1
|
Harvey LD, Alotaibi M, Tai YY, Tang Y, Kim HJJ, Kelly NJ, Sun W, Woodcock CSC, Arshad S, Culley MK, El Khoury W, Xie R, Al Aaraj Y, Zhao J, Hafeez N, Rao RJ, Jiang S, Negi V, Kirillova A, Perk D, Watson AM, St Croix CM, Stolz DB, Lee JY, Cheng MH, Zhang M, Detmer S, Guzman E, Manan RS, Saggar R, Haley KJ, Waxman AB, Okawa S, Schwantes-An TH, Pauciulo MW, Wang B, Webb A, Chauvet C, Anderson DG, Nichols WC, Desai AA, Lafyatis R, Nouraie SM, Wu H, McDonald JG, Cheng S, Bahar I, Bertero T, Benza RL, Jain M, Chan SY. Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension. Science 2025; 387:eadn7277. [PMID: 39847635 DOI: 10.1126/science.adn7277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025]
Abstract
Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 (NCOA7) deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes. This oxysterol signature overlapped with a plasma metabolite signature associated with human PAH mortality. Mice deficient for endothelial Ncoa7 or exposed to an inflammatory bile acid developed worsened PAH. Genetic predisposition to NCOA7 deficiency was driven by single-nucleotide polymorphism rs11154337, which alters endothelial immunoactivation and is associated with human PAH mortality. An NCOA7-activating agent reversed endothelial immunoactivation and rodent PAH. Thus, we established a genetic and metabolic paradigm that links lysosomal biology and oxysterol processes to endothelial inflammation and PAH.
Collapse
Affiliation(s)
- Lloyd D Harvey
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mona Alotaibi
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hee-Jung J Kim
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chen-Shan C Woodcock
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sanya Arshad
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Miranda K Culley
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wadih El Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rong Xie
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neha Hafeez
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rashmi J Rao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siyi Jiang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anna Kirillova
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dror Perk
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Annie M Watson
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Mary Hongying Cheng
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Manling Zhang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Samuel Detmer
- Department of Chemistry, Massachusetts Institute of Technology, Boston, MA, USA
| | - Edward Guzman
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Rajith S Manan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Rajan Saggar
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Pathology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kathleen J Haley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Okawa
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bing Wang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy Webb
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Caroline Chauvet
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia-Antipolis, Valbonne, France
| | - Daniel G Anderson
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haodi Wu
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia-Antipolis, Valbonne, France
| | - Raymond L Benza
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohit Jain
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Liu Y, Wang C, Li M, Zhu Y, Liu K, Liu Y, Luo M, Zhang C. Natural ingredients in the regulation of abnormal lipid peroxidation: a potential therapy for pulmonary diseases. Front Pharmacol 2024; 15:1507194. [PMID: 39759448 PMCID: PMC11695318 DOI: 10.3389/fphar.2024.1507194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Pulmonary diseases are a major category of diseases that pose a threat to human health. The most common drugs currently used to treat lung diseases are still chemical drugs, but this may lead to drug resistance and damage to healthy organs in the body. Therefore, developing new drugs is an urgent task. Lipid peroxidation is caused by the disruption of redox homeostasis, accumulation of reactive oxygen species (ROS), depletion of glutathione (GSH), and inactivation of glutathione peroxidase 4 (GPX4). Lipid peroxidation is closely related to the occurrence and progression of respiratory diseases, including acute lung injury, asthma, pulmonary fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease, and lung cancer. Natural ingredients have high safety, high availability, and low cost, and can regulate lipid peroxidation through multiple pathways and targets, making them valuable new drugs. This article aims to summarize the pharmacology and mechanism of natural ingredients targeting lipid peroxidation in the treatment of lung diseases. The reviewed data indicate that natural ingredients are a promising anti-lipid peroxidation drug, mainly alleviating lipid peroxidation through the cystine/glutamate antiporter (System Xc -)/GSH/GPX4 axis, Nrf2 pathway, and ROS pathway. In the future, it will still be necessary to further study the mechanisms of natural products in treating pulmonary diseases through lipid peroxidation and conduct multi-center, large-sample clinical trials to promote the development of new drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Ruffenach G, Medzikovic L, Aryan L, Sun W, Lertpanit L, O'Connor E, Dehghanitafti A, Hatamnejad MR, Li M, Reddy ST, Eghbali M. Intestinal IFNα4 promotes 15-HETE diet-induced pulmonary hypertension. Respir Res 2024; 25:419. [PMID: 39609844 PMCID: PMC11606228 DOI: 10.1186/s12931-024-03046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVES Pulmonary arterial hypertension (PAH) is characterized by the remodeling of the pulmonary vascular bed leading to elevation of the pulmonary arterial pressure. Oxidized fatty acids, such as hydroxyeicosatetraenoic acids (HETEs), play a critical role in PAH. We have previously established that dietary supplementation of 15-HETE is sufficient to cause PH in mice, suggesting a role for the gut-lung axis. However, the mechanisms are not known. APPROACH Analysis of RNA-seq data obtained from the lungs and intestines of mice on 15-HETE diet together with transcriptomic data from PAH patient lungs identified IFN inducible protein 44 (IFI44) as the only gene significantly upregulated in mice and humans. We demonstrate that IFI44 is also significantly increased in PBMCs from PAH patients. In mice, 15-HETE diet enhances IFI44 and its inducer IFN⍺4 expression sequentially in the intestine first and then in the lungs. IFI44 expression in PAH is highly correlated with expression of Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL), which is upregulated in CD8 cells in PH lungs of both mice and humans. We show that IFNα4 produced by intestinal epithelial cells facilitates IFI44 expression in CD8 cells. Finally, we demonstrate that IFN receptor 1-KO in mice do not develop PH on 15-HETE diet. In addition, silencing IFI44 expression in the lungs of mice on 15-HETE diet prevents the development of PH and is associated with significantly lower expression of IFI44 and TRAIL in CD8 cells in the lungs. CONCLUSION Our data reveal a novel gut-lung axis driven by 15-HETE in PH.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
| | - Lejla Medzikovic
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Laila Aryan
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Wasila Sun
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Long Lertpanit
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-7115, USA
| | - Ellen O'Connor
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-7115, USA
| | - Ateyeh Dehghanitafti
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Min Li
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
4
|
Zhang X, Fu Z, Wang H, Sheng L. Metabolic pathways, genomic alterations, and post-translational modifications in pulmonary hypertension and cancer as therapeutic targets and biomarkers. Front Pharmacol 2024; 15:1490892. [PMID: 39635438 PMCID: PMC11614602 DOI: 10.3389/fphar.2024.1490892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Pulmonary hypertension (PH) can lead to right ventricular hypertrophy, significantly increasing mortality rates. This study aims to clarify PH-specific metabolites and their impact on genomic and post-translational modifications (PTMs) in cancer, evaluating DHA and EPA's therapeutic potential to mitigate oxidative stress and inflammation. Methods Data from 289,365 individuals were analyzed using Mendelian randomization to examine 1,400 metabolites' causal roles in PH. Anti-inflammatory and antioxidative effects of DHA and EPA were tested in RAW 264.7 macrophages and cancer cell lines (A549, HCT116, HepG2, LNCaP). Genomic features like CNVs, DNA methylation, tumor mutation burden (TMB), and PTMs were analyzed. DHA and EPA's effects on ROS production and cancer cell proliferation were assessed. Results We identified 57 metabolites associated with PH risk and examined key tumor-related pathways through promoter methylation analysis. DHA and EPA significantly reduced ROS levels and inflammatory markers in macrophages, inhibited the proliferation of various cancer cell lines, and decreased nuclear translocation of SUMOylated proteins during oxidative stress and inflammatory responses. These findings suggest a potential anticancer role through the modulation of stress-related nuclear signaling, as well as a regulatory function on cellular PTMs. Conclusion This study elucidates metabolic and PTM changes in PH and cancer, indicating DHA and EPA's role in reducing oxidative stress and inflammation. These findings support targeting these pathways for early biomarkers and therapies, potentially improving disease management and patient outcomes.
Collapse
Affiliation(s)
- Xiujin Zhang
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | | | | | - Li Sheng
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Li J, Zhang Z, Zhu C, Zheng X, Wang C, Jiang J, Zhang H. Salidroside enhances NO bioavailability and modulates arginine metabolism to alleviate pulmonary arterial hypertension. Eur J Med Res 2024; 29:423. [PMID: 39152472 PMCID: PMC11330049 DOI: 10.1186/s40001-024-02016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Salidroside (SAL), derived from Rhodiola, shows protective effects in pulmonary arterial hypertension (PAH) models, but its mechanisms are not fully elucidated. OBJECTIVES Investigate the therapeutic effects and the mechanism of SAL on PAH. METHODS Monocrotaline was used to establish a PAH rat model. SAL's impact on oxidative stress and inflammatory responses in lung tissues was analyzed using immunohistochemistry, ELISA, and Western blot. Untargeted metabolomics explored SAL's metabolic regulatory mechanisms. RESULTS SAL significantly reduced mean pulmonary artery pressure, right ventricular hypertrophy, collagen deposition, and fibrosis in the PAH rats. It enhanced antioxidant enzyme levels, reduced inflammatory cytokines, and improved NO bioavailability by upregulating endothelial nitric oxide synthase (eNOS), soluble guanylate cyclase (sGC), cyclic guanosine monophosphate (cGMP), and protein kinase G (PKG) and decreases the expression of endothelin-1 (ET-1). Metabolomics indicated SAL restored metabolic balance in PAH rats, particularly in arginine metabolism. CONCLUSIONS SAL alleviates PAH by modulating arginine metabolism, enhancing NO synthesis, and improving pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Junfei Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Zengyu Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Chenghui Zhu
- Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Xiaorong Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Chunlei Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Jianwei Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China.
