1
|
Naven Narayanan, Shaw AK. Mutualisms impact species' range expansion speeds and spatial distributions. Ecology 2024; 105:e4171. [PMID: 37776264 DOI: 10.1002/ecy.4171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
Species engage in mutually beneficial interspecific interactions (mutualisms) that shape their population dynamics in ecological communities. Species engaged in mutualisms vary greatly in their degree of dependence on their partner from complete dependence (e.g., yucca and yucca moth mutualism) to low dependence (e.g., generalist bee with multiple plant species). While current empirical studies show that, in mutualisms, partner dependence can alter the speed of a species' range expansion, there is no theory that provides conditions when expansion is sped up or slowed down. To address this, we built a spatially explicit model incorporating the population dynamics of two dispersing species interacting mutualistically. We explored how mutualisms impacted range expansion across a gradient of dependence (from complete independence to obligacy) between the two species. We then studied the conditions in which the magnitude of the mutualistic benefits could hinder versus enhance the speed of range expansion. We showed that either complete dependence, no dependence, or intermediate degree of dependence on a mutualist partner can lead to the greatest speeds of a focal species' range expansion based on the magnitude of benefits exchanged between partner species in the mutualism. We then showed how different degrees of dependence between species could alter the spatial distribution of the range expanding populations. Finally, we identified the conditions under which mutualistic interactions can turn exploitative across space, leading to the formation of a species' range limits. Our work highlights how couching mutualisms and mutualist dependence in a spatial context can provide insights about species range expansions, limits, and ultimately their distributions.
Collapse
Affiliation(s)
- Naven Narayanan
- Department of Ecology, Evolution, Behavior, University of Minnesota Twin Cities, Saint Paul, Minnesota, USA
| | - Allison K Shaw
- Department of Ecology, Evolution, Behavior, University of Minnesota Twin Cities, Saint Paul, Minnesota, USA
| |
Collapse
|
2
|
Orive ME, Barfield M, Holt RD. Partial Clonality Expands the Opportunity for Spatial Adaptation. Am Nat 2023; 202:681-698. [PMID: 37963114 DOI: 10.1086/726335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractReproductive mode may strongly impact adaptation in spatially varying populations linked by dispersal, especially when sexual and clonal offspring differ in dispersal. We determined how spatial structure affects adaptation in populations with mixed clonal and sexual reproduction. In a source-sink quantitative genetic deterministic model (with stabilizing selection around different optima), greater clonal reproduction or parent-offspring association (a measure of the part of the parent's phenotype other than the additive genetic component inherited by clonal offspring) increased the selective difference (difference between phenotypic optima) allowing sink populations to adapt. Given dispersal differences between clonally and sexually produced juveniles, adaptation increased with an increasing fraction of clonal dispersers. When considering migrational meltdown, partially clonal reproduction reduced cases where dispersal caused habitat loss. Stochastic individual-based simulations support these results, although the effect of differential dispersal was reversed, with decreased clonal dispersal allowing greater adaptation. These results parallel earlier findings that for an instantaneous shift in phenotypic optimum, increasing clonality allowed population persistence for a greater shift; here, selective change is spatial rather than temporal. These results may help explain the success of many partially clonal organisms in invading new habitats, complementing traditional explanations based on avoiding Allee effects.
