1
|
Rajagopal S, Bogaard HJ, Elbaz MSM, Freed BH, Remy-Jardin M, van Beek EJR, Gopalan D, Kiely DG. Emerging multimodality imaging techniques for the pulmonary circulation. Eur Respir J 2024:2401128. [PMID: 39209480 DOI: 10.1183/13993003.01128-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary hypertension (PH) remains a challenging condition to diagnose, classify and treat. Current approaches to the assessment of PH include echocardiography, ventilation/perfusion scintigraphy, cross-sectional imaging using computed tomography and magnetic resonance imaging, and right heart catheterisation. However, these approaches only provide an indirect readout of the primary pathology of the disease: abnormal vascular remodelling in the pulmonary circulation. With the advent of newer imaging techniques, there is a shift toward increased utilisation of noninvasive high-resolution modalities that offer a more comprehensive cardiopulmonary assessment and improved visualisation of the different components of the pulmonary circulation. In this review, we explore advances in imaging of the pulmonary vasculature and their potential clinical translation. These include advances in diagnosis and assessing treatment response, as well as strategies that allow reduced radiation exposure and implementation of artificial intelligence technology. These emerging modalities hold the promise of developing a deeper understanding of pulmonary vascular disease and the impact of comorbidities. They also have the potential to improve patient outcomes by reducing time to diagnosis, refining classification, monitoring treatment response and improving our understanding of disease mechanisms.
Collapse
Affiliation(s)
| | - Harm J Bogaard
- Department of Pulmonology, Amsterdam University Medical Center, Location VU Medical Center, Amsterdam, The Netherlands
| | - Mohammed S M Elbaz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin H Freed
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Edwin J R van Beek
- Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit and NIHR Biomedical Research Centre Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
2
|
Farley J, Brown LA, Garg P, Wahab A, Klassen JR, Jex N, Thirunavukarasu S, Chowdhary A, Sharrack N, Gorecka M, Xue H, Artis N, Levelt E, Dall'Armellina E, Kellman P, Greenwood JP, Plein S, Swoboda PP. Pulmonary transit time is a predictor of outcomes in heart failure: a cardiovascular magnetic resonance first-pass perfusion study. BMC Cardiovasc Disord 2024; 24:329. [PMID: 38943084 PMCID: PMC11212156 DOI: 10.1186/s12872-024-04003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Pulmonary transit time (PTT) can be measured automatically from arterial input function (AIF) images of dual sequence first-pass perfusion imaging. PTT has been validated against invasive cardiac catheterisation correlating with both cardiac output and left ventricular filling pressure (both important prognostic markers in heart failure). We hypothesized that prolonged PTT is associated with clinical outcomes in patients with heart failure. METHODS We recruited outpatients with a recent diagnosis of non-ischaemic heart failure with left ventricular ejection fraction (LVEF) < 50% on referral echocardiogram. Patients were followed up by a review of medical records for major adverse cardiovascular events (MACE) defined as all-cause mortality, heart failure hospitalization, ventricular arrhythmia, stroke or myocardial infarction. PTT was measured automatically from low-resolution AIF dynamic series of both the LV and RV during rest perfusion imaging, and the PTT was measured as the time (in seconds) between the centroid of the left (LV) and right ventricle (RV) indicator dilution curves. RESULTS Patients (N = 294) were followed-up for median 2.0 years during which 37 patients (12.6%) had at least one MACE event. On univariate Cox regression analysis there was a significant association between PTT and MACE (Hazard ratio (HR) 1.16, 95% confidence interval (CI) 1.08-1.25, P = 0.0001). There was also significant association between PTT and heart failure hospitalisation (HR 1.15, 95% CI 1.02-1.29, P = 0.02) and moderate correlation between PTT and N-terminal pro B-type natriuretic peptide (NT-proBNP, r = 0.51, P < 0.001). PTT remained predictive of MACE after adjustment for clinical and imaging factors but was no longer significant once adjusted for NT-proBNP. CONCLUSIONS PTT measured automatically during CMR perfusion imaging in patients with recent onset non-ischaemic heart failure is predictive of MACE and in particular heart failure hospitalisation. PTT derived in this way may be a non-invasive marker of haemodynamic congestion in heart failure and future studies are required to establish if prolonged PTT identifies those who may warrant closer follow-up or medicine optimisation to reduce the risk of future adverse events.
Collapse
Affiliation(s)
- Jonathan Farley
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Louise Ae Brown
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Pankaj Garg
- Norwich Medical School, University of East Anglia, Norfolk, UK
| | - Ali Wahab
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Joel Rl Klassen
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicholas Jex
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Sharmaine Thirunavukarasu
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Amrit Chowdhary
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Noor Sharrack
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Miroslawa Gorecka
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hui Xue
- National Institutes for Health, National Heart, Lung, and Blood Institute, Bethesda, USA
| | - Nigel Artis
- Department of Cardiology, Mid Yorkshire Hospitals NHS Trust, Wakefield, UK
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Erica Dall'Armellina
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Kellman
- National Institutes for Health, National Heart, Lung, and Blood Institute, Bethesda, USA
| | - John P Greenwood
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter P Swoboda
- Multidisciplinary Cardiovascular Research Centre, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Cao JJ, Nashta NF, Weber J, Bano R, Passick M, Cheng YJ, Schapiro W, Grgas M, Gliganic K. Association of pulmonary transit time by cardiac magnetic resonance with heart failure hospitalization in a large prospective cohort with diverse cardiac conditions. J Cardiovasc Magn Reson 2023; 25:57. [PMID: 37821911 PMCID: PMC10568762 DOI: 10.1186/s12968-023-00963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Longer pulmonary transit time (PTT) is closely associated with hemodynamic abnormalities. However, the implications on heart failure (HF) risk have not been investigated broadly in patients with diverse cardiac conditions. In this study we examined the long-term risk of HF hospitalization associated with longer PTT in a large prospective cohort with a broad spectrum of cardiac conditions. METHODS All subjects were prospectively recruited to undergo cardiac magnetic resonance (CMR). The dynamic images of first-pass perfusion were acquired to assess peak-to-peak pulmonary transit time (PTT) which was subsequently normalized to RR interval duration. The risk of HF was examined using Cox proportional hazards models adjusted for baseline confounding risk factors. RESULTS Among 506 consecutively consented patients undergoing clinical cardiac MR with diverse cardiac conditions, the mean age was 63 ± 14 years and 373 (73%) were male. After a mean follow up duration of 4.5 ± 3.0 years, 70 (14%) patients developed hospitalized HF and of these 6 died. A normalized PTT ≥ 8.2 was associated with a significantly increased adjusted HF hazard ratio of 3.69 (95% CI 2.02, 6.73). The HF hazard ratio was 1.26 (95% CI 1.18, 1.33) for each 1 unit increase in PTT which was higher among those preserved (1.70, 95% CI 1.20, 2.41) compared to those with reduced left ventricular ejection fraction (< 50%) (1.18, 95% CI 1.09, 1.27). PTT remained a significant risk factor of hospitalized HF after additional adjustment for N-terminal pro-hormone brain natriuretic peptide (NT-proBNP) or left ventricular global longitudinal strain with additionally demonstrated incremental model improvement through likelihood ratio testing. CONCLUSIONS Our findings support the role of PTT in assessing HF risk among patients with broad spectrum of cardiac conditions with reduced as well as preserved ejection fraction. Longer PTT duration is an incremental risk factor for HF when baseline global longitudinal strain and NT-proBNP are taken into consideration.
Collapse
Affiliation(s)
- J Jane Cao
- Division of Cardiac Imaging, St. Francis Hospital & Heart Center, 100 Port Washington Blvd., Roslyn, NY, 11576, USA.
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, Roslyn, NY, USA.
| | - Niloofar Fouladi Nashta
- Sol Price School of Public Policy and Leonard D. Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Weber
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, Roslyn, NY, USA
| | - Ruqiyya Bano
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, Roslyn, NY, USA
| | - Michael Passick
- Division of Cardiac Imaging, St. Francis Hospital & Heart Center, 100 Port Washington Blvd., Roslyn, NY, 11576, USA
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, Roslyn, NY, USA
| | - Y Joshua Cheng
- Division of Cardiac Imaging, St. Francis Hospital & Heart Center, 100 Port Washington Blvd., Roslyn, NY, 11576, USA
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, Roslyn, NY, USA
| | - William Schapiro
- Division of Cardiac Imaging, St. Francis Hospital & Heart Center, 100 Port Washington Blvd., Roslyn, NY, 11576, USA
| | - Marie Grgas
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, Roslyn, NY, USA
| | - Kathleen Gliganic
- Division of Cardiac Imaging, St. Francis Hospital & Heart Center, 100 Port Washington Blvd., Roslyn, NY, 11576, USA
| |
Collapse
|
4
|
Nezami N, Garg T. Editorial for "Quantitative Assessment of Regional Pulmonary Transit Times in Pulmonary Hypertension". J Magn Reson Imaging 2023; 57:738-739. [PMID: 35849044 DOI: 10.1002/jmri.28361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nariman Nezami
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Tushar Garg
- Division of Vascular and Interventional Radiology, Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Segeroth M, Winkel DJ, Strebel I, Yang S, van der Stouwe JG, Formambuh J, Badertscher P, Cyriac J, Wasserthal J, Caobelli F, Madaffari A, Lopez-Ayala P, Zellweger M, Sauter A, Mueller C, Bremerich J, Haaf P. Pulmonary transit time of cardiovascular magnetic resonance perfusion scans for quantification of cardiopulmonary haemodynamics. Eur Heart J Cardiovasc Imaging 2023:6994365. [PMID: 36662127 PMCID: PMC10364617 DOI: 10.1093/ehjci/jead001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/26/2022] [Indexed: 01/21/2023] Open
Abstract
AIMS Pulmonary transit time (PTT) is the time blood takes to pass from the right ventricle to the left ventricle via pulmonary circulation. We aimed to quantify PTT in routine cardiovascular magnetic resonance imaging perfusion sequences. PTT may help in the diagnostic assessment and characterization of patients with unclear dyspnoea or heart failure (HF). METHODS AND RESULTS We evaluated routine stress perfusion cardiovascular magnetic resonance scans in 352 patients, including an assessment of PTT. Eighty-six of these patients also had simultaneous quantification of N-terminal pro-brain natriuretic peptide (NTproBNP). NT-proBNP is an established blood biomarker for quantifying ventricular filling pressure in patients with presumed HF. Manually assessed PTT demonstrated low inter-rater variability with a correlation between raters >0.98. PTT was obtained automatically and correctly in 266 patients using artificial intelligence. The median PTT of 182 patients with both left and right ventricular ejection fraction >50% amounted to 6.8 s (Pulmonary transit time: 5.9-7.9 s). PTT was significantly higher in patients with reduced left ventricular ejection fraction (<40%; P < 0.001) and right ventricular ejection fraction (<40%; P < 0.0001). The area under the receiver operating characteristics curve (AUC) of PTT for exclusion of HF (NT-proBNP <125 ng/L) was 0.73 (P < 0.001) with a specificity of 77% and sensitivity of 70%. The AUC of PTT for the inclusion of HF (NT-proBNP >600 ng/L) was 0.70 (P < 0.001) with a specificity of 78% and sensitivity of 61%. CONCLUSION PTT as an easily, even automatically obtainable and robust non-invasive biomarker of haemodynamics might help in the evaluation of patients with dyspnoea and HF.
