1
|
Pak D, Kamiya T, Greischar MA. Proliferation in malaria parasites: How resource limitation can prevent evolution of greater virulence. Evolution 2024; 78:1287-1301. [PMID: 38581661 DOI: 10.1093/evolut/qpae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
For parasites, robust proliferation within hosts is crucial for establishing the infection and creating opportunities for onward transmission. While faster proliferation enhances transmission rates, it is often assumed to curtail transmission duration by killing the host (virulence), a trade-off constraining parasite evolution. Yet in many diseases, including malaria, the preponderance of infections with mild or absent symptoms suggests that host mortality is not a sufficient constraint, raising the question of what restrains evolution toward faster proliferation. In malaria infections, the maximum rate of proliferation is determined by the burst size, the number of daughter parasites produced per infected red blood cell. Larger burst sizes should expand the pool of infected red blood cells that can be used to produce the specialized transmission forms needed to infect mosquitoes. We use a within-host model parameterized for rodent malaria parasites (Plasmodium chabaudi) to project the transmission consequences of burst size, focusing on initial acute infection where resource limitation and risk of host mortality are greatest. We find that resource limitation restricts evolution toward higher burst sizes below the level predicted by host mortality alone. Our results suggest resource limitation could represent a more general constraint than virulence-transmission trade-offs, preventing evolution towards faster proliferation.
Collapse
Affiliation(s)
- Damie Pak
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, United States
| | - Tsukushi Kamiya
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
- HRB Clinical Research Facility, University of Galway, Ireland
| | - Megan A Greischar
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, United States
| |
Collapse
|
2
|
Nkhoma SC, Ahmed AOA, Porier D, Rashid S, Bradford R, Molestina RE, Stedman TT. Dynamics of parasite growth in genetically diverse Plasmodium falciparum isolates. Mol Biochem Parasitol 2023; 254:111552. [PMID: 36731750 PMCID: PMC10149587 DOI: 10.1016/j.molbiopara.2023.111552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Multiple parasite lineages with different proliferation rates or fitness may coexist within a clinical malaria isolate, resulting in complex growth interactions and variations in phenotype. To elucidate the dynamics of parasite growth in multiclonal isolates, we measured growth rates (GRs) of three Plasmodium falciparum Cambodian isolates, including IPC_3445 (MRA-1236), IPC_5202 (MRA-1240), IPC_6403 (MRA-1285), and parasite lineages previously cloned from each of these isolates by limiting dilution. Following synchronization, in vitro cultures of each parasite line were maintained over four consecutive asexual cycles (192 h), with thin smears prepared at each 48-h cycle to estimate GR and fold change in parasitemia (FCP). Cell cycle time (CCT), the duration it takes for ring-stage parasites to develop into mature schizonts, was measured by monitoring the development of 0-3-h post-invasion rings for up to 52 h post-incubation. Laboratory lines 3D7 (MRA-102) and Dd2 (MRA-150) were used as controls. Significant differences in GR, FCP, and CCT were observed between parasite isolates and clonal lineages from each isolate. The parasite lines studied here have well-defined growth phenotypes and will facilitate basic malaria research and development of novel malaria interventions. These lines are available to malaria researchers through the MR4 collection of NIAID's BEI Resources Program.
Collapse
Affiliation(s)
- Standwell C Nkhoma
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA.