Collapse
|
3
|
Alexander JM, Atwater DZ, Colautti RI, Hargreaves AL. Effects of species interactions on the potential for evolution at species' range limits. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210020. [PMID: 35184598 PMCID: PMC8859514 DOI: 10.1098/rstb.2021.0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/14/2022] [Indexed: 01/13/2023] Open
Abstract
Species' ranges are limited by both ecological and evolutionary constraints. While there is a growing appreciation that ecological constraints include interactions among species, like competition, we know relatively little about how interactions contribute to evolutionary constraints at species' niche and range limits. Building on concepts from community ecology and evolutionary biology, we review how biotic interactions can influence adaptation at range limits by impeding the demographic conditions that facilitate evolution (which we term a 'demographic pathway to adaptation'), and/or by imposing evolutionary trade-offs with the abiotic environment (a 'trade-offs pathway'). While theory for the former is well-developed, theory for the trade-offs pathway is not, and empirical evidence is scarce for both. Therefore, we develop a model to illustrate how fitness trade-offs along biotic and abiotic gradients could affect the potential for range expansion and niche evolution following ecological release. The model shows that which genotypes are favoured at species' range edges can depend strongly on the biotic context and the nature of fitness trade-offs. Experiments that characterize trade-offs and properly account for biotic context are needed to predict which species will expand their niche or range in response to environmental change. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Jake M. Alexander
- Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Daniel Z. Atwater
- Biology Department, Earlham College, 801 National Rd. W, Richmond, IN 47374, USA
| | - Robert I. Colautti
- Biology Department, Queen's University, 116 Barrie, St. Kingston, ON, Canada, K7 L 3N6
| | - Anna L. Hargreaves
- Department of Biology, McGill University, 1205 Dr Penfield Av, Montreal, QC, Canada H3A 1B1
| |
Collapse
|
4
|
O'Brien EK, Walter GM, Bridle J. Environmental variation and biotic interactions limit adaptation at ecological margins: lessons from rainforest Drosophila and European butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210017. [PMID: 35184592 PMCID: PMC8859522 DOI: 10.1098/rstb.2021.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
Models of local adaptation to spatially varying selection predict that maximum rates of evolution are determined by the interaction between increased adaptive potential owing to increased genetic variation, and the cost genetic variation brings by reducing population fitness. We discuss existing and new results from our laboratory assays and field transplants of rainforest Drosophila and UK butterflies along environmental gradients, which try to test these predictions in natural populations. Our data suggest that: (i) local adaptation along ecological gradients is not consistently observed in time and space, especially where biotic and abiotic interactions affect both gradient steepness and genetic variation in fitness; (ii) genetic variation in fitness observed in the laboratory is only sometimes visible to selection in the field, suggesting that demographic costs can remain high without increasing adaptive potential; and (iii) antagonistic interactions between species reduce local productivity, especially at ecological margins. Such antagonistic interactions steepen gradients and may increase the cost of adaptation by increasing its dimensionality. However, where biotic interactions do evolve, rapid range expansion can follow. Future research should test how the environmental sensitivity of genotypes determines their ecological exposure, and its effects on genetic variation in fitness, to predict the probability of evolutionary rescue at ecological margins. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Eleanor K. O'Brien
- School of Biological Sciences, University of Bristol, Bristol, UK
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Greg M. Walter
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
5
|
Ray C, Rochefort RM, Ransom JI, Nesmith JCB, Haultain SA, Schaming TD, Boetsch JR, Holmgren ML, Wilkerson RL, Siegel RB. Assessing trends and vulnerabilities in the mutualism between whitebark pine (Pinus albicaulis) and Clark's nutcracker (Nucifraga columbiana) in national parks of the Sierra-Cascade region. PLoS One 2020; 15:e0227161. [PMID: 33052936 PMCID: PMC7556478 DOI: 10.1371/journal.pone.0227161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
Dispersal of whitebark pine (Pinus albicaulis Engelm.), a keystone species of many high-elevation ecosystems in western North America, depends on Clark’s nutcracker (Nucifraga columbiana Wilson), a seed-caching bird with an affinity for whitebark seeds. To the extent that this dependence is mutual, declines in whitebark seed production could cause declines in nutcracker abundance. Whitebark pine is in decline across much of its range due to interacting stressors, including the non-native pathogen white pine blister rust (Cronartium ribicola J. C. Fisch.). We used avian point-count data and tree surveys from four national park units to investigate whether trends in whitebark pine can explain trends in Clark’s nutcracker. Spatial trends were modeled using recent data from two parks, while temporal trends were modeled using longer time-series of nutcracker and whitebark data from two additional parks. To assess the potential dependence of nutcrackers on whitebark, we linked a model of nutcracker density (accounting for detection probability) with a model of whitebark trends, using a Bayesian framework to translate uncertainty in whitebark metrics to uncertainty in nutcracker density. In Mount Rainier National Park, temporal models showed dramatic declines in nutcracker density concurrent with significant increases in whitebark crown mortality and trees infected with white pine blister rust. However, nutcrackers did not trend with whitebark metrics in North Cascades National Park Service Complex. In spatial models of data from Yosemite National Park and Sequoia-Kings Canyon National Park, nutcracker density varied not only with local cover of whitebark but also with elevation and, in Sequoia-Kings Canyon, with cover of another species of white pine. Our results add support for the hypothesis that the mutualism between whitebark pine and Clark’s nutcracker is vulnerable to disruption by blister rust, and our approach integrates data across monitoring programs to explore trends in species interactions.
