tan M. Effects of rotavirus NSP4 protein on the immune response and protection of the S R69A-VP8* nanoparticle rotavirus vaccine. Vaccine 2021; 39:263-271. [PMID: 33309483 PMCID: PMC7822095 DOI: 10.1016/j.vaccine.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/05/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Rotavirus causes severe diarrhea and dehydration in young children. Even with the implementation of the current live vaccines, rotavirus infections still cause significant mortality and morbidity, indicating a need for new rotavirus vaccines with improved efficacy. To this end, we have developed an SR69A-VP8*/S60-VP8* nanoparticle rotavirus vaccine candidate that will be delivered parenterally with Alum adjuvant. In this study, as parts of our further development of this nanoparticle vaccine, we evaluated 1) roles of rotavirus nonstructural protein 4 (NSP4) that is the rotavirus enterotoxin, a possible vaccine target, and an immune stimulator, and 2) effects of CpG adjuvant that is a toll-like receptor 9 (TLR9) ligand and agonist on the immune response and protection of our SR69A-VP8*/S60-VP8* nanoparticle vaccine. The resulted vaccine candidates were examined for their IgG responses in mice. In addition, the resulted mouse sera were assessed for i) blocking titers against interactions of rotavirus VP8* proteins with their glycan ligands, ii) neutralization titers against rotavirus replication in cell culture, and iii) passive protection against rotavirus challenge with diarrhea in suckling mice. Our data showed that the Alum adjuvant appeared to work better with the SR69A-VP8*/S60-VP8* nanoparticles than the CpG adjuvant, while an addition of the NSP4 antigen to the SR69A-VP8*/S60-VP8* vaccine may not help to further increase the immune response and protection of the resulted vaccine.
Collapse
Affiliation(s)
- Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan Province, China
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dandan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Weiming Zhong
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Protective action of Bacillus clausii probiotic strains in an in vitro model of Rotavirus infection. Sci Rep 2020; 10:12636. [PMID: 32724066 PMCID: PMC7387476 DOI: 10.1038/s41598-020-69533-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Rotavirus is the most common cause of acute gastroenteritis (AGE) in young children. Bacillus clausii (B. clausii) is a spore-forming probiotic that is able to colonize the gut. A mixture of four B. clausii strains (O/C, T, SIN and N/R) is commonly used for the treatment of AGE, and it has been demonstrated that it can reduce the duration and severity of diarrhea in children with AGE. Few studies have sought to characterize the mechanisms responsible for such beneficial effects. Intestinal effects of probiotics are likely to be strain-specific. We conducted a series of in vitro experiments investigating the activities of this mixture of B. clausii strains on biomarkers of mucosal barrier integrity and immune function in a cellular model of Rotavirus infection. B. clausii protected enterocytes against Rotavirus-induced decrease in trans-epithelial electrical resistance, and up-regulated expression of mucin 5AC and tight junction proteins (occludin and zonula occludens-1), all of which are important for effective mucosal barrier function. B. clausii also inhibited reactive oxygen species production and release of pro-inflammatory cytokines (interleukin-8 and interferon-β) in Rotavirus-infected cells, and down-regulated pro-inflammatory Toll-like receptor 3 pathway gene expression. Such mechanisms likely contributed to the observed protective effects of B. clausii against reduced cell proliferation and increased apoptosis in Rotavirus-infected enterocytes.
