1
|
Cezário RR, Lopez VM, Datto-Liberato F, Bybee SM, Gorb S, Guillermo-Ferreira R. Polarized vision in the eyes of the most effective predators: dragonflies and damselflies (Odonata). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:8. [PMID: 39836264 PMCID: PMC11750933 DOI: 10.1007/s00114-025-01959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Polarization is a property of light that describes the oscillation of the electric field vector. Polarized light can be detected by many invertebrate animals, and this visual channel is widely used in nature. Insects rely on light polarization for various purposes, such as water detection, improving contrast, breaking camouflage, navigation, and signaling during mating. Dragonflies and damselflies (Odonata) are highly visual insects with polarization sensitivity for water detection and likely also navigation. Thus, odonates can serve as ideal models for investigating the ecology and evolution of polarized light perception. We provide an overview of the current state of knowledge concerning polarized light sensitivity in these insects. Specifically, we review recent findings related to the ecological, morphological, and physiological causes that enable these insects to perceive polarized light and discuss the optical properties responsible for the reflection of polarized light by their bodies and wings. Finally, we identify gaps in the current research and suggest future directions that can help to further advance our knowledge of polarization sensitivity in odonates.
Collapse
Affiliation(s)
- Rodrigo Roucourt Cezário
- LESTES, Entomology and Experimental Biology Center, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil.
- Graduate Program in Entomology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
- Guajará-Mirim Integrated Management Nucleus, Chico Mendes Institute for Biodiversity Conservation (ICMBio), Guajará-Mirim, RO, Brazil.
| | - Vinicius Marques Lopez
- LESTES, Entomology and Experimental Biology Center, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Felipe Datto-Liberato
- LESTES, Entomology and Experimental Biology Center, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
- Graduate Program in Entomology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Seth M Bybee
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, 84602, USA
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany.
| | - Rhainer Guillermo-Ferreira
- LESTES, Entomology and Experimental Biology Center, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
- Graduate Program in Entomology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Li CR, Liao YW, Bikbaev RG, Yang JH, Chen LH, Maksimov DN, Pankin PS, Timofeev IV, Chen KP. Selective Plasmonic Responses of Chiral Metamirrors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1705. [PMID: 39513785 PMCID: PMC11547482 DOI: 10.3390/nano14211705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
The properties of circularly polarized light has recently been used to selectively reflect chiral metasurfaces. Here we report the more complete basic functionalities of reflectors and absorbers that display various optical phenomena under circularly polarized light at normal incidence as before. For the chiral metamirrors we designed, the circular dichroism in about 0.4 reflection is experimentally observed in visible wavelengths. The experimental results also show high reflectance for right-handed circular polarization with preserved handedness and strongly absorbed left-handed circular polarization at chiroptical resonant wavelengths. By combining a nanobrick and wire grating for our design, we find and offer a new structure to demonstrate the superposition concept of the phase in the same plane that is helpful in effectively designing chiral metamirrors, and could advance development of their ultracompact optical components.
Collapse
Affiliation(s)
- Chang-Ruei Li
- Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, 301 Gaofa 3rd Road, Tainan 71150, Taiwan;
| | - Yu-Wei Liao
- Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, 301 Gaofa 3rd Road, Tainan 71150, Taiwan; (Y.-W.L.); (J.-H.Y.)
| | - Rashid G. Bikbaev
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; (R.G.B.); (D.N.M.); (P.S.P.); (I.V.T.)
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Jhen-Hong Yang
- Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, 301 Gaofa 3rd Road, Tainan 71150, Taiwan; (Y.-W.L.); (J.-H.Y.)
| | - Lu-Hsing Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Dmitrii N. Maksimov
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; (R.G.B.); (D.N.M.); (P.S.P.); (I.V.T.)
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Pavel S. Pankin
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; (R.G.B.); (D.N.M.); (P.S.P.); (I.V.T.)
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Ivan V. Timofeev
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; (R.G.B.); (D.N.M.); (P.S.P.); (I.V.T.)
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Kuo-Ping Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Institute of Imaging and Biomedical Photonics, College of Photonics, National Yang Ming Chiao Tung University, 301 Gaofa 3rd Road, Tainan 71150, Taiwan
| |
Collapse
|
3
|
Sylvester T, Hoover Z, Hjelmen CE, Jonika MM, Blackmon LT, Alfieri JM, Johnston JS, Chien S, Esfandani T, Blackmon H. A reference quality genome assembly for the jewel scarab Chrysina gloriosa. G3 (BETHESDA, MD.) 2024; 14:jkae084. [PMID: 38630623 PMCID: PMC11152064 DOI: 10.1093/g3journal/jkae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 01/23/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The jewel scarab Chrysina gloriosa is one of the most charismatic beetles in the United States and is found from the mountains of West Texas to the Southeastern Arizona sky islands. This species is highly sought by professional and amateur collectors worldwide due to its gleaming metallic coloration. However, the impact of the large-scale collection of this beetle on its populations is unknown, and there is a limited amount of genetic information available to make informed decisions about its conservation. As a first step, we present the genome of C. gloriosa, which we reconstructed using a single female specimen sampled from our ongoing effort to document population connectivity and the demographic history of this beetle. Using a combination of long-read sequencing and Omni-C data, we reconstructed the C. gloriosa genome at a near-chromosome level. Our genome assembly consisted of 454 scaffolds spanning 642 MB, with the 10 largest scaffolds capturing 98% of the genome. The scaffold N50 was 72 MB, and the BUSCO score was 95.5%. This genome assembly will be an essential tool to accelerate understanding C. gloriosa biology and help make informed decisions for the conservation of Chrysina and other species with similar distributions in this region. This genome assembly will further serve as a community resource for comparative genomic analysis.
Collapse
Affiliation(s)
- Terrence Sylvester
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, University of Memphis, Memphis, TN 38111, USA
| | - Zachary Hoover
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Carl E Hjelmen
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
| | - Michelle M Jonika
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA
| | - Leslie T Blackmon
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - James M Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sean Chien
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Tahmineh Esfandani
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Lou F, Ren Z, Tang Y, Han Z. Full-length transcriptome reveals the circularly polarized light response-related molecular genetic characteristics of Oratosquilla oratoria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101183. [PMID: 38141370 DOI: 10.1016/j.cbd.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
The mantis shrimp is the only animal that can recognize circularly polarized light (CPL), but its molecular genetic characteristics are unclear. Multi-tissue level full-length (FL) transcriptome sequencing of Oratosquilla oratoria, a representative widely distributed mantis shrimp, was performed in the present study. We used comparative transcriptomics to explore the critical genes of O. oratoria selected by CPL and the GNβ gene associated with CPL signal transduction was hypothesized to be positively selected. Furthermore, the FL transcriptomes of O. oratoria compound eyes under five light conditions were sequenced and used to detect alternative splicing (AS). The ASs associated with CPL recognition mainly occurred in the LWS, ARR and TRPC regions. The number of FL transcripts with AS events and annotation information also provided evidence that O. oratoria could recognize LCPL. Additionally, 51 sequences belonging to the LWS, UV and Peropsin gene families were identified based on conserved 7tm domains. The LWS, UV and Peropsin opsins have similar 3D structures with seven domains across the cell membrane and conserved KSLRTPSN, DRY, and QAKK motifs. In conclusion, these results are undoubtedly valuable for perfecting the vision theory of O. oratoria and other mantis shrimp.
Collapse
Affiliation(s)
- Fangrui Lou
- School of Ocean, Yantai University, Yantai 264003, Shandong, China.
| | - Zhongjie Ren
- School of Ocean, Yantai University, Yantai 264003, Shandong, China
| | - Yongzheng Tang
- School of Ocean, Yantai University, Yantai 264003, Shandong, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China.
| |
Collapse
|
5
|
Fangrui L, Jiaoli Z, Schunter C, Lin W, Yongzheng T, Zhiqiang H, Bin K. How Oratosquilla oratoria compound eye response to the polarization of light: In the perspective of vision genes and related proteins. Int J Biol Macromol 2024; 259:129053. [PMID: 38161015 DOI: 10.1016/j.ijbiomac.2023.129053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The special rhabdom structure of the mid-band ommatidium in compound eye contributes to the mantis shrimp being the only animal species known to science that can recognize circularly polarized light (CPL). Although the number of mid-band ommatidium of Oratosquilla oratoria is reduced, the mid-band ommatidium still has orthogonal geometric interleaved rhabdom and short oval distal rhabdom, which may mean that the O. oratoria has weakened circular polarized light vision (CPLV). Here we explored the molecular mechanisms of how O. oratoria response to the polarization of light. Based on the specific expression patterns of vision-related functional genes and proteins, we suggest that the order of light response by O. oratoria compound eye was first natural light, then left-circularly polarized light (LCPL), linearly polarized light, right-circularly polarized light (RCPL) and dark. Meanwhile, we found that the expression levels of vision-related functional genes and proteins in O. oratoria compound eye under RCPL were not significantly different from those in DL, which may imply that O. oratoria cannot respond to RCPL. Furthermore, the response of LCPL is likely facilitated by the differential expression of opsin and microvilli - related functional genes and proteins (arrestin and sodium-coupled neutral amino acid transporter). In conclusion, this study systematically illustrated for the first time how O. oratoria compound eye response to the polarization of light at the genetic level, and it can improve the visual ecological theory behind polarized light vision evolution.