Collapse
Affiliation(s)
- Chris Ray
- The Institute for Bird Populations, Petaluma, California, United States of America
- * E-mail:
| | - Regina M. Rochefort
- North Cascades National Park Service Complex, Sedro-Woolley, Washington, United States of America
| | - Jason I. Ransom
- North Cascades National Park Service Complex, Sedro-Woolley, Washington, United States of America
| | - Jonathan C. B. Nesmith
- National Park Service, Sierra Nevada Network, Three Rivers, California, United States of America
| | - Sylvia A. Haultain
- National Park Service, Sierra Nevada Network, Three Rivers, California, United States of America
| | - Taza D. Schaming
- Northern Rockies Conservation Cooperative, Jackson, Wyoming, United States of America
| | - John R. Boetsch
- National Park Service, North Coast and Cascades Network, Port Angeles, Washington, United States of America
| | - Mandy L. Holmgren
- The Institute for Bird Populations, Petaluma, California, United States of America
| | - Robert L. Wilkerson
- The Institute for Bird Populations, Petaluma, California, United States of America
| | - Rodney B. Siegel
- The Institute for Bird Populations, Petaluma, California, United States of America
| |
Collapse
|
6
|
Urban MC, Scarpa A, Travis JMJ, Bocedi G. Maladapted Prey Subsidize Predators and Facilitate Range Expansion. Am Nat 2019; 194:590-612. [PMID: 31490731 DOI: 10.1086/704780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dispersal of prey from predator-free patches frequently supplies a trophic subsidy to predators by providing more prey than are produced locally. Prey arriving from predator-free patches might also have evolved weaker defenses against predators and thus enhance trophic subsidies by providing easily captured prey. Using local models assuming a linear or accelerating trade-off between defense and population growth rate, we demonstrate that immigration of undefended prey increased predator abundances and decreased defended prey through eco-evolutionary apparent competition. In individual-based models with spatial structure, explicit genetics, and gene flow along an environmental gradient, prey became maladapted to predators at the predator's range edge, and greater gene flow enhanced this maladaptation. The predator gained a subsidy from these easily captured prey, which enhanced its abundance, facilitated its persistence in marginal habitats, extended its range extent, and enhanced range shifts during environmental changes, such as climate change. Once the predator expanded, prey adapted to it and the advantage disappeared, resulting in an elastic predator range margin driven by eco-evolutionary dynamics. Overall, the results indicate a need to consider gene flow-induced maladaptation and species interactions as mutual forces that frequently determine ecological and evolutionary dynamics and patterns in nature.
Collapse
|
7
|
Smith CC, Weber JN, Mikheyev AS, Roces F, Bollazzi M, Kellner K, Seal JN, Mueller UG. Landscape genomics of an obligate mutualism: Concordant and discordant population structures between the leafcutter ant Atta texana and its two main fungal symbiont types. Mol Ecol 2019; 28:2831-2845. [PMID: 31141257 DOI: 10.1111/mec.15111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
Abstract
To explore landscape genomics at the range limit of an obligate mutualism, we use genotyping-by-sequencing (ddRADseq) to quantify population structure and the effect of host-symbiont interactions between the northernmost fungus-farming leafcutter ant Atta texana and its two main types of cultivated fungus. Genome-wide differentiation between ants associated with either of the two fungal types is of the same order of magnitude as differentiation associated with temperature and precipitation across the ant's entire range, suggesting that specific ant-fungus genome-genome combinations may have been favoured by selection. For the ant hosts, we found a broad cline of genetic structure across the range, and a reduction of genetic diversity along the axis of range expansion towards the range margin. This population-genetic structure was concordant between the ants and one cultivar type (M-fungi, concordant clines) but discordant for the other cultivar type (T-fungi). Discordance in population-genetic structures between ant hosts and a fungal symbiont is surprising because the ant farmers codisperse with their vertically transmitted fungal symbionts. Discordance implies that (a) the fungi disperse also through between-nest horizontal transfer or other unknown mechanisms, and (b) genetic drift and gene flow can differ in magnitude between each partner and between different ant-fungus combinations. Together, these findings imply that variation in the strength of drift and gene flow experienced by each mutualistic partner affects adaptation to environmental stress at the range margin, and genome-genome interactions between host and symbiont influence adaptive genetic differentiation of the host during range evolution in this obligate mutualism.
