1
|
Lamb JS, Tornos J, Lejeune M, Boulinier T. Rapid loss of maternal immunity and increase in environmentally mediated antibody generation in urban gulls. Sci Rep 2024; 14:4357. [PMID: 38388645 PMCID: PMC10884025 DOI: 10.1038/s41598-024-54796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Monitoring pathogen circulation in wildlife sentinel populations can help to understand and predict the spread of disease at the wildlife-livestock-human interface. Immobile young provide a useful target population for disease surveillance, since they can be easily captured for sampling and their levels of antibodies against infectious agents can provide an index of localized circulation. However, early-life immune responses include both maternally-derived antibodies and antibodies resulting from exposure to pathogens, and disentangling these two processes requires understanding their individual dynamics. We conducted an egg-swapping experiment in an urban-nesting sentinel seabird, the yellow-legged gull, and measured antibody levels against three pathogens of interest (avian influenza virus AIV, Toxoplasma gondii TOX, and infectious bronchitis virus IBV) across various life stages, throughout chick growth, and between nestlings raised by biological or non-biological parents. We found that levels of background circulation differed among pathogens, with AIV antibodies widely present across all life stages, TOX antibodies rarer, and IBV antibodies absent. Antibody titers declined steadily from adult through egg, nestling, and chick stages. For the two circulating pathogens, maternal antibodies declined exponentially after hatching at similar rates, but the rate of linear increase due to environmental exposure was significantly higher in the more prevalent pathogen (AIV). Differences in nestling antibody levels due to parental effects also persisted longer for AIV (25 days, vs. 14 days for TOX). Our results suggest that yellow-legged gulls can be a useful sentinel population of locally transmitted infectious agents, provided that chicks are sampled at ages when environmental exposure outweighs maternal effects.
Collapse
Affiliation(s)
- Juliet S Lamb
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France.
- The Nature Conservancy, Cold Spring Harbor, NY, USA.
| | - Jérémy Tornos
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Mathilde Lejeune
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Thierry Boulinier
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| |
Collapse
|
2
|
Should I stay, should I go, or something in between? The potential for parasite-mediated and age-related differential migration strategies. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSeasonal long-distance migratory behaviour of trillions of animals may in part have evolved to reduce parasite infection risk, and the fitness costs that may come with these infections. This may apply to a diversity of vertebrate migration strategies that can sometimes be observed within species and may often be age-dependent. Herein we review some common age-related variations in migration strategy, discussing why in some animal species juveniles preferentially forego or otherwise rearrange their migrations as compared to adults, potentially as an either immediate (proximate) or anticipatory (ultimate) response to infection risk and disease. We notably focus on the phenomenon of “oversummering”, where juveniles abstain from migration to the breeding grounds. This strategy is particularly prevalent amongst migratory shorebirds and has thus far received little attention as a strategy to reduce parasite infection rate, while comparative intra-specific research approaches have strong potential to elucidate the drivers of differential behavioural strategies.