| | - Hongyan Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China.
| |
Collapse
|
6
|
de Castro AL, Duarte Ortiz V, Hickmann AR, Santos Lacerda D, Türck P, Campos Carraro C, Freitas S, Bello Klein A, Bassani V, da Rosa Araujo AS. Effects of Pterostilbene on Heart and Lung Oxidative Stress Parameters in 2 Experimental Models of Cardiovascular Disease: Myocardial Infarction and Pulmonary Arterial Hypertension. J Cardiovasc Pharmacol 2024; 84:101-109. [PMID: 38573589 DOI: 10.1097/fjc.0000000000001572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
ABSTRACT Myocardial infarction (MI) and pulmonary arterial hypertension (PAH) are 2 prevalent cardiovascular diseases. In both conditions, oxidative stress is associated with a worse prognosis. Pterostilbene (PTE), an antioxidant compound, has been studied as a possible therapy for cardiovascular diseases. This study aims to evaluate the effect of PTE on oxidative stress in the hearts of animals with MI and in the lungs of animals with PAH. Male Wistar rats were used in both models. In the MI model, the experimental groups were sham, MI, and MI + PTE. In the PAH model, the experimental groups were control, PAH, and PAH + PTE. Animals were exposed to MI through surgical ligation of the left coronary artery, or to PAH, by the administration of monocrotaline (60 mg/kg). Seven days after undergoing cardiac injury, the MI + PTE animals were treated with PTE (100 mg/kg day) for 8 days. After this, the heart was collected for molecular analysis. The PAH + PTE animals were treated with PTE (100 mg/kg day) for 14 days, beginning 7 days after PAH induction. After this, the lungs were collected for biochemical evaluation. We found that PTE administration attenuated the decrease in ejection fraction and improved left ventricle end-systolic volume in infarcted animals. In the PAH model, PTE improved pulmonary artery flow and decreased reactive oxygen species levels in the lung. PTE administration promoted protective effects in terms of oxidative stress in 2 experimental models of cardiac diseases: MI and PAH. PTE also improved cardiac function in infarcted rats and pulmonary artery flow in animals with PAH.
Collapse
Affiliation(s)
- Alexandre Luz de Castro
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Vanessa Duarte Ortiz
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Alexandre R Hickmann
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Denise Santos Lacerda
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica; Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil ; and
| | - Patrick Türck
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Cristina Campos Carraro
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Schauana Freitas
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Adriane Bello Klein
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Valquiria Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Alex Sander da Rosa Araujo
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
7
|
Coursen JC, Tuhy T, Naranjo M, Woods A, Hummers LK, Shah AA, Suresh K, Visovatti SH, Mathai SC, Hassoun PM, Damico RL, Simpson CE. Aberrant long-chain fatty acid metabolism associated with evolving systemic sclerosis-associated pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L54-L64. [PMID: 38651694 PMCID: PMC11380974 DOI: 10.1152/ajplung.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
We sought to investigate differential metabolism in patients with systemic sclerosis (SSc) who develop pulmonary arterial hypertension (PAH) versus those who do not, as a method of identifying potential disease biomarkers. In a nested case-control design, serum metabolites were assayed in SSc subjects who developed right heart catheterization-confirmed PAH (n = 22) while under surveillance in a longitudinal cohort from Johns Hopkins, then compared with metabolites assayed in matched SSc patients who did not develop PAH (n = 22). Serum samples were collected at "proximate" (within 12 months) and "distant" (within 1-5 yr) time points relative to PAH diagnosis. Metabolites were identified using liquid chromatography-mass spectroscopy (LC-MS). An LC-MS dataset from SSc subjects with either mildly elevated pulmonary pressures or overt PAH from the University of Michigan was compared. Differentially abundant metabolites were tested as predictors of PAH in two additional validation SSc cohorts. Long-chain fatty acid metabolism (LCFA) consistently differed in SSc-PAH versus SSc without PH. LCFA metabolites discriminated SSc-PAH patients with mildly elevated pressures in the Michigan cohort and predicted SSc-PAH up to 2 yr before clinical diagnosis in the Hopkins cohort. Acylcholines containing LCFA residues and linoleic acid metabolites were most important for discriminating SSc-PAH. Combinations of acylcholines and linoleic acid metabolites provided good discrimination of SSc-PAH across cohorts. Aberrant lipid metabolism is observed throughout the evolution of PAH in SSc. Lipidomic signatures of abnormal LCFA metabolism distinguish SSc-PAH patients from those without PH, including before clinical diagnosis and in mild disease.NEW & NOTEWORTHY Abnormal lipid metabolism is evident across time in the development of SSc-PAH, and dysregulated long-chain fatty acid metabolism predicts overt PAH.
Collapse
Affiliation(s)
- Julie C Coursen
- Division of Hospital Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Tijana Tuhy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Mario Naranjo
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania, United States
| | - Adrianne Woods
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Laura K Hummers
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Ami A Shah
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Scott H Visovatti
- Division of Cardiology, Department of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Catherine E Simpson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
8
|
Cieślik M, Strobel SD, Bryniarski P, Twardowska H, Chmielowski A, Rudek M, Felkle D, Zięba K, Kaleta K, Jarczyński M, Nowak B, Bryniarski K, Nazimek K. Hypotensive drugs mitigate the high-sodium diet-induced pro-inflammatory activation of mouse macrophages in vivo. Biomed Pharmacother 2024; 175:116648. [PMID: 38677242 DOI: 10.1016/j.biopha.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Nowadays, there is an increasing emphasis on the need to alleviate the chronic inflammatory response to effectively treat hypertension. However, there are still gaps in our understanding on how to achieve this. Therefore, research on interaction of antihypertensive drugs with the immune system is extremely interesting, since their therapeutic effect could partly result from amelioration of hypertension-related inflammation, in which macrophages seem to play a pivotal role. Thus, current comprehensive studies have investigated the impact of repeatedly administered hypotensive drugs (captopril, olmesartan, propranolol, carvedilol, amlodipine, verapamil) on macrophage functions in the innate and adaptive immunity, as well as if drug-induced effects are affected by a high-sodium diet (HSD), one of the key environmental risk factors of hypertension. Although the assayed medications increased the generation of reactive oxygen and nitrogen intermediates by macrophages from standard fed donors, they reversed HSD-induced enhancing effects on macrophage oxidative burst and secretion of pro-inflammatory cytokines. On the other hand, some drugs increased macrophage phagocytic activity and the expression of surface markers involved in antigen presentation, which translated into enhanced macrophage ability to activate B cells for antibody production. Moreover, the assayed medications augmented macrophage function and the effector phase of contact hypersensitivity reaction, but suppressed the sensitization phase of cell-mediated hypersensitivity under HSD conditions. Our current findings contribute to the recognition of mechanisms, by which excessive sodium intake affects macrophage immune activity in hypertensive individuals, and provide evidence that the assayed medications mitigate most of the HSD-induced adverse effects, suggesting their additional protective therapeutic activity.
Collapse
Affiliation(s)
- Martyna Cieślik
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Spencer D Strobel
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Paweł Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Hanna Twardowska
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Adam Chmielowski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Michał Rudek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Dominik Felkle
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Zięba
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Konrad Kaleta
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Mateusz Jarczyński
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland.
| |
Collapse
|
9
|
Ravindran R, O’Connor E, Gupta A, Luciw PA, Khan AI, Dorreh N, Chiang K, Ikram A, Reddy S. Lipid Mediators and Cytokines/Chemokines Display Differential Profiles in Severe versus Mild/Moderate COVID-19 Patients. Int J Mol Sci 2023; 24:13054. [PMID: 37685858 PMCID: PMC10488250 DOI: 10.3390/ijms241713054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Host immune responses play a key role in COVID-19 pathogenesis. The underlying phenomena are orchestrated by signaling molecules such as cytokines/chemokines and lipid mediators. These immune molecules, including anti-SARS-CoV-2 antibodies, interact with immune cells and regulate host responses, contributing to inflammation that drives the disease. We investigated 48 plasma cytokines/chemokines, 21 lipid mediators, and anti-S protein (RBD) antibodies in COVID-19 patients (n = 56) and non-COVID-19 respiratory disease controls (n = 49), to identify immune-biomarker profiles. Cytokines/chemokines (IL-6, CXCL-10 (IP-10), HGF, MIG, MCP-1, and G-CSF) and lipid mediators (TxB2, 11-HETE, 9-HODE, 13-HODE, 5-HETE, 12-HETE, 15-HETE, 14S-HDHA, 17S-HDHA, and 5-oxo ETE) were significantly elevated in COVID-19 patients compared to controls. In patients exhibiting severe disease, pro-inflammatory cytokines/chemokines (IL-6, CXCL-10, and HGF) and anti-SARS-CoV-2 antibodies were significantly elevated. In contrast, lipid mediators involved in the reduction/resolution of inflammation, in particular, 5-HETE, 11-HETE, and 5-oxoETE, were significantly elevated in mild/moderate disease. Taken together, these immune-biomarker profiles provide insight into immune responses related to COVID-19 pathogenesis. Importantly, our findings suggest that elevation in plasma concentrations of IL-6, CXCL-10, HGF, and anti-SARS-CoV-2 antibodies can predict severe disease, whereas elevation in lipid mediators peaks early (compared to cytokines) and includes induction of mechanisms leading to reduction of inflammation, associated complications, and maintenance of homeostasis.