Collapse
Affiliation(s)
- Martin Segeroth
- Department of Radiology and Nuclear Medicine, University Hospital, Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - David Jean Winkel
- Department of Radiology and Nuclear Medicine, University Hospital, Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Ivo Strebel
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Shan Yang
- Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Jan Gerrit van der Stouwe
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Jude Formambuh
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Patrick Badertscher
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Joshy Cyriac
- Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Jakob Wasserthal
- Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Federico Caobelli
- Department of Radiology and Nuclear Medicine, University Hospital, Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Antonio Madaffari
- Department of Cardiology, University Hospital Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Pedro Lopez-Ayala
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Michael Zellweger
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Alexander Sauter
- Department of Radiology and Nuclear Medicine, University Hospital, Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Christian Mueller
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Jens Bremerich
- Department of Radiology and Nuclear Medicine, University Hospital, Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Philip Haaf
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| |
Collapse
|
6
|
Gong C, Guo X, Wan K, Chen C, Chen X, Guo J, He J, Yin L, Wen B, Pu S, Chen Y. Corrected MRI Pulmonary Transit Time for Identification of Combined Precapillary and Postcapillary Pulmonary Hypertension in Patients With Left Heart Disease. J Magn Reson Imaging 2022; 57:1518-1528. [PMID: 37021578 DOI: 10.1002/jmri.28386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The identification of combined precapillary and postcapillary pulmonary hypertension (CpcPH) in patients with pulmonary hypertension (PH) due to left heart disease (LHD) can influence therapy and outcome and is currently based on invasively determined hemodynamic parameters. PURPOSE To investigate the diagnostic value of MRI-derived corrected pulmonary transit time (PTTc) in PH-LHD sub-grouped according to hemodynamic phenotypes. STUDY TYPE Prospective observational study. POPULATION A total of 60 patients with PH-LHD (18 with isolated postcapillary PH [IpcPH] and 42 with CpcPH), and 33 healthy subjects. FIELD STRENGTH/SEQUENCE A 3.0 T/balanced steady-state free precession cine and gradient echo-train echo planar pulse first-pass perfusion. ASSESSMENT In patients, right heart catheterization (RHC) and MRI were performed within 30 days. Pulmonary vascular resistance (PVR) was used as the diagnostic "reference standard." The PTTc was calculated as the time interval between the peaks of the biventricular signal-intensity/time curve and corrected for heart rate. PTTc was compared between patient groups and healthy subjects and its relationship to PVR assessed. The diagnostic accuracy of PTTc for distinguishing IpcPH and CpcPH was determined. STATISTICAL TESTS Student's t-test, Mann-Whitney U-test, linear and logistic regression analysis, and receiver-operating characteristic curves. Significance level: P < 0.05. RESULTS PTTc was significantly prolonged in CpcPH compared with IpcPH and normal controls (17.28 ± 7.67 vs. 8.82 ± 2.55 vs. 6.86 ± 2.11 seconds), and in IpcPH compared with normal controls (8.82 ± 2.55 vs. 6.86 ± 2.11 seconds). Prolonged PTTc was significantly associated with increased PVR. Furthermore, PTTc was a significantly independent predictor of CpcPH (odds ratio: 1.395, 95% confidence interval: 1.071-1.816). The area under curve was 0.852 at a cut-off value of 11.61 seconds for PTTc to distinguish between CpcPH and IpcPH (sensitivity 71.43% and specificity 94.12%). DATA CONCLUSION PTTc may be used to identify CpcPH. Our findings have potential to improve selection for invasive RHC for PH-LHD patients. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Chao Gong
- Cardiology Division, West China Hospital Sichuan University Chengdu Sichuan Province China
| | - Xinli Guo
- Cardiology Division, West China Hospital Sichuan University Chengdu Sichuan Province China
| | - Ke Wan
- Department of Geriatrics, West China Hospital Sichuan University Chengdu Sichuan Province China
| | - Chen Chen
- Cardiology Division, West China Hospital Sichuan University Chengdu Sichuan Province China
| | - Xiaoling Chen
- Cardiology Division, West China Hospital Sichuan University Chengdu Sichuan Province China
| | - Jiajun Guo
- Cardiology Division, West China Hospital Sichuan University Chengdu Sichuan Province China
| | - Juan He
- Cardiology Division, West China Hospital Sichuan University Chengdu Sichuan Province China
| | - Lidan Yin
- Cardiology Division, West China Hospital Sichuan University Chengdu Sichuan Province China
| | - Bi Wen
- Cardiology Division, West China Hospital Sichuan University Chengdu Sichuan Province China
| | - Shoufang Pu
- Cardiology Division, West China Hospital Sichuan University Chengdu Sichuan Province China
| | - Yucheng Chen
- Cardiology Division, West China Hospital Sichuan University Chengdu Sichuan Province China
| |
Collapse
|
7
|
Assadi H, Alabed S, Maiter A, Salehi M, Li R, Ripley DP, Van der Geest RJ, Zhong Y, Zhong L, Swift AJ, Garg P. The Role of Artificial Intelligence in Predicting Outcomes by Cardiovascular Magnetic Resonance: A Comprehensive Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1087. [PMID: 36013554 PMCID: PMC9412853 DOI: 10.3390/medicina58081087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Interest in artificial intelligence (AI) for outcome prediction has grown substantially in recent years. However, the prognostic role of AI using advanced cardiac magnetic resonance imaging (CMR) remains unclear. This systematic review assesses the existing literature on AI in CMR to predict outcomes in patients with cardiovascular disease. Materials and Methods: Medline and Embase were searched for studies published up to November 2021. Any study assessing outcome prediction using AI in CMR in patients with cardiovascular disease was eligible for inclusion. All studies were assessed for compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Results: A total of 5 studies were included, with a total of 3679 patients, with 225 deaths and 265 major adverse cardiovascular events. Three methods demonstrated high prognostic accuracy: (1) three-dimensional motion assessment model in pulmonary hypertension (hazard ratio (HR) 2.74, 95%CI 1.73−4.34, p < 0.001), (2) automated perfusion quantification in patients with coronary artery disease (HR 2.14, 95%CI 1.58−2.90, p < 0.001), and (3) automated volumetric, functional, and area assessment in patients with myocardial infarction (HR 0.94, 95%CI 0.92−0.96, p < 0.001). Conclusion: There is emerging evidence of the prognostic role of AI in predicting outcomes for three-dimensional motion assessment in pulmonary hypertension, ischaemia assessment by automated perfusion quantification, and automated functional assessment in myocardial infarction.
Collapse
Affiliation(s)
- Hosamadin Assadi
- Department of Medicine, Norwich Medical School, University of East Anglia, Norfolk NR4 7TJ, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk NR4 7UY, UK
| | - Samer Alabed
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK
| | - Ahmed Maiter
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK
| | - Mahan Salehi
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK
| | - Rui Li
- Department of Medicine, Norwich Medical School, University of East Anglia, Norfolk NR4 7TJ, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk NR4 7UY, UK
| | - David P. Ripley
- Northumbria Healthcare Foundation Trust, Northumbria Specialist Care Emergency Hospital, Northumbria Way, Northumberland NE23 6NZ, UK
| | - Rob J. Van der Geest
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Yumin Zhong
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Rd., Shanghai 200127, China
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
- Cardiovascular Sciences, Duke-NUS Medical School, 8 College Road, Singapore 169856, Singapore
| | - Andrew J. Swift
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK
| | - Pankaj Garg
- Department of Medicine, Norwich Medical School, University of East Anglia, Norfolk NR4 7TJ, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk NR4 7UY, UK
| |
Collapse
|
8
|
Guo X, Gong C, Song R, Wan K, Han Y, Chen Y. First-pass perfusion cardiovascular magnetic resonance parameters as surrogate markers for left ventricular diastolic dysfunction: a validation against cardiac catheterization. Eur Radiol 2022; 32:8131-8139. [PMID: 35779091 DOI: 10.1007/s00330-022-08938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The non-invasive assessment of left ventricular (LV) diastolic dysfunction remains a challenge. The role of first-pass perfusion cardiac magnetic resonance (CMR) parameters in quantitative hemodynamic analyses has been reported. We therefore aimed to validate the diagnostic ability and accuracy of such parameters against cardiac catheterization for LV diastolic dysfunction in patients with left heart disease (LHD). METHODS We retrospectively enrolled 77 LHD patients who underwent CMR imaging and cardiac catheterization. LV diastolic dysfunction was defined as pulmonary capillary wedge pressure (PCWP) or LV end-diastolic pressure (LVEDP) > 12 mmHg on catheterization. On first-pass perfusion CMR imaging, pulmonary transit time (PTT) was measured as the time for blood to pass from the left ventricle to the right ventricle (RV) through the pulmonary vasculature. Pulmonary transit beat (PTB) was the number of cardiac cycles within the interval, and pulmonary blood volume indexed to body surface area (PBVi) was the product of PTB and RV stroke volume index (RVSVi). RESULTS Of the 77 LHD patients, 53 (68.83%) were found to have LV diastolic dysfunction, and showed significantly higher PTTc, PTB, and PBVi (p < 0.05) compared with those without. In multivariate analyses, only PTTc and PTB were identified as independent predictors of LV diastolic dysfunction (p < 0.05). With an optimal cutoff of 11.9 s, PTTc yielded the best diagnostic performance for LV diastolic dysfunction (area under the curve = 0.83, p < 0.001). CONCLUSIONS PTTc may represent a non-invasive quantitative surrogate marker for the detection and assessment of diastolic dysfunction in LHD patients. KEY POINTS • PTTc yielded the best diagnostic accuracy for diastolic dysfunction, with an optimal cutoff of 11.9 s, and a specificity of 100%. • PTTc and PTB were found to be independent predictors of LV diastolic dysfunction across different multivariate models with high reproducibility. • PTTc is a promising non-invasive surrogate marker for the detection and assessment of diastolic dysfunction in LHD patients.
Collapse
Affiliation(s)
- Xinli Guo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Chao Gong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Rizhen Song
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Ke Wan
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yuchi Han
- Department of Medicine (Cardiovascular Division), University of Pennsylvania, Philadelphia, PA, USA
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
9
|
Borges RR, Morato TN, Bezerra ASDA, Dias BA, Reinaux JCDF, Monte GU, Farage L. Avaliação de diferentes tempos de trânsito do meio de contraste intravascular em exames de tomografia computadorizada coronariana. Radiol Bras 2022; 55:161-166. [PMID: 35795606 PMCID: PMC9254703 DOI: 10.1590/0100-3984.2021.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
Objective To measure the transit times (TTs) of contrast agents among the injection
site (antecubital vein), superior vena cava, pulmonary trunk, and ascending
aorta, in coronary computed tomography angiography (CTA) examinations of
outpatients with no history of cardiovascular or lung disease, thus defining
reference values for those TTs. Materials and Methods The contrast TTs from the injection site (antecubital vein) to the superior
vena cava, from the superior vena cava to the pulmonary trunk, and from the
pulmonary trunk to the ascending aorta were measured by monitoring contrast
enhancement in real time (bolus tracking). Cardiac output was measured by
the geometric method during the CTA examination and was correlated with the
contrast TT. Results Forty-three individuals were analyzed. The mean contrast TT was 13.1 s
overall (from the antecubital vein to the ascending aorta), 3.0 s from the
superior vena cava to the pulmonary trunk, and 7.2 s from the pulmonary
trunk to the ascending aorta. There was a tendency toward a correlation
between contrast TT and cardiac output (p = 0.055). Conclusion The reference values established here for contrast TTs among the superior
vena cava, pulmonary trunk, and ascending aorta will serve as a basis for
clinical evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luciano Farage
- Radiolinea Centro de Imagens, Brasil; Universidade de Brasília (UnB), Brasil; Instituto de Cardiologia do Distrito Federal (ICDF), Brasil; Centro Universitário Euroamericano (Unieuro), Brasil
| |
Collapse
|
10
|
Alenezi F, Covington TA, Mukherjee M, Mathai SC, Yu PB, Rajagopal S. Novel Approaches to Imaging the Pulmonary Vasculature and Right Heart. Circ Res 2022; 130:1445-1465. [PMID: 35482838 PMCID: PMC9060389 DOI: 10.1161/circresaha.121.319990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is an increased appreciation for the importance of the right heart and pulmonary circulation in several disease states across the spectrum of pulmonary hypertension and left heart failure. However, assessment of the structure and function of the right heart and pulmonary circulation can be challenging, due to the complex geometry of the right ventricle, comorbid pulmonary airways and parenchymal disease, and the overlap of hemodynamic abnormalities with left heart failure. Several new and evolving imaging modalities interrogate the right heart and pulmonary circulation with greater diagnostic precision. Echocardiographic approaches such as speckle-tracking and 3-dimensional imaging provide detailed assessments of regional systolic and diastolic function and volumetric assessments. Magnetic resonance approaches can provide high-resolution views of cardiac structure/function, tissue characterization, and perfusion through the pulmonary vasculature. Molecular imaging with positron emission tomography allows an assessment of specific pathobiologically relevant targets in the right heart and pulmonary circulation. Machine learning analysis of high-resolution computed tomographic lung scans permits quantitative morphometry of the lung circulation without intravenous contrast. Inhaled magnetic resonance imaging probes, such as hyperpolarized 129Xe magnetic resonance imaging, report on pulmonary gas exchange and pulmonary capillary hemodynamics. These approaches provide important information on right ventricular structure and function along with perfusion through the pulmonary circulation. At this time, the majority of these developing technologies have yet to be clinically validated, with few studies demonstrating the utility of these imaging biomarkers for diagnosis or monitoring disease. These technologies hold promise for earlier diagnosis and noninvasive monitoring of right heart failure and pulmonary hypertension that will aid in preclinical studies, enhance patient selection and provide surrogate end points in clinical trials, and ultimately improve bedside care.