Collapse
|
3
|
Poulle ML, Le Corre M, Bastien M, Gedda E, Feare C, Jaeger A, Larose C, Shah N, Voogt N, Göpper B, Lagadec E, Rocamora G, Geers R, Aubert D, Villena I, Lebarbenchon C. Exposure of pelagic seabirds to Toxoplasma gondii in the Western Indian Ocean points to an open sea dispersal of this terrestrial parasite. PLoS One 2021; 16:e0255664. [PMID: 34407103 PMCID: PMC8372946 DOI: 10.1371/journal.pone.0255664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite that uses felids as definitive hosts and warm-blooded animals as intermediate hosts. While the dispersal of T. gondii infectious oocysts from land to coastal waters has been well documented, transmission routes to pelagic species remain puzzling. We used the modified agglutination test (MAT titre ≥ 10) to detect antibodies against T. gondii in sera collected from 1014 pelagic seabirds belonging to 10 species. Sampling was carried out on eight islands of the Western Indian Ocean: Reunion and Juan de Nova (colonized by cats), Cousin, Cousine, Aride, Bird, Europa and Tromelin islands (cat-free). Antibodies against T. gondii were found in all islands and all species but the great frigatebird. The overall seroprevalence was 16.8% [95% CI: 14.5%-19.1%] but significantly varied according to species, islands and age-classes. The low antibody levels (MAT titres = 10 or 25) detected in one shearwater and three red-footed booby chicks most likely resulted from maternal antibody transfer. In adults, exposure to soils contaminated by locally deposited oocysts may explain the detection of antibodies in both wedge-tailed shearwaters on Reunion Island and sooty terns on Juan de Nova. However, 144 adults breeding on cat-free islands also tested positive. In the Seychelles, there was a significant decrease in T. gondii prevalence associated with greater distances to cat populations for species that sometimes rest on the shore, i.e. terns and noddies. This suggests that oocysts carried by marine currents could be deposited on shore tens of kilometres from their initial deposition point and that the number of deposited oocysts decreases with distance from the nearest cat population. The consumption of fishes from the families Mullidae, Carangidae, Clupeidae and Engraulidae, previously described as T. gondii oocyst-carriers (i.e. paratenic hosts), could also explain the exposure of terns, noddies, boobies and tropicbirds to T. gondii. Our detection of antibodies against T. gondii in seabirds that fish in the high sea, have no contact with locally contaminated soils but frequent the shores and/or consume paratenic hosts supports the hypothesis of an open-sea dispersal of T. gondii oocysts by oceanic currents and/or fish.
Collapse
Affiliation(s)
- Marie-Lazarine Poulle
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
- CERFE, Université de Reims Champagne-Ardenne, Boult-aux-Bois, France
- * E-mail:
| | - Matthieu Le Corre
- UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, Université de la Réunion, Saint Denis, La Réunion, France
| | - Matthieu Bastien
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
- UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, Université de la Réunion, Saint Denis, La Réunion, France
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, Saint Denis, La Réunion, France
| | - Elsa Gedda
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
| | - Chris Feare
- WildWings Bird Management, Haslemere, Surrey, United Kingdom
| | - Audrey Jaeger
- UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, Université de la Réunion, Saint Denis, La Réunion, France
| | | | - Nirmal Shah
- Center for Environment and Education, Nature Seychelles, Roche Caïman, Mahé, Seychelles
| | | | | | - Erwan Lagadec
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, Saint Denis, La Réunion, France
| | - Gérard Rocamora
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale, Seychelles
- Island Conservation Society, Mahé, Seychelles
| | - Régine Geers
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
- Laboratoire de Parasitologie-Mycologie, Centre National de Référence de la Toxoplasmose, Centre de Ressources Biologiques Toxoplasma, CHU Reims, Reims, France
| | - Dominique Aubert
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
- Laboratoire de Parasitologie-Mycologie, Centre National de Référence de la Toxoplasmose, Centre de Ressources Biologiques Toxoplasma, CHU Reims, Reims, France
| | - Isabelle Villena
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
- Laboratoire de Parasitologie-Mycologie, Centre National de Référence de la Toxoplasmose, Centre de Ressources Biologiques Toxoplasma, CHU Reims, Reims, France
| | - Camille Lebarbenchon
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, Saint Denis, La Réunion, France
| |
Collapse
|
4
|
Wille M, Lisovski S, Risely A, Ferenczi M, Roshier D, Wong FYK, Breed AC, Klaassen M, Hurt AC. Serologic Evidence of Exposure to Highly Pathogenic Avian Influenza H5 Viruses in Migratory Shorebirds, Australia. Emerg Infect Dis 2020; 25:1903-1910. [PMID: 31538564 PMCID: PMC6759277 DOI: 10.3201/eid2510.190699] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5Nx viruses of the goose/Guangdong/96 lineage continue to cause outbreaks in poultry and wild birds globally. Shorebirds, known reservoirs of avian influenza viruses, migrate from Siberia to Australia along the East-Asian-Australasian Flyway. We examined whether migrating shorebirds spending nonbreeding seasons in Australia were exposed to HPAI H5 viruses. We compared those findings with those for a resident duck species. We screened >1,500 blood samples for nucleoprotein antibodies and tested positive samples for specific antibodies against 7 HPAI H5 virus antigens and 2 low pathogenicity avian influenza H5 virus antigens. We demonstrated the presence of hemagglutinin inhibitory antibodies against HPAI H5 virus clade 2.3.4.4 in the red-necked stint (Calidris ruficolis). We did not find hemagglutinin inhibitory antibodies in resident Pacific black ducks (Anas superciliosa). Our study highlights the potential role of long-distance migratory shorebirds in intercontinental spread of HPAI H5 viruses.