Collapse
Affiliation(s)
- Resmi Ravindran
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95817, USA;
| | - Ellen O’Connor
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (E.O.); (N.D.); (K.C.)
| | - Ajay Gupta
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Irvine, CA 92868, USA;
| | - Paul A. Luciw
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95817, USA;
| | - Aleena I. Khan
- Department of Population and Public Health, Keek School of Medicine, University of Southern California, Los Angeles, CA 90089, USA;
| | - Nasrin Dorreh
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (E.O.); (N.D.); (K.C.)
| | - Kate Chiang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (E.O.); (N.D.); (K.C.)
| | - Aamer Ikram
- National Institutes of Health, Islamabad 45500, Pakistan;
| | - Srinivasa Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (E.O.); (N.D.); (K.C.)
| |
Collapse
|
10
|
Theodoros K, Sharma M, Anton P, Hugo C, Ellen O, Hultgren NW, Ritou E, Williams DS, Orian S S, Srinivasa T R. The ApoA-I mimetic peptide 4F attenuates in vitro replication of SARS-CoV-2, associated apoptosis, oxidative stress and inflammation in epithelial cells. Virulence 2021; 12:2214-2227. [PMID: 34494942 PMCID: PMC8437485 DOI: 10.1080/21505594.2021.1964329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
An oral antiviral against SARS-CoV-2 that also attenuates inflammatory instigators of severe COVID-19 is not available to date. Herein, we show that the apoA-I mimetic peptide 4 F inhibits Spike mediated viral entry and has antiviral activity against SARS-CoV-2 in human lung epithelial Calu3 and Vero-E6 cells. In SARS-CoV-2 infected Calu3 cells, 4 F upregulated inducers of the interferon pathway such as MX-1 and Heme oxygenase 1 (HO-1) and downregulated mitochondrial reactive oxygen species (mito-ROS) and CD147, a host protein that mediates viral entry. 4 F also reduced associated cellular apoptosis and secretion of IL-6 in both SARS-CoV-2 infected Vero-E6 and Calu3 cells. Thus, 4 F attenuates in vitro SARS-CoV-2 replication, associated apoptosis in epithelial cells and secretion of IL-6, a major cytokine related to COVID-19 morbidity. Given established safety of 4 F in humans, clinical studies are warranted to establish 4 F as therapy for COVID-19.
Collapse
Affiliation(s)
- Kelesidis Theodoros
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Madhav Sharma
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Petcherski Anton
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Cristelle Hugo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - O’Connor Ellen
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, United States
| | - Nan W Hultgren
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Eleni Ritou
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - David S Williams
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Shirihai Orian S
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Reddy Srinivasa T
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
11
|
Choudhury P, Bhattacharya A, Dasgupta S, Ghosh N, Senpupta S, Joshi M, Bhattacharyya P, Chaudhury K. Identification of novel metabolic signatures potentially involved in the pathogenesis of COPD associated pulmonary hypertension. Metabolomics 2021; 17:94. [PMID: 34599402 DOI: 10.1007/s11306-021-01845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) associated pulmonary hypertension (COPD-PH), one of the most prevalent forms of PH, is a major burden on the healthcare system. Although PH in COPD is usually of mild-to-moderate severity, its presence is associated with shorter survival, more frequent exacerbations and worse clinical outcomes. The pathophysiologic mechanisms responsible for PH development in COPD patients remain unclear. It is envisioned that a better understanding of the underlying mechanism will help in diagnosis and future treatment strategies. OBJECTIVES The present study aims to determine metabolomic alterations in COPD-PH patients as compared to healthy controls. Additionally, to ensure that the dysregulated metabolites arise due to the presence of PH per se, an independent COPD cohort is included for comparison purposes. METHODS Paired serum and exhaled breath condensate (EBC) samples were collected from male patients with COPD-PH (n = 60) in accordance with the 2015 European Society of Cardiology (ESC)/European Respiratory Society (ERS) guidelines. Age, sex and BMI matched healthy controls (n = 57) and COPD patients (n = 59) were recruited for comparison purposes. All samples were characterized using 1H nuclear magnetic resonance (NMR) spectroscopy. RESULTS Fifteen serum and 9 EBC metabolites were found to be significantly altered in COPD-PH patients as compared to healthy controls. Lactate and pyruvate were dysregulated in both the biofluids and were further correlated with echocardiographic systolic pulmonary artery pressure (sPAP). Multivariate analysis showed distinct class separation between COPD-PH and COPD. CONCLUSIONS The findings of this study indicate an increased energy demand in patients with COPD-PH. Furthermore, both lactate and pyruvate correlate with sPAP, indicating their importance in the clinical course of the disease.
Collapse
Affiliation(s)
- Priyanka Choudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Anindita Bhattacharya
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sanjukta Dasgupta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | | - Mamata Joshi
- National Facility for High-Field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
12
|
Liu Y, Nie X, Zhu J, Wang T, Li Y, Wang Q, Sun Z. NDUFA4L2 in smooth muscle promotes vascular remodeling in hypoxic pulmonary arterial hypertension. J Cell Mol Med 2021; 25:1221-1237. [PMID: 33340241 PMCID: PMC7812284 DOI: 10.1111/jcmm.16193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resistance and obliterative pulmonary vascular remodelling (PVR). The imbalance between the proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) is an important cause of PVR leading to PAH. Mitochondria play a key role in the production of hypoxia-induced pulmonary hypertension (HPH). However, there are still many issues worth studying in depth. In this study, we demonstrated that NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 like 2 (NDUFA4L2) was a proliferation factor and increased in vivo and in vitro through various molecular biology experiments. HIF-1α was an upstream target of NDUFA4L2. The plasma levels of 4-hydroxynonene (4-HNE) were increased both in PAH patients and hypoxic PAH model rats. Knockdown of NDUFA4L2 decreased the levels of malondialdehyde (MDA) and 4-HNE in human PASMCs in hypoxia. Elevated MDA and 4-HNE levels might be associated with excessive ROS generation and increased expression of 5-lipoxygenase (5-LO) in hypoxia, but this effect was blocked by siNDUFA4L2. Further research found that p38-5-LO was a downstream signalling pathway of PASMCs proliferation induced by NDUFA4L2. Up-regulated NDUFA4L2 plays a critical role in the development of HPH, which mediates ROS production and proliferation of PASMCs, suggesting NDUFA4L2 as a potential new therapeutic target for PAH.
Collapse
MESH Headings
- Aldehydes/metabolism
- Animals
- Arachidonate 5-Lipoxygenase/metabolism
- Cell Hypoxia
- Cell Proliferation
- Disease Models, Animal
- Electron Transport Complex I/genetics
- Electron Transport Complex I/metabolism
- Endothelial Cells/metabolism
- Gene Expression Regulation
- Gene Silencing
- Humans
- Hypoxia/complications
- Hypoxia/physiopathology
- Male
- Malondialdehyde/metabolism
- Models, Biological
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidation-Reduction
- Oxygen Consumption
- Pulmonary Arterial Hypertension/complications
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Artery/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Vascular Remodeling/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Yun Liu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Xiaowei Nie
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jinquan Zhu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Tianyan Wang
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yanli Li
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, China
| | - Zengxian Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
13
|
Ruffenach G, O'Connor E, Vaillancourt M, Hong J, Cao N, Sarji S, Moazeni S, Papesh J, Grijalva V, Cunningham CM, Shu L, Chattopadhyay A, Tiwari S, Mercier O, Perros F, Umar S, Yang X, Gomes AV, Fogelman AM, Reddy ST, Eghbali M. Oral 15-Hydroxyeicosatetraenoic Acid Induces Pulmonary Hypertension in Mice by Triggering T Cell-Dependent Endothelial Cell Apoptosis. Hypertension 2020; 76:985-996. [PMID: 32713273 DOI: 10.1161/hypertensionaha.120.14697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased mean pulmonary arterial pressure. Elevated plasma and lung concentrations of oxidized lipids, including 15-hydroxyeicosatetraenoic acid (15-HETE), have been demonstrated in patients with PAH and animal models. We previously demonstrated that feeding mice with 15-HETE is sufficient to induce pulmonary hypertension, but the mechanisms remain unknown. RNA sequencing data from the mouse lungs on 15-HETE diet revealed significant activation of pathways involved in both antigen processing and presentation and T cell-mediated cytotoxicity. Analysis of human microarray from patients with PAH also identified activation of identical pathways compared with controls. We show that in both 15-HETE-fed mice and patients with PAH, expression of the immunoproteasome subunit 5 is significantly increased, which was concomitant with an increase in the number of CD8/CD69 (cluster of differentiation 8 / cluster of differentiation 69) double-positive cells, as well as pulmonary arterial endothelial cell apoptosis in mice. Human pulmonary arterial endothelial cells cultured with 15-HETE were more prone to apoptosis when exposed to CD8 cells. Cultured intestinal epithelial cells secreted more oxidized lipids in response to 15-HETE, which is consistent with accumulation of circulating oxidized lipids in 15-HETE-fed mice. Administration of an apoA-I (apolipoprotein A-I) mimetic peptide, Tg6F (transgenic 6F), which is known to prevent accumulation of circulating oxidized lipids, not only inhibited pulmonary arterial endothelial cell apoptosis but also prevented and rescued 15-HETE-induced pulmonary hypertension in mice. In conclusion, our results suggest that (1) 15-HETE diet induces pulmonary hypertension by a mechanism that involves oxidized lipid-mediated T cell-dependent pulmonary arterial endothelial cell apoptosis and (2) Tg6F administration may be a novel therapy for treating PAH.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Ellen O'Connor
- Molecular Toxicology Interdepartmental Degree Program (E.O., S.T.R.)
| | - Mylène Vaillancourt
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Jason Hong
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
- Department of Medicine, Division of Pulmonary and Critical Care (J.H.)
| | - Nancy Cao
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Shervin Sarji
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Shayan Moazeni
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Jeremy Papesh
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Victor Grijalva
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Christine M Cunningham
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Le Shu
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California (L.S., X.Y.)
