1
|
Jewanraj J, Ngcapu S, Liebenberg LJP. Semen: A modulator of female genital tract inflammation and a vector for HIV-1 transmission. Am J Reprod Immunol 2021; 86:e13478. [PMID: 34077596 PMCID: PMC9286343 DOI: 10.1111/aji.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
In order to establish productive infection in women, HIV must transverse the vaginal epithelium and gain access to local target cells. Genital inflammation contributes to the availability of HIV susceptible cells at the female genital mucosa and is associated with higher HIV transmission rates in women. Factors that contribute to genital inflammation may subsequently increase the risk of HIV infection in women. Semen is a highly immunomodulatory fluid containing several bioactive molecules with the potential to influence inflammation and immune activation at the female genital tract. In addition to its role as a vector for HIV transmission, semen induces profound mucosal changes to prime the female reproductive tract for conception. Still, most studies of mucosal immunity are conducted in the absence of semen or without considering its immune impact on the female genital tract. This review discusses the various mechanisms by which semen exposure may influence female genital inflammation and highlights the importance of routine screening for semen biomarkers in vaginal specimens to account for its impact on genital inflammation.
Collapse
Affiliation(s)
- Janine Jewanraj
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
2
|
Jewanraj J, Ngcapu S, Osman F, Mtshali A, Singh R, Mansoor LE, Abdool Karim SS, Abdool Karim Q, Passmore JAS, Liebenberg LJP. The Impact of Semen Exposure on the Immune and Microbial Environments of the Female Genital Tract. FRONTIERS IN REPRODUCTIVE HEALTH 2020; 2:566559. [PMID: 36304709 PMCID: PMC9580648 DOI: 10.3389/frph.2020.566559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Semen induces an immune response at the female genital tract (FGT) to promote conception. It is also the primary vector for HIV transmission to women during condomless sex. Since genital inflammation and immune activation increase HIV susceptibility in women, semen-induced alterations at the FGT may have implications for HIV risk. Here we investigated the impact of semen exposure, as measured by self-reported condom use and Y-chromosome DNA (YcDNA) detection, on biomarkers of female genital inflammation associated with HIV acquisition. Methods: Stored genital specimens were collected biannually (mean 5 visits) from 153 HIV-negative women participating in the CAPRISA 008 tenofovir gel open-label extension trial. YcDNA was detected in cervicovaginal lavage (CVL) pellets by RT-PCR and served as a biomarker of semen exposure within 15 days of genital sampling. Protein concentrations were measured in CVL supernatants by multiplexed ELISA, and the frequency of activated CD4+CCR5+ HIV targets was assessed on cytobrush-derived specimens by flow cytometry. Common sexually transmitted infections (STIs) and bacterial vaginosis (BV)-associated bacteria were measured by PCR. Multivariable linear mixed models were used to assess the relationship between YcDNA detection and biomarkers of inflammation over time. Results: YcDNA was detected at least once in 69% (106/153) of women during the trial (median 2, range 1-5 visits), and was associated with marital status, cohabitation, the frequency of vaginal sex, and Nugent Score. YcDNA detection but not self-reported condom use was associated with elevated concentrations of several cytokines: IL-12p70, IL-10, IFN-γ, IL-13, IP-10, MIG, IL-7, PDGF-BB, SCF, VEGF, β-NGF, and biomarkers of epithelial barrier integrity: MMP-2 and TIMP-4; and with reduced concentrations of IL-18 and MIF. YcDNA detection was not associated with alterations in immune cell frequencies but was related to increased detection of P. bivia (OR = 1.970; CI 1.309-2.965; P = 0.001) at the FGT. Conclusion: YcDNA detection but not self-reported condom use was associated with alterations in cervicovaginal cytokines, BV-associated bacteria, and matrix metalloproteinases, and may have implications for HIV susceptibility in women. This study highlights the discrepancies related to self-reported condom use and the need for routine screening for biomarkers of semen exposure in studies of mucosal immunity to HIV and other STIs.