Collapse
|
5
|
Gamble A, Garnier R, Chambert T, Gimenez O, Boulinier T. Next-generation serology: integrating cross-sectional and capture-recapture approaches to infer disease dynamics. Ecology 2020; 101:e02923. [PMID: 31655002 DOI: 10.1002/ecy.2923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 01/27/2023]
Abstract
Two approaches have been classically used in disease ecology to estimate epidemiological parameters from field studies: cross-sectional sampling from unmarked individuals and longitudinal capture-recapture setups, which generally involve more limited numbers of marked individuals due to cost and logistical constraints. Although the benefits of longitudinal setups are increasingly acknowledged in the disease ecology community, cross-sectional data remain largely overrepresented in the literature, probably because of the inherent costs of longitudinal surveys. In this context, we used simulated data to compare the performances of cross-sectional and longitudinal designs to estimate the force of infection (i.e., the rate at which susceptible individuals become infected). Then, inspired from recent method developments in quantitative ecology, we explore the benefits of integrating both cross-sectional (seroprevalences) and longitudinal (individuals histories) data sets. In doing so, we investigate the effects of host species life history, antibody persistence, and degree of a priori knowledge and uncertainty on demographic and epidemiological parameters, as those are expected to affect in different ways the level of inference possible from the data. Our results highlight how those elements are important to consider in determining optimal sampling designs. In the case of long-lived species exposed to infectious agents resulting in persistent antibody responses, integrated designs are especially valuable as they benefit from the performances of longitudinal designs even with relatively small longitudinal sample sizes. As an illustration, we apply this approach to a combination of empirical and simulated data inspired from a case of bats exposed to a rabies virus. Overall, this work highlights that serology field studies could greatly benefit from the opportunity of integrating cross-sectional and longitudinal designs.
Collapse
Affiliation(s)
- Amandine Gamble
- CEFE, CNRS, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France.,Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Dr. South, Los Angeles, 90095-7239, USA
| | - Romain Garnier
- Department of Biology, Georgetown University, 37th and O Streets, Washington, 20057, USA
| | - Thierry Chambert
- CEFE, CNRS, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Olivier Gimenez
- CEFE, CNRS, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Thierry Boulinier
- CEFE, CNRS, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| |
Collapse
|
6
|
Barbraud C. Senescence in nature: New insights from a long-term seabird study. J Anim Ecol 2019; 88:968-970. [PMID: 31274204 DOI: 10.1111/1365-2656.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Abstract
In Focus: Tompkins, E. M., & Anderson, D. J. (2019). Sex-specific patterns of senescencein Nazca boobies linked to mating system. Journal of Animal Ecology, 88, 986-1000. https://doi.org/10.1111/1365-2656.12944. Sex-specific differences in senescence and environmental impacts on senescence in both sexes remain poorly understood. Tompkins and Anderson (2019) studied senescence in survival (hereafter called actuarial senescence) and in reproduction (hereafter called reproductive senescence) in Nazca boobies using 33 years of individual-based capture-recapture data. Senescence patterns (life-history traits, ages at onset, senescence rates) differed between sexes and were affected by environmental conditions (food availability) faced by individuals during their younger ages. Patterns of sex differences in senescence may result from the mating dynamics due to the population's male-biased sex ratio.