| | - Amel O A Ahmed
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Danielle Porier
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Sujatha Rashid
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Rebecca Bradford
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Robert E Molestina
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Timothy T Stedman
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| |
Collapse
|
3
|
Kamiya T, Davis NM, Greischar MA, Schneider D, Mideo N. Linking functional and molecular mechanisms of host resilience to malaria infection. eLife 2021; 10:e65846. [PMID: 34636723 PMCID: PMC8510579 DOI: 10.7554/elife.65846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
It remains challenging to understand why some hosts suffer severe illnesses, while others are unscathed by the same infection. We fitted a mathematical model to longitudinal measurements of parasite and red blood cell density in murine hosts from diverse genetic backgrounds to identify aspects of within-host interactions that explain variation in host resilience and survival during acute malaria infection. Among eight mouse strains that collectively span 90% of the common genetic diversity of laboratory mice, we found that high host mortality was associated with either weak parasite clearance, or a strong, yet imprecise response that inadvertently removes uninfected cells in excess. Subsequent cross-sectional cytokine assays revealed that the two distinct functional mechanisms of poor survival were underpinned by low expression of either pro- or anti-inflammatory cytokines, respectively. By combining mathematical modelling and molecular immunology assays, our study uncovered proximate mechanisms of diverse infection outcomes across multiple host strains and biological scales.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Department of Ecology and Evolutionary Biology, University of TorontoTorontoCanada
| | - Nicole M Davis
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Megan A Greischar
- Department of Ecology and Evolutionary Biology, Cornell UniversityIthacaUnited States
| | - David Schneider
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of TorontoTorontoCanada
| |
Collapse
|
4
|
Wait LF, Kamiya T, Fairlie-Clarke KJ, Metcalf CJE, Graham AL, Mideo N. Differential drivers of intraspecific and interspecific competition during malaria-helminth co-infection. Parasitology 2021; 148:1030-1039. [PMID: 33971991 PMCID: PMC11010048 DOI: 10.1017/s003118202100072x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 11/05/2022]
Abstract
Various host and parasite factors interact to determine the outcome of infection. We investigated the effects of two factors on the within-host dynamics of malaria in mice: initial infectious dose and co-infection with a helminth that limits the availability of red blood cells (RBCs). Using a statistical, time-series approach to model the within-host ‘epidemiology’ of malaria, we found that increasing initial dose reduced the time to peak cell-to-cell parasite propagation, but also reduced its magnitude, while helminth co-infection delayed peak cell-to-cell propagation, except at the highest malaria doses. Using a mechanistic model of within-host infection dynamics, we identified dose-dependence in parameters describing host responses to malaria infection and uncovered a plausible explanation of the observed differences in single vs co-infections. Specifically, in co-infections, our model predicted a higher background death rate of RBCs. However, at the highest dose, when intraspecific competition between malaria parasites would be highest, these effects of co-infection were not observed. Such interactions between initial dose and co-infection, although difficult to predict a priori, are key to understanding variation in the severity of disease experienced by hosts and could inform studies of malaria transmission dynamics in nature, where co-infection and low doses are the norm.
Collapse
Affiliation(s)
- L. F. Wait
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - T. Kamiya
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - C. J. E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - A. L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - N. Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Kamiya T, Greischar MA, Schneider DS, Mideo N. Uncovering drivers of dose-dependence and individual variation in malaria infection outcomes. PLoS Comput Biol 2020; 16:e1008211. [PMID: 33031367 PMCID: PMC7544130 DOI: 10.1371/journal.pcbi.1008211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 07/31/2020] [Indexed: 01/01/2023] Open
Abstract
To understand why some hosts get sicker than others from the same type of infection, it is essential to explain how key processes, such as host responses to infection and parasite growth, are influenced by various biotic and abiotic factors. In many disease systems, the initial infection dose impacts host morbidity and mortality. To explore drivers of dose-dependence and individual variation in infection outcomes, we devised a mathematical model of malaria infection that allowed host and parasite traits to be linear functions (reaction norms) of the initial dose. We fitted the model, using a hierarchical Bayesian approach, to experimental time-series data of acute Plasmodium chabaudi infection across doses spanning seven orders of magnitude. We found evidence for both dose-dependent facilitation and debilitation of host responses. Most importantly, increasing dose reduced the strength of activation of indiscriminate host clearance of red blood cells while increasing the half-life of that response, leading to the maximal response at an intermediate dose. We also explored the causes of diverse infection outcomes across replicate mice receiving the same dose. Besides random noise in the injected dose, we found variation in peak parasite load was due to unobserved individual variation in host responses to clear infected cells. Individual variation in anaemia was likely driven by random variation in parasite burst size, which is linked to the rate of host cells lost to malaria infection. General host vigour in the absence of infection was also correlated with host health during malaria infection. Our work demonstrates that the reaction norm approach provides a useful quantitative framework for examining the impact of a continuous external factor on within-host infection processes.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Megan A. Greischar
- Department of Ecology Evolutionary Biology, Cornell University, United States of America
| | - David S. Schneider