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Shuchita Tiwari
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA (S.T., A.V.G.)
| | - Olaf Mercier
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation (O.M.), Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Frédéric Perros
- andUMR-S 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (F.P.), Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Soban Umar
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California (L.S., X.Y.)
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA (S.T., A.V.G.)
| | - Alan M Fogelman
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Srinivasa T Reddy
- Molecular Toxicology Interdepartmental Degree Program (E.O., S.T.R.)
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Mansoureh Eghbali
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| |
Collapse
|
14
|
Schwarz B, Sharma L, Roberts L, Peng X, Bermejo S, Leighton I, Massana AC, Farhadian S, Ko AI, Cruz CSD, Bosio CM. Severe SARS-CoV-2 infection in humans is defined by a shift in the serum lipidome resulting in dysregulation of eicosanoid immune mediators. RESEARCH SQUARE 2020:rs.3.rs-42999. [PMID: 32743565 PMCID: PMC7386513 DOI: 10.21203/rs.3.rs-42999/v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic has affected more than 10 million people worldwide with mortality exceeding half a million patients. Risk factors associated with severe disease and mortality include advanced age, hypertension, diabetes, and obesity.1 Clear mechanistic understanding of how these comorbidities converge to enable severe infection is lacking. Notably each of these risk factors pathologically disrupts the lipidome and this disruption may be a unifying feature of severe COVID-19.1-7 Here we provide the first in depth interrogation of lipidomic changes, including structural-lipids as well as the eicosanoids and docosanoids lipid mediators (LMs), that mark COVID-19 disease severity. Our data reveal that progression from moderate to severe disease is marked by a loss of specific immune regulatory LMs and increased pro-inflammatory species. Given the important immune regulatory role of LMs, these data provide mechanistic insight into the immune balance in COVID-19 and potential targets for therapy with currently approved pharmaceuticals.8.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lokesh Sharma
- Section of Pulmonary and Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Lydia Roberts
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Xiaohua Peng
- Section of Pulmonary and Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Santos Bermejo
- Section of Pulmonary and Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ian Leighton
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Arnau Casanovas Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Shelli Farhadian
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | | | - Charles S. Dela Cruz
- Section of Pulmonary and Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Catharine M. Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
15
|
Schwarz B, Sharma L, Roberts L, Peng X, Bermejo S, Leighton I, Massana AC, Farhadian S, Ko AI, Cruz CSD, Bosio CM. Severe SARS-CoV-2 infection in humans is defined by a shift in the serum lipidome resulting in dysregulation of eicosanoid immune mediators. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.09.20149849. [PMID: 32676616 PMCID: PMC7359541 DOI: 10.1101/2020.07.09.20149849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The COVID-19 pandemic has affected more than 10 million people worldwide with mortality exceeding half a million patients. Risk factors associated with severe disease and mortality include advanced age,hypertension, diabetes, and obesity. Clear mechanistic understanding of how these comorbidities converge to enable severe infection is lacking. Notably each of these risk factors pathologically disrupts the lipidome and this disruption may be a unifying feature of severe COVID-19. Here we provide the first in depth interrogation of lipidomic changes, including structural-lipids as well as the eicosanoids and docosanoids lipid mediators (LMs), that mark COVID-19 disease severity. Our data reveal that progression from moderate to severe disease is marked by a loss of specific immune regulatory LMs and increased pro-inflammatory species. Given the important immune regulatory role of LMs, these data provide mechanistic insight into the immune balance in COVID-19 and potential targets for therapy with currently approved pharmaceuticals.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lokesh Sharma
- Section of Pulmonary and Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Lydia Roberts
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Xiaohua Peng
- Section of Pulmonary and Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Santos Bermejo
- Section of Pulmonary and Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ian Leighton
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Arnau Casanovas Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Shelli Farhadian
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | | | - Charles S. Dela Cruz
- Section of Pulmonary and Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Catharine M. Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
16
|
Liparulo A, Esposito R, Santonocito D, Muñoz-Ramírez A, Spaziano G, Bruno F, Xiao J, Puglia C, Filosa R, Berrino L, D'Agostino B. Formulation and Characterization of Solid Lipid Nanoparticles Loading RF22-c, a Potent and Selective 5-LO Inhibitor, in a Monocrotaline-Induced Model of Pulmonary Hypertension. Front Pharmacol 2020; 11:83. [PMID: 32180715 PMCID: PMC7059131 DOI: 10.3389/fphar.2020.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/27/2020] [Indexed: 02/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by persistent elevated blood pressure in the pulmonary circulation, due to increased resistance to blood flow, through the lungs. Advances in the understanding of the pathobiology of PAH clarify the role of leukotrienes (LTs) that appear to be an exciting new target for disease intervention. Over the years, our group has long investigated this field, detecting the 1,2-benzoquinone RF-22c as the most powerful and selective competitive inhibitor of the enzyme 5-lipoxygenase (5-LO). With the aim to improve the bioavailability of RF-22c and to confirm the role of 5-LO as therapeutic strategy for PAH treatment, we developed a solid lipid nanoparticle (SLN) loaded with drug. Therefore, in monocrotaline (MCT) rat model of PAH, the role of 5-LO has been investigated through the formulation of RF-22c-SLN. The rats were randomly grouped into control group, MCT group, and MCT + RF22-c group. After 21 days, all the animals were sacrificed to perform functional and histological evaluations. RF22-c-SLN treatment was able to significantly reduce the mean pulmonary arterial pressure (mPAP) and precapillary resistance (R-pre) compared to the MCT group. The MCT induced rise in medial wall thickness of pulmonary arterioles, and the cardiomyocytes width were significantly attenuated by RF22-c-SLN formulation upon treatment. The results showed that the selective inhibition of 5-LO improved hemodynamic parameters as well as vascular and cardiac remodeling by preventing induced pulmonary hypertension. The improved sustained release properties and targeting abilities achieved with the innovative nanotechnological approach may be therapeutically beneficial for PAH patients as a consequence of the increase of pharmacological effects and of the possible reduction and/or optimization of the drug frequency of administration.
Collapse
Affiliation(s)
- Angela Liparulo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli," University of Campania "L. Vanvitelli," Naples, Italy
| | - Renata Esposito
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli," University of Campania "L. Vanvitelli," Naples, Italy
| | | | - Alejandra Muñoz-Ramírez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago, Casilla, Correo, Chile.,Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli," Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli," University of Campania "L. Vanvitelli," Naples, Italy
| | - Ferdinando Bruno
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli," Naples, Italy
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Carmelo Puglia
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosanna Filosa
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli," Naples, Italy.,Consorzio Sannio Tech-AMP Biotec, Apollosa, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli," University of Campania "L. Vanvitelli," Naples, Italy
| | - Bruno D'Agostino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli," University of Campania "L. Vanvitelli," Naples, Italy
| |
Collapse
|
17
|
Maron BA, Leopold JA, Hemnes AR. Metabolic syndrome, neurohumoral modulation, and pulmonary arterial hypertension. Br J Pharmacol 2020; 177:1457-1471. [PMID: 31881099 DOI: 10.1111/bph.14968] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary vascular disease, including pulmonary arterial hypertension (PAH), is increasingly recognized to be affected by systemic alterations including up-regulation of the renin-angiotensin-aldosterone system and perturbations to metabolic pathways, particularly glucose and fat metabolism. There is increasing preclinical and clinical data that each of these pathways can promote pulmonary vascular disease and right heart failure and are not simply disease markers. More recently, trials of therapeutics aimed at neurohormonal activation or metabolic dysfunction are beginning to shed light on how interventions in these pathways may affect patients with PAH. This review will focus on underlying mechanistic data that supports neurohormonal activation and metabolic dysfunction in the pathogenesis of PAH and right heart failure as well as discussing early translational data in patients with PAH.
Collapse
Affiliation(s)
- Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
18
|
Heresi GA, Mey JT, Bartholomew JR, Haddadin IS, Tonelli AR, Dweik RA, Kirwan JP, Kalhan SC. Plasma metabolomic profile in chronic thromboembolic pulmonary hypertension. Pulm Circ 2020. [PMID: 32110382 PMCID: PMC7000865 DOI: 10.1177/2045894019890553] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We aimed to characterize the plasma metabolome of chronic thromboembolic pulmonary hypertension patients using a high-throughput unbiased omics approach. We collected fasting plasma from a peripheral vein in 33 operable chronic thromboembolic pulmonary hypertension patients, 31 healthy controls, and 21 idiopathic pulmonary arterial hypertension patients matched for age, gender, and body mass index. Metabolomic analysis was performed using an untargeted approach (Metabolon Inc. Durham, NC). Of the total of 862 metabolites identified, 362 were different in chronic thromboembolic pulmonary hypertension compared to controls: 178 were higher and 184 were lower. Compared to idiopathic pulmonary arterial hypertension, 147 metabolites were different in chronic thromboembolic pulmonary hypertension: 45 were higher and 102 were lower. The plasma metabolome allowed us to distinguish subjects with chronic thromboembolic pulmonary hypertension and healthy controls with a predictive accuracy of 89%, and chronic thromboembolic pulmonary hypertension versus idiopathic pulmonary arterial hypertension with 80% accuracy. Compared to idiopathic pulmonary arterial hypertension and healthy controls, chronic thromboembolic pulmonary hypertension patients had higher fatty acids and glycerol; while acyl cholines and lysophospholipids were lower. Compared to healthy controls, both idiopathic pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension patients had increased acyl carnitines, beta-hydroxybutyrate, amino sugars and modified amino acids and nucleosides. The plasma global metabolomic profile of chronic thromboembolic pulmonary hypertension suggests aberrant lipid metabolism characterized by increased lipolysis, fatty acid oxidation, and ketogenesis, concomitant with reduced acyl choline and phospholipid moieties. Future research should investigate the pathogenetic and therapeutic potential of modulating lipid metabolism in chronic thromboembolic pulmonary hypertension.