Collapse
Affiliation(s)
- Fawaz Alenezi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | | | | | - Steve C. Mathai
- Johns Hopkins Division of Pulmonary and Critical Care Medicine, Baltimore, MD
| | - Paul B. Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
11
|
Saunders LC, Hughes PJC, Alabed S, Capener DJ, Marshall H, Vogel-Claussen J, van Beek EJR, Kiely DG, Swift AJ, Wild JM. Integrated Cardiopulmonary MRI Assessment of Pulmonary Hypertension. J Magn Reson Imaging 2022; 55:633-652. [PMID: 34350655 DOI: 10.1002/jmri.27849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a heterogeneous condition that can affect the lung parenchyma, pulmonary vasculature, and cardiac chambers. Accurate diagnosis often requires multiple complex assessments of the cardiac and pulmonary systems. MRI is able to comprehensively assess cardiac structure and function, as well as lung parenchymal, pulmonary vascular, and functional lung changes. Therefore, MRI has the potential to provide an integrated functional and structural assessment of the cardiopulmonary system in a single exam. Cardiac MRI is used in the assessment of PH in most large PH centers, whereas lung MRI is an emerging technique in patients with PH. This article reviews the current literature on cardiopulmonary MRI in PH, including cine MRI, black-blood imaging, late gadolinium enhancement, T1 mapping, myocardial strain analysis, contrast-enhanced perfusion imaging and contrast-enhanced MR angiography, and hyperpolarized gas functional lung imaging. This article also highlights recent developments in this field and areas of interest for future research including cardiac MRI-based diagnostic models, machine learning in cardiac MRI, oxygen-enhanced 1 H imaging, contrast-free 1 H perfusion and ventilation imaging, contrast-free angiography and UTE imaging. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Laura C Saunders
- Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul J C Hughes
- Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Samer Alabed
- Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | | - Helen Marshall
- Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - David G Kiely
- Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Imaging, Sheffield Teaching Hospitals, Sheffield, UK
| | - Jim M Wild
- Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Valentin S, Maurac A, Mandry D, Selton-Suty C, Huttin O, Cherifi A, Guillaumot A, Gomez E, Chabot F, Chaouat A. Place de l’IRM cardiaque dans l’hypertension artérielle pulmonaire et l’hypertension pulmonaire thrombo-embolique chronique. Rev Mal Respir 2022; 39:486-497. [DOI: 10.1016/j.rmr.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/14/2022] [Indexed: 01/26/2023]
|
13
|
Shahin Y, Alabed S, Rehan Quadery S, Lewis RA, Johns C, Alkhanfar D, Sukhanenko M, Alandejani F, Garg P, Elliot CA, Hameed A, Charalampopoulos A, Wild JM, Condliffe R, Swift AJ, Kiely DG. CMR Measures of Left Atrial Volume Index and Right Ventricular Function Have Prognostic Value in Chronic Thromboembolic Pulmonary Hypertension. Front Med (Lausanne) 2022; 9:840196. [PMID: 35360708 PMCID: PMC8964043 DOI: 10.3389/fmed.2022.840196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Providing prognostic information is important when counseling patients and planning treatment strategies in chronic thromboembolic pulmonary hypertension (CTEPH). The aim of this study was to assess the prognostic value of gold standard imaging of cardiac structure and function using cardiac magnetic resonance imaging (CMR) in CTEPH. Consecutive treatment-naive patients with CTEPH who underwent right heart catheterization and CMR between 2011 and 2017 were identified from the ASPIRE (Assessing-the-Specturm-of-Pulmonary-hypertensIon-at-a-REferral-center) registry. CMR metrics were corrected for age and sex where appropriate. Univariate and multivariate regression models were generated to assess the prognostic ability of CMR metrics in CTEPH. Three hundred and seventy-five patients (mean+/-standard deviation: age 64+/-14 years, 49% female) were identified and 181 (48%) had pulmonary endarterectomy (PEA). For all patients with CTEPH, left-ventricular-stroke-volume-index-%predicted (LVSVI%predicted) (p = 0.040), left-atrial-volume-index (LAVI) (p = 0.030), the presence of comorbidities, incremental shuttle walking test distance (ISWD), mixed venous oxygen saturation and undergoing PEA were independent predictors of mortality at multivariate analysis. In patients undergoing PEA, LAVI (p < 0.010), ISWD and comorbidities and in patients not undergoing surgery, right-ventricular-ejection-fraction-%predicted (RVEF%pred) (p = 0.040), age and ISWD were independent predictors of mortality. CMR metrics reflecting cardiac function and left heart disease have prognostic value in CTEPH. In those undergoing PEA, LAVI predicts outcome whereas in patients not undergoing PEA RVEF%pred predicts outcome. This study highlights the prognostic value of imaging cardiac structure and function in CTEPH and the importance of considering left heart disease in patients considered for PEA.
Collapse
Affiliation(s)
- Yousef Shahin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Department of Clinical Radiology, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Department of Clinical Radiology, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom
| | - Syed Rehan Quadery
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom
| | - Robert A Lewis
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom
| | - Christopher Johns
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom
| | - Dheyaa Alkhanfar
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Maria Sukhanenko
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom
| | - Faisal Alandejani
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Pankaj Garg
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Charlie A Elliot
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom
| | - Abdul Hameed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom
| | - Athaniosis Charalampopoulos
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom
| | - James M Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Department of Clinical Radiology, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom.,INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom.,INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Seraphim A, Knott KD, Menacho K, Augusto JB, Davies R, Pierce I, Joy G, Bhuva AN, Xue H, Treibel TA, Cooper JA, Petersen SE, Fontana M, Hughes AD, Moon JC, Manisty C, Kellman P. Prognostic Value of Pulmonary Transit Time and Pulmonary Blood Volume Estimation Using Myocardial Perfusion CMR. JACC Cardiovasc Imaging 2021; 14:2107-2119. [PMID: 34023269 PMCID: PMC8560640 DOI: 10.1016/j.jcmg.2021.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The purpose of this study was to explore the prognostic significance of PTT and PBVi using an automated, inline method of estimation using CMR. BACKGROUND Pulmonary transit time (PTT) and pulmonary blood volume index (PBVi) (the product of PTT and cardiac index), are quantitative biomarkers of cardiopulmonary status. The development of cardiovascular magnetic resonance (CMR) quantitative perfusion mapping permits their automated derivation, facilitating clinical adoption. METHODS In this retrospective 2-center study of patients referred for clinical myocardial perfusion assessment using CMR, analysis of right and left ventricular cavity arterial input function curves from first pass perfusion was performed automatically (incorporating artificial intelligence techniques), allowing estimation of PTT and subsequent derivation of PBVi. Association with major adverse cardiovascular events (MACE) and all-cause mortality were evaluated using Cox proportional hazard models, after adjusting for comorbidities and CMR parameters. RESULTS A total of 985 patients (67% men, median age 62 years [interquartile range (IQR): 52 to 71 years]) were included, with median left ventricular ejection fraction (LVEF) of 62% (IQR: 54% to 69%). PTT increased with age, male sex, atrial fibrillation, and left atrial area, and reduced with LVEF, heart rate, diabetes, and hypertension (model r2 = 0.57). Over a median follow-up period of 28.6 months (IQR: 22.6 to 35.7 months), MACE occurred in 61 (6.2%) patients. After adjusting for prognostic factors, both PTT and PBVi independently predicted MACE, but not all-cause mortality. There was no association between cardiac index and MACE. For every 1 × SD (2.39-s) increase in PTT, the adjusted hazard ratio for MACE was 1.43 (95% confidence interval [CI]: 1.10 to 1.85; p = 0.007). The adjusted hazard ratio for 1 × SD (118 ml/m2) increase in PBVi was 1.42 (95% CI: 1.13 to 1.78; p = 0.002). CONCLUSIONS Pulmonary transit time (and its derived parameter pulmonary blood volume index), measured automatically without user interaction as part of CMR perfusion mapping, independently predicted adverse cardiovascular outcomes. These biomarkers may offer additional insights into cardiopulmonary function beyond conventional predictors including ejection fraction.
Collapse
Affiliation(s)
- Andreas Seraphim
- Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Kristopher D Knott
- Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Katia Menacho
- Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Joao B Augusto
- Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Rhodri Davies
- Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Iain Pierce
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - George Joy
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Anish N Bhuva
- Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Hui Xue
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Jackie A Cooper
- William Harvey Research Institute, Queen Mary University of London, United Kingdom
| | - Steffen E Petersen
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, United Kingdom
| | - Marianna Fontana
- Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Royal Free Hospital, Pond Street, London, United Kingdom
| | - Alun D Hughes
- Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom
| | - James C Moon
- Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, United Kingdom.