Collapse
Affiliation(s)
- Chad C Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas
| | - Jesse N Weber
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas.,Department of Biological Sciences, University of Alaska, Anchorage, Alaska
| | | | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Martin Bollazzi
- Section of Entomology, Universidad de la República, Montevideo, Uruguay
| | - Katrin Kellner
- Department of Biology, University of Texas at Tyler, Tyler, Texas
| | - Jon N Seal
- Department of Biology, University of Texas at Tyler, Tyler, Texas
| | - Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
8
|
Abstract
Factors that limit the geographic distribution of species are broadly important in ecology and evolutionary biology, and understanding distribution limits is imperative for predicting how species will respond to environmental change. Good data indicate that factors such as dispersal limitation, small effective population size, and isolation are sometimes important. But empirical research highlights no single factor that explains the ubiquity of distribution limits. In this article, we outline a guide to tackling distribution limits that integrates established causes, such as dispersal limitation and spatial environmental heterogeneity, with understudied causes, such as mutational load and genetic or developmental integration of traits limiting niche expansion. We highlight how modeling and quantitative genetic and genomic analyses can provide insight into sources of distribution limits. Our practical guide provides a framework for considering the many factors likely to determine species distributions and how the different approaches can be integrated to predict distribution limits using eco-evolutionary modeling. The framework should also help predict distribution limits of invasive species and of species under climate change.
Collapse
|
9
|
Andrade-Restrepo M, Champagnat N, Ferrière R. Local adaptation, dispersal evolution, and the spatial eco-evolutionary dynamics of invasion. Ecol Lett 2019; 22:767-777. [PMID: 30887688 DOI: 10.1111/ele.13234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/22/2018] [Accepted: 01/21/2019] [Indexed: 01/17/2023]
Abstract
Local adaptation and dispersal evolution are key evolutionary processes shaping the invasion dynamics of populations colonizing new environments. Yet their interaction is largely unresolved. Using a single-species population model along a one-dimensional environmental gradient, we show how local competition and dispersal jointly shape the eco-evolutionary dynamics and speed of invasion. From a focal introduction site, the generic pattern predicted by our model features a temporal transition from wave-like to pulsed invasion. Each regime is driven primarily by local adaptation, while the transition is caused by eco-evolutionary feedbacks mediated by dispersal. The interaction range and cost of dispersal arise as key factors of the duration and speed of each phase. Our results demonstrate that spatial eco-evolutionary feedbacks along environmental gradients can drive strong temporal variation in the rate and structure of population spread, and must be considered to better understand and forecast invasion rates and range dynamics.
Collapse
Affiliation(s)
- Martín Andrade-Restrepo
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Paris Cité Sorbonne, F-750205, Paris, France
| | - Nicolas Champagnat
- IECL, CNRS UMR 7502, Université de Lorraine, Vandœuvre-lès-Nancy, F-54506, Lorraine, France.,Inria, TOSCA team, Villers-lès-Nancy, F-54600, France
| | - Régis Ferrière
- Institut de Biologie de l'ENS, CNRS UMR 8197, INSERM U 1043, Ecole Normale Supérieure, Paris Sciences & Lettres University, Paris, F-75005, France.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.,Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, UMI 3157, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
10
|
Grayson KL, Johnson DM. Novel insights on population and range edge dynamics using an unparalleled spatiotemporal record of species invasion. J Anim Ecol 2017; 87:581-593. [PMID: 28892141 DOI: 10.1111/1365-2656.12755] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/26/2017] [Indexed: 11/29/2022]
Abstract
Quantifying the complex spatial dynamics taking place at range edges is critical for understanding future distributions of species, yet very few systems have sufficient data or the spatial resolution to empirically test these dynamics. This paper reviews how data from a large-scale pest management programme have provided important contributions to the fields of population dynamics and invasion biology. The invasion of gypsy moth (Lymantria dispar) is well-documented from its introduction near Boston, Massachusetts USA in 1869 to its current extent of over 900,000 km2 in Eastern North America. Over the past two decades, the USDA Forest Service Slow the Spread (STS) programme for managing the future spread of gypsy moth has produced unrivalled spatiotemporal data across the invasion front. The STS programme annually deploys a grid of 60,000-100,000 pheromone-baited traps, currently extending from Minnesota to North Carolina. The data from this programme have provided the foundation for investigations of complex population dynamics and the ability to examine ecological hypotheses previously untestable outside of theoretical venues, particularly regarding invasive spread and Allee effects. This system provides empirical data on the importance of long-distance dispersal and time-lags on population establishment and spatial spread. Studies showing high rates of spatiotemporal variation of the range edge, from rapid spread to border stasis and even retraction, highlight future opportunities to test mechanisms that influence both invasive and native species ranges. The STS trap data have also created a unique opportunity to study low-density population dynamics and quantify Allee effects with empirical data. Notable contributions include evidence for spatiotemporal variation in Allee effects, demonstrating empirical links between Allee effects and spatial spread, and testing mechanisms of population persistence and growth rates at range edges. There remain several outstanding questions in spatial ecology and population biology that can be tested within this system, such as the scaling of local ecological processes to large-scale dynamics across landscapes. The gypsy moth is an ideal model of how important ecological questions can be answered by thinking more broadly about monitoring data.