Collapse
Affiliation(s)
- Lou Fangrui
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Zhou Jiaoli
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong Hong Kong SAR, China
| | - Wang Lin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Tang Yongzheng
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Han Zhiqiang
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Kang Bin
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
6
|
Li T, Jiang Y, Yang X, Li H, Gong Z, Qin Y, Zhang J, Lu R, Wei G, Wu Y, Lu C. The effects of circularly polarized light on mating behavior and gene expression in Anomala corpulenta (Coleoptera: Scarabaeidae). Front Physiol 2023; 14:1172542. [PMID: 37064909 PMCID: PMC10102372 DOI: 10.3389/fphys.2023.1172542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Light is an important abiotic factor affecting insect behavior. In nature, linearly polarized light is common, but circularly polarized light is rare. Left circularly polarized (LCP) light is selectively reflected by the exocuticle of most scarab beetles, including Anomala corpulenta. Despite our previous research showing that this visual signal probably mediates their mating behavior, the way in which it does so is not well elucidated. In this study, we investigated how LCP light affects not only mating behavior but also gene expression in this species using RNA-seq. The results indicated that disruption of LCP light reflection by females of A. corpulenta probably affects the process by which males of A. corpulenta search for mates. Furthermore, the RNA-seq results showed that genes of the environmental signaling pathways and also of several insect reproduction-related amino acid metabolic pathways were differentially expressed in groups exposed and not exposed to LCP light. This implies that A. corpulenta reproduction is probably regulated by LCP light-induced stress. Herein, the results show that LCP light is probably perceived by males of the species, further mediating their mating behavior. However, this hypothesis needs future verification with additional samples.
Collapse
Affiliation(s)
- Tong Li
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yueli Jiang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaofan Yang
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Huiling Li
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhongjun Gong
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yifan Qin
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jing Zhang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruijie Lu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoshu Wei
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuqing Wu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Yuqing Wu, ; Chuantao Lu,
| | - Chuantao Lu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Yuqing Wu, ; Chuantao Lu,
| |
Collapse
|
7
|
Bernal XE, Page RA. Tactics of evasion: strategies used by signallers to deter eavesdropping enemies from exploiting communication systems. Biol Rev Camb Philos Soc 2023; 98:222-242. [PMID: 36176190 DOI: 10.1111/brv.12904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Eavesdropping predators, parasites and parasitoids exploit signals emitted by their prey and hosts for detection, assessment, localization and attack, and in the process impose strong selective pressures on the communication systems of the organisms they exploit. Signallers have evolved numerous anti-eavesdropper strategies to mitigate the trade-off between the costs imposed from signal exploitation and the need for conspecific communication. Eavesdropper strategies fall along a continuum from opportunistic to highly specialized, and the tightness of the eavesdropper-signaller relationship results in differential pressures on communication systems. A wide variety of anti-eavesdropper strategies mitigate the trade-off between eavesdropper exploitation and conspecific communication. Antagonistic selection from eavesdroppers can result in diverse outcomes including modulation of signalling displays, signal structure, and evolutionary loss or gain of a signal from a population. These strategies often result in reduced signal conspicuousness and in decreased signal ornamentation. Eavesdropping enemies, however, can also promote signal ornamentation. While less common, this alternative outcome offers a unique opportunity to dissect the factors that may lead to different evolutionary pathways. In addition, contrary to traditional assumptions, no sensory modality is completely 'safe' as eavesdroppers are ubiquitous and have a broad array of sensory filters that allow opportunity for signal exploitation. We discuss how anthropogenic change affects interactions between eavesdropping enemies and their victims as it rapidly modifies signalling environments and community composition. Drawing on diverse research from a range of taxa and sensory modalities, we synthesize current knowledge on anti-eavesdropper strategies, discuss challenges in this field and highlight fruitful new directions for future research. Ultimately, this review offers a conceptual framework to understand the diverse strategies used by signallers to communicate under the pressure imposed by their eavesdropping enemies.
Collapse
Affiliation(s)
- Ximena E Bernal
- Department of Biological Sciences, Purdue University, 915 W State Street, West Lafayette, IN, 47907, USA.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
8
|
Cell wall composition determines handedness reversal in helicoidal cellulose architectures of Pollia condensata fruits. Proc Natl Acad Sci U S A 2021; 118:2111723118. [PMID: 34911759 PMCID: PMC8713805 DOI: 10.1073/pnas.2111723118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
Helicoidal architectures are widespread in nature; several species adopt this structure to produce brilliant colorations. Such chiral architectures are usually left-handed in plants, with the only exception found in the cell walls of epicarp cells of Pollia condensata, where both handednesses are observed. Here, we aim to understand the origin of handednesses by analyzing optical and mechanical responses of single cells. Surprisingly, we discover that left-handed and right-handed cells show different distributions of spectra and elasticity. We verified by using finite element analysis simulation that the elasticity of helicoids is sensitive to the ratio of cellulose/cell wall matrix. Our findings reveal that cell wall composition affects the helicoidal architectures, suggesting that chemical composition plays a role in morphogenesis of the chirality reversal. Chiral asymmetry is important in a wide variety of disciplines and occurs across length scales. While several natural chiral biomolecules exist only with single handedness, they can produce complex hierarchical structures with opposite chiralities. Understanding how the handedness is transferred from molecular to the macroscopic scales is far from trivial. An intriguing example is the transfer of the handedness of helicoidal organizations of cellulose microfibrils in plant cell walls. These cellulose helicoids produce structural colors if their dimension is comparable to the wavelength of visible light. All previously reported examples of a helicoidal structure in plants are left-handed except, remarkably, in the Pollia condensata fruit; both left- and right-handed helicoidal cell walls are found in neighboring cells of the same tissue. By simultaneously studying optical and mechanical responses of cells with different handednesses, we propose that the chirality of helicoids results from differences in cell wall composition. In detail, here we showed statistical substantiation of three different observations: 1) light reflected from right-handed cells is red shifted compared to light reflected from left-handed cells, 2) right-handed cells occur more rarely than left-handed ones, and 3) right-handed cells are located mainly in regions corresponding to interlocular divisions. Finally, 4) right-handed cells have an average lower elastic modulus compared to left-handed cells of the same color. Our findings, combined with mechanical simulation, suggest that the different chiralities of helicoids in the cell wall may result from different chemical composition, which strengthens previous hypotheses that hemicellulose might mediate the rotations of cellulose microfibrils.
Collapse
|
9
|
Brady PC, Cummings ME, Gruev V, Hernandez T, Blair S, Vail A, Garcia M. In situ measurements of reef squid polarization patterns using two-dimensional polarization data mapped onto three-dimensional tessellated surfaces. J R Soc Interface 2021; 18:20210703. [PMID: 34814730 PMCID: PMC8611331 DOI: 10.1098/rsif.2021.0703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 11/12/2022] Open
Abstract
Reef squids belong to a group reputed for polarization sensitivity, yet polarization patterns of reef squid have not been quantified in situ. To quantify polarization patterns from video polarimetric data, we developed a protocol to map two-dimensional polarization data onto squid-shaped three-dimensional tessellated surfaces. This protocol provided a robust data container used to investigate three-dimensional regions-of-interest, producing data lineouts derived from the squid's geometry. This protocol also extracted polarimeter and squid body orientations and the solar heading from polarization images. When averaged over the solar heading, the ventral midline gave a low degree of polarization (2.4 ± 5.3%), and the area between the ventral and flank midlines had higher values (9.0 ± 5.3%). These averaged data had a large discontinuity in the angle of polarization (AoP) at the mantle's ventral midline (64 ± 55°), with larger discontinuities measured on individual squid. Ray-tracing calculations demonstrated that the AoP pattern was not related to the squid's surface-normal geometry. However, the AoP followed virtual striation axes on the squid's surface oriented 24° to the squid's long axis, similar in angle (27°) to the striations of birefringent collagen fibres documented in other squid species' skin.