Collapse
Affiliation(s)
- Janine Jewanraj
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Sinaye Ngcapu
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Farzana Osman
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Andile Mtshali
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology, National Health Laboratory Services, KwaZulu-Natal Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Leila E. Mansoor
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim S. Abdool Karim
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States
| | - Quarraisha Abdool Karim
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States
| | - Jo-Ann S. Passmore
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| | - Lenine J. P. Liebenberg
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Lindsay KE, Vanover D, Thoresen M, King H, Xiao P, Badial P, Araínga M, Park SB, Tiwari PM, Peck HE, Blanchard EL, Feugang JM, Olivier AK, Zurla C, Villinger F, Woolums AR, Santangelo PJ. Aerosol Delivery of Synthetic mRNA to Vaginal Mucosa Leads to Durable Expression of Broadly Neutralizing Antibodies against HIV. Mol Ther 2020; 28:805-819. [PMID: 31995741 PMCID: PMC7054722 DOI: 10.1016/j.ymthe.2020.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022] Open
Abstract
There is a clear need for low-cost, self-applied, long-lasting approaches to prevent human immunodeficiency virus (HIV) infection in both men and women, even with the advent of pre-exposure prophylaxis (PrEP). Broadly neutralizing antibodies represent an option to improve HIV prophylaxis, but intravenous delivery, cold-chain stability requirements, low cervicovaginal concentrations, and cost may preclude their use. Here, we present an approach to express the anti-GP120 broadly neutralizing antibody PGT121 in the primary site of inoculation, the female reproductive tract, using synthetic mRNA. Expression is achieved through aerosol delivery of unformulated mRNA in water. We demonstrated high levels of antibody expression for over 28 days with a single mRNA administration in the reproductive tract of sheep. In rhesus macaques, neutralizing antibody titers in secretions developed within 4 h and simian-HIV (SHIV) infection of ex vivo explants was prevented. Persistence of PGT121 in vaginal secretions and epithelium was achieved through the incorporation of a glycosylphosphatidylinositol (GPI) anchor into the heavy chain of the antibody. Overall, we present a new paradigm to deliver neutralizing antibodies to the female reproductive tract for the prevention of HIV infections.
Collapse
Affiliation(s)
- Kevin E Lindsay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Merrilee Thoresen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Heath King
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Peres Badial
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Seong Bin Park
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Pooja M Tiwari
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
4
|
Showa SP, Nyabadza F, Hove-Musekwa SD. On the efficiency of HIV transmission: Insights through discrete time HIV models. PLoS One 2019; 14:e0222574. [PMID: 31532803 PMCID: PMC6750597 DOI: 10.1371/journal.pone.0222574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/03/2019] [Indexed: 11/18/2022] Open
Abstract
There are different views on which of the two forms of viral spread is more efficient in vivo between cell-free and cell-associated virus. In this study, discrete time human immunodeficiency virus models are formulated and analysed with the goal of determining the form of viral spread that is more efficient in vivo. It is shown that on its own, cell-free viral spread cannot sustain an infection owing to the low infectivity of cell-free virus and cell-associated virus can sustain an infection because of the high infectivity of cell-associated virus. When acting concurrently, cell-associated virus is more efficient in spreading the infection upon exposure to the virus. However, in the long term, the two forms of viral spread contribute almost equally. Both forms of viral spread are shown to be able to initiate an infection.