Collapse
|
8
|
Buccigrossi V, Lo Vecchio A, Bruzzese E, Russo C, Marano A, Terranova S, Cioffi V, Guarino A. Potency of Oral Rehydration Solution in Inducing Fluid Absorption is Related to Glucose Concentration. Sci Rep 2020; 10:7803. [PMID: 32385331 PMCID: PMC7210290 DOI: 10.1038/s41598-020-64818-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/14/2020] [Indexed: 11/24/2022] Open
Abstract
Oral rehydration solutions (ORSs) is the key treatment of acute diarrhea in children, as it restores the electrolyte balance by stimulating the intestinal sodium/glucose transporter SGLT1 to induce fluid absorption. The World Health Organization (WHO) and The European Society for Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) proposed ORSs with different chemical compositions. The main agent of childhood acute gastroenteritis is rotavirus (RV). We evaluate the effects of ORS with different concentration of glucose and sodium on RV induced secretion. Ussing chambers technique was used for electophysiology experiments to evaluate ion fluid flux. ESPGHAN ORS (sodium 60 mmol/L and glucose 111 mmol/L) induced a more potent proabsorptive effect in Caco-2 cells than WHO ORS, and this effect depended on the sodium/glucose ratio. Titration experiments showed that RV-induced fluid secretion can be reverted to a proabsorptive direction when sodium and glucose concentration fall in specific ranges, specifically 45–60 mEq/L and 80–110 mM respectively. The results were confirmed by testing commercial ORSs. These findings indicated that ORS proabsorptive potency depends on sodium and glucose concentrations. Optimal ORS composition should be tailored to reduce RV-induced ion secretion by also considering palatability. These in vitro data should be confirmed by clinical trials.
Collapse
Affiliation(s)
- Vittoria Buccigrossi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Eugenia Bruzzese
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Carla Russo
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Antonella Marano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Sara Terranova
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
9
|
Differential effects of Clostridium difficile toxins on ion secretion and cell integrity in human intestinal cells. Pediatr Res 2019; 85:1048-1054. [PMID: 30851723 DOI: 10.1038/s41390-019-0365-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/27/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Toxin A (TcdA), toxin B (TcdB), and binary toxin (CDT) produced by Clostridium difficile (CD) are thought to play a key role in inducing diarrhea. The aim of this study was to investigate the individual and combined roles of CD toxins in inducing enterotoxic and cytotoxic effect. METHODS Ion secretion and epithelial damage were evaluated in the Ussing chambers as measure of enterotoxic or cytotoxic effect, respectively, in human-derived intestinal cells. RESULTS When added to the mucosal side of Caco-2 cells, TcdB, but not TcdA, induced ion secretion and its effects increased in the presence of TcdA. CDT also induced ion secretion when added to either the mucosal or serosal compartment. Serosal addition of TcdB induced epithelial damage consistent with its cytotoxic effect. However, mucosal addition of TcdB had similar effects, but only in the presence of TcdA. CDT induced epithelial damage when added to the serosal side of cell monolayers, and this was associated with a late onset but prolonged effect. All data were replicated using human colon biopsies. CONCLUSIONS These data indicate that CD, through the combined and direct activity of its three toxins, induces integrated and synergic enterotoxic and cytotoxic effects on the intestinal epithelium.
Collapse
|
10
|
Buccigrossi V, Russo C, Guarino A, de Freitas MB, Guarino A. Mechanisms of antidiarrhoeal effects by diosmectite in human intestinal cells. Gut Pathog 2017; 9:23. [PMID: 28450899 PMCID: PMC5404323 DOI: 10.1186/s13099-017-0172-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/11/2017] [Indexed: 12/16/2022] Open
Abstract
Background Rotavirus (RV) induces diarrhoea through a sequence of enterotoxic and cytotoxic effects. The former are NSP4-dependent, induce calcium-dependent chloride secretion and involve oxidative stress. Diosmectite (DS) is a natural clay that has been recommended as an active therapy for diarrhoea, but the mechanism of its effect is not clear. Electrical parameters may be used to measure the direct enterotoxic and cytotoxic effects in polar epithelial intestinal cells. To investigate the effects of DS on RV-induced enterotoxic and cytotoxic damage. Caco-2 cells were used as a model of RV infection to evaluate chloride secretion, epithelial integrity, oxidative stress and viral infectivity in Ussing chambers. Results Diosmectite reduced the expression of NSP4 and oxidative stress, resulting in a strong inhibition of chloride secretion. Preincubating RV with DS reduced the cytotoxic effect. Finally, the viral load was reduced by DS but not by control clay. This result suggests that DS specifically affects the early events of RV infection protecting the enterocyte, whereas it does not restore already-established cell damage. Conclusion These findings indicate that DS exerts an anti-diarrhoeal effect by inhibiting viral replication and the expression of NSP4. Both ion secretion and cell damage induced by RV are strongly inhibited consequent to the antiviral effect, which explains its clinical efficacy.