Collapse
Affiliation(s)
- P. C. Brady
- Integrative Biology, University of Texas at Austin School of Biological Sciences, Austin, TX 78712-0128, USA
| | - M. E. Cummings
- Integrative Biology, University of Texas at Austin School of Biological Sciences, Austin, TX 78712-0128, USA
| | - V. Gruev
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - T. Hernandez
- University of California San Diego, La Jolla, CA, USA
| | - S. Blair
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - A. Vail
- University of Cambridge, Cambridge, UK
| | - M. Garcia
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Meece M, Rathore S, Buschbeck EK. Stark trade-offs and elegant solutions in arthropod visual systems. J Exp Biol 2021; 224:224/4/jeb215541. [PMID: 33632851 DOI: 10.1242/jeb.215541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vision is one of the most important senses for humans and animals alike. Diverse elegant specializations have evolved among insects and other arthropods in response to specific visual challenges and ecological needs. These specializations are the subject of this Review, and they are best understood in light of the physical limitations of vision. For example, to achieve high spatial resolution, fine sampling in different directions is necessary, as demonstrated by the well-studied large eyes of dragonflies. However, it has recently been shown that a comparatively tiny robber fly (Holcocephala) has similarly high visual resolution in the frontal visual field, despite their eyes being a fraction of the size of those of dragonflies. Other visual specializations in arthropods include the ability to discern colors, which relies on parallel inputs that are tuned to spectral content. Color vision is important for detection of objects such as mates, flowers and oviposition sites, and is particularly well developed in butterflies, stomatopods and jumping spiders. Analogous to color vision, the visual systems of many arthropods are specialized for the detection of polarized light, which in addition to communication with conspecifics, can be used for orientation and navigation. For vision in low light, optical superposition compound eyes perform particularly well. Other modifications to maximize photon capture involve large lenses, stout photoreceptors and, as has been suggested for nocturnal bees, the neural pooling of information. Extreme adaptations even allow insects to see colors at very low light levels or to navigate using the Milky Way.
Collapse
Affiliation(s)
- Michael Meece
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
11
|
MacKenzie LE, Pal R. Circularly polarized lanthanide luminescence for advanced security inks. Nat Rev Chem 2020; 5:109-124. [PMID: 37117607 DOI: 10.1038/s41570-020-00235-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Authenticating products and documents with security inks is vital to global commerce, security and health. Lanthanide complexes are widely used in luminescent security inks owing to their unique and robust photophysical properties. Lanthanide complexes can also be engineered to undergo circularly polarized luminescence (CPL), which encodes chiral molecular fingerprints in luminescence spectra that cannot be decoded by conventional optical measurements. However, chiral CPL signals have not yet been exploited as an extra security layer in advanced security inks. This Review introduces CPL and related concepts that are necessary to appreciate the challenges and potential of lanthanide-based, CPL-active security inks. We describe recent advances in CPL analysis and read-out technologies that have expedited CPL-active security ink applications. Further, we provide a systematic meta-analysis of strongly CPL-active Euiii, Tbiii, Smiii, Ybiii, Cmiii, Dyiii and Criii complexes, discussing the suitability of their photophysical properties and highlighting promising candidates. We conclude by providing key recommendations for the development and advancement of the field.
Collapse
|
12
|
Kroh F, Rosskopf M, Elsässer W. Ultra-fast Stokes parameter correlations of true unpolarized thermal light: type-I unpolarized light. OPTICS LETTERS 2020; 45:5840-5843. [PMID: 33057298 DOI: 10.1364/ol.409322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
We measure Stokes parameter correlations in analogy to the intensity correlation measurements in the original Hanbury-Brown & Twiss configuration by realizing an experimental setup by combining a Schaefer-Collett or Berry-Gabrielse-Livingston polarimeter with a Hanbury-Brown & Twiss intensity interferometer. We investigate true unpolarized light emitted from a broadband thermal light source, which we realize by an erbium-doped fiber amplifier, thus being an ideal source of true unpolarized light. We find that all Stokes parameter correlations ⟨SnSn⟩, n∈{1,2,3} are equal to 0.5⟨I⟩2. The proven invariance of the Stokes parameter correlations against retardation by wave-plates clearly shows for the first time, to the best of our knowledge, that our true unpolarized thermal light represents type I unpolarized light in accordance with a theoretical prediction for a classification of unpolarized light postulated more than 20 years ago.
Collapse
|
13
|
Tan YB, Okayasu Y, Katao S, Nishikawa Y, Asanoma F, Yamada M, Yuasa J, Kawai T. Visible Circularly Polarized Luminescence of Octanuclear Circular Eu(III) Helicate. J Am Chem Soc 2020; 142:17653-17661. [PMID: 32960585 DOI: 10.1021/jacs.0c08229] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work reports on the structural and photophysical characterization of D4-symmetrical octanuclear circular LnIII helicates, [(R)- or (S)-iPr-Pybox]8(LnIII)8(THP)8 (where Ln = Eu and Tb, THP = trianionic tris-β-diketonate, and iPr-Pybox = chiral bis(4-isopropyl-2-oxazolinyl)pyridine). X-ray crystallographic analysis revealed that the octanuclear circular helicate possesses square antiprism architecture and consists of four [(R)- or (S)-iPr-Pybox]2LnIII2(THP)2 asymmetric units arranged in a closed ring form. Ligand-to-ligand interactions between the THP and the iPr-Pybox ligands have successfully directed formation of enantiopure, homoconfigurational (Δ,Δ,Δ,Δ,Δ,Δ,Δ,Δ)-R and (Λ,Λ,Λ,Λ,Λ,Λ,Λ,Λ)-S isomers. All of the nonacoordinated LnIII ions are identical and exhibit a distorted capped square antiprism (CSAP) geometry. Upon excitation of the ligand absorption band (λ = 360 nm), the circular helicates display characteristic EuIII (red, 5D0 → 7FJ, J = 0-4) or TbIII (green, 5D4 → 7FJ, J = 6-3) core f-f luminescence. The overall emission quantum yields of the circular EuIII and TbIII helicates are 0.145 and 0.0013, respectively, in chloroform. The EuIII and TbIII complexes exhibit remarkable circularly polarized luminescence (CPL) activity at their magnetic dipole transition with observed luminescence dissymmetry factors |glum| of 1.25 (5D0 → 7F1, λ = 592 nm) and 0.25 (5D4 → 7F5, λ = 541 nm), respectively. Exceptional |glum| values of the circular EuIII helicates highlight the visible intensity difference between left and right circularly polarized emissions of R and S isomers in chloroform and PMMA thin film.
Collapse
Affiliation(s)
- Yan Bing Tan
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8061, Japan
| | - Shohei Katao
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoshiko Nishikawa
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Fumio Asanoma
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mihoko Yamada
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8061, Japan
| | - Tsuyoshi Kawai
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
14
|
Bagge LE, Kenton AC, Lyons BA, Wehling MF, Goldstein DH. Mueller matrix characterizations of circularly polarized reflections from golden scarab beetles. APPLIED OPTICS 2020; 59:F85-F93. [PMID: 32749282 DOI: 10.1364/ao.398832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Circularly polarized light (CPL) reflections are rare in nature. Only a few animal groups-most notably certain stomatopod crustaceans and certain beetles in the family Scarabaeidae-are known to reflect CPL from incident unpolarized light. Here, we examine five species of metallic scarabs in the genus Chrysina that, to the naked human eye, look remarkably similar. Using a spectropolarimetric reflectometer to characterize the complete Mueller matrix elements of the beetles' elytral surfaces, we found that four of the five species were strongly left-handed circularly polarized (LHCP), and only one scarab species, Chrysina resplendens, had an overall lower degree of polarization and switched from LHCP to right-handed circularly polarized reflectance depending on wavelength.
Collapse
|
15
|
Lkhamkhuu E, Zikihara K, Katsura H, Tokutomi S, Hosokawa T, Usami Y, Ichihashi M, Yamaguchi J, Monde K. Effect of circularly polarized light on germination, hypocotyl elongation and biomass production of arabidopsis and lettuce: Involvement of phytochrome B. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:57-67. [PMID: 32362749 PMCID: PMC7193831 DOI: 10.5511/plantbiotechnology.19.1219a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Circular dichroism (CD), defined as the differential absorption of left- and right-handed circularly polarized light (CPL), is a useful spectroscopic technique for structural studies of biological systems composed of chiral molecules. The present study evaluated the effects of CPL on germination, hypocotyl elongation and biomass production of Arabidopsis and lettuce. Higher germination rates were observed when Arabidopsis and lettuce seedlings were irradiated with red right-handed CPL (R-CPL) than with red left-handed CPL (L-CPL). Hypocotyl elongation was effectively inhibited when Arabidopsis and lettuce seedlings were irradiated with red R-CPL than with red L-CPL. This difference was not observed when a phytochrome B (phyB) deficient mutant of Arabidopsis was irradiated, suggesting that inhibition of elongation by red R-CPL was mediated by phyB. White R-CPL induced greater biomass production by adult Arabidopsis plants, as determined by their fresh shoot weight, than white L-CPL. To determine the molecular basis of these CPL effects, CD spectra and the effect of CPL on the photoreaction of a sensory module of Arabidopsis phyB were measured. The red light-absorbing form of phyB showed a negative CD in the red light-absorbing region, consistent with the results of germination, inhibition of hypocotyl elongation and biomass production. L-CPL and R-CPL, however, did not differ in their ability to induce the interconversion of the red light-absorbing and far-red light-absorbing forms of phyB. These findings suggest that these CPL effects involve phyB, along with other photoreceptors and the photosynthetic process.