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA.
| |
Collapse
|
15
|
Glessgen CG, Breit HC, Block TK, Merkle EM, Heye T, Boll DT. Respiratory anomalies associated with gadoxetate disodium and gadoterate meglumine: compressed sensing MRI revealing physiologic phenomena during the entire injection cycle. Eur Radiol 2021; 32:346-354. [PMID: 34324024 PMCID: PMC8660712 DOI: 10.1007/s00330-021-08114-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The goal of this study was to investigate the precise timeline of respiratory events occurring after the administration of two gadolinium-based contrast agents, gadoxetate disodium and gadoterate meglumine. MATERIALS AND METHODS This retrospective study examined 497 patients subject to hepatobiliary imaging using the GRASP MRI technique (TR/TE = 4/2 ms; ST = 2.5 mm; 384 × 384 mm). Imaging was performed after administration of gadoxetate (N = 338) and gadoterate (N = 159). All GRASP datasets were reconstructed using a temporal resolution of 1 s. Four regions-of-interest (ROIs) were placed in the liver dome, the right and left cardiac ventricle, and abdominal aorta detecting liver displacement and increasing vascular signal intensities over time. Changes in hepatic intensity reflected respiratory dynamics in temporal correlation to the vascular contrast bolus. RESULTS In total, 216 (67%) and 41 (28%) patients presented with transient respiratory motion after administration of gadoxetate and gadoterate, respectively. The mean duration from start to acme of the respiratory episode was similar (p = 0.4) between gadoxetate (6.0 s) and gadoterate (5.6 s). Its mean onset in reference to contrast arrival in the right ventricle differed significantly (p < 0.001) between gadoxetate (15.3s) and gadoterate (1.8 s), analogously to peak inspiration timepoint in reference to the aortic enhancement arrival (gadoxetate: 0.9s after, gadoterate: 11.2 s before aortic enhancement, p < 0.001). CONCLUSIONS The timepoint of occurrence of transient respiratory anomalies associated with gadoxetate disodium and gadoterate meglumine differs significantly between both contrast agents while the duration of the event remains similar. KEY POINTS • Transient respiratory anomalies following the administration of gadoterate meglumine occurred during a time period usually not acquired in MR imaging. • Transient respiratory anomalies following the administration of gadoxetate disodium occurred around the initiation of arterial phase imaging. • The estimated duration of respiratory events was similar between both contrast agents.
Collapse
Affiliation(s)
| | | | - Tobias Kai Block
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, USA
| | - Elmar Max Merkle
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Tobias Heye
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
16
|
Pulmonary hypertension in interstitial lung disease: screening, diagnosis and treatment. Curr Opin Pulm Med 2021; 27:396-404. [PMID: 34127619 DOI: 10.1097/mcp.0000000000000790] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Pulmonary vascular disease resulting in pulmonary hypertension in the context of interstitial lung disease (PH-ILD) is a common complication that presents many challenges in clinical practice. Despite recent advances, the pathogenetic interplay between parenchymal and vascular disease in ILD is not fully understood. This review provides an overview of the current knowledge and recent advances in the field. RECENT FINDINGS Clinical trials employing the phosphodiesterase-5-inhibitor sildenafil delivered negative results whereas riociguat showed harmful effects in the PH-ILD population. More recently, inhaled treprostinil showed positive effects on the primary endpoint (six-min walk-distance) in the largest prospective randomized placebo-controlled trial to date in this patient population. Additionally, a pilot trial of ambulatory inhaled nitric oxide suggests beneficial effects based on the novel endpoint of actigraphy. SUMMARY In view of these novel developments this review provides an overview of the status quo of screening, diagnosis and management of pulmonary vascular disease and PH in patients with ILD.
Collapse
|
17
|
Ricci F, Khanji MY. Harnessing Artificial Intelligence for Quantitative Assessment of Hemodynamic Congestion and Predicting Outcomes. JACC Cardiovasc Imaging 2021; 14:2120-2122. [PMID: 34147449 DOI: 10.1016/j.jcmg.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Clinical Sciences, Lund University, Malmö, Sweden; Casa di Cura Villa Serena, Città Sant'Angelo, Pescara, Italy.
| | - Mohammed Y Khanji
- Newham University Hospital, Barts Health NHS Trust, London, United Kingdom; Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
18
|
Tanaka Y, Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Iwase A, Fukuba T, Hattori H, Murayama K, Yoshikawa T, Takenaka D, Koyama H, Toyama H. State-of-the-art MR Imaging for Thoracic Diseases. Magn Reson Med Sci 2021; 21:212-234. [PMID: 33952785 PMCID: PMC9199970 DOI: 10.2463/mrms.rev.2020-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
Collapse
Affiliation(s)
- Yumi Tanaka
- Department of Radiology, Fujita Health University School of Medicine
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital
| | - Takashi Fukuba
- Department of Radiology, Fujita Health University Hospital
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | | | | | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine
| |
Collapse
|
19
|
Baruah D, Sonavane S, Goodman L, Nath H, Presberg K, Shahir K. Correlation of Computed Tomography Test Bolus Dynamics and Conventional Computed Tomography Parameters With Pulmonary Vascular Resistance in Patients With Pulmonary Arterial Hypertension. Cureus 2021; 13:e13577. [PMID: 33815985 PMCID: PMC8009445 DOI: 10.7759/cureus.13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Pulmonary vascular resistance (PVR) is a measurement obtained with invasive right heart catheterization (RHC) that is commonly used for management of patients with pulmonary arterial hypertension (PAH). Computed tomography pulmonary angiography (CTPA) is also done as part of the workup for PAH in some cases. The aim of our study was to assess the correlation of contrast dynamic changes in the main pulmonary artery (MPA) on CTPA with PVR obtained with RHC. Methods: This is an IRB-approved retrospective study performed in two separate institutions (Medical College of Wisconsin and University of Alabama) between January 2010 and December 2013. During CTPA done as test bolus, serial images are acquired at the level of MPA after intravenous injection of contrast to determine timing of the CT acquisition. Since the PVR changes with the degree of PAH, we hypothesize that will be reflected in the contrast kinetics in MPA. A correlation of standard CT metrics (MPA diameter, right pulmonary artery [PA] diameter, left PA diameter, MPA/aorta ratio, and right ventricle/left ventricle [RV/LV] ratio) and dynamic (full width at half maximum) CTPA parameters in patients with known PAH was performed with PVR obtained from RHC done within 30 days. Statistical analysis was performed by Pearson correlation coefficient. Results: Among 221 patients in our database, 37 patients fulfilled the selection criteria. There was a strong correlation between full width half maximum (FWHM) and mean pulmonary artery pressure (mPAP) (r=0.69, p value<0.00001), PVR (r=0.8, p value<0.00001) and indexed PVR (PVRI) (r=0.75, p value<0.00001). Conclusion: FWHM obtained from CTPA strongly correlates with RHC parameters and is potentially more helpful than static measurements for follow-up of patients with known PAH to assess response to treatment or progression.
Collapse
Affiliation(s)
- Dhiraj Baruah
- Radiodiagnosis, Medical University of South Carolina, Charleston, USA
| | | | | | - Hrudaya Nath
- Radiology, University of Alabama, Birmingham, USA
| | - Kenneth Presberg
- Pulmonary Medicine, Medical College of Wisconsin, Milwaukee, USA
| | | |
Collapse
|
20
|
Houard L, Amzulescu MS, Colin G, Langet H, Militaru S, Rousseau MF, Ahn SA, Vanoverschelde JLJ, Pouleur AC, Gerber BL. Prognostic Value of Pulmonary Transit Time by Cardiac Magnetic Resonance on Mortality and Heart Failure Hospitalization in Patients With Advanced Heart Failure and Reduced Ejection Fraction. Circ Cardiovasc Imaging 2021; 14:e011680. [PMID: 33438438 DOI: 10.1161/circimaging.120.011680] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary transit time (PTT) from first-pass perfusion imaging is a novel parameter to evaluate hemodynamic congestion by cardiac magnetic resonance (cMR). We sought to evaluate the additional prognostic value of PTT in heart failure with reduced ejection fraction over other well-validated predictors of risk including the Meta-Analysis Global Group in Chronic Heart Failure risk score and ischemic cause. METHODS We prospectively followed 410 patients with chronic heart failure with reduced ejection fraction (61±13 years, left ventricular (LV) ejection fraction 24±7%) who underwent a clinical cMR to assess the prognostic value of PTT for a primary endpoint of overall mortality and secondary composite endpoint of cardiovascular death and heart failure hospitalization. Normal reference values of PTT were evaluated in a population of 40 asymptomatic volunteers free of cardiovascular disease. Results PTT was significantly increased in patients with heart failure with reduced ejection fraction as compared to controls (9±6 beats and 7±2 beats, respectively, P<0.001), and correlated not only with New York Heart Association class, cMR-LV and cMR-right ventricular (RV) volumes, cMR-RV and cMR-LV ejection fraction, and feature tracking global longitudinal strain, but also with cardiac output. Over 6-year median follow-up, 182 patients died and 200 reached the secondary endpoint. By multivariate Cox analysis, PTT was an independent and significant predictor of both endpoints after adjustment for Meta-Analysis Global Group in Chronic Heart Failure risk score and ischemic cause. Importantly in multivariable analysis, PTT in beats had significantly higher additional prognostic value to predict not only overall mortality (χ2 to improve, 12.3; hazard ratio, 1.35 [95% CI, 1.16-1.58]; P<0.001) but also the secondary composite endpoints (χ2 to improve=20.1; hazard ratio, 1.23 [95% CI, 1.21-1.60]; P<0.001) than cMR-LV ejection fraction, cMR-RV ejection fraction, LV-feature tracking global longitudinal strain, or RV-feature tracking global longitudinal strain. Importantly, PTT was independent and complementary to both pulmonary artery pressure and reduced RV ejection fraction<42% to predict overall mortality and secondary combined endpoints. CONCLUSIONS Despite limitations in temporal resolution, PTT derived from first-pass perfusion imaging provides higher and independent prognostic information in heart failure with reduced ejection fraction than clinical and other cMR parameters, including LV and RV ejection fraction or feature tracking global longitudinal strain. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03969394.
Collapse
Affiliation(s)
- Laura Houard
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc (L.H., M.S.A., G.C., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.).,Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium (L.H., M.S.A., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.)
| | - Mihaela S Amzulescu
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc (L.H., M.S.A., G.C., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.).,Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium (L.H., M.S.A., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.)
| | - Geoffrey Colin
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc (L.H., M.S.A., G.C., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.)
| | - Helene Langet
- Philips Clinical Research Board, Suresnes, France (H.L.)
| | - Sebastian Militaru
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc (L.H., M.S.A., G.C., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.).,Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium (L.H., M.S.A., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.)
| | - Michel F Rousseau
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc (L.H., M.S.A., G.C., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.).,Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium (L.H., M.S.A., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.)
| | - Sylvie A Ahn
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc (L.H., M.S.A., G.C., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.).,Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium (L.H., M.S.A., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.)
| | - Jean-Louis J Vanoverschelde
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc (L.H., M.S.A., G.C., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.).,Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium (L.H., M.S.A., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.)
| | - Anne-Catherine Pouleur
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc (L.H., M.S.A., G.C., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.).,Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium (L.H., M.S.A., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.)
| | - Bernhard L Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc (L.H., M.S.A., G.C., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.).,Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium (L.H., M.S.A., S.M., M.F.R., S.A.A., J.-L.J.V., A.-C.P., B.L.G.)
| |
Collapse
|
21
|
Non-Invasive Assessment of Pulmonary Vasculopathy. HEARTS 2021. [DOI: 10.3390/hearts2010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Right heart catheterization remains necessary for the diagnosis of pulmonary hypertension and, therefore, for the prognostic evaluation of patients with chronic heart failure. The non-invaSive Assessment of Pulmonary vasculoPathy in Heart failure (SAPPHIRE) study was designed to assess the feasibility and prognostic relevance of a non-invasive evaluation of the pulmonary artery vasculature in patients with heart failure and pulmonary hypertension. Patients will undergo a right heart catheterization, cardiac resonance imaging, and a pulmonary function test in order to identify structural and functional parameters allowing the identification of combined pre- and postcapillary pulmonary hypertension, and correlate these findings with the hemodynamic data.