Collapse
Affiliation(s)
- Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, UMR7372 - CNRS & Université La Rochelle, Villiers en Bois, France
| |
Collapse
|
7
|
Gamble A, Garnier R, Jaeger A, Gantelet H, Thibault E, Tortosa P, Bourret V, Thiebot JB, Delord K, Weimerskirch H, Tornos J, Barbraud C, Boulinier T. Exposure of breeding albatrosses to the agent of avian cholera: dynamics of antibody levels and ecological implications. Oecologia 2019; 189:939-949. [PMID: 30820656 DOI: 10.1007/s00442-019-04369-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Despite critical implications for disease dynamics and surveillance in wild long-lived species, the immune response after exposure to potentially highly pathogenic bacterial disease agents is still poorly known. Among infectious diseases threatening wild populations, avian cholera, caused by the bacterium Pasteurella multocida, is a major concern. It frequently causes massive mortality events in wild populations, notably affecting nestlings of Indian yellow-nosed albatrosses (Thalassarche carteri) in the Indian Ocean. If adults are able to mount a long-term immune response, this could have important consequences regarding the dynamics of the pathogen in the local host community and the potential interest of vaccinating breeding females to transfer immunity to their offspring. By tracking the dynamics of antibodies against P. multocida during 4 years and implementing a vaccination experiment in a population of yellow-nosed albatrosses, we show that a significant proportion of adults were naturally exposed despite high annual survival for both vaccinated and non-vaccinated individuals. Adult-specific antibody levels were thus maintained long enough to inform about recent exposure. However, only low levels of maternal antibodies could be detected in nestlings the year following a vaccination of their mothers. A modification of the vaccine formulation and the possibility to re-vaccinate females 2 years after the first vaccination revealed that vaccines have the potential to elicit a stronger and more persistent response. Such results highlight the value of long-term observational and experimental studies of host exposure to infectious agents in the wild, where ecological and evolutionary processes are likely critical for driving disease dynamics.
Collapse
Affiliation(s)
- Amandine Gamble
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France.
| | - Romain Garnier
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Audrey Jaeger
- Processus Infectieux en Milieu Insulaire Tropical, UMR CNRS 9192, INSERM 1187, IRD 249, GIP CYROI, Université de La Réunion, Saint Denis, La Réunion, France.,Réserve Naturelle Nationale des Terres Australes Françaises, Saint Pierre, La Réunion, France.,Écologie marine tropicale des océans Pacifique et Indien, UMR IRD 250, CNRS, Université de la Réunion, Saint Denis, La Réunion, France
| | | | | | - Pablo Tortosa
- Processus Infectieux en Milieu Insulaire Tropical, UMR CNRS 9192, INSERM 1187, IRD 249, GIP CYROI, Université de La Réunion, Saint Denis, La Réunion, France
| | - Vincent Bourret
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Jean-Baptiste Thiebot
- Réserve Naturelle Nationale des Terres Australes Françaises, Saint Pierre, La Réunion, France.,Centre d'Études Biologiques de Chizé, UMR CNRS 7372, Université La Rochelle, Villiers en Bois, France.,National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
| | - Karine Delord
- Centre d'Études Biologiques de Chizé, UMR CNRS 7372, Université La Rochelle, Villiers en Bois, France
| | - Henri Weimerskirch
- Centre d'Études Biologiques de Chizé, UMR CNRS 7372, Université La Rochelle, Villiers en Bois, France
| | - Jérémy Tornos
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Christophe Barbraud
- Centre d'Études Biologiques de Chizé, UMR CNRS 7372, Université La Rochelle, Villiers en Bois, France
| | - Thierry Boulinier
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| |
Collapse
|
8
|
Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity (Edinb) 2018; 121:225-238. [PMID: 29915335 DOI: 10.1038/s41437-018-0101-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/06/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering their offspring's immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled, but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP across taxa.