Collapse
Affiliation(s)
- Enkhsukh Lkhamkhuu
- Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kazunori Zikihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531
| | - Hitomi Katsura
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531
| | - Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531
- Botanical Gardens, Tohoku University, Sendai, Miyagi 980-0862, Japan
| | - Takafumi Hosokawa
- Research and Development Management Headquarters, Fuji Film Corporation, Kanagawa 258-8577, Japan
| | - Yoshihisa Usami
- Research and Development Management Headquarters, Fuji Film Corporation, Kanagawa 258-8577, Japan
| | - Mitsuyoshi Ichihashi
- Research and Development Management Headquarters, Fuji Film Corporation, Kanagawa 258-8577, Japan
| | - Junji Yamaguchi
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kenji Monde
- Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
16
|
Marshall NJ, Powell SB, Cronin TW, Caldwell RL, Johnsen S, Gruev V, Chiou THS, Roberts NW, How MJ. Polarisation signals: a new currency for communication. ACTA ACUST UNITED AC 2019; 222:222/3/jeb134213. [PMID: 30733259 DOI: 10.1242/jeb.134213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Most polarisation vision studies reveal elegant examples of how animals, mainly the invertebrates, use polarised light cues for navigation, course-control or habitat selection. Within the past two decades it has been recognised that polarised light, reflected, blocked or transmitted by some animal and plant tissues, may also provide signals that are received or sent between or within species. Much as animals use colour and colour signalling in behaviour and survival, other species additionally make use of polarisation signalling, or indeed may rely on polarisation-based signals instead. It is possible that the degree (or percentage) of polarisation provides a more reliable currency of information than the angle or orientation of the polarised light electric vector (e-vector). Alternatively, signals with specific e-vector angles may be important for some behaviours. Mixed messages, making use of polarisation and colour signals, also exist. While our knowledge of the physics of polarised reflections and sensory systems has increased, the observational and behavioural biology side of the story needs more (and more careful) attention. This Review aims to critically examine recent ideas and findings, and suggests ways forward to reveal the use of light that we cannot see.
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Samuel B Powell
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, MD 21250, USA
| | - Roy L Caldwell
- University of California Berkeley, Department of Integrative Biology, Berkeley, CA 94720-3140, USA
| | - Sonke Johnsen
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Viktor Gruev
- Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - T-H Short Chiou
- Department of Life Sciences, National Cheng-Kung University, Tainan City 701, Taiwan
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
17
|
Odin GP, McNamara ME, Arwin H, Järrendahl K. Experimental degradation of helicoidal photonic nanostructures in scarab beetles (Coleoptera: Scarabaeidae): implications for the identification of circularly polarizing cuticle in the fossil record. J R Soc Interface 2018; 15:rsif.2018.0560. [PMID: 30429263 DOI: 10.1098/rsif.2018.0560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/15/2018] [Indexed: 11/12/2022] Open
Abstract
Scarab beetles (Coleoptera: Scarabaeidae) can exhibit striking colours produced by pigments and/or nanostructures. The latter include helicoidal (Bouligand) structures that can generate circularly polarized light. These have a cryptic evolutionary history in part because fossil examples are unknown. This suggests either a real biological signal, i.e. that Bouligand structures did not evolve until recently, or a taphonomic signal, i.e. that conditions during the fossilization process were not conducive to their preservation. We address this issue by experimentally degrading circularly polarizing cuticle of modern scarab beetles to test the relative roles of decay, maturation and taxonomy in controlling preservation. The results reveal that Bouligand structures have the potential to survive fossilization, but preservation is controlled by taxonomy and the diagenetic history of specimens. Further, cuticle of specific genus (Chrysina) is particularly decay-prone in alkaline conditions; this may relate to the presence of certain compounds, e.g. uric acid, in the cuticle of these taxa.
Collapse
Affiliation(s)
- Giliane P Odin
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
| | - Hans Arwin
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Kenneth Järrendahl
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
18
|
Cronin TW. A different view: sensory drive in the polarized-light realm. Curr Zool 2018; 64:513-523. [PMID: 30108632 PMCID: PMC6084560 DOI: 10.1093/cz/zoy040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
Sensory drive, the concept that sensory systems primarily evolve under the influence of environmental features and that animal signals are evolutionarily shaped and tuned by these previously existing sensory systems, has been thoroughly studied regarding visual signals across many animals. Much of this work has focused on spectral aspects of vision and signals. Here, I review work on polarized-light signals of animals and relate these to what is known of polarization visual systems, polarized-light aspects of visual scenes, and polarization-related behavior (e.g., orientation, habitat-finding, contrast enhancement). Other than the broad patterns of scattered polarized light in the sky, most polarization in both terrestrial and aquatic environments results from either reflection or scattering in the horizontal plane. With overhead illumination, horizontal features such as the surfaces of many leaves or of air: water interfaces reflect horizontal polarization, and water scatters horizontally polarized light under most conditions. Several animal species have been demonstrated to use horizontally polarized light fields or features in critical aspects of their biology. Significantly, most biological signals are also horizontally polarized. Here, I present relevant polarization-related behavior and discuss the hypothesis that sensory drive has evolutionarily influenced the structure of polarization signals. The paper also considers the evolutionary origin of circular polarization vision and circularly polarized signals. It appears that this class of signals did not evolve under the influence of sensory drive. The study of signals based on polarized light is becoming a mature field of research.
Collapse
Affiliation(s)
- Thomas W Cronin
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | | |
Collapse
|
19
|
Heinloth T, Uhlhorn J, Wernet MF. Insect Responses to Linearly Polarized Reflections: Orphan Behaviors Without Neural Circuits. Front Cell Neurosci 2018; 12:50. [PMID: 29615868 PMCID: PMC5870057 DOI: 10.3389/fncel.2018.00050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022] Open
Abstract
The e-vector orientation of linearly polarized light represents an important visual stimulus for many insects. Especially the detection of polarized skylight by many navigating insect species is known to improve their orientation skills. While great progress has been made towards describing both the anatomy and function of neural circuit elements mediating behaviors related to navigation, relatively little is known about how insects perceive non-celestial polarized light stimuli, like reflections off water, leaves, or shiny body surfaces. Work on different species suggests that these behaviors are not mediated by the “Dorsal Rim Area” (DRA), a specialized region in the dorsal periphery of the adult compound eye, where ommatidia contain highly polarization-sensitive photoreceptor cells whose receptive fields point towards the sky. So far, only few cases of polarization-sensitive photoreceptors have been described in the ventral periphery of the insect retina. Furthermore, both the structure and function of those neural circuits connecting to these photoreceptor inputs remain largely uncharacterized. Here we review the known data on non-celestial polarization vision from different insect species (dragonflies, butterflies, beetles, bugs and flies) and present three well-characterized examples for functionally specialized non-DRA detectors from different insects that seem perfectly suited for mediating such behaviors. Finally, using recent advances from circuit dissection in Drosophila melanogaster, we discuss what types of potential candidate neurons could be involved in forming the underlying neural circuitry mediating non-celestial polarization vision.
Collapse
Affiliation(s)
- Tanja Heinloth
- Division of Neurobiology, Institut für Biology, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Juliane Uhlhorn
- Division of Neurobiology, Institut für Biology, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Mathias F Wernet
- Division of Neurobiology, Institut für Biology, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
20
|
Finlayson ED, McDonald LT, Vukusic P. Optically ambidextrous circularly polarized reflection from the chiral cuticle of the scarab beetle Chrysina resplendens. J R Soc Interface 2018; 14:rsif.2017.0129. [PMID: 28615493 DOI: 10.1098/rsif.2017.0129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/23/2017] [Indexed: 11/12/2022] Open
Abstract
The evolution of structural colour mechanisms in biological systems has given rise to many interesting optical effects in animals and plants. The instance of the scarab beetle Chrysina resplendens is particularly distinctive. Its exoskeleton has a bright, golden appearance and reflects both right-handed and left-handed circularly polarized light concurrently. The chiral nanostructure responsible for these properties is a helicoid, in which birefringent dielectric planes are assembled with an incremental rotation. This study correlates details of the beetle's circularly polarized reflectance spectra directly with physical aspects of its structural morphology. Electron micrography is used to identify and measure the physical dimensions of the key constituent components. These include a chiral multilayer configuration comprising two chirped, left-handed helicoids that are separated by a birefringent retarder. A scattering matrix technique is used to simulate the system's optical behaviour in which the roles of each component of the morphological substructure are elucidated by calculation of the fields throughout its depth.