Collapse
Affiliation(s)
- Vittoria Buccigrossi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Carla Russo
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Amedeo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Maiara Brusco de Freitas
- Department of Nutrition, Federal University of Santa Catarina, Florianópolis, Santa Catarina Brazil
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
11
|
Abstract
Eukaryotic cells have evolved a myriad of ion channels, transporters, and pumps to maintain and regulate transmembrane ion gradients. As intracellular parasites, viruses also have evolved ion channel proteins, called viroporins, which disrupt normal ionic homeostasis to promote viral replication and pathogenesis. The first viral ion channel (influenza M2 protein) was confirmed only 23 years ago, and since then studies on M2 and many other viroporins have shown they serve critical functions in virus entry, replication, morphogenesis, and immune evasion. As new candidate viroporins and viroporin-mediated functions are being discovered, we review the experimental criteria for viroporin identification and characterization to facilitate consistency within this field of research. Then we review recent studies on how the few Ca(2+)-conducting viroporins exploit host signaling pathways, including store-operated Ca(2+) entry, autophagy, and inflammasome activation. These viroporin-induced aberrant Ca(2+) signals cause pathophysiological changes resulting in diarrhea, vomiting, and proinflammatory diseases, making both the viroporin and host Ca(2+) signaling pathways potential therapeutic targets for antiviral drugs.
Collapse
Affiliation(s)
- Joseph M Hyser
- Alkek Center for Metagenomic and Microbiome Research.,Department of Molecular Virology and Microbiology, and
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, and.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3411;
| |
Collapse
|
12
|
Moreno LY, Guerrero CA, Acosta O. Interacciones de las proteínas disulfuro isomerasa y de choque térmico Hsc70 con proteínas estructurales recombinantes purificadas de rotavirus. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2016. [DOI: 10.15446/rev.colomb.biote.v18n1.57714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>Introducción. La entrada de rotavirus a las células parece estar mediado por interacciones secuenciales entre las proteínas estructurales virales y algunas moléculas de la superficie celular. Sin embargo, los mecanismos por los cuales el rotavirus infecta la célula diana aún no se comprenden bien. Existe alguna evidencia que muestra que las proteínas estructurales de rotavirus VP5* y VP8* interactúan con algunas moléculas de la superficie celular. La disponibilidad de las proteínas estructurales de rotavirus recombinantes en cantidad suficiente se ha convertido en un aspecto importante para la identificación de las interacciones específicas de los receptores virus-célula durante los eventos tempranos del proceso infeccioso. Objetivo. El propósito del presente trabajo es realizar un análisis de las interacciones entre las proteínas estructurales de rotavirus recombinante VP5*, VP8* y VP6, y las proteínas celulares Hsc70 y PDI utilizando sus versiones recombinantes purificadas. Materiales y métodos. Las proteínas recombinantes de rotavirus VP5* y VP8* y las proteínas recombinantes celulares Hsc70 y PDI se expresaron en E. BL21 (DE3), mientras que VP6 se expresó en células MA104 con virus vaccinia recombinante transfectada. La interacción entre el rotavirus y las proteínas celulares se estudió mediante ELISA, co-inmunoprecipitación y SDS-PAGE/ Western. Resultados. Las condiciones óptimas para la expresión de proteínas recombinantes se determinaron y se generaron anticuerpos contra ellas. Los resultados sugirieron que las proteínas virales rVP5* y rVP6 interactúan con Hsc70 y PDI in vitro. También se encontró que éstas proteínas virales recombinantes interactúan con Hsc70 en las balsas lipídicas (“Rafts”) en un cultivo celular. El tratamiento de las células, ya sea con DLP o rVP6 produjo significativamente la inhibición de la infección por rotavirus. Conclusión. Los resultados permiten concluir que rVP5 * y rVP6 interactúan con Hsc70 y PDI durante el proceso de la infección por rotavirus.</p>
Collapse
|
13
|
|
14
|
Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes. PLoS One 2014; 9:e99830. [PMID: 24918938 PMCID: PMC4053528 DOI: 10.1371/journal.pone.0099830] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022] Open
Abstract
Rotavirus (RV) infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4) enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS) in Caco-2 cells. The ratio between reduced (GSH) and oxidized (GSSG) glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC), a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb) has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics.