- Program in Immunology, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
6
|
Birget PLG, Prior KF, Savill NJ, Steer L, Reece SE. Plasticity and genetic variation in traits underpinning asexual replication of the rodent malaria parasite, Plasmodium chabaudi. Malar J 2019; 18:222. [PMID: 31262304 PMCID: PMC6604315 DOI: 10.1186/s12936-019-2857-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ability of malaria (Plasmodium) parasites to adjust investment into sexual transmission stages versus asexually replicating stages is well known, but plasticity in other traits underpinning the replication rate of asexual stages in the blood has received less attention. Such traits include burst size (the number of merozoites produced per schizont), the duration of the asexual cycle, and invasion preference for different ages of red blood cell (RBC). METHODS Here, plasticity [environment (E) effects] and genetic variation [genotype (G) effects] in traits relating to asexual replication rate are examined for 4 genotypes of the rodent malaria parasite Plasmodium chabaudi. An experiment tested whether asexual dynamics differ between parasites infecting control versus anaemic hosts, and whether variation in replication rate can be explained by differences in burst size, asexual cycle, and invasion rates. RESULTS The within-host environment affected each trait to different extents but generally had similar impacts across genotypes. The dynamics of asexual densities exhibited a genotype by environment effect (G×E), in which one of the genotypes increased replication rate more than the others in anaemic hosts. Burst size and cycle duration varied between the genotypes (G), while burst size increased and cycle duration became longer in anaemic hosts (E). Variation in invasion rates of differently aged RBCs was not explained by environmental or genetic effects. Plasticity in burst size and genotype are the only traits making significant contributions to the increase in asexual densities observed in anaemic hosts, together explaining 46.4% of the variation in replication rate. CONCLUSIONS That host anaemia induces several species of malaria parasites to alter conversion rate is well documented. Here, previously unknown plasticity in other traits underpinning asexual replication is revealed. These findings contribute to mounting evidence that malaria parasites deploy a suite of sophisticated strategies to maximize fitness by coping with, or exploiting the opportunities provided by, the variable within-host conditions experienced during infections. That genetic variation and genotype by environment interactions also shape these traits highlights their evolutionary potential. Asexual replication rate is a major determinant of virulence and so, understanding the evolution of virulence requires knowledge of the ecological (within-host environment) and genetic drivers of variation among parasites.
Collapse
Affiliation(s)
- Philip L G Birget
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Kimberley F Prior
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK. .,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Nicholas J Savill
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Lewis Steer
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sarah E Reece
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
7
|
Khoury DS, Aogo R, Randriafanomezantsoa-Radohery G, McCaw JM, Simpson JA, McCarthy JS, Haque A, Cromer D, Davenport MP. Within-host modeling of blood-stage malaria. Immunol Rev 2019; 285:168-193. [PMID: 30129195 DOI: 10.1111/imr.12697] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malaria infection continues to be a major health problem worldwide and drug resistance in the major human parasite species, Plasmodium falciparum, is increasing in South East Asia. Control measures including novel drugs and vaccines are in development, and contributions to the rational design and optimal usage of these interventions are urgently needed. Infection involves the complex interaction of parasite dynamics, host immunity, and drug effects. The long life cycle (48 hours in the common human species) and synchronized replication cycle of the parasite population present significant challenges to modeling the dynamics of Plasmodium infection. Coupled with these, variation in immune recognition and drug action at different life cycle stages leads to further complexity. We review the development and progress of "within-host" models of Plasmodium infection, and how these have been applied to understanding and interpreting human infection and animal models of infection.
Collapse
Affiliation(s)
| | - Rosemary Aogo
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | | | - James M McCaw
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia.,Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | | |
Collapse
|
8
|
Costa G, Gildenhard M, Eldering M, Lindquist RL, Hauser AE, Sauerwein R, Goosmann C, Brinkmann V, Carrillo-Bustamante P, Levashina EA. Non-competitive resource exploitation within mosquito shapes within-host malaria infectivity and virulence. Nat Commun 2018; 9:3474. [PMID: 30150763 PMCID: PMC6110728 DOI: 10.1038/s41467-018-05893-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 08/01/2018] [Indexed: 11/22/2022] Open
Abstract
Malaria is a fatal human parasitic disease transmitted by a mosquito vector. Although the evolution of within-host malaria virulence has been the focus of many theoretical and empirical studies, the vector’s contribution to this process is not well understood. Here, we explore how within-vector resource exploitation would impact the evolution of within-host Plasmodium virulence. By combining within-vector dynamics and malaria epidemiology, we develop a mathematical model, which predicts that non-competitive parasitic resource exploitation within-vector restricts within-host parasite virulence. To validate our model, we experimentally manipulate mosquito lipid trafficking and gauge within-vector parasite development and within-host infectivity and virulence. We find that mosquito-derived lipids determine within-host parasite virulence by shaping development (quantity) and metabolic activity (quality) of transmissible sporozoites. Our findings uncover the potential impact of within-vector environment and vector control strategies on the evolution of malaria virulence. The evolution of within-host malaria virulence has been studied, but the vector’s contribution isn’t well understood. Here, Costa et al. show that non-competitive parasitic resource exploitation within-vector, in particular lipid trafficking, restricts within-host infectivity and virulence of the parasite.