Collapse
|
9
|
Burness G, Moher D, Ben-Ezra N, Kelly RJ, Hasselquist D, Chin EH. Maternal immunization increases nestling energy expenditure, immune function, and fledging success in a passerine bird. Biol Open 2018; 7:7/4/bio028803. [PMID: 29618466 PMCID: PMC5936053 DOI: 10.1242/bio.028803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Female birds transfer maternally derived antibodies (matAb) to their nestlings, via the egg yolk. These antibodies are thought to provide passive protection, and allow nestlings to avoid the costs associated with mounting an innate immune response. To test whether there is an energetic benefit to nestlings from receiving matAb, we challenged adult female tree swallows (Tachycineta bicolor) prior to clutch initiation with either lipopolysaccharide (LPS) or saline (Control). Following hatching, one half of each female's nestlings were immunized on day 8 post-hatch with LPS or saline, and the 4-h post-immunization nestling metabolic rate (MR) was measured. There was no difference in either LPS-reactive antibodies or total Ig levels between offspring of immunized and non-immunized mothers on day 6 or 14 post-hatch, possibly reflecting a relatively short half-life of matAbs in altricial birds. Additionally, we found no evidence that nestlings from LPS-immunized mothers could avoid the growth suppression that may result from activation of an inflammatory response. Unexpectedly, we found that control nestlings from LPS mothers had higher resting MR than control nestlings of control mothers. We attribute the increased MR to the costs associated with a general non-specific enhancement of immune function in nestlings from LPS-immunized mothers. Consistent with enhanced immune function, nestlings of immunized mothers had a more robust inflammatory response to phytohaemagglutinin and higher fledging success. Our results suggest that maternal antigen exposure pre-laying can result in increased fitness for both mothers and offspring, depending on food availability. Summary: Exposure of female birds to a simulated pathogen prior to egg laying increases the metabolic rate, immune function, and fledging success of her nestlings.
Collapse
Affiliation(s)
- Gary Burness
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Deanna Moher
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Noah Ben-Ezra
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Ryan J Kelly
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | | | - Eunice H Chin
- Environmental and Life Science Graduate Program, Trent University, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
10
|
Hurst CJ. Of Ducks and Men: Ecology and Evolution of a Zoonotic Pathogen in a Wild Reservoir Host. MODELING THE TRANSMISSION AND PREVENTION OF INFECTIOUS DISEASE 2017. [PMCID: PMC7123570 DOI: 10.1007/978-3-319-60616-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hallmark of disease is that most pathogens are able to infect more than one host species. However, for most pathogens, we still have a limited understanding of how this affects epidemiology, persistence and virulence of infections—including several zoonotic pathogens that reside in wild animal reservoirs and spillover into humans. In this chapter, we review the current knowledge of mallard (Anas platyrhynchos) as host for pathogens. This species is widely distributed, often occupying habitats close to humans and livestock, and is an important game bird species and the ancestor to domestic ducks—thereby being an excellent model species to highlight aspects of the wildlife, domestic animal interface and the relevance for human health. We discuss mallard as host for a range of pathogens but focus more in depth of it as a reservoir host for influenza A virus (IAV). Over the last decades, IAV research has surged, prompted in part to the genesis and spread of highly pathogenic virus variants that have been devastating to domestic poultry and caused a number of human spillover infections. The aim of this chapter is to synthesise and review the intricate interactions of virus, host and environmental factors governing IAV epidemiology and evolution.