Collapse
Affiliation(s)
- Gustavo A. Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland, OH, USA
| | - Jacob T. Mey
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John R. Bartholomew
- Section of Vascular Medicine, Heart and Vascular Institute, Cleveland, OH, USA
| | - Ihab S. Haddadin
- Department of Diagnostic Radiology, Imaging Institute, Cleveland, OH, USA
| | - Adriano R. Tonelli
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland, OH, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Raed A. Dweik
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland, OH, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - John P. Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Satish C. Kalhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
19
|
Feng W, Hu Y, An N, Feng Z, Liu J, Mou J, Hu T, Guan H, Zhang D, Mao Y. Alginate Oligosaccharide Alleviates Monocrotaline-Induced Pulmonary Hypertension via Anti-Oxidant and Anti-Inflammation Pathways in Rats. Int Heart J 2020; 61:160-168. [PMID: 31956132 DOI: 10.1536/ihj.19-096] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious and fatal cardiovascular disorder characterized by increased pulmonary vascular resistance and progressive pulmonary vascular remodeling. The underlying pathological mechanisms of PAH are multi-factorial and multi-cellular. Alginate oligosaccharide (AOS), which is produced by depolymerizing alginate, shows better pharmacological activities and beneficial effects. The present study was undertaken to investigate the effects and potential mechanisms of AOS-mediated alleviation of pulmonary hypertension. Pulmonary hypertension was induced in Sprague-Dawley rats by a single intraperitoneal injection of monocrotaline (MCT; 60 mg/kg). Five weeks after the injection of MCT, AOS (5, 10, and 20 mg·kg-1·d-1) was injected intraperitoneally for another three weeks. The results showed that AOS prevented the development of MCT-induced pulmonary hypertension and right ventricular hypertrophy in a dose-dependent manner. AOS treatment also prevented MCT-induced pulmonary vascular remodeling via inhibition of the TGF-β1/p-Smad2 signaling pathway. Furthermore, AOS treatment downregulated the expression of malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase, and pro-inflammatory cytokines, decreased macrophage infiltration, and upregulated the expression of anti-inflammatory cytokines. These findings indicate that AOS exerts anti-oxidative and anti-inflammatory effects in pulmonary arteries, which may contribute to the alleviation of pulmonary hypertension and pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Wenjing Feng
- Department of Geriatrics, The Affiliated Hospital of Qingdao University.,Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University.,College of Medicine, University of Illinois at Chicago
| | - Yi Hu
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Nina An
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Zhe Feng
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Jianya Liu
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Jie Mou
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Ting Hu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China.,Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China.,Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University
| | - Yongjun Mao
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| |
Collapse
|
20
|
Umar S, Ruffenach G, Moazeni S, Vaillancourt M, Hong J, Cunningham C, Cao N, Navab S, Sarji S, Li M, Lee L, Fishbein G, Ardehali A, Navab M, Reddy ST, Eghbali M. Involvement of Low-Density Lipoprotein Receptor in the Pathogenesis of Pulmonary Hypertension. J Am Heart Assoc 2020; 9:e012063. [PMID: 31914876 PMCID: PMC7033825 DOI: 10.1161/jaha.119.012063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Recently, we and others have reported a causal role for oxidized lipids in the pathogenesis of pulmonary hypertension (PH). However, the role of low‐density lipoprotein receptor (LDL‐R) in PH is not known. Methods and Results We examined the role of LDL‐R in the development of PH and determined the efficacy of high‐density lipoprotein mimetic peptide 4F in mitigating PH. Explanted human lungs and plasma from patients with PH and control subjects were analyzed for gene expression, histological characteristics, and lipoprotein oxidation. Male LDL‐R null (LDL‐R knockout) mice (12–15 months old) were fed chow, Western diet (WD), WD with 4F, and WD with scramble peptide for 12 weeks. Serial echocardiography, cardiac catheterization, oxidized LDL assay, real‐time quantitative reverse transcription–polymerase chain reaction, and histological analysis were performed. The effect of LDL‐R knockdown and oxidized LDL on human pulmonary artery smooth muscle cell proliferation was assessed in vitro. LDL‐R and CD36 expression levels were significantly downregulated in the lungs of patients with PH. Patients with PH also had increased lung lipid deposits, oxidized LDL, E06 immunoreactivity, and plasma oxidized LDL/LDL ratio. LDL‐R knockout mice on WD developed PH, right ventricular hypertrophy, right ventricular dysfunction, pulmonary vascular remodeling, fibrosis, and lipid deposition in lungs, aortic atherosclerosis, and left ventricular dysfunction, which were prevented by 4F. Interestingly, PH in WD group preceded left ventricular dysfunction. Oxidized LDL or LDL‐R knockdown significantly increased proliferation of human pulmonary artery smooth muscle cells in vitro. Conclusions Human PH is associated with decreased LDL‐R in lungs and increased oxidized LDL in lungs and plasma. WD‐fed LDL‐R knockout mice develop PH and right ventricular dysfunction, implicating a role for LDL‐R and oxidized lipids in PH.
Collapse
Affiliation(s)
- Soban Umar
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Gregoire Ruffenach
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Shayan Moazeni
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Mylene Vaillancourt
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Jason Hong
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Christine Cunningham
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Nancy Cao
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Sara Navab
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Shervin Sarji
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Min Li
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Lisa Lee
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Greg Fishbein
- Department of Pathology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Abbas Ardehali
- Department of Surgery David Geffen School of Medicine at UCLA Los Angeles CA
| | - Mohamad Navab
- Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Srinivasa T Reddy
- Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Mansoureh Eghbali
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| |
Collapse
|
21
|
Bouzina H, Hesselstrand R, Rådegran G. Higher plasma fibroblast growth factor 23 levels are associated with a higher risk profile in pulmonary arterial hypertension. Pulm Circ 2020; 9:2045894019895446. [PMID: 31908768 PMCID: PMC6935881 DOI: 10.1177/2045894019895446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolic abnormalities are proposed to contribute to pulmonary arterial as well as right ventricular remodelling in pulmonary arterial hypertension. Among the proposed abnormalities are altered glucose and lipid processing, mitochondrial malfunction, oxidative stress as well as vitamin D and iron abnormalities. In the present study, we investigated 11 metabolic plasma biomarkers, with the hypothesis that metabolic proteins may mirror disease severity in pulmonary arterial hypertension. Using proximity extension assays, plasma metabolic biomarkers were measured in 48 pulmonary arterial hypertension patients at diagnosis and, in 33 of them, at an early treatment follow-up, as well as in 16 healthy controls. Among the studied metabolic biomarkers, plasma fibroblast growth factor-23 (p < 0.001), fibroblast growth factor-21 (p < 0.001), fatty acid binding protein 4 (p < 0.001) and lectin-like oxidised low-density lipoprotein receptor 1 (p < 0.001) were increased and paraoxonase-3 was decreased (p < 0.001) in pulmonary arterial hypertension at diagnosis versus controls. Fibroblast growth factor-23 showed the strongest correlations to studied clinical parameters and was therefore selected for further analyses. Fibroblast growth factor-23 correlated specifically to mean right atrial pressure (r = 0.67, p < 0.001), six-min walking distance (r = −0.66, p < 0.001), NT-proBNP (r = 0.64, p < 0.001), venous oxygen saturation (r = −0.61, p < 0.001), cardiac index (r = −0.39, p < 0.007) and pulmonary vascular resistance (r = 0.37, p < 0.01). Fibroblast growth factor-23 correlated moreover to ESC/ERS (r = 0.72, p < 0.001) and the REVEAL risk score (r = 0.61, p < 0.001). Comparing early treatment follow-up with baseline, fibroblast growth factor-23 decreased (p < 0.02), with changes in fibroblast growth factor-23 correlating to changes in six-min walking distance (r = −0.56, p < 0.003), venous oxygen saturation (r = −0.46, p < 0.01), pulmonary vascular resistance (r = 0.43, p < 0.02), mean right atrial pressure (r = 0.38, p < 0.04) and cardiac index (r = −0.39, p < 0.04). Elevated plasma fibroblast growth factor-23 levels at pulmonary arterial hypertension diagnosis were associated with worse haemodynamics and a higher risk profile, and were decreased after the administration of pulmonary arterial hypertension-specific treatment.