Collapse
Affiliation(s)
- Sarudzai P Showa
- Department of Applied Mathematics, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Farai Nyabadza
- Department of Mathematics and Applied Mathematics, Auckland Park Campus, University of Johannesburg, Johannesburg, South Africa
| | - Senelani D Hove-Musekwa
- Department of Applied Mathematics, National University of Science and Technology, Bulawayo, Zimbabwe
| |
Collapse
|
5
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) gives rise to a chronic infection that progressively depletes CD4(+) T lymphocytes. CD4(+) T lymphocytes play a central coordinating role in adaptive cellular and humoral immune responses, and to do so they migrate and interact within lymphoid compartments and at effector sites to mount immune responses. While cell-free virus serves as an excellent prognostic indicator for patient survival, interactions of infected T cells or virus-scavenging immune cells with uninfected T cells can greatly enhance viral spread. HIV can induce interactions between infected and uninfected T cells that are triggered by cell surface expression of viral Env, which serves as a cell adhesion molecule that interacts with CD4 on the target cell, before it acts as the viral membrane fusion protein. These interactions are called virological synapses and promote replication in the face of selective pressure of humoral immune responses and antiretroviral therapy. Other infection-enhancing cell-cell interactions occur between virus-concentrating antigen-presenting cells and recipient T cells, called infectious synapses. The exact roles that these cell-cell interactions play in each stage of infection, from viral acquisition, systemic dissemination, to chronic persistence are still being determined. Infection-promoting immune cell interactions are likely to contribute to viral persistence and enhance the ability of HIV-1 to evade adaptive immune responses.
Collapse
Affiliation(s)
- K M Law
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - N Satija
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - A M Esposito
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - B K Chen
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
6
|
Moench TR. Cell-associated transmission of HIV type 1 and other lentiviruses in small-animal models. J Infect Dis 2015; 210 Suppl 3:S654-9. [PMID: 25414420 DOI: 10.1093/infdis/jiu368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Small-animal models of lentivirus transmission have repeatedly demonstrated transmission by cell-associated virus via vaginal, rectal, and oral routes. The earliest experiments were in the cat/feline immunodeficiency virus model, followed a decade later by successful vaginal transmission of cell-associated human immunodeficiency virus (HIV) in mice bearing transplanted human immune cells. After early unsuccessful attempts at cell-associated transmission in nonhuman primates, renewed investigation in diverse primate models has now confirmed the findings from the cat and humanized mouse models. Improvements in humanized mouse models have made them the preferred small-animal models to study HIV mucosal transmission. They provide complementary systems to nonhuman primate models to aid in the elucidation of the many remaining questions on the mechanism of and means to prevent both cell-associated and cell-free HIV transmission across mucosal barriers.
Collapse
|
7
|
Adedeji AL, Adenikinju RO, Ajele JO, Olawoye TL. Serum protein electrophoresis under effective control of HIV-1 disease progression. EXCLI JOURNAL 2014; 13:761-71. [PMID: 26417299 PMCID: PMC4464463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/08/2014] [Indexed: 10/31/2022]
Abstract
In this report, we compared the serum protein electrophoresis (SPE) patterns in a subset of HIV-1-infected subjects who did not progress to AIDS without antiretroviral treatment with those in whose control of disease progression was achieved by highly active antiretroviral therapy (HAART). SPE and immunofixation electrophoresis were performed on Helena Electrophoresis System according to manufacturer's instructions. The percentage of SPE abnormalities, resembling chronic inflammation, was significantly higher in HIV-1-infected subject without HAART compared with those under HAART (p = 0.001). The majority of individuals under HAART showed evidence of oligoclonal bands on the γ-band against a polyclonal background compared with those without HAART but ß-γ-band bridging was more evident. Immunofixation pattern was consistent with oligoclonal hypergammaglobulinaemia of IgG kappa type, which was found to be more intense in group without HAART. HIV clinical status did not show appreciable effect on the SPE pattern in subjects without HAART. However, under effective HAART, subjects with better CD4 T-cell count were associated with higher γ-globulin band. In group without HAART, acute infection was found to be associated the higher γ-globulin fraction compared with chronic infection. The opposite was the case under effective HAART. HIV infected subjects that did not progress to AIDS were associated with markedly abnormal SPE pattern. Overall results reflect the host ability compensate defective cellular immunity in HIV-1 infection with humoral immune responses. These findings underscore the usefulness of SPE monitoring HIV disease management and identifying individuals that may not progress to full-blown AIDS in the absence of treatment.