Collapse
Affiliation(s)
- G Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - M Gildenhard
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - M Eldering
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany.,Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - R L Lindquist
- Immunodynamics, German Rheumatism Research Centre (DRFZ), 10117, Berlin, Germany
| | - A E Hauser
- Immunodynamics, German Rheumatism Research Centre (DRFZ), 10117, Berlin, Germany.,Immune Dynamics and Intravital Microscopy, Charité-Universitätsmedizin, 10117, Berlin, Germany
| | - R Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - C Goosmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - V Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - P Carrillo-Bustamante
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - E A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany.
| |
Collapse
|
9
|
Wale N, Sim DG, Read AF. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc Biol Sci 2018; 284:rspb.2017.1067. [PMID: 28747479 PMCID: PMC5543226 DOI: 10.1098/rspb.2017.1067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Hosts are often infected with multiple strains of a single parasite species. Within-host competition between parasite strains can be intense and has implications for the evolution of traits that impact patient health, such as drug resistance and virulence. Yet the mechanistic basis of within-host competition is poorly understood. Here, we demonstrate that a parasite nutrient, para-aminobenzoic acid (pABA), mediates competition between a drug resistant and drug susceptible strain of the malaria parasite, Plasmodium chabaudi. We further show that increasing pABA supply to hosts infected with the resistant strain worsens disease and changes the relationship between parasite burden and pathology. Our experiments demonstrate that, even when there is profound top-down regulation (immunity), bottom-up regulation of pathogen populations can occur and that its importance may vary during an infection. The identification of resources that can be experimentally controlled opens up the opportunity to manipulate competitive interactions between parasites and hence their evolution.
Collapse
Affiliation(s)
- Nina Wale
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Derek G Sim
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Moore J, Ahmed H, Jia J, Akondy R, Ahmed R, Antia R. What Controls the Acute Viral Infection Following Yellow Fever Vaccination? Bull Math Biol 2017; 80:46-63. [PMID: 29110131 DOI: 10.1007/s11538-017-0365-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022]
Abstract
Does target cell depletion, innate immunity, or adaptive immunity play the dominant role in controlling primary acute viral infections? Why do some individuals have higher peak virus titers than others? Answering these questions is a basic problem in immunology and can be particularly difficult in humans due to limited data, heterogeneity in responses in different individuals, and limited ability for experimental manipulation. We address these questions for infections following vaccination with the live attenuated yellow fever virus (YFV-17D) by analyzing viral load data from 80 volunteers. Using a mixed effects modeling approach, we find that target cell depletion models do not fit the data as well as innate or adaptive immunity models. Examination of the fits of the innate and adaptive immunity models to the data allows us to select a minimal model that gives improved fits by widely used model selection criteria (AICc and BIC) and explains why it is hard to distinguish between the innate and adaptive immunity models. We then ask why some individuals have over 1000-fold higher virus titers than others and find that most of the variation arises from differences in the initial/maximum growth rate of the virus in different individuals.
Collapse
Affiliation(s)
- James Moore
- Department of Biology, Emory University, Atlanta, GA, USA.