Collapse
|
15
|
Williams D. Treatment of rotavirus-associated diarrhea using enteral immunoglobulins for pediatric stem cell transplant patients. J Oncol Pharm Pract 2014; 21:238-40. [DOI: 10.1177/1078155214522313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diarrhea is a common complication associated with allogeneic and autologous stem cell transplant patients. One potential cause of viral diarrhea is rotavirus gastroenteritis. This study represents a single-center experience of using multiple daily doses of enteral immunoglobulins in four pediatric hematopoietic stem cell transplant patients with confirmed rotavirus infections. Four courses of enteral immunoglobulin administration were included for analysis. Clinical characteristics recorded included duration of diarrhea symptoms, frequency of bowel movements, and consistency of stool. Four single courses of enteral immunoglobulins in four patients were included for analysis. Patient age range was from 10 months to 14 years. Three out of four courses observed displayed an improvement in diarrhea frequency and/or stool consistency. Median time from therapy initiation to symptom improvement was three days. At a median 22-month follow-up, one patient was diagnosed with gastrointestinal graft-versus-host disease. The time to rotavirus symptom resolution was decreased, compared to historical controls, and improvement in stool frequency and consistency was observed in three of four courses. One case of gastrointestinal graft-versus-host disease was observed after nearly two years of follow-up. Enteral administration of immunoglobulins may represent a valid clinical option for hematopoietic stem cell transplant patients with rotavirus diarrhea.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Acute gastroenteritis (AGE) is a major cause of ED visits, hospitalizations, and prescription of investigations, drugs, and changes in diet. Several guidelines on management have been produced. RECENT FINDINGS There is new information on different rehydration protocols, use of antiemetics, and antidiarrheal drugs that could reduce the burden of AGE. The need of intravenous (i.v.) rehydration is the main cause of hospital admission yet a standardized rehydration scheme is not available. Rehydration therapy through nasogastric tube is better than i.v. rehydration, in children with moderate-severe dehydration. Ultrarapid rehydration has been proposed by enteric or i.v. route to reduce the time in hospital and costs. However, reduced rehydration times are associated with high readmission rates and side effects. Antiemetics may reduce the need of i.v. rehydration because of vomiting and the number of hospital admissions. However, the main antiemetic, ondansetron, has been loaded with a warning for potentially severe side effects. Selected antidiarrheal drugs could reduce the length of stay, but data on their use in inpatients are still not conclusive. SUMMARY Inappropriate medical interventions are still common in the hospital setting and have a high impact on costs. A validated management is still needed in inpatients.
Collapse
|
17
|
|
18
|
Wang H, Moon S, Wang Y, Jiang B. Multiple virus infection alters rotavirus replication and expression of cytokines and Toll-like receptors in intestinal epithelial cells. Virus Res 2012; 167:48-55. [DOI: 10.1016/j.virusres.2012.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 01/18/2023]
|
19
|
Giaquinto C, Jackson AEM, Vesikari T. Report of the second European expert meeting on rotavirus vaccination. Vaccine 2011; 30:2237-44. [PMID: 22178724 DOI: 10.1016/j.vaccine.2011.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Affiliation(s)
- Carlo Giaquinto
- Department of Pediatrics, University of Padova, Padova, Italy.