Collapse
Affiliation(s)
- Habib Bouzina
- Section of Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, Skåne University Hospital, Lund, Sweden
| | - Roger Hesselstrand
- Section of Rheumatology, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Rheumatology, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Section of Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
22
|
Kim-Campbell N, Gretchen C, Ritov VB, Kochanek PM, Balasubramani GK, Kenny E, Sharma M, Viegas M, Callaway C, Kagan VE, Bayir H. Bioactive Oxylipins in Infants and Children With Congenital Heart Disease Undergoing Pediatric Cardiopulmonary Bypass. Pediatr Crit Care Med 2020; 21:33-41. [PMID: 31305328 PMCID: PMC7388063 DOI: 10.1097/pcc.0000000000002036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine the production of 9-hydroxyoctadecadienoic acid and 13-hydroxyoctadecadienoic acid during cardiopulmonary bypass in infants and children undergoing cardiac surgery, evaluate their relationship with increase in cell-free plasma hemoglobin, provide evidence of bioactivity through markers of inflammation and vasoactivity (WBC count, milrinone use, vasoactive-inotropic score), and examine their association with overall clinical burden (ICU/hospital length of stay and mechanical ventilation duration). DESIGN Prospective observational study. SETTING Twelve-bed cardiac ICU in a university-affiliated children's hospital. PATIENTS Children were prospectively enrolled during their preoperative clinic appointments with the following criteria: greater than 1 month to less than 18 years old, procedures requiring cardiopulmonary bypass INTERVENTIONS:: None. MEASUREMENTS AND MAIN RESULTS Plasma was collected at the start and end of cardiopulmonary bypass in 34 patients. 9-hydroxyoctadecadienoic acid, 13-hydroxyoctadecadienoic acid, plasma hemoglobin, and WBC increased. 9:13-hydroxyoctadecadienoic acid at the start of cardiopulmonary bypass was associated with vasoactive-inotropic score at 2-24 hours postcardiopulmonary bypass (R = 0.25; p < 0.01), milrinone use (R = 0.17; p < 0.05), and WBC (R = 0.12; p < 0.05). 9:13-hydroxyoctadecadienoic acid at the end of cardiopulmonary bypass was associated with vasoactive-inotropic score at 2-24 hours (R = 0.17; p < 0.05), 24-48 hours postcardiopulmonary bypass (R = 0.12; p < 0.05), and milrinone use (R = 0.19; p < 0.05). 9:13-hydroxyoctadecadienoic acid at the start and end of cardiopulmonary bypass were associated with the changes in plasma hemoglobin (R = 0.21 and R = 0.23; p < 0.01). The changes in plasma hemoglobin was associated with milrinone use (R = 0.36; p < 0.001) and vasoactive-inotropic score less than 2 hours (R = 0.22; p < 0.01), 2-24 hours (R = 0.24; p < 0.01), and 24-48 hours (R = 0.48; p < 0.001) postcardiopulmonary bypass. Cardiopulmonary bypass duration, 9:13-hydroxyoctadecadienoic acid at start of cardiopulmonary bypass, and plasma hemoglobin may be risk factors for high vasoactive-inotropic score. Cardiopulmonary bypass duration, changes in plasma hemoglobin, 9:13-hydroxyoctadecadienoic acid, and vasoactive-inotropic score correlate with ICU and hospital length of stay and/mechanical ventilation days. CONCLUSIONS In low-risk pediatric patients undergoing cardiopulmonary bypass, 9:13-hydroxyoctadecadienoic acid was associated with changes in plasma hemoglobin, vasoactive-inotropic score, and WBC count, and may be a risk factor for high vasoactive-inotropic score, indicating possible inflammatory and vasoactive effects. Further studies are warranted to delineate the role of hydroxyoctadecadienoic acids and plasma hemoglobin in cardiopulmonary bypass-related dysfunction and to explore hydroxyoctadecadienoic acid production as a potential therapeutic target.
Collapse
Affiliation(s)
- Nahmah Kim-Campbell
- Department of Critical Care Medicine, UPMC and University of Pittsburgh, Pittsburgh, PA
| | - Catherine Gretchen
- Department of Critical Care Medicine, UPMC and University of Pittsburgh, Pittsburgh, PA
| | - Vladimir B Ritov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, UPMC and University of Pittsburgh, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA
| | | | - Elizabeth Kenny
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Mahesh Sharma
- Department of Cardiothoracic Surgery, UPMC and University of Pittsburgh, Pittsburgh, PA
| | - Melita Viegas
- Department of Cardiothoracic Surgery, UPMC and University of Pittsburgh, Pittsburgh, PA
| | - Clifton Callaway
- Department of Emergency Medicine, UPMC and University of Pittsburgh, Pittsburgh, PA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Hülya Bayir
- Department of Critical Care Medicine, UPMC and University of Pittsburgh, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
23
|
Dlouha D, Prochazkova I, Eretova Z, Hubacek JA, Parikova A, Pitha J. Influence of lipoprotein apheresis on circulating plasma levels of miRNAs in patients with high Lp(a). ATHEROSCLEROSIS SUPP 2019; 40:12-16. [DOI: 10.1016/j.atherosclerosissup.2019.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Tseng V, Sutliff RL, Hart CM. Redox Biology of Peroxisome Proliferator-Activated Receptor-γ in Pulmonary Hypertension. Antioxid Redox Signal 2019; 31:874-897. [PMID: 30582337 PMCID: PMC6751396 DOI: 10.1089/ars.2018.7695] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Peroxisome proliferator-activated receptor-gamma (PPARγ) maintains pulmonary vascular health through coordination of antioxidant defense systems, inflammation, and cellular metabolism. Insufficient PPARγ contributes to pulmonary hypertension (PH) pathogenesis, whereas therapeutic restoration of PPARγ activity attenuates PH in preclinical models. Recent Advances: Numerous studies in the past decade have elucidated the complex mechanisms by which PPARγ in the pulmonary vasculature and right ventricle (RV) protects against PH. The scope of PPARγ-interconnected pathways continues to expand and includes induction of antioxidant genes, transrepression of inflammatory signaling, regulation of mitochondrial biogenesis and bioenergetic integrity, control of cell cycle and proliferation, and regulation of vascular tone through interactions with nitric oxide and endogenous vasoactive molecules. Furthermore, PPARγ interacts with an extensive regulatory network of transcription factors and microRNAs leading to broad impact on cell signaling. Critical Issues: Abundant evidence suggests that targeting PPARγ exerts diverse salutary effects in PH and represents a novel and potentially translatable therapeutic strategy. However, progress has been slowed by an incomplete understanding of how specific PPARγ pathways are critically disrupted across PH disease subtypes and lack of optimal pharmacological ligands. Future Directions: Recent studies indicate that ligand-induced post-translational modifications of the PPARγ receptor differentially induce therapeutic benefits versus adverse side effects of PPARγ receptor activation. Strategies to selectively target PPARγ activity in diseased cells of pulmonary circulation and RV, coupled with development of ligands designed to specifically regulate post-translational PPARγ modifications, may unlock the full therapeutic potential of this versatile master transcriptional and metabolic regulator in PH.
Collapse
Affiliation(s)
- Victor Tseng
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Roy L Sutliff
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - C Michael Hart
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
25
|
Türck P, Fraga S, Salvador I, Campos-Carraro C, Lacerda D, Bahr A, Ortiz V, Hickmann A, Koetz M, Belló-Klein A, Henriques A, Agostini F, da Rosa Araujo AS. Blueberry extract decreases oxidative stress and improves functional parameters in lungs from rats with pulmonary arterial hypertension. Nutrition 2019; 70:110579. [PMID: 31743815 DOI: 10.1016/j.nut.2019.110579] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Pulmonary arterial hypertension (PAH) is a condition characterized by an increased resistance of pulmonary vasculature, culminating in an increase in pulmonary pressure. This process involves disturbances in lung redox homeostasis, causing progressive right heart failure. In this context, the use of natural antioxidants, such as those found in blueberries, may represent a therapeutic approach. The aim of this study was to evaluate the effect of blueberry extract (BB) on functional parameters and oxidative stress levels in rat lungs with induced PAH. METHODS Forty-eight male Wistar rats (weighing 200 ± 20 g) were randomized into five groups: control, monocrotaline, monocrotaline + BB 50, monocrotaline + BB 100, and monocrotaline + BB 200. PAH was induced by the administration of monocrotaline (60 mg/kg, intraperitoneal). Rats were treated with BB at doses of 50, 100, and 200 mg/kg via gavage for 5 wk (2 wk before monocrotaline and 3 wk after monocrotaline injection). At day 35, rats were submitted to echocardiography and catheterization. They were then sacrificed and lungs were harvested for biochemical analyses. RESULTS BB increased the E/A ratio of blood flow across the tricuspid valve and tricuspid annular phase systolic excursion, as wells as decreased the mean pulmonary artery pressure of animals compared with the PAH group. Moreover, BB decreased total reactive species concentration and lipid oxidation, reduced activity of nicotinamide adenine dinucleotide phosphate oxidase and expression of xanthine oxidase, increased the activity of superoxide dismutase and restored sulfhydryl content in the animal lungs compared with those in the PAH group. Additionally, BB restored expression of the antioxidant transcriptional factor Nrf2 in the lungs of the animal subjects. Finally, BB normalized the endothelin receptor (ETA/ETB) expression ratio in the animal lungs, which were increased in the PAH group. CONCLUSION Intervention with BB mitigated functional PAH outcomes through improvement of the pulmonary redox state. Our results provide a basis for future research on natural antioxidant interventions as a novel treatment strategy in PAH.