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jonathan Jia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Rama Akondy
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Doeschl-Wilson A, Wilson A, Nielsen J, Nauwynck H, Archibald A, Ait-Ali T. Combining laboratory and mathematical models to infer mechanisms underlying kinetic changes in macrophage susceptibility to an RNA virus. BMC SYSTEMS BIOLOGY 2016; 10:101. [PMID: 27770812 PMCID: PMC5075420 DOI: 10.1186/s12918-016-0345-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/14/2016] [Indexed: 01/04/2023]
Abstract
Background Macrophages are essential to innate immunity against many pathogens, but some pathogens also target macrophages as routes to infection. The Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is an RNA virus that infects porcine alveolar macrophages (PAMs) causing devastating impact on global pig production. Identifying the cellular mechanisms that mediate PAM susceptibility to the virus is crucial for developing effective interventions. Previous evidence suggests that the scavenger receptor CD163 is essential for productive infection of PAMs with PRRSV. Here we use an integrative in-vitro–in-silico modelling approach to determine whether and how PAM susceptibility to PRRSV changes over time, to assess the role of CD163 expression on such changes, and to infer other potential causative mechanisms altering cell susceptibility. Results Our in-vitro experiment showed that PAM susceptibility to PRRSV changed considerably over incubation time. Moreover, an increasing proportion of PAMs apparently lacking CD163 were found susceptible to PRRSV at the later incubation stages, thus conflicting with current understanding that CD163 is essential for productive infection of PAMs with PRRSV. We developed process based dynamic mathematical models and fitted these to the data to assess alternative hypotheses regarding potential underlying mechanisms for the observed susceptibility and biomarker trends. The models informed by our data support the hypothesis that although CD163 may have enhanced cell susceptibility, it was not essential for productive infection in our study. Instead the models promote the existence of a reversible cellular state, such as macrophage polarization, mediated in a density dependent manner by autocrine factors, to be responsible for the observed kinetics in cell susceptibility. Conclusions Our dynamic model–inference approach provides strong support that PAM susceptibility to the PRRS virus is transient, reversible and can be mediated by compounds produced by the target cells themselves, and that these can render PAMs lacking the CD163 receptor susceptible to PRRSV. The results have implications for the development of therapeutics aiming to boost target cell resistance and prompt future investigation of dynamic changes in macrophage susceptibility to PRRSV and other viruses. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0345-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Doeschl-Wilson
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, UK.
| | - Alison Wilson
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - Jens Nielsen
- Department of Mircrobiological Diagnostics and Virology, Statens Serum Institute, Copenhagen, Denmark
| | - Hans Nauwynck
- Department of Virology, Parasitology and Immunity, Ghent University, Ghent, Belgium
| | - Alan Archibald
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - Tahar Ait-Ali
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, UK
| |
Collapse
|
12
|
Greischar MA, Mideo N, Read AF, Bjørnstad ON. Predicting optimal transmission investment in malaria parasites. Evolution 2016; 70:1542-58. [DOI: 10.1111/evo.12969] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 05/07/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Megan A. Greischar
- Center For Infectious Disease Dynamics, Departments of Entomology and Biology, The Pennsylvania State University; University Park; Pennsylvania 16802
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON M5S 3B2 Canada
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON M5S 3B2 Canada
| | - Andrew F. Read
- Center For Infectious Disease Dynamics, Departments of Entomology and Biology, The Pennsylvania State University; University Park; Pennsylvania 16802
- Fogarty International Center; National Institutes of Health; Bethesda Maryland 20892
| | - Ottar N. Bjørnstad
- Center For Infectious Disease Dynamics, Departments of Entomology and Biology, The Pennsylvania State University; University Park; Pennsylvania 16802
- Fogarty International Center; National Institutes of Health; Bethesda Maryland 20892
| |
Collapse
|
13
|
Abstract
Mathematical modelling provides an effective way to challenge conventional wisdom about
parasite evolution and investigate why parasites ‘do what they do’ within the host. Models
can reveal when intuition cannot explain observed patterns, when more complicated biology
must be considered, and when experimental and statistical methods are likely to mislead.
We describe how models of within-host infection dynamics can refine experimental design,
and focus on the case study of malaria to highlight how integration between models and
data can guide understanding of parasite fitness in three areas: (1) the adaptive
significance of chronic infections; (2) the potential for tradeoffs between virulence and
transmission; and (3) the implications of within-vector dynamics. We emphasize that models
are often useful when they highlight unexpected patterns in parasite evolution, revealing
instead why intuition yields the wrong answer and what combination of theory and data are
needed to advance understanding.
Collapse
|
14
|
Do mixed infections matter? Assessing virulence of mixed-clone infections in experimental human and murine malaria. INFECTION GENETICS AND EVOLUTION 2015; 36:82-91. [PMID: 26334940 DOI: 10.1016/j.meegid.2015.08.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Malaria parasites within an individual infection often consist of multiple strains (clonal populations) of a single species, which have the potential to interact both with one another, and with the host immune system. Several effects of these interactions have been measured in different parasite systems including competition and mutualism; however, direct observation of these effects in human malaria has been limited by sampling complexities and inherent ethical limitations. METHODS Using multiple complementary epidemiological models, we propose a suite of analyses to more fully utilize data from challenge experiments, and re-examine historical human challenge studies with mixed-strain Plasmodium vivax inocula. We then compare these results with murine model systems using mixed-strain Plasmodium yoelii or Plasmodium chabaudi, to explore the utility of these methods in fully utilizing these data, including the first quantitative estimates of effect sizes for mixed-strain parasitemia. These models also provide a method to assess consistency within these animal model systems. RESULTS We find that amongst a limited set of P. vivax (incubation time) and P. yoelii infections (time-to-mortality), survival times at a study population-level are intermediate between each single-clone infection, and are not dominated by the more virulent clone; in P. vivax relapses, mixed clone infections also show intermediate survival curves. In these infections, the results strongly suggest that highly virulent clones have their virulence attenuated by the presence of less-virulent clones. The analysis of multiple experiments with P. chabaudi suggests greater nuances in the interactions between strains, and that mortality and time-to-event in mixed-strain infections are both indistinguishable from single infections with the more virulent strain. CONCLUSIONS These divergent dynamics support earlier work that suggested drivers of virulence may differ in fundamental ways between malaria species that are reticulocyte-specific and those that readily infect all red blood cell stages which should be studied in greater detail. The effect sizes (magnitude of biological effects) from these analyses are significant, and suggest the potential for important gains in malaria control by greater incorporation of evolutionary epidemiology theory. Moreover, we suggest that using these epidemiological models may generally allow fuller use of data from experimentally challenging animal model experiments.