Collapse
|
22
|
Weatherley ND, Eaden JA, Hughes PJC, Austin M, Smith L, Bray J, Marshall H, Renshaw S, Bianchi SM, Wild JM. Quantification of pulmonary perfusion in idiopathic pulmonary fibrosis with first pass dynamic contrast-enhanced perfusion MRI. Thorax 2020; 76:144-151. [PMID: 33273022 PMCID: PMC7815896 DOI: 10.1136/thoraxjnl-2019-214375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/07/2023]
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a fatal disease of lung scarring. Many patients later develop raised pulmonary vascular pressures, sometimes disproportionate to the interstitial disease. Previous therapeutic approaches that have targeted pulmonary vascular changes have not demonstrated clinical efficacy, and quantitative assessment of regional pulmonary vascular involvement using perfusion imaging may provide a biomarker for further therapeutic insights. Methods We studied 23 participants with IPF, using dynamic contrast-enhanced MRI (DCE-MRI) and pulmonary function tests, including forced vital capacity (FVC), transfer factor (TLCO) and coefficient (KCO) of the lungs for carbon monoxide. DCE-MRI parametric maps were generated including the full width at half maximum (FWHM) of the bolus transit time through the lungs. Key metrics used were mean (FWHMmean) and heterogeneity (FWHMIQR). Nineteen participants returned at 6 months for repeat assessment. Results Spearman correlation coefficients were identified between TLCO and FWHMIQR (r=−0.46; p=0.026), KCO and FWHMmean (r=−0.42; p=0.047) and KCO and FWHMIQR (r=−0.51; p=0.013) at baseline. No statistically significant correlations were seen between FVC and DCE-MRI metrics. Follow-up at 6 months demonstrated statistically significant decline in FVC (p=0.040) and KCO (p=0.014), with an increase in FWHMmean (p=0.040), but no significant changes in TLCO (p=0.090) nor FWHMIQR (p=0.821). Conclusions DCE-MRI first pass perfusion demonstrates correlations with existing physiological gas exchange metrics, suggesting that capillary perfusion deficit (as well as impaired interstitial diffusion) may contribute to gas exchange limitation in IPF. FWHMmean showed a significant increase over a 6-month period and has potential as a quantitative biomarker of pulmonary vascular disease progression in IPF.
Collapse
Affiliation(s)
- Nicholas D Weatherley
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK.,Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, Sheffield, UK
| | - James A Eaden
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Paul J C Hughes
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Matthew Austin
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Laurie Smith
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Jody Bray
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Helen Marshall
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Stephen Renshaw
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, Sheffield, UK
| | - Stephen M Bianchi
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, Sheffield, UK
| | - Jim M Wild
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Barton GP, Torres LA, Goss KN, Eldridge MW, Fain SB. Pulmonary Microvascular Changes in Adult Survivors of Prematurity: Utility of Dynamic Contrast-enhanced Magnetic Resonance Imaging. Am J Respir Crit Care Med 2020; 202:1471-1473. [PMID: 32640170 DOI: 10.1164/rccm.202002-0344le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Gopalan D, Gibbs JSR. From Early Morphometrics to Machine Learning-What Future for Cardiovascular Imaging of the Pulmonary Circulation? Diagnostics (Basel) 2020; 10:diagnostics10121004. [PMID: 33255668 PMCID: PMC7760106 DOI: 10.3390/diagnostics10121004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Imaging plays a cardinal role in the diagnosis and management of diseases of the pulmonary circulation. Behind the picture itself, every digital image contains a wealth of quantitative data, which are hardly analysed in current routine clinical practice and this is now being transformed by radiomics. Mathematical analyses of these data using novel techniques, such as vascular morphometry (including vascular tortuosity and vascular volumes), blood flow imaging (including quantitative lung perfusion and computational flow dynamics), and artificial intelligence, are opening a window on the complex pathophysiology and structure-function relationships of pulmonary vascular diseases. They have the potential to make dramatic alterations to how clinicians investigate the pulmonary circulation, with the consequences of more rapid diagnosis and a reduction in the need for invasive procedures in the future. Applied to multimodality imaging, they can provide new information to improve disease characterization and increase diagnostic accuracy. These new technologies may be used as sophisticated biomarkers for risk prediction modelling of prognosis and for optimising the long-term management of pulmonary circulatory diseases. These innovative techniques will require evaluation in clinical trials and may in themselves serve as successful surrogate end points in trials in the years to come.
Collapse
Affiliation(s)
- Deepa Gopalan
- Imperial College Healthcare NHS Trust, London W12 0HS, UK
- Imperial College London, London SW7 2AZ, UK;
- Cambridge University Hospital, Cambridge CB2 0QQ, UK
- Correspondence: ; Tel.: +44-77-3000-7780
| | - J. Simon R. Gibbs
- Imperial College London, London SW7 2AZ, UK;
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, UK
| |
Collapse
|
25
|
Broncano J, Bhalla S, Gutierrez FR, Vargas D, Williamson EE, Makan M, Luna A. Cardiac MRI in Pulmonary Hypertension: From Magnet to Bedside. Radiographics 2020; 40:982-1002. [PMID: 32609599 DOI: 10.1148/rg.2020190179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a disease characterized by progressive rise of pulmonary artery (PA) pressure, which can lead to right ventricular (RV) failure. It is usually diagnosed late because of the nonspecificity of its symptoms. RV performance and adaptation to an increased afterload, reflecting the interaction of the PA and RV as a morphofunctional unit, constitute a critical determinant of morbidity and mortality in these patients. Therefore, early detection of dysfunction may prevent treatment failure. Cardiac MRI constitutes one of the most complete diagnostic modalities for diagnosing PH. It allows evaluation of the morphology and hemodynamics of the PA and RV. Several cine steady-state free-precession (SSFP)-derived parameters (indexed RV end-diastolic volume or RV systolic volume) and phase-contrast regional area change have been suggested as powerful biomarkers for prognosis and treatment. Recently, new cardiac MRI sequences have been added to clinical protocols for PH evaluation, providing brand-new information. Strain analysis with myocardial feature tracking can help detect early RV dysfunction, even with preserved ejection fraction. Four-dimensional flow cardiac MRI can enhance assessment of advanced RV and PA hemodynamics. Late gadolinium enhancement (LGE) imaging may allow detection of replacement fibrosis in PH patients, which is associated with poor outcome. T1 mapping may help detect interstitial fibrosis, even with normal LGE imaging results. The authors analyze the imaging workup of PH with a focus on the role of morphologic and functional cardiac MRI in diagnosis and management of PH, including some of the newer techniques. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Jordi Broncano
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Sanjeev Bhalla
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Fernando R Gutierrez
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Daniel Vargas
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Eric E Williamson
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Majesh Makan
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Antonio Luna
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| |
Collapse
|
26
|
Allen BD, Schiebler ML, François CJ. Pulmonary Vascular Disease Evaluation with Magnetic Resonance Angiography. Radiol Clin North Am 2020; 58:707-719. [PMID: 32471539 DOI: 10.1016/j.rcl.2020.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pulmonary vascular assessment commonly relies on computed tomography angiography (CTA), but continued advances in magnetic resonance angiography have allowed pulmonary magnetic resonance angiography (pMRA) to become a reasonable alternative to CTA without exposing patients to ionizing radiation. pMRA allows the evaluation of pulmonary vascular anatomy, hemodynamic physiology, lung parenchymal perfusion, and (optionally) right and left ventricular function with a single examination. This article discusses pMRA techniques and artifacts; performance in commonly encountered pulmonary vascular diseases, specifically pulmonary embolism and pulmonary hypertension; and recent advances in both contrast-enhanced and noncontrast pMRA.
Collapse
Affiliation(s)
- Bradley D Allen
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611, USA.
| | - Mark L Schiebler
- Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Christopher J François
- Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| |
Collapse
|
27
|
Identification of Cardiac MRI and Bio-Marker Thresholds for One-Year Survival in Pre-Capillary Pulmonary Hypertension: Prospective Study. MEDICINA-LITHUANIA 2020; 56:medicina56040167. [PMID: 32283599 PMCID: PMC7230686 DOI: 10.3390/medicina56040167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 11/26/2022]
Abstract
Background and objectives: Non-invasive imaging of the heart has an important place in the diagnosis and management of pulmonary arterial hypertension (PAH). The aim of this study was to establish the thresholds of cardiac magnetic resonance imaging (CMRI)-derived biventricular deformation, function parameters, and levels of N-terminal pro brain natriuretic peptide (NT-proBNP) for the prediction of survival of pre-capillary pulmonary hypertension (PHprecap) patients. Materials and Methods: In total, 64 incident PHprecap cases, who underwent CMRI, were consecutively enrolled in a prospective cohort study. Patients underwent a systemic evaluation, including measurement of NT-proBNP, two-dimensional (2D) echocardiography, six-minute walk test (6MWT), CMRI with feature tracking (FT), and right-heart catheterization (RHC). Patients were divided into two groups according to one-year survival (survival and non-survival groups). Survival analysis was performed. Results: One-year survival was 79.6%. The distribution between age, sex, mean pulmonary artery pressure (mPAP), New York Heart Association (NYHA) functional class, and 6MWT did not differ between the groups. Survival was significantly lower in the PAH group associated with connective tissue disease (CTD-PAH), where 44% (n = 4) of patients died during the first year. Univariate analysis revealed that severely reduced right-ventricle (RV) ejection fraction (EF) <25.5%, left-ventricle global longitudinal strain (LV GLS) >−14.18%, and right pulmonary artery (RPA) relative area change (RAC) <19%, and severely increased NT-proBNP level >1738 (ng/L) indicate an increased risk of death in PHprecap patients. Conclusions: Impaired RV systolic function and LV global longitudinal strain, decrease of pulmonary artery distensibility, and CTD-PAH etiology, together with high NT-proBNP level, impair prognosis in pre-capillary PH patients. These findings are important for the risk stratification and management of pre-capillary pulmonary hypertension patients.
Collapse
|
28
|
Colin GC, Pouleur AC, Gerber BL, Poncelet PA, de Meester C, D’Hondt AM, Vlassenbroek A, Houard L, Gevenois PA, Ghaye B. Pulmonary hypertension detection by computed tomography pulmonary transit time in heart failure with reduced ejection fraction. Eur Heart J Cardiovasc Imaging 2019; 21:1291-1298. [DOI: 10.1093/ehjci/jez290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/25/2019] [Accepted: 11/11/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Aims
To evaluate the relationships between pulmonary transit time (PTT), cardiac function, and pulmonary haemodynamics in patients with heart failure with reduced ejection fraction (HFrEF) and to explore how PTT performs in detecting pulmonary hypertension (PH).
Methods and results
In this prospective study, 57 patients with advanced HFrEF [49 men, 51 years ± 8, mean left ventricular (LV) ejection fraction 26% ± 8] underwent echocardiography, right heart catheterization, and cardiac computed tomography (CT). PTT was measured as the time interval between peaks of attenuation in right ventricle (RV) and LV and was compared between patients with or without PH and 15 controls. PTT was significantly longer in HFrEF patients with PH (21 s) than in those without PH (11 s) and controls (8 s) (P < 0.001) but not between patients without PH and controls (P = 0.109). PTT was positively correlated with pulmonary artery wedge pressure (PAWP) (r = 0.74), mean pulmonary artery pressure (r = 0.68), N-terminal pro-B-type natriuretic peptide (r = 0.60), mitral (r = 0.54), and tricuspid (r = 0.37) regurgitation grades, as well as with LV, RV, and left atrial volumes (r from 0.39 to 0.64) (P < 0.01). PTT was negatively correlated with cardiac index (r = −0.63) as well as with LV (r = −0.66) and RV (r = −0.74) ejection fractions. PAWP, cardiac index, mitral regurgitation grade, and RV end-diastolic volume were all independent predictors of PTT. PTT value ≥14 s best-detected PH with 91% sensitivity and 88% specificity (area under the receiver operating characteristic curve: 0.95).
Conclusion
In patients with HFrEF, PTT correlates with cardiac function and pulmonary haemodynamics, is determined by four independent parameters, and performs well in detecting PH.