Collapse
|
11
|
Sorenson GH, Dey CJ, Madliger CL, Love OP. Effectiveness of baseline corticosterone as a monitoring tool for fitness: a meta-analysis in seabirds. Oecologia 2016; 183:353-365. [DOI: 10.1007/s00442-016-3774-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
12
|
Beemelmanns A, Roth O. Bacteria-type-specific biparental immune priming in the pipefish Syngnathus typhle. Ecol Evol 2016; 6:6735-6757. [PMID: 27777744 PMCID: PMC5058542 DOI: 10.1002/ece3.2391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022] Open
Abstract
The transfer of acquired and specific immunity against previously encountered bacteria from mothers to offspring boosts the immune response of the next generation and supports the development of a successful pathogen defense. While most studies claim that the transfer of immunity is a maternal trait, in the sex-role-reversed pipefish Syngnathus typhle, fathers nurse the embryos over a placenta-like structure, which opens the door for additional paternal immune priming. We examined the potential and persistence of bacteria-type-specific parental immune priming in the pipefish S. typhle over maturation time using a fully reciprocal design with two different bacteria species (Vibrio spp. and Tenacibaculum maritimum). Our results suggest that S. typhle is able to specifically prime the next generation against prevalent local bacteria and to a limited extent even also against newly introduced bacteria species. Long-term protection was thereby maintained only against prevailing Vibrio bacteria. Maternal and paternal transgenerational immune priming can complement each other, as they affect different pathways of the offspring immune system and come with distinct degree of specificity. The differential regulation of DNA-methylation genes upon parental bacteria exposure in premature pipefish offspring indicates that epigenetic regulation processes are involved in transferring immune-related information across generations. The identified trade-offs between immune priming and reproduction determine TGIP as a costly trait, which might constrain the evolution of long-lasting TGIP, if parental and offspring generations do not share the same parasite assembly.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Helmholtz‐Centre for Ocean Research Kiel (GEOMAR)Evolutionary Ecology of Marine FishesDüsternbrooker Weg 2024105KielGermany
| | - Olivia Roth
- Helmholtz‐Centre for Ocean Research Kiel (GEOMAR)Evolutionary Ecology of Marine FishesDüsternbrooker Weg 2024105KielGermany
| |
Collapse
|
13
|
Broggi J, Soriguer RC, Figuerola J. Transgenerational effects enhance specific immune response in a wild passerine. PeerJ 2016; 4:e1766. [PMID: 27069782 PMCID: PMC4824879 DOI: 10.7717/peerj.1766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/15/2016] [Indexed: 11/20/2022] Open
Abstract
Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects). However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus) in Sevilla, SE Spain with Newcastle disease virus (NDV) vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks' carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers.
Collapse
Affiliation(s)
- Juli Broggi
- Wetland Ecology, Esatción Biológica de Doñana, CSIC, Sevilla, Spain; Research Unit of Biodiversity (UMIB, UO/CISC/PA), University of Oviedo, Mieres, Spain
| | - Ramon C Soriguer
- Etologia y Conservacion de la Biodiversidad, Estación Biológica de Doñana, CSIC, Sevilla, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Jordi Figuerola
- Wetland Ecology, Esatción Biológica de Doñana, CSIC, Sevilla, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
14
|
Madliger CL, Cooke SJ, Crespi EJ, Funk JL, Hultine KR, Hunt KE, Rohr JR, Sinclair BJ, Suski CD, Willis CKR, Love OP. Success stories and emerging themes in conservation physiology. CONSERVATION PHYSIOLOGY 2016; 4:cov057. [PMID: 27382466 PMCID: PMC4922248 DOI: 10.1093/conphys/cov057] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 05/21/2023]
Abstract
The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause-effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of 'conservation physiology', to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management plans.
Collapse
Affiliation(s)
- Christine L. Madliger
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B 3P4
- Corresponding author: Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada N9B 3P4. Tel: +1 519 253 3000.