Collapse
Affiliation(s)
- Adebayo Lawrence Adedeji
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria University
| | | | - Joshua Olufemi Ajele
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria University
| | | |
Collapse
|
8
|
Kinlock BL, Wang Y, Turner TM, Wang C, Liu B. Transcytosis of HIV-1 through vaginal epithelial cells is dependent on trafficking to the endocytic recycling pathway. PLoS One 2014; 9:e96760. [PMID: 24830293 PMCID: PMC4022679 DOI: 10.1371/journal.pone.0096760] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/21/2014] [Indexed: 01/03/2023] Open
Abstract
Background While it is accepted that viruses can enter epithelial cells by endocytosis, the lack of an established biological mechanism for the trafficking of infectious virions through vaginal epithelial cells and their release from the plasma membrane has contributed to ongoing controversy about whether endocytosis is a mere artifact of some cell culture systems and whether squamous vaginal epithelial cells are even relevant as it pertains to HIV-1 transmission. Methodology/Principal Findings In this study, we investigated the intracellular trafficking pathway that HIV-1 exploits to transcytose vaginal epithelial cells. The reduction of endosome tubulation by recycling endosome inhibitors blocked transcytosis of HIV-1 in a cell culture and transwell system. In addition, we demonstrate that although heat-inactivated virus was endocytosed as efficiently as native virus, heat-inactivated virus was trafficked exclusively to the lysosomal pathway for degradation following endocytosis. Lysosomal protease-specific inhibitors blocked the degradation of inactivated virions. Immunofluorescence analysis not only demonstrated that HIV-1 was inside the cells but the different colocalization pattern of native vs. heat inactivated virus with transferrin provided conclusive evidence that HIV-1 uses the recycling pathway to get across vaginal epithelial cells. Conclusions/Significance Altogether, our findings demonstrate the precise intracellular trafficking pathway utilized by HIV-1 in epithelial cells, confirms that HIV-1 transcytosis through vaginal epithelial cells is a biological phenomenon and brings to light the differential intracellular trafficking of native vs heat-inactivated HIV-1 which with further exploration could prove to provide valuable insights that could be used in the prevention of transcytosis/transmission of HIV-1 across the mucosal epithelia.
Collapse
Affiliation(s)
- Ballington L. Kinlock
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Yudi Wang
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Tiffany M. Turner
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Chenliang Wang
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Institute of Gastroenterology and Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, Peoples of Republic of China
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
9
|
Whaley KJ, Zeitlin L. Antibody-based concepts for multipurpose prevention technologies. Antiviral Res 2013; 100 Suppl:S48-53. [PMID: 24188703 PMCID: PMC3933545 DOI: 10.1016/j.antiviral.2013.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/03/2013] [Accepted: 09/26/2013] [Indexed: 02/04/2023]
Abstract
Because of the versatility and specificity of monoclonal antibodies, they are candidates for multipurpose prevention technologies when formulated as topical (gels, films, rings) or injectable drugs and as vaccines. This review focuses on antibody-based proof of concept studies for the human immunodeficiency virus, herpes simplex virus and sperm. Opportunities and challenges in antibody evasion/resistance, manufacturing, regulatory, and pharmacoeconomics are discussed. This article is based on a presentation at the "Product Development Workshop 2013: HIV and Multipurpose Prevention Technologies," held in Arlington, Virginia on February 21-22, 2013. It forms part of a special supplement to Antiviral Research.
Collapse
|
10
|
Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS vaccine development. ACTA ACUST UNITED AC 2013; 102:12.14.1-12.14.30. [PMID: 24510515 DOI: 10.1002/0471142735.im1214s102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the simian immunodeficiency viruses (SIVs) that cause disease in macaques, which also closely mimic HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here we examine the multiple variables and considerations that must be taken into account in order to use this nonhuman primate (NHP) model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration, and macaque genetics, including the major histocompatibility complex molecules that affect immune responses, and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues that could not easily be performed on human volunteers. Furthermore, macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Shari Gordon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| |
Collapse
|
11
|
Abstract
The AIDS era has seen multiple advances in the power of genetics research; scores of host genetic protective factors have been nominated and several have translated to the bedside. We discuss how genomics may inform HIV/AIDS prevention, treatment and eradication.