Collapse
Affiliation(s)
- Ewan D Finlayson
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - Luke T McDonald
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - Pete Vukusic
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| |
Collapse
|
21
|
Vondráček D, Fuchsová A, Ahrens D, Král D, Šípek P. Phylogeography and DNA-based species delimitation provide insight into the taxonomy of the polymorphic rose chafer Protaetia (Potosia) cuprea species complex (Coleoptera: Scarabaeidae: Cetoniinae) in the Western Palearctic. PLoS One 2018; 13:e0192349. [PMID: 29462164 PMCID: PMC5819786 DOI: 10.1371/journal.pone.0192349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/20/2018] [Indexed: 11/19/2022] Open
Abstract
The development of modern methods of species delimitation, unified under the "integrated taxonomy" approach, allows a critical examination and re-evaluation of complex taxonomic groups. The rose chafer Protaetia (Potosia) cuprea is a highly polymorphic species group with a large distribution range. Despite its overall commonness, its taxonomy is unclear and subject to conflicting hypotheses, most of which largely fail to account for its evolutionary history. Based on the sequences of two mitochondrial markers from 65 individuals collected across the species range, and a detailed analysis of morphological characters including a geometric morphometry approach, we infer the evolutionary history and phylogeography of the P. cuprea species complex. Our results demonstrate the existence of three separate lineages in the Western Palearctic region, presumably with a species status. However, these lineages are in conflict with current taxonomic concepts. None of the 29 analyzed morphological characters commonly used in the taxonomy of this group proved to be unambiguously species- or subspecies- specific. The geometric morphometry analysis reveals a large overlap in the shape of the analyzed structures (pronotum, meso-metaventral projection, elytra and aedeagus), failing to identify either the genetically detected clades or the classical species entities. Our results question the monophyly of P. cuprea in regard to P. cuprina, as well as the species status of P. metallica. On the other hand, we found support for the species status of the Sicilian P. hypocrita. Collectively, our findings provide a new and original insight into the taxonomy and phylogeny of the P. cuprea species complex. At the same time, the results represent the first attempt to elucidate the phylogeography of these polymorphic beetles.
Collapse
Affiliation(s)
- Dominik Vondráček
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Aneta Fuchsová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dirk Ahrens
- Department of Arthropoda, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - David Král
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Šípek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
22
|
Stewart FJ, Kinoshita M, Arikawa K. A Novel Display System Reveals Anisotropic Polarization Perception in the Motion Vision of the Butterfly Papilio xuthus. Integr Comp Biol 2017; 57:1130-1138. [PMID: 28992194 DOI: 10.1093/icb/icx070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the linear polarization of light is virtually invisible to humans, many invertebrates' eyes can detect it. How this information is processed in the nervous system, and what behavioral function it serves, are in many cases unclear. One reason for this is the technical difficulty involved in presenting images or video containing polarization contrast, particularly if intensity and/or color contrast is also required. In this primarily methods-focused article, we present a novel technique based on projecting video through a synchronously rotating linear polarizer. This approach allows the intensity, angle of polarization, degree of linear polarization, and potentially also color of individual pixels to be controlled independently. We characterize the performance of our system, and then use it to investigate the relationship between polarization and motion vision in the swallowtail butterfly Papilio xuthus. Although this animal has photoreceptors sensitive to four different polarization angles, we find that its motion vision cannot distinguish between diagonally-polarized and unpolarized light. Furthermore, it responds more strongly to vertically-polarized moving objects than horizontally-polarized ones. This implies that Papilio's polarization-based motion detection employs either an unbalanced two-channel (dipolatic) opponent architecture, or possibly a single-channel (monopolatic) scheme without opponent mechanisms.
Collapse
Affiliation(s)
- Finlay J Stewart
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (Sokendai), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| | - Michiyo Kinoshita
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (Sokendai), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (Sokendai), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| |
Collapse
|
23
|
Carter IE, Weir K, McCall MW, Parker AR. Variation in the circularly polarized light reflection of Lomaptera (Scarabaeidae) beetles. J R Soc Interface 2017; 13:rsif.2016.0015. [PMID: 27383419 PMCID: PMC4971215 DOI: 10.1098/rsif.2016.0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/13/2016] [Indexed: 11/12/2022] Open
Abstract
An extended spectroscopic study on the left-through-left circularly polarized reflection spectra of a large number of beetles from the Australasian Scrabaeidae:Cetoniinae of the Lomaptera genus was undertaken. We have obtained a five-category spectral classification. The principal spectral features, which even within the genus range from blue to infrared, are related to structural chirality in the beetle shells. The detailed features of each spectral classification are related to different structural perturbations of the helix, including various pitch values and abrupt twist defects. These spectral characteristics and associated shell structures are confirmed on the basis of simple modelling. An important conclusion from our study is that the simple helical structure resulting in a single symmetric Bragg peak is not the dominant spectral type. Rather the reality is a rich tapestry of spectral types. One intriguing specimen is identified via a scanning electron micrograph to consist of a double interstitial helix leading to a particular double-peak spectrum.
Collapse
Affiliation(s)
- I E Carter
- The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - K Weir
- The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - M W McCall
- The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - A R Parker
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
24
|
Tadepalli S, Slocik JM, Gupta MK, Naik RR, Singamaneni S. Bio-Optics and Bio-Inspired Optical Materials. Chem Rev 2017; 117:12705-12763. [PMID: 28937748 DOI: 10.1021/acs.chemrev.7b00153] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
25
|
McDonald LT, Finlayson ED, Wilts BD, Vukusic P. Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure. Interface Focus 2017; 7:20160129. [PMID: 28630672 PMCID: PMC5474034 DOI: 10.1098/rsfs.2016.0129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Helicoidal architectures comprising various polysaccharides, such as chitin and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly polarized reflectance and optical scattering from the cuticle of the beetle Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type helicoidal morphology within the beetle's exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic stratified medium, the inextricable connection between the colour appearance of C. smaragdina and the periodicity of its helicoidal rotation is shown. A close agreement between the model and the measured reflectance spectra is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed diffraction grating-like surface structure, which affects the diffuse appearance of the beetle's reflected colour, and therefore potentially enhances crypsis among the dense foliage of its rainforest habitat.