Collapse
|
15
|
Five challenges in evolution and infectious diseases. Epidemics 2015; 10:40-4. [DOI: 10.1016/j.epidem.2014.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 01/09/2023] Open
|
16
|
Pollitt LC, Sim D, Salathé R, Read AF. Understanding genetic variation in in vivo tolerance to artesunate: implications for treatment efficacy and resistance monitoring. Evol Appl 2014; 8:296-304. [PMID: 25861387 PMCID: PMC4380923 DOI: 10.1111/eva.12194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/20/2014] [Indexed: 01/10/2023] Open
Abstract
Artemisinin-based drugs are the front-line weapon in the treatment of human malaria cases, but there is concern that recent reports of slow clearing infections may signal developing resistance to treatment. In the absence of molecular markers for resistance, current efforts to monitor drug efficacy are based on the rate at which parasites are cleared from infections. However, some knowledge of the standing variation in parasite susceptibility is needed to identify a meaningful increase in infection half-life. Here, we show that five previously unexposed genotypes of the rodent malaria parasite Plasmodium chabaudi differ substantially in their in vivo response to treatment. Slower clearance rates were not linked to parasite virulence or growth rate, going against the suggestion that drug treatment will drive the evolution of virulence in this system. The level of variation observed here in a relatively small number of genotypes suggests existing ‘resistant’ parasites could be present in the population and therefore, increased parasite clearance rates could represent selection on pre-existing variation rather than de novo resistance events. This has implications for resistance monitoring as susceptibility may depend on evolved traits unrelated to drug exposure.
Collapse
Affiliation(s)
- Laura C Pollitt
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University University Park, PA, USA ; Centre for Immunity, Infection and Evolution, University of Edinburgh Edinburgh, UK
| | - Derek Sim
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University University Park, PA, USA
| | - Rahel Salathé
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University University Park, PA, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University University Park, PA, USA ; Department of Entomology, The Pennsylvania State University University Park, PA, USA ; Fogarty International Center, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
17
|
Santhanam J, Råberg L, Read AF, Savill NJ. Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites. PLoS Comput Biol 2014; 10:e1003416. [PMID: 24465193 PMCID: PMC3900382 DOI: 10.1371/journal.pcbi.1003416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022] Open
Abstract
Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter , the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery. Malaria infections often consist of more than one strain of the same parasitic species. Understanding the within-host competition between these various strains is essential to understanding the evolution and epidemiology of drug resistance in malarial infections. The infection process and the competition between strains involve complicated biological processes that are explained by various hypotheses. Mathematical models tested against experimental data provide quantitative measures to compare these hypotheses and enable us to discern the actual biological processes that contribute to the observed dynamics. We use a group of models against experimental data on rodent malaria to test various hypotheses. Such quantitative measures, in understanding rodent malaria, can be considered as a step towards understanding within-host parasite dynamics. Our work presented here demonstrates how confronting mathematical models with data allows the discovery of subtle and novel interactions between hosts and parasites that would be impractical to do in an experiment and allows the rejection of hypotheses that are incorrect. It is our contention that understanding the forces controlling within-host parasite dynamics in well-defined experimental model is a necessary step towards understanding these features in natural infections.