Collapse
Affiliation(s)
| | - Derek M Johnson
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
11
|
Fey SB, Wieczynski DJ. The temporal structure of the environment may influence range expansions during climate warming. GLOBAL CHANGE BIOLOGY 2017; 23:635-645. [PMID: 27541293 DOI: 10.1111/gcb.13468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Understanding the processes that influence range expansions during climate warming is paramount for predicting population extirpations and preparing for the arrival of non-native species. While climate warming occurs over a background of variation due to cyclical processes and irregular events, the temporal structure of the thermal environment is largely ignored when forecasting the dynamics of non-native species. Ecological theory predicts that high levels of temporal autocorrelation in the environment - relatedness between conditions occurring in close temporal proximity - will favor populations that would otherwise have an average negative growth rate by increasing the duration of favorable environmental periods. Here, we invoke such theory to explain the success of biological invasions and evaluate the hypothesis that sustained periods of high environmental temperature can act synergistically with increases in mean temperature to favor the establishment of non-native species. We conduct a 60-day field mesocosm experiment to measure the population dynamics of the non-native cladoceran zooplankter Daphnia lumholtzi and a native congener Daphnia pulex in ambient temperature environments (control), warmed with recurrent periods of high environmental temperatures (uncorrelated-warmed), or warmed with sustained periods of high environmental temperatures (autocorrelated-warmed), such that both warmed treatments exhibited the same mean temperature but exhibited different temporal structures of their thermal environments. Maximum D. lumholtzi densities in the warmed-autocorrelated treatment were threefold and eightfold higher relative to warmed-uncorrelated and control treatments, respectively. Yet, D. lumholtzi performed poorly across all experimental treatment(s) relative to D. pulex and were undetectable (by) the end of the experiment. Using mathematical models, we show that this increase in performance can occur alongside increasing temporal autocorrelation and should occur over a broad range of warming scenarios. These results provide both empirical and theoretical evidence that the temporal structure of the environment can influence the performance of species undergoing range expansions due to climate warming.
Collapse
Affiliation(s)
- Samuel B Fey
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
| | - Daniel J Wieczynski
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
| |
Collapse
|
12
|
Siepielski AM, Beaulieu JM. Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts. Evolution 2017; 71:974-984. [PMID: 28094439 DOI: 10.1111/evo.13188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/11/2017] [Indexed: 11/26/2022]
Abstract
Most species have evolved adaptations to reduce the chances of predation. In many cases, adaptations to coexist with one predator generate tradeoffs in the ability to live with other predators. Consequently, the ability to live with one predator may limit the geographic distributions of species, such that adaptive evolution to coexist with novel predators may facilitate range shifts. In a case study with Enallagma damselflies, we used a comparative phylogenetic approach to test the hypothesis that adaptive evolution to live with a novel predator facilitates range size shifts. Our results suggest that the evolution of Enallagma shifting from living in ancestral lakes with fish as top predators, to living in lakes with dragonflies as predators, may have facilitated an increase in their range sizes. This increased range size likely arose because lakes with dragonflies were widespread, but unavailable as a habitat throughout much of the evolutionary history of Enallagma because they were historically maladapted to coexist with dragonfly predators. Additionally, the traits that have evolved as defenses against dragonflies also likely enhanced damselfly dispersal abilities. While many factors underlie the evolutionary history of species ranges, these results suggest a role for the evolution of predator-prey interactions.