Collapse
Affiliation(s)
- Geoffrey C Colin
- Division of Radiology, Cliniques Universitaires Saint-Luc UCL, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Anne-Catherine Pouleur
- Division of Cardiology, Cliniques Universitaires Saint-Luc UCL, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Bernhard L Gerber
- Division of Cardiology, Cliniques Universitaires Saint-Luc UCL, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Pierre-Antoine Poncelet
- Division of Radiology, Cliniques Universitaires Saint-Luc UCL, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Christophe de Meester
- Division of Cardiology, Cliniques Universitaires Saint-Luc UCL, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Anne-Marie D’Hondt
- Division of Cardiology, Cliniques Universitaires Saint-Luc UCL, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | | | - Laura Houard
- Division of Cardiology, Cliniques Universitaires Saint-Luc UCL, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | | | - Benoit Ghaye
- Division of Radiology, Cliniques Universitaires Saint-Luc UCL, Avenue Hippocrate 10, 1200 Brussels, Belgium
| |
Collapse
|
29
|
Houard L, Cosyns B, Droogmans S. Old wine in a new bottle: non-invasive quantitative evaluation of pulmonary congestion with pulmonary blood volume index by cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging 2019; 20:1377-1378. [PMID: 31544931 DOI: 10.1093/ehjci/jez239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Laura Houard
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Avenue Hippocrate 10, 1200 Woluwé-Saint-Lambert, St Luc, Brussels, Belgium.,Department of Cardiology, Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Laarbeeklaan 101, 1090 Jette, Belgium
| | - Bernard Cosyns
- Department of Cardiology, Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Laarbeeklaan 101, 1090 Jette, Belgium
| | - Steven Droogmans
- Department of Cardiology, Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Laarbeeklaan 101, 1090 Jette, Belgium
| |
Collapse
|
30
|
Gupta A, Sharifov OF, Lloyd SG, Tallaj JA, Aban I, Dell'italia LJ, Denney TS, Gupta H. Novel Noninvasive Assessment of Pulmonary Arterial Stiffness Using Velocity Transfer Function. J Am Heart Assoc 2019; 7:e009459. [PMID: 30371198 PMCID: PMC6222968 DOI: 10.1161/jaha.118.009459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Pulmonary artery (PA) stiffness is associated with increased pulmonary vascular resistance (PVR). PA stiffness is accurately described by invasive PA impedance because it considers pulsatile blood flow through elastic PAs. We hypothesized that PA stiffness and impedance could be evaluated noninvasively by PA velocity transfer function (VTF), calculated as a ratio of the frequency spectra of output/input mean velocity profiles in PAs. Methods and Results In 20 participants (55±19 years, 14 women) undergoing clinically indicated right‐sided heart catheterization, comprehensive phase‐contrast and cine‐cardiac magnetic resonance imaging was performed to calculate PA VTF, along with right ventricular mass and function. PA impedance was measured as a ratio of frequency spectra of invasive PA pressure and echocardiographically derived PA flow waveforms. Mean PA pressure was 29.5±13.6 mm Hg, and PVR was 3.5±2.8 Wood units. A mixed‐effects model showed VTF was significantly associated with PA impedance independent of elevation in pulmonary capillary wedge pressure (P=0.005). The mean of higher frequency moduli of VTF correlated with PVR (ρ=0.63; P=0.003) and discriminated subjects with low (n=10) versus elevated PVR (≥2.5 Wood units, n=10), with an area under the curve of 0.95, similar to discrimination by impedance (area under the curve=0.93). VTF had a strong inverse association with right ventricular ejection fraction (ρ=−0.73; P<0.001) and a significant positive correlation with right ventricular mass index (ρ=0.51; P=0.02). Conclusions VTF, a novel right ventricular–PA axis coupling parameter, is a surrogate for PA impedance with the potential to assess PA stiffness and elevation in PVR noninvasively and reliably using cardiac magnetic resonance imaging.
Collapse
Affiliation(s)
- Ankur Gupta
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL.,3 Division of Cardiovascular Medicine and Department of Radiology Brigham and Women's Hospital Heart and Vascular Center Harvard Medical School Boston MA
| | - Oleg F Sharifov
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL
| | - Steven G Lloyd
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL.,4 Veterans Affairs Medical Center Birmingham AL
| | - Jose A Tallaj
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL.,4 Veterans Affairs Medical Center Birmingham AL
| | - Inmaculada Aban
- 2 Department of Biostatistics University of Alabama at Birmingham AL
| | - Louis J Dell'italia
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL.,4 Veterans Affairs Medical Center Birmingham AL
| | - Thomas S Denney
- 5 Department of Electrical and Computer Engineering Auburn University Auburn AL
| | - Himanshu Gupta
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL.,4 Veterans Affairs Medical Center Birmingham AL.,6 Valley Medical Group Ridgewood NJ
| |
Collapse
|
31
|
Update on MR imaging of the pulmonary vasculature. Int J Cardiovasc Imaging 2019; 35:1483-1497. [PMID: 31030315 DOI: 10.1007/s10554-019-01603-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023]
Abstract
Magnetic resonance imaging (MRI) plays an increasingly important role in the non-invasive evaluation of the pulmonary vasculature. MR angiographic (MRA) techniques provide morphological information, while MR perfusion techniques provide functional information of the pulmonary vasculature. Contrast-enhanced MRA can be performed at high spatial resolution using 3D T1-weighted spoiled gradient echo sequence or at high temporal resolution using time-resolved techniques. Non-contrast MRA can be performed using 3D steady state free precession, double inversion fast spin echo, time of flight or phase contrast sequences. MR perfusion can be done using dynamic contrast-enhanced technique or using non-contrast techniques such as arterial spin labelling and time-resolved imaging of lungs during free breathing with Fourier decomposition analysis. MRI is used in the evaluation of acute and chronic pulmonary embolism, pulmonary hypertension and other vascular abnormalities, congenital anomalies and neoplasms. In this article, we review the different MR techniques used in the evaluation of pulmonary vasculature and its clinical applications.
Collapse
|
32
|
Chen H, Xiang B, Zeng J, Luo H, Yang Q. The feasibility in estimating pulmonary vascular resistance by cardiovascular magnetic resonance in pulmonary hypertension: A systematic review and meta-analysis. Eur J Radiol 2019; 114:137-145. [PMID: 31005164 DOI: 10.1016/j.ejrad.2019.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Cardiac magnetic resonance (CMR) is a substitute technique for noninvasively assessing pulmonary hemodynamics. Some preliminary studies have shown that CMR has the potential to quantify pulmonary vascular resistance (PVR). However, the evaluative value has not been well established. The purpose of the systematic review is to assess the feasibility of CMR in the measurement of PVR in patients with pulmonary hypertension (PH). METHODS Studies were retrieved from multiple databases. Methodological evaluation of CMR and right heart catheterization (RHC) in estimating PVR were obtained from included studies. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the quality of studies. The results of comparisons of continuous variables are reported as weighted mean difference (WMD), together with the corresponding 95% confidence intervals (CIs). Summary correlation coefficient (r) values were extracted from each study, and 95% CIs were calculated after Fisher's z transformation. Sensitivity analysis was conducted to investigate potential heterogeneity. RESULTS A total of 15 studies were included in the systematic review, and 6 of these studies were included in the meta-analysis. The pooled WMD with fixed-effects analysis revealed no statistical significance between PVR-CMR and PVR-RHC in patients with PH (WMD = 0.278 WU; 95% CI: -0.415 to 0.972; p = 0.431). The pooled r value for all studies was 0.85 (95% CI: 0.81, 0.89), and notable heterogeneity was evident. The pooled r value after the exclusion of one heterogeneous article was 0.81 (95% CI: 0.74, 0.87) and was not significantly heterogeneous. CONCLUSIONS CMR and RHC have good consistency in the testing of PVR in the meta-analysis. The systematic review shows that completely noninvasive evaluation of PVR with CMR in patients with pH is feasible.
Collapse
Affiliation(s)
- Hang Chen
- Department of Radiology, The Yongchuan Affiliated Hospital, Chongqing Medical University, Yongchuan District, Chongqing, PR China
| | - Bo Xiang
- Department of Radiology, The Yongchuan Affiliated Hospital, Chongqing Medical University, Yongchuan District, Chongqing, PR China
| | - Jian Zeng
- Department of Radiology, The Yongchuan Affiliated Hospital, Chongqing Medical University, Yongchuan District, Chongqing, PR China
| | - Hechuan Luo
- Department of Radiology, The Yongchuan Affiliated Hospital, Chongqing Medical University, Yongchuan District, Chongqing, PR China
| | - Quan Yang
- Department of Radiology, The Yongchuan Affiliated Hospital, Chongqing Medical University, Yongchuan District, Chongqing, PR China.
| |
Collapse
|
33
|
Kiely DG, Levin DL, Hassoun PM, Ivy D, Jone PN, Bwika J, Kawut SM, Lordan J, Lungu A, Mazurek JA, Moledina S, Olschewski H, Peacock AJ, Puri G, Rahaghi FN, Schafer M, Schiebler M, Screaton N, Tawhai M, van Beek EJ, Vonk-Noordegraaf A, Vandepool R, Wort SJ, Zhao L, Wild JM, Vogel-Claussen J, Swift AJ. EXPRESS: Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI). Pulm Circ 2019; 9:2045894019841990. [PMID: 30880632 PMCID: PMC6732869 DOI: 10.1177/2045894019841990] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension (PH) is highly heterogeneous and despite treatment advances it remains a life-shortening condition. There have been significant advances in imaging technologies, but despite evidence of their potential clinical utility, practice remains variable, dependent in part on imaging availability and expertise. This statement summarizes current and emerging imaging modalities and their potential role in the diagnosis and assessment of suspected PH. It also includes a review of commonly encountered clinical and radiological scenarios, and imaging and modeling-based biomarkers. An expert panel was formed including clinicians, radiologists, imaging scientists, and computational modelers. Section editors generated a series of summary statements based on a review of the literature and professional experience and, following consensus review, a diagnostic algorithm and 55 statements were agreed. The diagnostic algorithm and summary statements emphasize the key role and added value of imaging in the diagnosis and assessment of PH and highlight areas requiring further research.