Collapse
Affiliation(s)
- Patrick Türck
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil.
| | - Schauana Fraga
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Isadora Salvador
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Cristina Campos-Carraro
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Denise Lacerda
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Alan Bahr
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Vanessa Ortiz
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Alexandre Hickmann
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Mariana Koetz
- Postgraduate Program in Pharmaceutical Sciences, Pharmacy College, Federal University of Rio Grande do Sul, Brazil
| | - Adriane Belló-Klein
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Amélia Henriques
- Postgraduate Program in Pharmaceutical Sciences, Pharmacy College, Federal University of Rio Grande do Sul, Brazil
| | - Fabiana Agostini
- Postgraduate Program at Biosciences and Rehabilitation, Centro Universitário Metodista-IPA, Porto Alegre, Brazil
| | - Alex Sander da Rosa Araujo
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| |
Collapse
|
26
|
Zhao Y, Wang B, Zhang J, He D, Zhang Q, Pan C, Yuan Q, Shi Y, Tang H, Xu F, Wei S, Chen Y. ALDH2 (Aldehyde Dehydrogenase 2) Protects Against Hypoxia-Induced Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:2303-2319. [PMID: 31510791 DOI: 10.1161/atvbaha.119.312946] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Hypoxia-induced pulmonary hypertension (HPH) increases lipid peroxidation with generation of toxic aldehydes that are metabolized by detoxifying enzymes, including ALDH2 (aldehyde dehydrogenase 2). However, the role of lipid peroxidation and ALDH2 in HPH pathogenesis remain undefined. Approach and Results: To determine the role of lipid peroxidation and ALDH2 in HPH, C57BL/6 mice, ALDH2 transgenic mice, and ALDH2 knockout (ALDH2-/-) mice were exposed to chronic hypoxia, and recombinant tissue-specific ALDH2 overexpression adeno-associated viruses were introduced into pulmonary arteries via tail vein injection for ALDH2 overexpression. Human pulmonary artery smooth muscle cells were used to elucidate underlying mechanisms in vitro. Chronic hypoxia promoted lipid peroxidation due to the excessive production of reactive oxygen species and increased expression of lipoxygenases in lung tissues. 4-hydroxynonenal but not malondialdehyde level was increased in hypoxic lung tissues which might reflect differences in detoxifying enzymes. ALDH2 overexpression attenuated the development of HPH, whereas ALDH2 knockout aggravated it. Specific overexpression of ALDH2 using AAV1 (adeno-associated virus)-ICAM (intercellular adhesion molecule) 2p-ALDH2 and AAV2-SM22αp (smooth muscle 22 alpha)-ALDH2 viral vectors in pulmonary artery smooth muscle cells, but not endothelial cells, prevented the development of HPH. Hypoxia or 4-hydroxynonenal increased stabilization of HIF (hypoxia-inducible factor)-1α, phosphorylation of Drp1 (dynamin-related protein 1) at serine 616, mitochondrial fission, and pulmonary artery smooth muscle cells proliferation, whereas ALDH2 activation suppressed the latter 3. CONCLUSIONS Increased 4-hydroxynonenal level plays a critical role in the development of HPH. ALDH2 attenuates the development of HPH by regulating mitochondrial fission and smooth muscle cell proliferation suggesting ALDH2 as a potential new therapeutic target for pulmonary hypertension.
Collapse
Affiliation(s)
- Yu Zhao
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Bailu Wang
- Clinical Trial Center (B.W.), Qilu Hospital of Shandong University, Jinan
| | - Jian Zhang
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Dayu He
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Qun Zhang
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Chang Pan
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Qiuhuan Yuan
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Yinan Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (Y.S., H.T.)
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (Y.S., H.T.).,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, China (H.T.)
| | - Feng Xu
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Shujian Wei
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Yuguo Chen
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| |
Collapse
|
27
|
Ruffenach G, Umar S, Vaillancourt M, Hong J, Cao N, Sarji S, Moazeni S, Cunningham CM, Ardehali A, Reddy ST, Saggar R, Fishbein G, Eghbali M. Histological hallmarks and role of Slug/PIP axis in pulmonary hypertension secondary to pulmonary fibrosis. EMBO Mol Med 2019; 11:e10061. [PMID: 31468711 PMCID: PMC6728601 DOI: 10.15252/emmm.201810061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/02/2023] Open
Abstract
Pulmonary hypertension secondary to pulmonary fibrosis (PF-PH) is one of the most common causes of PH, and there is no approved therapy. The molecular signature of PF-PH and underlying mechanism of why pulmonary hypertension (PH) develops in PF patients remains understudied and poorly understood. We observed significantly increased vascular wall thickness in both fibrotic and non-fibrotic areas of PF-PH patient lungs compared to PF patients. The increased vascular wall thickness in PF-PH patients is concomitant with a significantly increased expression of the transcription factor Slug within the macrophages and its target prolactin-induced protein (PIP), an extracellular matrix protein that induces pulmonary arterial smooth muscle cell proliferation. We developed a novel translational rat model of combined PF-PH that is reproducible and shares similar histological features (fibrosis, pulmonary vascular remodeling) and molecular features (Slug and PIP upregulation) with human PF-PH. We found Slug inhibition decreases PH severity in our animal model of PF-PH. Our study highlights the role of Slug/PIP axis in PF-PH.
Collapse
Affiliation(s)
- Gregoire Ruffenach
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Soban Umar
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Mylene Vaillancourt
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Jason Hong
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
- Division of Pulmonary and Critical CareDepartment of MedicineUCLALos AngelesCAUSA
| | - Nancy Cao
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Shervin Sarji
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Shayan Moazeni
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Christine M Cunningham
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Abbas Ardehali
- Division of Cardiothoracic SurgeryDepartment of SurgeryUCLALos AngelesCAUSA
| | - Srinivasa T Reddy
- Division of Molecular & Medical PharmacologyDepartment of MedicineUCLALos AngelesCAUSA
| | - Rajan Saggar
- Division of Pulmonary and Critical CareDepartment of MedicineUCLALos AngelesCAUSA
| | | | - Mansoureh Eghbali
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| |
Collapse
|
28
|
Jonas K, Kopeć G. HDL Cholesterol as a Marker of Disease Severity and Prognosis in Patients with Pulmonary Arterial Hypertension. Int J Mol Sci 2019; 20:E3514. [PMID: 31323735 PMCID: PMC6678550 DOI: 10.3390/ijms20143514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023] Open
Abstract
The impact of high-density lipoprotein (HDL) cholesterol on the development of atherosclerosis and diseases of systemic circulation has been well documented both in experimental and registry studies. Recent discoveries in pulmonary arterial hypertension (PAH) revealed a significant impact of HDL on pulmonary artery vasoreactivity and patients' prognosis. The vasoprotective activity of HDL primarily involves vascular endothelium that also plays a central role in pulmonary arterial hypertension (PAH) pathobiology. However, the exact mechanism in which this lipoprotein fraction exerts its effect in pulmonary circulation is still under investigation. This paper reviews potential vasoprotective mechanisms of HDL in pulmonary circulation and presents current clinical reports on the role of HDL in PAH patients.
Collapse
Affiliation(s)
- Kamil Jonas
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, 31-202 Krakow, Poland
| | - Grzegorz Kopeć
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, 31-202 Krakow, Poland.
| |
Collapse
|
29
|
Machado CDS, Ferro Aissa A, Ribeiro DL, Antunes LMG. Vitamin D supplementation alters the expression of genes associated with hypertension and did not induce DNA damage in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:299-313. [PMID: 30909850 DOI: 10.1080/15287394.2019.1592044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vitamin D3 deficiency has been correlated with altered expression of genes associated with increased blood pressure (BP); however, the role of vitamin D3 supplementation in the genetic mechanisms underlying hypertension remains unclear. Thus, the aim of this study was investigate the consequences of vitamin D3 supplemented (10,000 IU/kg) or deficient (0 IU/kg) diets on regulation of expression of genes related to hypertension pathways in heart cells of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) controls. An additional aim was to assess the impact of vitamin D3 on DNA damage and oxidative stress markers. The gene expression profiles were determined by PCR array, DNA damage was assessed by an alkaline comet assay, and oxidative stress markers by measurement of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels. In SHR rats data showed that the groups of genes most differentially affected by supplemented and deficient diets were involved in BP regulation and renin-angiotensin system. In normotensive WKY controls, the profile of gene expression was similar between the two diets. SHR rats were more sensitive to changes in gene expression induced by dietary vitamin D3 than normotensive WKY animals. In addition to gene expression profile, vitamin D3 supplemented diet did not markedly affect DNA or levels of TBARS and GSH levels in both experimental groups. Vitamin D3 deficient diet produced lipid peroxidation in SHR rats. The results of this study contribute to a better understanding of the role of vitamin D3 in the genetic mechanisms underlying hypertension. Abbreviations: AIN, American Institute of Nutrition; EDTA, disodium ethylenediaminetetraacetic acid; GSH, glutathione; PBS, phosphate buffer solution; SHR, spontaneously hypertensive rats; TBARS, thiobarbituric acid reactive substances; WKY, Wistar Kyoto.