Collapse
Affiliation(s)
- Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701
| | - Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701
| |
Collapse
|
13
|
TIETZE SM, GERALD GW. Trade-offs between salinity preference and antipredator behaviour in the euryhaline sailfin molly Poecilia latipinna. JOURNAL OF FISH BIOLOGY 2016; 88:1918-31. [PMID: 27001481 PMCID: PMC5332121 DOI: 10.1111/jfb.12955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/18/2016] [Indexed: 05/26/2023]
Abstract
Salinity preference and responses to predatory chemical cues were examined both separately and simultaneously in freshwater (FW) and saltwater (SW)-acclimated sailfin mollies Poecilia latipinna, a euryhaline species. It was hypothesized that P. latipinna would prefer FW over SW, move away from chemical cues from a crayfish predator, and favour predator avoidance over osmoregulation when presented with both demands. Both FW and SW-acclimated P. latipinna preferred FW and actively avoided predator cues. When presented with FW plus predator cues v. SW with no cues, P. latipinna were more often found in FW plus predator cues. These results raise questions pertaining to the potential osmoregulatory stress of salinity transitions in euryhaline fishes relative to the potential fitness benefits and whether euryhalinity is utilized for predator avoidance. This study sheds light on the potential benefits and consequences of being salt tolerant or intolerant and complicates the understanding of the selection pressures that have favoured the different osmoregulatory mechanisms among fishes.
Collapse
Affiliation(s)
| | - G. W. GERALD
- Author to whom correspondence should be addressed: Tel. +1 402 465 2453;
| |
Collapse
|
14
|
Parlato EH, Armstrong DP, Innes JG. Traits influencing range contraction in New Zealand’s endemic forest birds. Oecologia 2015; 179:319-28. [DOI: 10.1007/s00442-015-3330-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
15
|
Kirkpatrick M, Barrett B. Chromosome inversions, adaptive cassettes and the evolution of species' ranges. Mol Ecol 2015; 24:2046-55. [PMID: 25583098 DOI: 10.1111/mec.13074] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 01/28/2023]
Abstract
A chromosome inversion can spread when it captures locally adapted alleles or when it is introduced into a species by hybridization with adapted alleles that were previously absent. We present a model that shows how both processes can cause a species range to expand. Introgression of an inversion that carries novel, locally adapted alleles is a particularly powerful mechanism for range expansion. The model supports the earlier proposal that introgression of an inversion triggered a large range expansion of a malaria mosquito. These results suggest a role for inversions as cassettes of genes that can accelerate adaptation by crossing species boundaries, rather than protecting genomes from introgression.
Collapse
Affiliation(s)
- Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
| | | |
Collapse
|
16
|
Svenning JC, Gravel D, Holt RD, Schurr FM, Thuiller W, Münkemüller T, Schiffers KH, Dullinger S, Edwards TC, Hickler T, Higgins SI, Nabel JEMS, Pagel J, Normand S. The influence of interspecific interactions on species range expansion rates. ECOGRAPHY 2014; 37:1198-1209. [PMID: 25722537 PMCID: PMC4338500 DOI: 10.1111/j.1600-0587.2013.00574.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.
Collapse
Affiliation(s)
- Jens-Christian Svenning
- ( ), Ecoinformatics and Biodiversity, Dept of Bioscience, Aarhus Univ., Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| | - Dominique Gravel
- Dépt de biologie, chimie et géographie, Univ. du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | | | - Frank M Schurr
- Univ. Montpellier 2, CNRS, Inst. des Sciences de l'Évolution (UMR 5554), Place Eugène Bataillon, FR-34095 Montpellier cedex 05, France, and Inst. of Biochemistry and Biology, Univ. of Potsdam, Maulbeerallee 2, DE-14469 Potsdam, Germany
| | - Wilfried Thuiller
- Evolution, Modeling and Analyzing of BIOdiversity group, Laboratoire d'Ecologie Alpine, UMR CNRS 5553, Univ. Joseph Fourier, Grenoble Cedex 9, France
| | - Tamara Münkemüller
- Evolution, Modeling and Analyzing of BIOdiversity group, Laboratoire d'Ecologie Alpine, UMR CNRS 5553, Univ. Joseph Fourier, Grenoble Cedex 9, France
| | - Katja H Schiffers
- Evolution, Modeling and Analyzing of BIOdiversity group, Laboratoire d'Ecologie Alpine, UMR CNRS 5553, Univ. Joseph Fourier, Grenoble Cedex 9, France
| | - Stefan Dullinger
- Dept of Conservation Biology, Vegetation Ecology and Landscape Ecology, Univ. Wien, Rennweg 14, AT-1030 Vienna, Austria
| | - Thomas C Edwards