Collapse
Affiliation(s)
- David G. Kiely
- Sheffield Pulmonary Vascular Disease
Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
| | - David L. Levin
- Department of Radiology, Mayo Clinic,
Rochester, MN, USA
| | - Paul M. Hassoun
- Department of Medicine John Hopkins
University, Baltimore, MD, USA
| | - Dunbar Ivy
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | - Pei-Ni Jone
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | | | - Steven M. Kawut
- Department of Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jim Lordan
- Freeman Hospital, Newcastle Upon Tyne,
Newcastle, UK
| | - Angela Lungu
- Technical University of Cluj-Napoca,
Cluj-Napoca, Romania
| | - Jeremy A. Mazurek
- Division of Cardiovascular Medicine,
Hospital
of the University of Pennsylvania,
Philadelphia, PA, USA
| | | | - Horst Olschewski
- Division of Pulmonology, Ludwig
Boltzmann Institute Lung Vascular Research, Graz, Austria
| | - Andrew J. Peacock
- Scottish Pulmonary Vascular Disease,
Unit, University of Glasgow, Glasgow, UK
| | - G.D. Puri
- Department of Anaesthesiology and
Intensive Care, Post Graduate Institute of Medical Education and Research,
Chandigarh, India
| | - Farbod N. Rahaghi
- Brigham and Women’s Hospital, Harvard
Medical School, Boston, MA, USA
| | - Michal Schafer
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | - Mark Schiebler
- Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Merryn Tawhai
- Auckland Bioengineering Institute,
Auckland, New Zealand
| | - Edwin J.R. van Beek
- Edinburgh Imaging, Queens Medical
Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Rebecca Vandepool
- University of Arizona, Division of
Translational and Regenerative Medicine, Tucson, AZ, USA
| | - Stephen J. Wort
- Royal Brompton Hospital, London,
UK
- Imperial College, London, UK
| | | | - Jim M. Wild
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
- Academic Department of Radiology,
University of Sheffield, Sheffield, UK
| | - Jens Vogel-Claussen
- Institute of diagnostic and
Interventional Radiology, Medical Hospital Hannover, Hannover, Germany
| | - Andrew J. Swift
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
- Academic Department of Radiology,
University of Sheffield, Sheffield, UK
| |
Collapse
|
34
|
Ait Ali L, Aquaro GD, Peritore G, Ricci F, De Marchi D, Emdin M, Passino C, Festa P. Cardiac Magnetic Resonance Evaluation of Pulmonary Transit Time and Blood Volume in Adult Congenital Heart disease. J Magn Reson Imaging 2019; 50:779-786. [DOI: 10.1002/jmri.26684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lamia Ait Ali
- Institute of Clinical Physiology CNR; Massa Italy
- MRI Lab, Fondazione G. Monasterio CNR-Regione Toscana; Pisa Italy
| | | | | | - Fabrizio Ricci
- Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences; "G. d'Annunzio" University; Chieti Italy
| | | | - Michele Emdin
- Division of Cardiology and Cardiovascular Medicine; Fondazione G. Monasterio CNR-Regione Toscana; Pisa Italy
| | - Claudio Passino
- Division of Cardiology and Cardiovascular Medicine; Fondazione G. Monasterio CNR-Regione Toscana; Pisa Italy
| | - Pierluigi Festa
- MRI Lab, Fondazione G. Monasterio CNR-Regione Toscana; Pisa Italy
- Pediatric Cardiology and GUCH Unit; Fondazione G. Monasterio CNR-Regione Toscana; Massa Italy
| |
Collapse
|
35
|
Johns CS, Wild JM, Rajaram S, Swift AJ, Kiely DG. Current and emerging imaging techniques in the diagnosis and assessment of pulmonary hypertension. Expert Rev Respir Med 2019; 12:145-160. [PMID: 29261337 DOI: 10.1080/17476348.2018.1420478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pulmonary hypertension (PH) is a challenging condition to diagnose and treat. Over the last two decades, there have been significant advances in therapeutic approaches and imaging technologies. Current guidelines emphasize the importance of cardiac catheterization; however, the increasing availability of non-invasive imaging has the potential to improve diagnostic rates, whilst providing additional information on patient phenotypes. Areas covered: This review discusses the role of imaging in the diagnosis, prognostic assessment and follow-up of patients with PH. Imaging methods, ranging from established investigations (chest radiography, echocardiography, nuclear medicine and computerized tomography (CT)), to emerging modalities (dual energy CT, magnetic resonance imaging (MRI), optical coherence tomography and positron emission tomography (PET)) are reviewed. The value and limitations of the clinical utility of these imaging modalities and their potential clinical application are reviewed. Expert commentary: Imaging plays a key role in the diagnosis and classification of pulmonary hypertension. It also provides valuable prognostic information and emerging evidence supports a role for serial assessments. The authors anticipate an increasing role for imaging in the pulmonary hypertension clinic. This will reduce the need for invasive investigations, whilst providing valuable insights that will improve our understanding of disease facilitate a more targeted approach to treatment.
Collapse
Affiliation(s)
| | - Jim M Wild
- a Academic Radiology , The University of Sheffield , Sheffield , UK
| | - Smitha Rajaram
- b Sheffield Pulmonary Vascular Disease Unit , Sheffield Teaching Hospitals , Sheffield , UK
| | - Andy J Swift
- a Academic Radiology , The University of Sheffield , Sheffield , UK
| | - David G Kiely
- b Sheffield Pulmonary Vascular Disease Unit , Sheffield Teaching Hospitals , Sheffield , UK
| |
Collapse
|
36
|
Monahan K, Coffin S, Lawson M, Saliba L, Rutherford R, Brittain E. Pulmonary transit time from contrast echocardiography and cardiac magnetic resonance imaging: Comparison between modalities and the impact of region of interest characteristics. Echocardiography 2018; 36:119-124. [PMID: 30488494 DOI: 10.1111/echo.14209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/27/2018] [Accepted: 10/13/2018] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION The degree of correlation of pulmonary transit time (PTT) between contrast echocardiography and cardiac magnetic resonance imaging (MRI) across the spectrum of cardiac disease has not been quantified. In addition, the degree to which PTT estimates are affected by variation in location and size of regions of interest (ROI) is unknown. METHODS Pulmonary transit time was obtained using an inflection point technique from individuals that underwent contrast echocardiography and cardiac MRI. Right ventricular, left atrial, and left ventricular ROIs were evaluated, and two sizes for each ROI were used. The Spearman correlation coefficient and Bland-Altman analysis were used for comparisons between modalities. Bland-Altman plots were also used to measure the impact of ROI size and location on transit times. RESULTS Fourteen participants (age: 27-64 years; LV ejection fraction: 30%-60%) underwent both studies a median of 1 week apart. The correlation between modalities was significant for PTT (r = 0.65; P = 0.01) and normalized PTT (r = 0.80; P = 0.001). Cardiac MRI yielded transit times consistently higher than contrast echocardiography (bias ~ 1.4 seconds), but the discordance was not dependent on transit time magnitude. Low bias was observed for comparisons of ROI size and location (<0.5 seconds). CONCLUSIONS Contrast echocardiography underestimates transit time measurements obtained by cardiac MRI, although the discrepancy was systematic and may have been contributed to by the interval between imaging studies. ROI location and size did not impact transit time values, suggesting that ROIs could be placed without intensive training, a step toward incorporation of real-time PTT measurement into echocardiographic laboratory workflow.
Collapse
Affiliation(s)
- Ken Monahan
- Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, Tennessee
| | - Samuel Coffin
- Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, Tennessee
| | - Mark Lawson
- Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, Tennessee
| | - Linda Saliba
- Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, Tennessee
| | - Ray Rutherford
- Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, Tennessee
| | - Evan Brittain
- Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, Tennessee
| |
Collapse
|
37
|
Schoenfeld C, Hinrichs JB, Olsson KM, Kuettner MA, Renne J, Kaireit T, Czerner C, Wacker F, Hoeper MM, Meyer BC, Vogel-Claussen J. Cardio-pulmonary MRI for detection of treatment response after a single BPA treatment session in CTEPH patients. Eur Radiol 2018; 29:1693-1702. [PMID: 30311032 DOI: 10.1007/s00330-018-5696-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Chronic thromboembolic pulmonary hypertension (CTEPH) can be treated with balloon pulmonary angioplasty (BPA) in inoperable patients. Sensitive non-invasive imaging methods are missing to detect treatment response after a single BPA treatment session. Therefore, the aim of this study was to measure treatment response after a single BPA session using cardio-pulmonary MRI. MATERIALS AND METHODS Overall, 29 patients with CTEPH were examined with cardio-pulmonary MRI before and 62 days after their initial BPA session. Pulmonary blood flow (PBF), first-pass bolus kinetic parameters, and biventricular mass and function were determined. Multiple linear regression analysis was implemented to estimate the relationship of PBF change in the treated lobe with treatment change of full width at half maximum (FWHM), cardiac output (CO), ventricular mass index (VMI), pulmonary transit time (PTT) and PBF change in the non-treated lobes. Paired Wilcoxon rank sum test and Spearman rho correlation were used. RESULTS After BPA regional PBF increased in the treated lobe (p < 0.0001) as well as in non-treated lobes (p = 0.015). PBF treatment changes in the treated lobe were significantly larger compared with the non-treated lobes (p = 0.0049). Change in NT proBNP, MRI-derived mean pulmonary artery pressure (mPAP), PTT, FWHM, right ventricular (RV) ejection fraction, RV stroke volume, CO, VMI and PBF in the non-treated lobes correlated with PBF change in the treated lobe (p < 0.05). PBF changes in the treated lobe were independently predicted by PTT as well as PBF change in the non-treated lobes. CONCLUSION Cardio-pulmonary MRI detects and quantifies treatment response after a single BPA treatment session. KEY POINTS • Two months after BPA regional parenchymal pulmonary perfusion (PBF) increased in the total lung parenchyma (p = 0.005), the treated lobes (p < 0.0001) and non-treated lobes (p = 0.015). • The PBF treatment changes in the treated lobe were significantly larger than in the non-treated lobes (p = 0.0049). • Change in NT proBNP, MRI-derived mean pulmonary artery pressure, pulmonary transit time, full width at half maximum, right ventricular (RV) ejection fraction, RV stroke volume, cardiac output, ventricular mass index and PBF in the non-treated lobes correlated with PBF change in the treated lobe (p < 0.05).
Collapse
Affiliation(s)
- Christian Schoenfeld
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, OE 8220, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jan B Hinrichs
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, OE 8220, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Karen M Olsson
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Martin-Alexander Kuettner
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, OE 8220, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Julius Renne
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, OE 8220, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Till Kaireit
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, OE 8220, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christoph Czerner
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, OE 8220, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, OE 8220, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marius M Hoeper
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Bernhard C Meyer
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, OE 8220, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, OE 8220, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
38
|
Monahan K, Lenihan D, Brittain EL, Saliba L, Piana RN, Robison LL, Hudson MM, Armstrong GT. The relationship between pulmonary artery wedge pressure and pulmonary blood volume derived from contrast echocardiography: A proof-of-concept study. Echocardiography 2018; 35:1266-1270. [PMID: 29756230 DOI: 10.1111/echo.14023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pulmonary transit time (PTT) obtained from contrast echocardiography is a marker of global cardiopulmonary function. Pulmonary blood volume (PBV), derived from PTT, may be a noninvasive surrogate for left-sided filling pressures, such as pulmonary artery wedge pressure (PAWP). We sought to assess the relationship between PBV obtained from contrast echocardiography and PAWP. METHODS Participants were adult survivors of childhood cancer that had contrast echocardiography performed nearly simultaneously with right-heart catheterization. PTT was derived from time-intensity curves of contrast passage through the right ventricle (RV) and left atrium (LA). PBV relative to overall stroke volume (rPBV) was estimated from the product of PTT and heart rate during RV-LA transit. PAWP was obtained during standard right-heart catheterization. The Spearman correlation coefficient was used to assess the relationship between rPBV and PAWP. RESULTS The study population consisted of 7 individuals who had contrast echocardiography and right-heart catheterization within 3 hours of each other. There was a wide range of right atrial (1-17 mm Hg), mean pulmonary artery (18-42 mm Hg), and PAW pressures (4-26 mm Hg) as well as pulmonary vascular resistance (<1-6 Wood Units). We observed a statistically significant correlation between rPBV and PAWP (r = .85; P = .02). CONCLUSION Relative PBV derived from contrast echocardiography correlates with PAWP. If validated in larger studies, rPBV could potentially be used as an alternative to invasively determine left-sided filling pressure.