Collapse
|
12
|
Purcell D, Cunningham A, Turville S, Tachedjian G, Landay A. Biology of mucosally transmitted sexual infection-translating the basic science into novel HIV intervention: a workshop summary. AIDS Res Hum Retroviruses 2012; 28:1389-96. [PMID: 22966898 DOI: 10.1089/aid.2012.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A group of over 200 international scientists came together on April 15 in Sydney, Australia just before the 2012 International Microbicides Conference as a part of a workshop to address the basic concepts and factors that modulate HIV infection at the mucosal surface. The meeting focused on defining the interaction between virus, prevailing host physiology, microbiota, and innate and adaptive immune responses and how they combine to impact the outcome at the moment of potential viral transmission. Speakers examined the biology of HIV entry during transmission, innate and natural antiviral mechanisms at the mucosa, microbicide efficacy, pharmacokinetic, and pharmacodynamics, animal models, and opportunities for combining HIV prevention strategies. Other viral infection models both in vivo and in vitro were considered for the insights they provided into HIV transmission events. The workshop raised important questions that we need to answer to further our basic understanding of host and viral factors influencing HIV transmission to inform the development of novel prevention strategies.
Collapse
|
13
|
Virologic determinants of breast milk transmission of HIV-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 743:69-80. [PMID: 22454342 DOI: 10.1007/978-1-4614-2251-8_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
14
|
HIV gp120 binds to mannose receptor on vaginal epithelial cells and induces production of matrix metalloproteinases. PLoS One 2011; 6:e28014. [PMID: 22132194 PMCID: PMC3222676 DOI: 10.1371/journal.pone.0028014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/30/2011] [Indexed: 01/25/2023] Open
Abstract
Background During sexual transmission of HIV in women, the virus breaches the multi-layered CD4 negative stratified squamous epithelial barrier of the vagina, to infect the sub-epithelial CD4 positive immune cells. However the mechanisms by which HIV gains entry into the sub-epithelial zone is hitherto unknown. We have previously reported human mannose receptor (hMR) as a CD4 independent receptor playing a role in HIV transmission on human spermatozoa. The current study was undertaken to investigate the expression of hMR in vaginal epithelial cells, its HIV gp120 binding potential, affinity constants and the induction of matrix metalloproteinases (MMPs) downstream of HIV gp120 binding to hMR. Principal Findings Human vaginal epithelial cells and the immortalized vaginal epithelial cell line Vk2/E6E7 were used in this study. hMR mRNA and protein were expressed in vaginal epithelial cells and cell line, with a molecular weight of 155 kDa. HIV gp120 bound to vaginal proteins with high affinity, (Kd = 1.2±0.2 nM for vaginal cells, 1.4±0.2 nM for cell line) and the hMR antagonist mannan dose dependently inhibited this binding. Both HIV gp120 binding and hMR exhibited identical patterns of localization in the epithelial cells by immunofluorescence. HIV gp120 bound to immunopurified hMR and affinity constants were 2.9±0.4 nM and 3.2±0.6 nM for vaginal cells and Vk2/E6E7 cell line respectively. HIV gp120 induced an increase in MMP-9 mRNA expression and activity by zymography, which could be inhibited by an anti-hMR antibody. Conclusion hMR expressed by vaginal epithelial cells has high affinity for HIV gp120 and this binding induces production of MMPs. We propose that the induction of MMPs in response to HIV gp120 may lead to degradation of tight junction proteins and the extracellular matrix proteins in the vaginal epithelium and basement membrane, leading to weakening of the epithelial barrier; thereby facilitating transport of HIV across the vaginal epithelium.
Collapse
|