Collapse
Affiliation(s)
- Jayanthi Santhanam
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Labs, Edinburgh, Scotland
- * E-mail:
| | - Lars Råberg
- Department of Biology, Lund University, Lund, Sweden
| | - Andrew F. Read
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nicholas Jon Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Labs, Edinburgh, Scotland
| |
Collapse
|
18
|
Cressler CE, Nelson WA, Day T, McCauley E. Disentangling the interaction among host resources, the immune system and pathogens. Ecol Lett 2013; 17:284-93. [PMID: 24350974 PMCID: PMC4264941 DOI: 10.1111/ele.12229] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/28/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
Abstract
The interaction between the immune system and pathogens is often characterised as a predator–prey interaction. This characterisation ignores the fact that both require host resources to reproduce. Here, we propose novel theory that considers how these resource requirements can modify the interaction between the immune system and pathogens. We derive a series of models to describe the energetic interaction between the immune system and pathogens, from fully independent resources to direct competition for the same resource. We show that increasing within-host resource supply has qualitatively distinct effects under these different scenarios. In particular, we show the conditions for which pathogen load is expected to increase, decrease or even peak at intermediate resource supply. We survey the empirical literature and find evidence for all three patterns. These patterns are not explained by previous theory, suggesting that competition for host resources can have a strong influence on the outcome of disease.
Collapse
Affiliation(s)
- Clayton E Cressler
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | | | | |
Collapse
|
19
|
Lunn D, Goudie RJB, Wei C, Kaltz O, Restif O. Modelling the dynamics of an experimental host-pathogen microcosm within a hierarchical Bayesian framework. PLoS One 2013; 8:e69775. [PMID: 23936351 PMCID: PMC3732293 DOI: 10.1371/journal.pone.0069775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
The advantages of Bayesian statistical approaches, such as flexibility and the ability to acknowledge uncertainty in all parameters, have made them the prevailing method for analysing the spread of infectious diseases in human or animal populations. We introduce a Bayesian approach to experimental host-pathogen systems that shares these attractive features. Since uncertainty in all parameters is acknowledged, existing information can be accounted for through prior distributions, rather than through fixing some parameter values. The non-linear dynamics, multi-factorial design, multiple measurements of responses over time and sampling error that are typical features of experimental host-pathogen systems can also be naturally incorporated. We analyse the dynamics of the free-living protozoan Paramecium caudatum and its specialist bacterial parasite Holospora undulata. Our analysis provides strong evidence for a saturable infection function, and we were able to reproduce the two waves of infection apparent in the data by separating the initial inoculum from the parasites released after the first cycle of infection. In addition, the parameter estimates from the hierarchical model can be combined to infer variations in the parasite's basic reproductive ratio across experimental groups, enabling us to make predictions about the effect of resources and host genotype on the ability of the parasite to spread. Even though the high level of variability between replicates limited the resolution of the results, this Bayesian framework has strong potential to be used more widely in experimental ecology.
Collapse
Affiliation(s)
- David Lunn
- Medical Research Council Biostatistics Unit, Institute of Public Health, Cambridge, United Kingdom
| | - Robert J. B. Goudie
- Medical Research Council Biostatistics Unit, Institute of Public Health, Cambridge, United Kingdom
| | - Chen Wei
- Medical Research Council Biostatistics Unit, Institute of Public Health, Cambridge, United Kingdom
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution, CNRS UMR 5554, Université Montpellier 2, 34095 Montpellier, France
| | - Olivier Restif
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Handel A, Brown J, Stallknecht D, Rohani P. A multi-scale analysis of influenza A virus fitness trade-offs due to temperature-dependent virus persistence. PLoS Comput Biol 2013; 9:e1002989. [PMID: 23555223 PMCID: PMC3605121 DOI: 10.1371/journal.pcbi.1002989] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/04/2013] [Indexed: 01/13/2023] Open
Abstract
Successful replication within an infected host and successful transmission between hosts are key to the continued spread of most pathogens. Competing selection pressures exerted at these different scales can lead to evolutionary trade-offs between the determinants of fitness within and between hosts. Here, we examine such a trade-off in the context of influenza A viruses and the differential pressures exerted by temperature-dependent virus persistence. For a panel of avian influenza A virus strains, we find evidence for a trade-off between the persistence at high versus low temperatures. Combining a within-host model of influenza infection dynamics with a between-host transmission model, we study how such a trade-off affects virus fitness on the host population level. We show that conclusions regarding overall fitness are affected by the type of link assumed between the within- and between-host levels and the main route of transmission (direct or environmental). The relative importance of virulence and immune response mediated virus clearance are also found to influence the fitness impacts of virus persistence at low versus high temperatures. Based on our