Collapse
Affiliation(s)
- Ken Monahan
- Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, TN, USA
| | - Daniel Lenihan
- Division of Cardiovascular Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Evan L Brittain
- Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, TN, USA
| | - Linda Saliba
- Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, TN, USA
| | - Robert N Piana
- Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, TN, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St Jude Children's, Research Hospital, Memphis, TN, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St Jude Children's, Research Hospital, Memphis, TN, USA.,Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children's, Research Hospital, Memphis, TN, USA.,Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
39
|
Amaxopoulou C, Gnannt R, Higashigaito K, Jung A, Kellenberger CJ. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis. Pediatr Radiol 2018; 48:165-175. [PMID: 29143200 DOI: 10.1007/s00247-017-4021-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/10/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Because of its absence of ionising radiation and possibility for obtaining functional information, MRI is promising for assessing lung disease in children who require repetitive imaging for long-term follow-up. OBJECTIVE To describe MRI findings in children with cystic fibrosis and evaluate semi-quantitative dynamic contrast-enhanced lung perfusion. MATERIALS AND METHODS We retrospectively compared lung MRI in 25 children and young adults with cystic fibrosis (median age 3.7 years) to 12 children (median age 2 years) imaged for other pathologies. MRI at 1.5 T included respiratory-gated sequences and contrast-enhanced lung perfusion imaging. We described and graded any morphologic change. Signal enhancement and time to peak values of perfusion abnormalities were compared to those of normally enhancing lung parenchyma. RESULTS Frequent findings in patients with cystic fibrosis were bronchial wall thickening (24/25, 96%), areas of consolidation (22/25, 88%), enlarged lymph nodes (20/25, 80%), bronchiectasis (5/25, 20%) and mucus plugging (3/25, 12%). Compared to normally enhancing lung, perfusion defects (21/25, 84%), characterised by decreased enhancement, showed prolonged time to peak. Areas of consolidation showed increased enhancement. While time to peak of procedure-related atelectasis was not significantly different from that of normal lung, disease-related consolidation showed prolonged time to peak (P=0.01). CONCLUSION Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation.
Collapse
Affiliation(s)
- Christina Amaxopoulou
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Steinwiesstr. 75, 8032, Zürich, CH, Switzerland. .,Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Ralph Gnannt
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Steinwiesstr. 75, 8032, Zürich, CH, Switzerland.,Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Kai Higashigaito
- Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, Zürich, Switzerland
| | - Andreas Jung
- Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland.,Division of Pneumology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Christian J Kellenberger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Steinwiesstr. 75, 8032, Zürich, CH, Switzerland.,Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
40
|
Johns CS, Swift AJ, Hughes PJ, Ohno Y, Schiebler M, Wild JM. Pulmonary MR angiography and perfusion imaging—A review of methods and applications. Eur J Radiol 2017; 86:361-370. [DOI: 10.1016/j.ejrad.2016.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/01/2016] [Indexed: 10/20/2022]
|
41
|
Model-Based Characterization of the Transpulmonary Circulation by Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Heart Failure and Healthy Volunteers. Invest Radiol 2016; 51:720-727. [DOI: 10.1097/rli.0000000000000304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Li W, Yang T, Zhang Y, Gu Q, Liu ZH, Ni XH, Luo Q, Xiong CM, He JG. Prognostic value of right ventricular ejection/filling parameters in IPAH using cardiac magnetic resonance: A prospective pilot study. Respirology 2016; 22:172-178. [PMID: 27442028 DOI: 10.1111/resp.12861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 05/14/2016] [Accepted: 06/06/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Wen Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Tao Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Yan Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Qing Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Zhi-Hong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Xin-Hai Ni
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Qin Luo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Chang-Ming Xiong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Jian-Guo He
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| |
Collapse
|
43
|
Schoenfeld C, Cebotari S, Hinrichs J, Renne J, Kaireit T, Olsson KM, Voskrebenzev A, Gutberlet M, Hoeper MM, Welte T, Haverich A, Wacker F, Vogel-Claussen J. MR Imaging–derived Regional Pulmonary Parenchymal Perfusion and Cardiac Function for Monitoring Patients with Chronic Thromboembolic Pulmonary Hypertension before and after Pulmonary Endarterectomy. Radiology 2016; 279:925-34. [DOI: 10.1148/radiol.2015150765] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Herold IHF, Saporito S, Mischi M, van Assen HC, Bouwman RA, de Lepper AGW, van den Bosch HCM, Korsten HHM, Houthuizen P. Pulmonary transit time measurement by contrast-enhanced ultrasound in left ventricular dyssynchrony. Echo Res Pract 2016; 3:35-43. [PMID: 27249553 PMCID: PMC4989099 DOI: 10.1530/erp-16-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 05/16/2016] [Indexed: 11/08/2022] Open
Abstract
Background Pulmonary transit time (PTT) is an indirect measure of preload and left ventricular function, which can be estimated using the indicator dilution theory by contrast-enhanced ultrasound (CEUS). In this study, we first assessed the accuracy of PTT-CEUS by comparing it with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Secondly, we tested the hypothesis that PTT-CEUS correlates with the severity of heart failure, assessed by MRI and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Methods and results Twenty patients referred to our hospital for cardiac resynchronization therapy (CRT) were enrolled. DCE-MRI, CEUS, and NT-proBNP measurements were performed within an hour. Mean transit time (MTT) was obtained by estimating the time evolution of indicator concentration within regions of interest drawn in the right and left ventricles in video loops of DCE-MRI and CEUS. PTT was estimated as the difference of the left and right ventricular MTT. Normalized PTT (nPTT) was obtained by multiplication of PTT with the heart rate. Mean PTT-CEUS was 10.5±2.4s and PTT-DCE-MRI was 10.4±2.0s (P=0.88). The correlations of PTT and nPTT by CEUS and DCE-MRI were strong; r=0.75 (P=0.0001) and r=0.76 (P=0.0001), respectively. Bland–Altman analysis revealed a bias of 0.1s for PTT. nPTT-CEUS correlated moderately with left ventricle volumes. The correlations for PTT-CEUS and nPTT-CEUS were moderate to strong with NT-proBNP; r=0.54 (P=0.022) and r=0.68 (P=0.002), respectively. Conclusions (n)PTT-CEUS showed strong agreement with that by DCE-MRI. Given the good correlation with NT-proBNP level, (n)PTT-CEUS may provide a novel, clinically feasible measure to quantify the severity of heart failure. Clinical Trial Registry: NCT01735838
Collapse
Affiliation(s)
- Ingeborg H F Herold
- Department of Anesthesiology and Intensive-Care, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | - Salvatore Saporito
- Department of Electrical Engineering, Signal Processing Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Massimo Mischi
- Department of Electrical Engineering, Signal Processing Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Hans C van Assen
- Department of Electrical Engineering, Signal Processing Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - R Arthur Bouwman
- Department of Anesthesiology and Intensive-Care, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | - Anouk G W de Lepper
- Department of Cardiology, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | | | - Hendrikus H M Korsten
- Department of Anesthesiology and Intensive-Care, Catharina Hospital Eindhoven, Eindhoven, the Netherlands Department of Electrical Engineering, Signal Processing Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Patrick Houthuizen
- Department of Cardiology, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| |
Collapse
|
45
|
Swift AJ. The cardiopulmonary unit. IMAGING 2016. [DOI: 10.1183/2312508x.10003215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
46
|
Stewart NJ, Wild JM. MRI methods for structural and functional assessment of the lungs: proton and multinuclear. IMAGING 2016. [DOI: 10.1183/2312508x.10002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
47
|
Cardiac magnetic resonance findings predicting mortality in patients with pulmonary arterial hypertension: a systematic review and meta-analysis. Eur Radiol 2016; 26:3771-3780. [PMID: 26847041 PMCID: PMC5052291 DOI: 10.1007/s00330-016-4217-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 01/20/2023]
Abstract
Objectives To provide a comprehensive overview of all reported cardiac magnetic resonance (CMR) findings that predict clinical deterioration in pulmonary arterial hypertension (PAH). Methods MEDLINE and EMBASE electronic databases were systematically searched for longitudinal studies published by April 2015 that reported associations between CMR findings and adverse clinical outcome in PAH. Studies were appraised using previously developed criteria for prognostic studies. Meta-analysis using random effect models was performed for CMR findings investigated by three or more studies. Results Eight papers (539 patients) investigating 21 different CMR findings were included. Meta-analysis showed that right ventricular (RV) ejection fraction was the strongest predictor of mortality in PAH (pooled HR 1.23 [95 % CI 1.07–1.41], p = 0.003) per 5 % decrease. In addition, RV end-diastolic volume index (pooled HR 1.06 [95 % CI 1.00–1.12], p = 0.049), RV end-systolic volume index (pooled HR 1.05 [95 % CI 1.01–1.09], p = 0.013) and left ventricular end-diastolic volume index (pooled HR 1.16 [95 % CI 1.00–1.34], p = 0.045) were of prognostic importance. RV and LV mass did not provide prognostic information (p = 0.852 and p = 0.983, respectively). Conclusion This meta-analysis substantiates the clinical yield of specific CMR findings in the prognostication of PAH patients. Decreased RV ejection is the strongest and most well established predictor of mortality. Key Points • Cardiac magnetic resonance imaging is useful for prognostication in pulmonary arterial hypertension. • Right ventricular ejection fraction is the strongest predictor of mortality. • Serial CMR evaluation seems to be of additional prognostic importance. • Accurate prognostication can aid in adequate and timely intensification of PAH-specific therapy. Electronic supplementary material The online version of this article (doi:10.1007/s00330-016-4217-6) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Multiparametric Magnetic Resonance Imaging in Pulmonary Hypertension. CURRENT CARDIOVASCULAR IMAGING REPORTS 2015. [DOI: 10.1007/s12410-015-9360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Abstract
Noninvasive imaging of the heart plays an important role in the diagnosis and management of pulmonary hypertension (PH), and several well-established techniques are available for assessing performance of the right ventricle, the key determinant of patient survival. While right heart catheterisation is mandatory for establishing a diagnosis of PH, echocardiography is the most important screening tool for early detection of PH. Cardiac magnetic resonance imaging (CMRI) is also a reliable and practical tool that can be used as part of the diagnostic work-up. Echocardiography can measure a range of haemodynamic and anatomical variables (e.g. pericardial effusion and pulmonary artery pressure), whereas CMRI provides complementary information to echocardiography via high-resolution, three-dimensional imaging. Together with echocardiography and CMRI, techniques such as high-resolution computed tomography and positron emission tomography may also be valuable for screening, monitoring and follow-up assessments of patients with PH, but their clinical relevance has yet to be established. Technological advances have produced new variants of echocardiography, CMRI and positron emission tomography, and these permit closer examination of myocardial architecture, motion and deformation. Integrating these new tools into clinical practice in the future may lead to more precise noninvasive determination of diagnosis, risk and prognosis for PH.
Collapse
|
50
|
Evans WN, Acherman RJ, Winn BJ, Yumiaco NS, Galindo A, Rothman A, Restrepo H. Fontan hepatic fibrosis and pulmonary vascular development. Pediatr Cardiol 2015; 36:657-61. [PMID: 25381625 DOI: 10.1007/s00246-014-1061-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/31/2014] [Indexed: 11/25/2022]
Abstract
Fontan patients are at risk for hepatic fibrosis; however, risk factors are unclear. We performed a multivariate analysis in a small cohort of 14 patients (7-24 years old, mean 15) with Fontan circulation, undergoing cardiac catheterization and transvenous liver biopsies, all demonstrating fibrosis. We found by stepwise regression analysis that the history of pulmonary atresia was a predictor of higher total hepatic fibrosis scores than a history of unobstructed pulmonary blood flow (p = 0.002). Other variables including age, time from Fontan, hemodynamic measurements, and laboratory values were not predictive of total fibrosis scores at p values <0.05. Hepatic fibrosis scores between those born with pulmonary atresia versus unrestricted pulmonary blood flow may reflect differences in pulmonary circulatory physiology, resulting from differences in pulmonary vascular development.
Collapse
Affiliation(s)
- William N Evans
- Children's Heart Center - Nevada, 3006 S. Maryland Pkwy Ste. 690, Las Vegas, NV, 89109, USA,
| | | | | | | | | | | | | |
Collapse
|