Collapse
Affiliation(s)
- Carla Da Silva Machado
- a School of Medicine of Ribeirão Preto , USP , Ribeirão Preto , SP , Brazil
- b Pitagoras College of Governador Valadares , Governador Valadares , MG , Brazil
| | - Alexandre Ferro Aissa
- c School of Pharmaceutical Sciences of Ribeirão Preto , USP , Ribeirão Preto , SP , Brazil
| | - Diego Luis Ribeiro
- a School of Medicine of Ribeirão Preto , USP , Ribeirão Preto , SP , Brazil
| | | |
Collapse
|
30
|
Yalamanoglu A, Deuel JW, Hunt RC, Baek JH, Hassell K, Redinius K, Irwin DC, Schaer DJ, Buehler PW. Depletion of haptoglobin and hemopexin promote hemoglobin-mediated lipoprotein oxidation in sickle cell disease. Am J Physiol Lung Cell Mol Physiol 2018; 315:L765-L774. [PMID: 30047285 DOI: 10.1152/ajplung.00269.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intravascular sickling and lysis of red blood cells, a hallmark feature of sickle cell disease (SCD), releases hemoglobin (Hb) into the circulation. Increased cell-free Hb has been linked to vasculopathy and in vitro lipid oxidation. Scavenger plasma proteins haptoglobin (Hp) and hemopexin (Hpx) can attenuate cell-free Hb and total plasma heme lipid-oxidative capacity but are depleted in SCD. Here, we isolated lipids from BERK-SS mice, guinea pigs (GP) infused with heme-albumin, and patients with SCD undergoing regular exchange transfusion therapy and evaluated the level of lipid oxidation. Malondialdehyde formation, an end product of lipid peroxidation, was increased in BERK-SS mice, purified lipid fractions of the heme-albumin infused GP, and patients with SCD compared with controls. In humans, the extent of lipid oxidation was associated with the absence of Hp as well as decreased Hpx in plasma samples. Postmortem pulmonary tissue obtained from patients with SCD demonstrated oxidized LDL deposition in the pulmonary artery. The relationship between no Hp and low Hpx levels with greater LDL and HDL oxidation demonstrates the loss of protection against cell-free Hb and total plasma heme-mediated lipid oxidation and tissue injury in SCD. Strategies to protect against plasma lipid oxidation by cell-free Hb and total plasma heme (e.g., therapeutic Hp and Hpx replacement) may diminish the deleterious effects of cell-free Hb and total plasma heme toward the vascular system in SCD.
Collapse
Affiliation(s)
- Ayla Yalamanoglu
- Laboratory of Biochemistry and Vascular Biology, United States Food and Drug Administration, Silver Spring, Maryland
| | - Jeremy W Deuel
- Division of Internal Medicine, University Hospital of Zurich , Zurich , Switzerland
| | - Ryan C Hunt
- Division of Plasma Protein Therapeutics, United States Food and Drug Administration , Silver Spring, Maryland
| | - Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, United States Food and Drug Administration, Silver Spring, Maryland
| | - Kathryn Hassell
- Division of Hematology, University of Colorado , Aurora, Colorado
| | - Katie Redinius
- Cardiovascular and Pulmonary Research Laboratory, University of Colorado, Aurora, Colorado
| | - David C Irwin
- Cardiovascular and Pulmonary Research Laboratory, University of Colorado, Aurora, Colorado
| | - Dominik J Schaer
- Division of Internal Medicine, University Hospital of Zurich , Zurich , Switzerland
| | - Paul W Buehler
- Laboratory of Biochemistry and Vascular Biology, United States Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
31
|
Abstract
Lipid mediators play a critical role in the development and resolution of vascular endothelial barrier dysfunction caused by various pathologic interventions. The accumulation of excess lipids directly impairs endothelial cell (EC) barrier function that is known to contribute to the development of atherosclerosis and metabolic disorders such as obesity and diabetes as well as chronic inflammation in the vascular endothelium. Certain products of phospholipid oxidation (OxPL) such as fragmented phospholipids generated during oxidative and nitrosative stress show pro-inflammatory potential and cause endothelial barrier dysfunction. In turn, other OxPL products enhance basal EC barrier and exhibit potent barrier-protective effects in pathologic settings of acute vascular leak caused by pro-inflammatory mediators, barrier disruptive agonists and pathologic mechanical stimulation. These beneficial effects were further confirmed in rodent models of lung injury and inflammation. The bioactive oxidized lipid molecules may serve as important therapeutic prototype molecules for future treatment of acute lung injury syndromes associated with endothelial barrier dysfunction and inflammation. This review will summarize recent studies of biological effects exhibited by various groups of lipid mediators with a focus on the role of oxidized phospholipids in control of vascular endothelial barrier, agonist induced EC permeability, inflammation, and barrier recovery related to clinical settings of acute lung injury and inflammatory vascular leak.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA,CONTACT Konstantin G. Birukov, MD, PhD Department of Anesthesiology, University of Maryland, School of Medicine, 20 Penn Street, HSF-2, Room 145, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
Umar S, Partow-Navid R, Ruffenach G, Iorga A, Moazeni S, Eghbali M. Severe pulmonary hypertension in aging female apolipoprotein E-deficient mice is rescued by estrogen replacement therapy. Biol Sex Differ 2017; 8:9. [PMID: 28344760 PMCID: PMC5360087 DOI: 10.1186/s13293-017-0129-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Background Apolipoprotein E (ApoE) is a multifunctional protein, and its deficiency leads to the development of atherosclerosis in mice. Patients with pulmonary hypertension (PH) have reduced expression of ApoE in lung tissue. ApoE is known to inhibit endothelial and smooth muscle cell proliferation and has anti-inflammatory and anti-platelet aggregation properties. Young ApoE-deficient mice have been shown to develop PH on high fat diet. The combined role of female sex and aging in the development of PH has not been investigated before. Here, we investigated the development of PH in young and middle-aged (MA) female ApoE-deficient mice and explored the role of exogenous estrogen (E2) replacement therapy for the aging females. Methods Wild type (WT) and ApoE-deficient female mice (Young and MA) were injected with a single intraperitoneal dose of monocrotaline (MCT, 60 mg/kg). Some ApoE-deficient MA female mice that received MCT were also treated with subcutaneous E2 pellets (0.03 mg/kg/day) from day 21 to 30 after MCT injection. Direct cardiac catheterization was performed terminally to record right ventricular systolic pressure (RVSP). Right ventricular (RV), left ventricular (LV), and interventricular septum (IVS) were dissected and weighed. Lung sections were examined using trichrome and immunofluorescence staining. Western blot analyses of lung and RV lysates were performed. Results In WT female mice, the severity of PH was similar between young and MA mice as RVSP was not significantly different (RVSP = 38.2 ± 1.2 in young vs. 40.5 ± 8.3 mmHg in MA, p < 0.05). In ApoE-deficient mice, MA females developed significantly severe PH (RVSP = 63 ± 10 mmHg) compared to young females (RVSP; 36 ± 3 mmHg, p < 0.05 vs. MA female). ApoE-deficient MA females also developed more severe RV hypertrophy compared to young females (RV hypertrophy index (RV/[LV + IVS]) = 0.53 ± 0.06 vs. 0.33 ± 0.01, p < 0.05). ApoE-deficient MA female mice manifested increased peripheral pulmonary artery muscularization and pulmonary fibrosis. E2 treatment of MA female ApoE-deficient mice resulted in a significant decrease in RVSP, reversal of pulmonary vascular remodeling, and RV hypertrophy. In MA female ApoE-deficient mice with PH, only the expression of ERβ in the lungs, but not in RV, was significantly downregulated, and it was restored by E2 treatment. The expression of ERα was not affected in either lungs or RV by PH. GPR30 was only detected in the RV, and it was not affected by PH in MA female ApoE-deficient mice. Conclusions Our results suggest that only aging female ApoE-deficient but not WT mice develop severe PH compared to younger females. Exogenous estrogen therapy rescued PH and RV hypertrophy in aging female ApoE-deficient mice possibly through restoration of lung ERβ.
Collapse
Affiliation(s)
- Soban Umar
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Rod Partow-Navid
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Gregoire Ruffenach
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Andrea Iorga
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Shayan Moazeni
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Mansoureh Eghbali
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| |
Collapse
|
33
|
Cheng G, Wang X, Li Y, He L. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling. Stem Cell Res Ther 2017; 8:34. [PMID: 28187784 PMCID: PMC5303212 DOI: 10.1186/s13287-017-0480-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background Cell-based gene therapy has become a subject of interest for the treatment of pulmonary arterial hypertension (PAH), a devastating disease characterized by pulmonary artery smooth muscle cell (PASMC) hyperplasia. Mesenchymal stem cells (MSCs) have been recently acknowledged as a potential cell vector for gene therapy. Here, we investigated the effect of MSC-based let-7a for PAH. Methods After isolation and identification of MSCs from rat bone marrow, cells were infected with recombinant adenovirus vector Ad-let-7a. Lewis rats were subcutaneously injected with monocrotaline (MCT) to induce PAH, followed by the administration of MSCs, MSCs-NC (miR-control), or MSC-let-7a, respectively. Then, right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular remodeling were evaluated. Rat pulmonary artery smooth muscle cells (rPASMCs) under hypoxia were co-cultured with MSCs or MSC-let-7a. Cell proliferation and apoptosis were separately determined by 3H thymidine incorporation and flow cytometry analysis. The underlying mechanism was also investigated. Results MSC transplantation enhanced let-7a levels in MCT-induced PAH rats. After injection with MSC-let-7a, RVSP, right ventricular hypertrophy, and pulmonary vascular remodeling were notably ameliorated, indicating a protective effect of MSC-let-7a against PAH. When co-cultured with MSC-let-7a, hypoxia-triggered PASMC proliferation was obviously attenuated, concomitant with the decrease in cell proliferation-associated proteins. Simultaneously, the resistance of PASMCs to apoptosis was remarkably abrogated by MSC-let-7a administration. A mechanism assay revealed that MSC-let-7a restrained the activation of signal transducers and activators of transcription 3 (STAT3) and increased its downstream bone morphogenetic protein receptor 2 (BMPR2) expression. Importantly, preconditioning with BMPR2 siRNA dramatically abated the suppressive effects of MSC-let-7a on PASMC proliferation and apoptosis resistance. Conclusions Collectively, this study suggests that MSCs modified with let-7a may ameliorate the progression of PAH by inhibiting PASMC growth through the STAT3-BMPR2 signaling, supporting a promising therapeutic strategy for PAH patients.
Collapse
Affiliation(s)
- Gesheng Cheng
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xingye Wang
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Yongxin Li
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Lu He
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| |
Collapse
|