Collapse
Affiliation(s)
- Luke T. McDonald
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall Campus, Cork, Republic of Ireland
| | - Ewan D. Finlayson
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Bodo D. Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Pete Vukusic
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| |
Collapse
|
26
|
Moore MR, Jameson ML, Garner BH, Audibert C, Smith ABT, Seidel M. Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies. Zookeys 2017:1-349. [PMID: 28769631 PMCID: PMC5534527 DOI: 10.3897/zookeys.666.9191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 01/23/2017] [Indexed: 11/12/2022] Open
Abstract
The pelidnotine scarabs (Scarabaeidae: Rutelinae: Rutelini) are a speciose, paraphyletic assemblage of beetles that includes spectacular metallic species ("jewel scarabs") as well as species that are ecologically important as herbivores, pollinators, and bioindicators. These beetles suffer from a complicated nomenclatural history, due primarily to 20th century taxonomic and nomenclatural errors. We review the taxonomic history of the pelidnotine scarabs, present a provisional key to genera with overviews of all genera, and synthesize a catalog of all taxa with synonyms, distributional data, type specimen information, and 107 images of exemplar species. As a result of our research, the pelidnotine leaf chafers (a paraphyletic group) include 27 (26 extant and 1 extinct) genera and 420 valid species and subspecies (419 extant and 1 extinct). Our research makes biodiversity research on this group tractable and accessible, thus setting the stage for future studies that address evolutionary and ecological trends. Based on our research, 1 new species is described, 1 new generic synonym and 12 new species synonyms are proposed, 11 new lectotypes and 1 new neotype are designated, many new or revised nomenclatural combinations, and many unavailable names are presented. The following taxonomic changes are made: New generic synonym: The genus Heteropelidnota Ohaus, 1912 is a new junior synonym of Pelidnota MacLeay, 1819. New species synonyms: Plusiotis adelaida pavonacea Casey, 1915 is a syn. n. of Chrysina adelaida (Hope, 1841); Odontognathus gounellei Ohaus, 1908 is a revised synonym of Pelidnota ebenina (Blanchard, 1842); Pelidnota francoisgenieri Moore & Jameson, 2013 is a syn. n. of Pelidnota punctata (Linnaeus, 1758); Pelidnota genieri Soula, 2009 is a syn. n. of Pelidnota punctata (Linnaeus, 1758); Pelidnota lutea (Olivier, 1758) is a revised synonym of Pelidnota punctata (Linnaeus, 1758); Pelidnota (Pelidnota) texensis Casey, 1915 is a revised synonym of Pelidnota punctata (Linnaeus, 1758); Pelidnota (Strigidia) zikani (Ohaus, 1922) is a revised synonym of Pelidnota tibialis tibialis Burmeister, 1844; Pelidnota ludovici Ohaus, 1905 is a syn. n. of Pelidnota burmeisteri tricolor Nonfried, 1894; Rutela fulvipennis Germar, 1824 is syn. n. of Pelidnota cuprea (Germar, 1824); Pelidnota pulchella blanda Burmeister, 1844 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819); Pelidnota pulchella scapularis Burmeister, 1844 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819); Pelidnota xanthogramma Perty, 1830 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819). New or revised statuses: Pelidnota fabricelavalettei Soula, 2009, revised status, is considered a species; Pelidnota rioensis Soula, 2009, stat. n., is considered a species; Pelidnota semiaurata semiaurata Burmeister, 1844, stat. rev., is considered a subspecies. New or comb. rev. and revised status: Plusiotis guaymi Curoe, 2001 is formally transferred to the genus Chrysina (C. guaymi (Curoe, 2001), comb. n.); Plusiotis transvolcanica Morón & Nogueira, 2016 is transferred to the genus Chrysina (C. transvolcanica (Morón & Nogueira, 2016), comb. n.). Heteropelidnota kuhnti Ohaus, 1912 is transferred to the genus Pelidnota (P. kuhnti (Ohaus, 1912), comb. n.); Odontognathus riedeli Ohaus, 1905 is considered a subspecies of Pelidnota rubripennis Burmeister, 1844 (Pelidnota rubripennis riedeli (Ohaus, 1905), revised status and comb. rev.); Pelidnota (Strigidia) acutipennis (F. Bates, 1904) is transferred to the genus Sorocha (Sorocha acutipennis (F. Bates, 1904), comb. rev.); Pelidnota (Odontognathus) nadiae Martínez, 1978 is transferred to the genus Sorocha (Sorocha nadiae (Martínez, 1978), comb. rev.); Pelidnota (Ganonota) plicipennis Ohaus, 1934 is transferred to the genus Sorocha (Sorocha plicipennis (Ohaus, 1934), comb. rev.); Pelidnota similis Ohaus, 1908 is transferred to the genus Sorocha (Sorocha similis (Ohaus, 1908), comb. rev.); Pelidnota (Ganonota) yungana Ohaus, 1934 is transferred to Sorocha (Sorocha yungana (Ohaus, 1934), comb. rev.); Pelidnota malyi Soula, 2010: 58, revised status; Xenopelidnota anomala porioni Chalumeau, 1985, revised subspecies status. To stabilize the classification of the group, a neotype is designated for the following species: Pelidnota thiliezi Soula, 2009. Lectotypes are designated for the following names (given in their original combinations): Pelidnota brevicollis Casey, 1915, Pelidnota brevis Casey, 1915, Pelidnota debiliceps Casey, 1915, Pelidnota hudsonica Casey, 1915, Pelidnota oblonga Casey, 1915, Pelidnota pallidipes Casey, 1915, Pelidnota ponderella Casey, 1915, Pelidnota strenua Casey, 1915, Pelidnota tarsalis Casey, 1915, Pelidnota texensis Casey, 1915, and Scarabaeus punctatus Linnaeus, 1758. The following published infrasubspecific names are unavailable per ICZN Article 45.6.1: Pelidnota (Odontognathus) cuprea var. coerulea Ohaus, 1913; Pelidnota (Odontognathus) cuprea var. rufoviolacea Ohaus, 1913; Pelidnota (Odontognathus) cuprea var. nigrocoerulea Ohaus, 1913; Pelidnota pulchella var. fulvopunctata Ohaus, 1913; Pelidnota pulchella var. sellata Ohaus, 1913; Pelidnota pulchella var. reducta Ohaus, 1913; Pelidnota unicolor var. infuscata Ohaus, 1913. The following published species name is unavailable per ICZN Article 11.5: Neopatatra synonyma Moore & Jameson, 2013. The following published species name is unavailable per application of ICZN Article 16.1: Parhoplognathus rubripennis Soula, 2008. The following published species name is unavailable per application of ICZN Article 16.4.1: Strigidia testaceovirens argentinica Soula, 2006, Pelidnota (Strigidia) testaceovirens argentinica (Soula, 2006), and Pelidnota testaceovirens argentinica (Soula, 2006). The following published species names are unavailable per application of ICZN Article 16.4.2: Homonyx digennaroi Soula, 2010; Homonyx lecourti Soula, 2010; Homonyx mulliei Soula, 2010; Homonyx simoensi Soula, 2010; Homonyx wagneri Soula, 2010; Homonyx zovii Demez & Soula, 2011; Pelidnota arnaudi Soula, 2009; Pelidnota brusteli Soula, 2010; Pelidnota chalcothorax septentrionalis Soula, 2009; Pelidnota degallieri Soula, 2010; Pelidnota lavalettei Soula, 2008; Pelidnota lavalettei Soula, 2009; Pelidnota dieteri Soula, 2011; Strigidia gracilis decaensi Soula, 2008, Pelidnota (Strigidia) gracilis decaensi (Soula, 2008), and Pelidnota gracilis decaensi (Soula, 2008); Pelidnota halleri Demez & Soula, 2011; Pelidnota injantepalominoi Demez & Soula, 2011; Pelidnota kucerai Soula, 2009; Pelidnota malyi Soula, 2010: 36-37; Pelidnota mezai Soula, 2009; Pelidnota polita darienensis Soula, 2009; Pelidnota polita orozcoi Soula, 2009; Pelidnota polita pittieri Soula, 2009; Pelidnota punctulata decolombia Soula, 2009; Pelidnota punctulata venezolana Soula, 2009; Pelidnota raingeardi Soula, 2009; Pelidnota schneideri Soula, 2010; Pelidnota simoensi Soula, 2009; Pelidnota unicolor subandina Soula, 2009; Sorocha carloti Demez & Soula, 2011; Sorocha castroi Soula, 2008; Sorocha fravali Soula, 2011; Sorocha jeanmaurettei Demez & Soula, 2011; Sorocha yelamosi Soula, 2011; Xenopelidnota bolivari Soula, 2009; Xenopelidnota pittieri pittieri Soula, 2009. Due to unavailability of the name Pseudogeniates cordobaensis Soula 2009, we describe the species as intentionally new (Pseudogeniates cordobaensis Moore, Jameson, Garner, Audibert, Smith, and Seidel, sp. n.).
Collapse
Affiliation(s)
- Matthew R Moore
- Department of Entomology and Nematology, University of Florida Building 1881 Natural Drive Area, Steinmetz Hall, Box 110620, Gainesville, FL 32611-0620, USA
| | - Mary L Jameson
- Department of Biological Sciences, Wichita State University 1845 Fairmount, Box 26, Wichita, KS 67260-0026, USA
| | - Beulah H Garner
- Natural History Museum, Insects Division, Department of Life Sciences, Cromwell Road, London SW7 5BD, UK
| | - Cédric Audibert
- Musée des Confluences, Centre de Conservation et d'Etude des Collections, 13A Rue Bancel, F-69007 Lyon, France
| | - Andrew B T Smith
- Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, K1P 6P4, Canada
| | - Matthias Seidel
- Department of Entomology and Nematology, University of Florida Building 1881 Natural Drive Area, Steinmetz Hall, Box 110620, Gainesville, FL 32611-0620, USA
| |
Collapse
|
27
|
Templin RM, How MJ, Roberts NW, Chiou TH, Marshall J. Circularly polarized light detection in stomatopod crustaceans: a comparison of photoreceptors and possible function in six species. ACTA ACUST UNITED AC 2017; 220:3222-3230. [PMID: 28667244 DOI: 10.1242/jeb.162941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022]
Abstract
A combination of behavioural and electrophysiological experiments have previously shown that two species of stomatopod, Odontodactylus scyllarus and Gonodactylaceus falcatus, can differentiate between left- and right-handed circularly polarized light (CPL), and between CPL and linearly polarized light (LPL). It remains unknown if these visual abilities are common across all stomatopod species, and if so, how circular polarization sensitivity may vary between and within species. A subsection of the midband, a specialized region of stomatopod eyes, contains distally placed photoreceptor cells, termed R8 (retinular cell number 8). These cells are specifically built with unidirectional microvilli and appear to be angled precisely to convert CPL into LPL. They are mostly quarter-wave retarders for human visible light (400-700 nm), as well as being ultraviolet-sensitive linear polarization detectors. The effectiveness of the R8 cells in this role is determined by their geometric and optical properties. In particular, the length and birefringence of the R8 cells are crucial for retardation efficiency. Here, our comparative studies show that most species investigated have the theoretical ability to convert CPL into LPL, such that the handedness of an incoming circular reflection or signal could be discriminated. One species, Haptosquilla trispinosa, shows less than quarter-wave retardance. Whilst some species are known to produce circularly polarized reflections (some Odontodactylus species and G. falcatus, for example), others do not, so a variety of functions for this ability are worth considering.