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Erica J. Crespi
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer L. Funk
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Kevin R. Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Kathleen E. Hunt
- John H. Prescott Marine Laboratory, Research Department, New England Aquarium, Boston, MA 02110, USA
| | - Jason R. Rohr
- Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Brent J. Sinclair
- Department of Biology, Western University, London, ON, Canada N6A 5B7
| | - Cory D. Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Craig K. R. Willis
- Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, Winnipeg, MB, Canada R3B 2E9
| | - Oliver P. Love
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B 3P4
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada N9B 3P4
| |
Collapse
|
15
|
Watt KA, Nussey DH, Maclellan R, Pilkington JG, McNeilly TN. Fecal antibody levels as a noninvasive method for measuring immunity to gastrointestinal nematodes in ecological studies. Ecol Evol 2015; 6:56-67. [PMID: 26811774 PMCID: PMC4716500 DOI: 10.1002/ece3.1858] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
Among‐individual variation in antibody‐associated immunity to gastrointestinal nematode parasites (GIN) is known be associated with life‐history traits and vital rates in wild vertebrate systems. To date, measurement of levels of antibodies against GIN antigens in natural populations has exclusively been based on invasive blood sampling techniques. Previous work in laboratory rodents and ruminant livestock suggests that antibody measures from feces may provide a viable noninvasive approach. We measured total and anti‐GIN antibodies of different isotypes (immunoglobulin (Ig) G, IgA and IgE) from paired samples of plasma and feces from free‐living Soay sheep of different ages and sexes. We tested the correlations among these measures as well as their associations with body mass and Strongyle nematode fecal egg counts (FEC). Significant positive correlations were present among plasma and fecal anti‐GIN antibody levels for IgG and IgA. Generally, correlations between total antibody levels in plasma and feces were weaker and not significant. No significant relationships were found between any antibody measures and body mass; however, fecal anti‐GIN antibody levels were significantly negatively correlated with FEC. Our data clearly demonstrate the feasibility of measuring anti‐GIN antibodies from fecal samples collected in natural populations. Although associations of fecal antibody levels with their plasma counterparts and FEC were relatively weak, the presence of significant correlations in the predicted direction in a relatively small and heterogeneous sample suggests fecal antibody measures could be a useful, noninvasive addition to current eco‐immunological studies.
Collapse
Affiliation(s)
- Kathryn A Watt
- Institutes of Evolutionary Biology and Immunology and Infection Research School of Biological Sciences University of Edinburgh West Mains Road Edinburgh UK
| | - Daniel H Nussey
- Institutes of Evolutionary Biology and Immunology and Infection Research School of Biological Sciences University of Edinburgh West Mains Road Edinburgh UK
| | - Rachel Maclellan
- Institutes of Evolutionary Biology and Immunology and Infection Research School of Biological Sciences University of Edinburgh West Mains Road Edinburgh UK
| | - Jill G Pilkington
- Institutes of Evolutionary Biology and Immunology and Infection Research School of Biological Sciences University of Edinburgh West Mains Road Edinburgh UK
| | - Tom N McNeilly
- Moredun Research Institute Pentlands Science Park Bush Loan Midlothian UK
| |
Collapse
|
16
|
Metcalf CJE, Jones JH. The evolutionary dynamics of timing of maternal immunity: evaluating the role of age-specific mortality. J Evol Biol 2015; 28:493-502. [PMID: 25611057 DOI: 10.1111/jeb.12583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 11/29/2022]
Abstract
If a female survives an infection, she can transfer antibodies against that particular pathogen to any future offspring she produces. The resulting protection of offspring for a period after their birth is termed maternal immunity. Because infection in newborns is associated with high mortality, the duration of this protection is expected to be under strong selection. Evolutionary modelling structured around a trade-off between fertility and duration of maternal immunity has indicated selection for longer duration of maternal immunity for hosts with longer lifespans. Here, we use a new modelling framework to extend this analysis to consider characteristics of pathogens (and hosts) in further detail. Importantly, given the challenges in characterizing trade-offs linked to immune function empirically, our model makes no assumptions about costs of longer lasting maternal immunity. Rather, a key component of this analysis is variation in mortality over age. We found that the optimal duration of maternal immunity is shaped by the shifting balance of the burden of infection between young and old individuals. As age of infection depends on characteristics of both the host and the pathogen, both affect the evolution of duration of maternal immunity. Our analysis provides additional support for selection for longer duration of maternal immunity in long-lived hosts, even in the absence of explicit costs linked to duration of maternal immunity. Further, the scope of our results provides explanations for exceptions to the general correlation between duration of maternal immunity and lifespan, as we found that both pathogen characteristics and trans-generational effects can lead to important shifts in fitness linked to maternal immunity. Finally, our analysis points to new directions for quantifying the trade-offs that drive the development of the immune system.
Collapse
Affiliation(s)
- C J E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|