results, we predict that if transmission occurs mainly directly and scales linearly with virus load, and virulence or immune responses are negligible, the evolutionary pressure for influenza viruses to evolve toward good persistence at high within-host temperatures dominates. For all other scenarios, influenza viruses with good environmental persistence at low temperatures seem to be favored. It has recently been suggested that for avian influenza viruses, prolonged persistence in the environment plays an important role in the transmission between birds. In such situations, influenza virus strains may face a trade-off: they need to persist well in the environment at low temperatures, but they also need to do well inside an infected bird at higher temperatures. Here, we analyze how potential trade-offs on these two scales interact to determine overall fitness of the virus. We find that the link between infection dynamics within a host and virus shedding and transmission is crucial in determining the relative advantage of good low-temperature versus high-temperature persistence. We also find that the role of virus-induced mortality, the immune response and the route of transmission affect the balance between optimal low-temperature and high-temperature persistence.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | |
Collapse
|
21
|
Metcalf CJE, Long GH, Mideo N, Forester JD, Bjørnstad ON, Graham AL. Revealing mechanisms underlying variation in malaria virulence: effective propagation and host control of uninfected red blood cell supply. J R Soc Interface 2012; 9:2804-13. [PMID: 22718989 PMCID: PMC3479917 DOI: 10.1098/rsif.2012.0340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Malaria parasite clones with the highest transmission rates to mosquitoes also tend to induce the most severe fitness consequences (or virulence) in mammals. This is in accord with expectations from the virulence–transmission trade-off hypothesis. However, the mechanisms underlying how different clones cause virulence are not well understood. Here, using data from eight murine malaria clones, we apply recently developed statistical methods to infer differences in clone characteristics, including induction of differing host-mediated changes in red blood cell (RBC) supply. Our results indicate that the within-host mechanisms underlying similar levels of virulence are variable and that killing of uninfected RBCs by immune effectors and/or retention of RBCs in the spleen may ultimately reduce virulence. Furthermore, the correlation between clone virulence and the degree of host-induced mortality of uninfected RBCs indicates that hosts increasingly restrict their RBC supply with increasing intrinsic virulence of the clone with which they are infected. Our results demonstrate a role for self-harm in self-defence for hosts and highlight the diversity and modes of virulence of malaria.
Collapse
Affiliation(s)
- C J E Metcalf
- Department of Zoology, Oxford University, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Explaining the contribution of host and pathogen factors in driving infection dynamics is a major ambition in parasitology. There is increasing recognition that analyses based on single summary measures of an infection (e.g., peak parasitaemia) do not adequately capture infection dynamics and so, the appropriate use of statistical techniques to analyse dynamics is necessary to understand infections and, ultimately, control parasites. However, the complexities of within-host environments mean that tracking and analysing pathogen dynamics within infections and among hosts poses considerable statistical challenges. Simple statistical models make assumptions that will rarely be satisfied in data collected on host and parasite parameters. In particular, model residuals (unexplained variance in the data) should not be correlated in time or space. Here we demonstrate how failure to account for such correlations can result in incorrect biological inference from statistical analysis. We then show how mixed effects models can be used as a powerful tool to analyse such repeated measures data in the hope that this will encourage better statistical practices in parasitology.
Collapse
Affiliation(s)
- Laura C Pollitt
- Institute of Evolutionary Biology, University of Edinburgh, School of Biological Sciences, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
23
|
Mideo N, Reece SE. Plasticity in parasite phenotypes: evolutionary and ecological implications for disease. Future Microbiol 2012; 7:17-24. [DOI: 10.2217/fmb.11.134] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Preventing disease is a major goal of applied bioscience and explaining variation in the harm caused by parasites, and their infectiousness, are major goals of evolutionary biology. The emerging field of evolutionary medicine integrates these two ambitions to inform the development of control strategies that retard or withstand unfavorable parasite evolution. However, as parasites live in hostile and changeable environments – the bodies of other organisms – the success of integrating evolutionary biology with medicine requires a better understanding of how natural selection has solved the problems parasites face. There is increasing appreciation that natural selection shapes parasite strategies to survive in the host and transmit between hosts through facultative (plastic) shifts in parasite traits expressed during infections and in different hosts. This article describes how integrating parasite plasticity into biomedical thinking is central to explaining disease outcomes and transmission patterns, as well as predicting the success of control measures.
Collapse
Affiliation(s)
- Nicole Mideo
- Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Sarah E Reece
- Institutes of Evolution, Immunity & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|