Collapse
Affiliation(s)
- Rachel M Templin
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Martin J How
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
28
|
Abstract
Liquid crystals play an important role in biology because the combination of order and mobility is a basic requirement for self-organisation and structure formation in living systems. Cholesteric liquid crystals are omnipresent in living matter under both in vivo and in vitro conditions and address the major types of molecules essential to life. In the animal and plant kingdoms, the cholesteric structure is a recurring design, suggesting a convergent evolution to an optimised left-handed helix. Herein, we review the recent advances in the cholesteric organisation of DNA, chromatin, chitin, cellulose, collagen, viruses, silk and cholesterol ester deposition in atherosclerosis. Cholesteric structures can be found in bacteriophages, archaea, eukaryotes, bacterial nucleoids, chromosomes of unicellular algae, sperm nuclei of many vertebrates, cuticles of crustaceans and insects, bone, tendon, cornea, fish scales and scutes, cuttlebone and squid pens, plant cell walls, virus suspensions, silk produced by spiders and silkworms, and arterial wall lesions. This article specifically aims at describing the consequences of the cholesteric geometry in living matter, which are far from being fully defined and understood, and discusses various perspectives. The roles and functions of biological cholesteric liquid crystals include maximisation of packing efficiency, morphogenesis, mechanical stability, optical information, radiation protection and evolution pressure.
Collapse
Affiliation(s)
- Michel Mitov
- Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES), CNRS, BP 94347, 29 rue Jeanne-Marvig, F-31055 Toulouse Cedex 4, France.
| |
Collapse
|
29
|
Fernández Del Río L, Arwin H, Järrendahl K. Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus. Phys Rev E 2016; 94:012409. [PMID: 27575166 DOI: 10.1103/physreve.94.012409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 11/07/2022]
Abstract
The optical properties of several scarab beetles have been previously studied but few attempts have been made to compare beetles in the same genus. To determine whether there is any relation between specimens of the same genus, we have studied and classified seven species from the Chrysina genus. The polarization properties were analyzed with Mueller-matrix spectroscopic ellipsometry and the structural characteristics with optical microscopy and scanning electron microscopy. Most of the Chrysina beetles are green colored or have a metallic look (gold or silver). The results show that the green-colored beetles polarize reflected light mainly at off-specular angles. The gold-colored beetles polarize light left-handed near circular at specular reflection. The structure of the exoskeleton is a stack of layers that form a cusplike structure in the green beetles whereas the layers are parallel to the surface in the case of the gold-colored beetles. The beetle C. gloriosa is green with gold-colored stripes along the elytras and exhibits both types of effects. The results indicate that Chrysina beetles can be classified according to these two major polarization properties.
Collapse
Affiliation(s)
- Lía Fernández Del Río
- Laboratory of Applied Optics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Hans Arwin
- Laboratory of Applied Optics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Kenneth Järrendahl
- Laboratory of Applied Optics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
30
|
Circularly Polarized Light as a Communication Signal in Mantis Shrimps. Curr Biol 2015; 25:3074-8. [DOI: 10.1016/j.cub.2015.10.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/24/2015] [Accepted: 10/22/2015] [Indexed: 11/23/2022]
|
31
|
Garcia NM, de Erausquin I, Edmiston C, Gruev V. Surface normal reconstruction using circularly polarized light. OPTICS EXPRESS 2015; 23:14391-14406. [PMID: 26072802 DOI: 10.1364/oe.23.014391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The polarization properties of reflected light capture important information about the object's inherent properties: material composition, i.e. index of refraction and scattering properties, and shape of the object, i.e. surface normal. Polarization information therefore has been used for surface reconstruction using a single-view camera with unpolarized incident light. However, this surface normal reconstruction technique suffers from a zenith angle ambiguity. In this paper, we have utilized circularly polarized light to solve for the zenith ambiguity by developing a detailed model using Mueller matrix formulism and division of focal plane polarization imaging technology. Experiment results validate our model for accurate surface reconstruction.
Collapse
|
32
|
Meyer-Rochow VB. Compound eyes of insects and crustaceans: Some examples that show there is still a lot of work left to be done. INSECT SCIENCE 2015; 22:461-481. [PMID: 24574199 DOI: 10.1111/1744-7917.12117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
Similarities and differences between the 2 main kinds of compound eye (apposition and superposition) are briefly explained before several promising topics for research on compound eyes are being introduced. Research on the embryology and molecular control of the development of the insect clear-zone eye with superposition optics is one of the suggestions, because almost all of the developmental work on insect eyes in the past has focused on eyes with apposition optics. Age- and habitat-related ultrastructural studies of the retinal organization are another suggestion and the deer cad Lipoptena cervi, which has an aerial phase during which it is winged followed by a several months long parasitic phase during which it is wingless, is mentioned as a candidate species. Sexual dimorphism expressing itself in many species as a difference in eye structure and function provides another promising field for compound eye researchers and so is a focus on compound eye miniaturization in very small insects, especially those that are aquatic and belong to species, in which clear-zone eyes are diagnostic or are tiny insects that are not aquatic, but belong to taxa like the Diptera for instance, in which open rather than closed rhabdoms are the rule. Structures like interommatidial hairs and glands as well as corneal microridges are yet another field that could yield interesting results and in the past has received insufficient consideration. Finally, the dearth of information on distance vision and depth perception is mentioned and a plea is made to examine the photic environment inside the foam shelters of spittle bugs, chrysales of pupae and other structures shielding insects and crustaceans.
Collapse
|
33
|
Holt AL, Vahidinia S, Gagnon YL, Morse DE, Sweeney AM. Photosymbiotic giant clams are transformers of solar flux. J R Soc Interface 2014; 11:20140678. [PMID: 25401182 PMCID: PMC4223897 DOI: 10.1098/rsif.2014.0678] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/04/2014] [Indexed: 11/12/2022] Open
Abstract
'Giant' tridacnid clams have evolved a three-dimensional, spatially efficient, photodamage-preventing system for photosymbiosis. We discovered that the mantle tissue of giant clams, which harbours symbiotic nutrition-providing microalgae, contains a layer of iridescent cells called iridocytes that serve to distribute photosynthetically productive wavelengths by lateral and forward-scattering of light into the tissue while back-reflecting non-productive wavelengths with a Bragg mirror. The wavelength- and angle-dependent scattering from the iridocytes is geometrically coupled to the vertically pillared microalgae, resulting in an even re-distribution of the incoming light along the sides of the pillars, thus enabling photosynthesis deep in the tissue. There is a physical analogy between the evolved function of the clam system and an electric transformer, which changes energy flux per area in a system while conserving total energy. At incident light levels found on shallow coral reefs, this arrangement may allow algae within the clam system to both efficiently use all incident solar energy and avoid the photodamage and efficiency losses due to non-photochemical quenching that occur in the reef-building coral photosymbiosis. Both intra-tissue radiometry and multiscale optical modelling support our interpretation of the system's photophysics. This highly evolved 'three-dimensional' biophotonic system suggests a strategy for more efficient, damage-resistant photovoltaic materials and more spatially efficient solar production of algal biofuels, foods and chemicals.