| | | | | |
Collapse
|
20
|
Guarino A, Dupont C, Gorelov AV, Gottrand F, Lee JKF, Lin Z, Lo Vecchio A, Nguyen TD, Salazar-Lindo E. The management of acute diarrhea in children in developed and developing areas: from evidence base to clinical practice. Expert Opin Pharmacother 2011; 13:17-26. [PMID: 22106840 DOI: 10.1517/14656566.2011.634800] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Acute diarrhea remains a major problem in children and is associated with substantial morbidity, mortality and costs. While vaccination against rotavirus could reduce the burden of the disease, the persistent impact of intestinal infections requires effective treatment in adjunct to oral rehydration solutions, to reduce the severity and duration of diarrhea. Several therapeutic options have been proposed for acute diarrhea, but proof of efficacy is available for few of them, including zinc, diosmectite, selected probiotics and racecadotril. However, at present there is no universal drug, and therapeutic efficacy has only been shown for selected drugs in selected settings, such as: outpatients/inpatients, developed/developing countries and viral/bacterial etiology. AREAS COVERED This narrative review reports the opinions of experts from different countries of the world who have discussed strategies to improve the management of diarrhea. EXPERT OPINION More data are needed to optimize the management of diarrhea and highlight the research priorities at a global level; such priorities include improved recommendations on oral rehydration solution composition, and the reevaluation of therapeutic options in the light of new trials. Therapeutic strategies need to be assessed in different settings, and pharmacoeconomic analyses based on country-specific data are needed. Transfer to clinical practice should result from the implementation of guidelines tailored at a local level, with an eye on costs.
Collapse
Affiliation(s)
- Alfredo Guarino
- Universsity of Naples Federico II, Department of Pediatrics, Via Pansini 5, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Esposito F, Senese R, Salvatore P, Vallone G. Intrahepatic portal-vein gas associated with rotavirus infection. J Ultrasound 2011; 14:10-3. [PMID: 23396864 DOI: 10.1016/j.jus.2011.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rotavirus enteritis is an infectious disease of the small bowel caused by an RNA reovirus. It is manifested by cytotoxic diarrhea [1]. Rotavirus is the most common viral cause of enteritis (incidence 15-35%) [2]. In infants and children with abdominal pain and diarrhea, ultrasonography is the diagnostic study of choice, and its use has increased significantly in young patients. We describe two cases in which portal-vein gas was detected on abdominal ultrasound scans in children with severe dehydration secondary to rotavirus gastroenteritis, which resolved rapidly after treatment.
Collapse
Affiliation(s)
- F Esposito
- Radiology Department, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | | | | | | |
Collapse
|
22
|
Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins (Basel) 2010; 2:2132-57. [PMID: 22069677 PMCID: PMC3153279 DOI: 10.3390/toxins2082132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022] Open
Abstract
An estimated 4 billion episodes of diarrhea occur each year. As a result, 2–3 million children and 0.5–1 million adults succumb to the consequences of this major healthcare concern. The majority of these deaths can be attributed to toxin mediated diarrhea by infectious agents, such as E. coli, V. cholerae or Rotavirus. Our understanding of the pathophysiological processes underlying these infectious diseases has notably improved over the last years. This review will focus on the cellular mechanism of action of the most common enterotoxins and the latest specific therapeutic approaches that have been developed to contain their lethal effects.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The 2009 review on small intestinal ion transport, in this series, focused on recent advances in duodenal bicarbonate secretion, the importance of scaffolding proteins and the pathophysiology of inflammation-associated diarrhea. The current review focuses on advances in ion-coupled solute transport, the dynamic role of the paracellular pathway in transepithelial-fluid transport and of elucidating the cellular basis of diarrheas associated with enteric infections. RECENT FINDINGS In understanding the cellular pathophysiology underlying diarrheal diseases, there is increased focus on the role of altering Na absorptive mechanisms as well as the role of the paracellular pathway. This is not to minimize the role of Cl-secretory pathways, especially cystic fibrosis transmembrane conductance regulator (CFTR), which continues to have pleiotropic roles in modulating other transporters. The Na-glucose cotransporter (SGLT) was the first transporter ever to be cloned. Twenty-one years later, with another first, the crystal structure of the related Na-galactose transporter has been described and opens new avenues to understand structure-function relationships and intelligent drug design for transporters. SUMMARY Progress continues to be made on integrating information obtained from reductionist models into more complex in-vivo animal models and where possible in human studies. Recognition of the coordinated regulation of cellular Na absorptive and Cl-secretory pathways together with the paracellular route in health and disease will help develop a more holistic picture of the multifaceted nature of small intestinal ion transport.
Collapse
|