- USGS Utah Cooperative Fish and Wildlife Research Unit, Dept of Wildland Resources, 5230 Old Main Hill, Utah State Univ., Logan, UT 84322-5230, USA
| | - Thomas Hickler
- Biodiversity and Climate Research Centre (BiK-F), Goethe-Univ. Frankfurt, Senckenberganlage 25, DE-60325 Frankfurt am Main, Germany
| | - Steven I Higgins
- Botany Dept, Univ. of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Julia E M S Nabel
- Landscape Dynamics, Swiss Federal Research Inst. WSL, Zürcherstr. 111, CH-8903 Birmensdorf, Switzerland, and Dept of Environmental System Science, Swiss Federal Inst. of Technology ETH, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Jörn Pagel
- Univ. Montpellier 2, CNRS, Inst. des Sciences de l'Évolution (UMR 5554), Place Eugène Bataillon, FR-34095 Montpellier cedex 05, France, and Inst. of Biochemistry and Biology, Univ. of Potsdam, Maulbeerallee 2, DE-14469 Potsdam, Germany
| | - Signe Normand
- Landscape Dynamics, Swiss Federal Research Inst. WSL, Zürcherstr. 111, CH-8903 Birmensdorf, Switzerland
| |
Collapse
|
17
|
Cosner C. Challenges in modeling biological invasions and population distributions in a changing climate. ECOLOGICAL COMPLEXITY 2014. [DOI: 10.1016/j.ecocom.2014.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Tobin PC, Gray DR, Liebhold AM. Supraoptimal temperatures influence the range dynamics of a non-native insect. DIVERS DISTRIB 2014. [DOI: 10.1111/ddi.12197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Patrick C. Tobin
- Forest Service; U.S. Department of Agriculture; Northern Research Station; 180 Canfield Street Morgantown WV 26505 USA
| | - David R. Gray
- Natural Resources Canada; Canadian Forest Service - Atlantic Forestry Centre, Box 4000; Fredericton New Brunswick E3B 5P7 Canada
| | - Andrew M. Liebhold
- Forest Service; U.S. Department of Agriculture; Northern Research Station; 180 Canfield Street Morgantown WV 26505 USA
| |
Collapse
|
19
|
Silliman BR, McCoy MW, Angelini C, Holt RD, Griffin JN, van de Koppel J. Consumer Fronts, Global Change, and Runaway Collapse in Ecosystems. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135753] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brian R. Silliman
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, North Carolina 28516;
| | - Michael W. McCoy
- Department of Biology, East Carolina University, Greenville, North Carolina 27858
| | - Christine Angelini
- Department of Biology, University of Florida, Gainesville, Florida 32611
| | - Robert D. Holt
- Department of Biology, University of Florida, Gainesville, Florida 32611
| | - John N. Griffin
- Department of BioSciences, Swansea University, Swansea, SA2 8PP, Wales, United Kingdom
| | - Johan van de Koppel
- Spatial Ecology Department, Royal Netherlands Institute for Sea Research, 4401 NT Yerseke, The Netherlands
- Community and Conservation Ecology Group, University of Groningen, 9700 AB Groningen, The Netherlands
| |
Collapse
|
20
|
Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc Natl Acad Sci U S A 2013; 110:16498-502. [PMID: 24065830 DOI: 10.1073/pnas.1304074110] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most marine organisms disperse via ocean currents as larvae, so it is often assumed that larval-stage duration is the primary determinant of geographic range size. However, empirical tests of this relationship have yielded mixed results, and alternative hypotheses have rarely been considered. Here we assess the relative influence of adult and larval-traits on geographic range size using a global dataset encompassing 590 species of tropical reef fishes in 47 families, the largest compilation of such data to date for any marine group. We analyze this database using linear mixed-effect models to control for phylogeny and geographical limits on range size. Our analysis indicates that three adult traits likely to affect the capacity of new colonizers to survive and establish reproductive populations (body size, schooling behavior, and nocturnal activity) are equal or better predictors of geographic range size than pelagic larval duration. We conclude that adult life-history traits that affect the postdispersal persistence of new populations are primary determinants of successful range extension and, consequently, of geographic range size among tropical reef fishes.
Collapse
|
21
|
Kubisch A, Holt RD, Poethke HJ, Fronhofer EA. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.00706.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Koehncke A, Telschow A, Kondoh M. Invasibility as an emergent property of native metapopulation structure. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2012.20677.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|