Collapse
Affiliation(s)
- Amanda L. Holt
- Center for Energy Efficiency and Department of Molecular, Cellular and Developmental Biology, University of California, 3155 Marine Biotechnology Building, Santa Barbara, CA 93106, USA
- Department of Physics and Astronomy, David Rittenhouse Laboratories, University of Pennsylvania, 2N10, Philadelphia, PA 19104, USA
| | - Sanaz Vahidinia
- NASA Ames Research Center, Bay Area Environmental Research Institute, Moffett Field, Mountain View, CA 94035, USA
| | - Yakir Luc Gagnon
- Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA
| | - Daniel E. Morse
- Center for Energy Efficiency and Department of Molecular, Cellular and Developmental Biology, University of California, 3155 Marine Biotechnology Building, Santa Barbara, CA 93106, USA
| | - Alison M. Sweeney
- Center for Energy Efficiency and Department of Molecular, Cellular and Developmental Biology, University of California, 3155 Marine Biotechnology Building, Santa Barbara, CA 93106, USA
- Department of Physics and Astronomy, David Rittenhouse Laboratories, University of Pennsylvania, 2N10, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Fabricant SA, Herberstein ME. Hidden in plain orange: aposematic coloration is cryptic to a colorblind insect predator. Behav Ecol 2014. [DOI: 10.1093/beheco/aru157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Baar Y, Rosen J, Shashar N. Circular polarization of transmitted light by sapphirinidae copepods. PLoS One 2014; 9:e86131. [PMID: 24465916 PMCID: PMC3895007 DOI: 10.1371/journal.pone.0086131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022] Open
Abstract
Circularly polarized light, rare in the animal kingdom, has thus far been documented in only a handful of animals. Using a rotating circular polarization (CP) analyzer we detected CP in linearly polarized light transmitted through epipelagic free living Sapphirina metallina copepods. Both left and right handedness of CP was detected, generated from specific organs of the animal's body, especially on the dorsal cephalosome and prosome. Such CP transmittance may be generated by phase retardance either in the muscle fibers or in the multilayer membrane structure found underneath the cuticle. Although the role, if any, played by circularly polarized light in Sapphirinidae has yet to be clarified, in other animals it was suggested to take part in mate choice, species recognition, and other forms of communication. Highlights Planktonic Sapphirinidae copepods were found to circularly polarize the light passing through them. Circular polarization may be created by unique, multilayered features of the membrane structure found under their cuticle or by organized muscle fibers.
Collapse
Affiliation(s)
- Yuval Baar
- Department of Life Sciences, Eilat Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Rosen
- Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadav Shashar
- Department of Life Sciences, Eilat Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
36
|
Berthier S, Thomé M, Simonis P. Circular Polarization in Nature: Factual, Theoretical and Experimental Summary. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.matpr.2014.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
|
38
|
Wilts BD, Whitney HM, Glover BJ, Steiner U, Vignolini S. Natural Helicoidal Structures: Morphology, Self-assembly and Optical Properties. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.matpr.2014.09.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Schenk F, Wilts BD, Stavenga DG. The Japanese jewel beetle: a painter's challenge. BIOINSPIRATION & BIOMIMETICS 2013; 8:045002. [PMID: 24262911 DOI: 10.1088/1748-3182/8/4/045002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Colours as dynamic as the metallic-like hues adorning the Japanese jewel beetle have never been captured on canvas before. Unlike, and unmatched by, the chemical pigments of the artist's palette, the effect is generated by layered microstructures that refract and reflect light to make colour visible. Exclusive to nature for millions of years, such jewel-like colouration is only now being introduced to art. Sustained scientific research into nature's iridescent multilayer reflectors has recently led to the development and manufacture of analogous synthetic structures, notably innovative light interference flakes. For the first time this novel technology offers artists the exciting, yet challenging, potential to accurately depict nature's iridescence. Mimicking the Japanese jewel beetle by using paints with embedded flakes, we demonstrate that the resulting painting, just like the model, displays iridescent colours that shift with minute variation of the angle of light and viewing.
Collapse
Affiliation(s)
- Franziska Schenk
- School of Art, Birmingham Institute of Art and Design, Birmingham City University, Birmingham, UK
| | | | | |
Collapse
|
40
|
Powell SB, Gruev V. Calibration methods for division-of-focal-plane polarimeters. OPTICS EXPRESS 2013; 21:21039-55. [PMID: 24103976 DOI: 10.1364/oe.21.021039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Division-of-focal plane (DoFP) imaging polarimeters are useful instruments for measuring polarization information for a variety of applications. Recent advances in nanofabrication have enabled the practical manufacture of DoFP sensors for the visible spectrum. These sensors are made by integrating nanowire polarization filters directly with an imaging array, and size variations of the nanowires due to fabrication can cause the optical properties of the filters to vary up to 20% across the imaging array. If left unchecked, these variations introduce significant errors when reconstructing the polarization image. Calibration methods offer a means to correct these errors. This work evaluates a scalar and matrix calibration derived from a mathematical model of the polarimeter behavior. The methods are evaluated quantitatively with an existing DoFP polarimeter under varying illumination intensity and angle of linear polarization.
Collapse
|
41
|
|
42
|
Jocque M, Vanhove M, Creedy T, Burdekin O, Nuñez-Miño J, Casteels J. Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring? JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:21. [PMID: 23901802 PMCID: PMC3738100 DOI: 10.1673/031.013.2101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 07/23/2012] [Indexed: 06/02/2023]
Abstract
Jewel scarabs, beetles in the genus Chrysina Kirby (Coleoptera: Rutelinae: Scarabaeidae), receive their name from the bright, often gold, green elytra that reflect light like a precious stone. Jewel scarabs are commonly observed at light traps in Mesoamerican cloud forests, and their association with mountain forests makes them potentially interesting candidates for cloud forest conservation monitoring. The absence of survey protocols and identification tools, and the little ecological information available are barriers. In the present study, collection of Chrysina species assembled during biodiversity surveys by Operation Wallacea in Cusuco National Park (CNP), Honduras, were studied. The aim of this overview is to provide an easy to use identification tool for in the field, hopefully stimulating data collection on these beetles. Based on the data associated with the collection localities, elevation distribution of the species in the park was analyzed. The limited data points available were complemented with potential distribution areas generated with distribution models based on climate and elevation data. This study is aimed at initializing the development of a survey protocol for Chrysina species that can be used in cloud forest conservation monitoring throughout Central America. A list of Chrysina species recorded from Honduras so far is provided. The six identified and one unidentified species recorded from CNP are easy to identify in the field based on color and straightforward morphological characteristics. Literature research revealed ten species currently recorded from Honduras. This low species richness in comparison with surrounding Central American countries indicates the poor knowledge of this genus in Honduras. Chrysina species richness in CNP increases with elevation, thereby making the genus one of a few groups of organisms where this correlation is observed, and rendering it a suitable invertebrate representative for cloud forest habitats in Central America.
Collapse
Affiliation(s)
- M. Jocque
- BINCO vzw, Rijmenamsesteenweg 189, 3150 Haacht, Belgium
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
- Institute of Biodiversity and Ecosystem, Bulgarian Academy of Sciences, 2 Yurii Gagarin Street, 1113 Sofia, Bulgaria
| | - M.P.M. Vanhove
- BINCO vzw, Rijmenamsesteenweg 189, 3150 Haacht, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Biology Department, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| | - T.J. Creedy
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
- Hope Entomological Collections, Oxford University Museum of Natural History, Parks Road, Oxford OXI 3PW, United Kingdom
| | - O. Burdekin
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
| | - J.M. Nuñez-Miño
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - J. Casteels
- BINCO vzw, Rijmenamsesteenweg 189, 3150 Haacht, Belgium
- Laboratory of Aquatic Ecology, Evolution and Conservation, Biology Department, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
43
|
Wilts BD, Michielsen K, Kuipers J, De Raedt H, Stavenga DG. Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis. Proc Biol Sci 2012; 279:2524-30. [PMID: 22378806 DOI: 10.1098/rspb.2011.2651] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The neotropical diamond weevil, Entimus imperialis, is marked by rows of brilliant spots on the overall black elytra. The spots are concave pits with intricate patterns of structural-coloured scales, consisting of large domains of three-dimensional photonic crystals that have a diamond-type structure. Reflectance spectra measured from individual scale domains perfectly match model spectra, calculated with anatomical data and finite-difference time-domain methods. The reflections of single domains are extremely directional (observed with a point source less than 5°), but the special arrangement of the scales in the concave pits significantly broadens the angular distribution of the reflections. The resulting virtually angle-independent green coloration of the weevil closely approximates the colour of a foliaceous background. While the close-distance colourful shininess of E. imperialis may facilitate intersexual recognition, the diffuse green reflectance of the elytra when seen at long-distance provides cryptic camouflage.
Collapse
Affiliation(s)
- Bodo D Wilts
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747AG, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle. Physiol Behav 2012; 105:1067-75. [DOI: 10.1016/j.physbeh.2011.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/19/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022]
|
45
|
|
46
|
PYE JDAVID. The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera). Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01449.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|