1
|
Kuang Z, Sang Z, Ren N, Wang X, Zeng T, Wu S, Niu M, Cong L, Kinyanjui SM, Chen Q, Tie C, Liu Z, Sun T, Hu Z, Du J, Li Y, Liang D, Liu X, Zheng H, Yang Y. Development and performance of SIAT bPET: a high-resolution and high-sensitivity MR-compatible brain PET scanner using dual-ended readout detectors. Eur J Nucl Med Mol Imaging 2024; 51:346-357. [PMID: 37782321 DOI: 10.1007/s00259-023-06458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Positron emission tomography/magnetic resonance imaging (PET/MRI) is a powerful tool for brain imaging, but the spatial resolution of the PET scanners currently used for brain imaging can be further improved to enhance the quantitative accuracy of brain PET imaging. The purpose of this study is to develop an MR-compatible brain PET scanner that can simultaneously achieve a uniform high spatial resolution and high sensitivity by using dual-ended readout depth encoding detectors. METHODS The MR-compatible brain PET scanner, named SIAT bPET, consists of 224 dual-ended readout detectors. Each detector contains a 26 × 26 lutetium yttrium oxyorthosilicate (LYSO) crystal array of 1.4 × 1.4 × 20 mm3 crystal size read out by two 10 × 10 silicon photomultiplier (SiPM) arrays from both ends. The scanner has a detector ring diameter of 376.8 mm and an axial field of view (FOV) of 329 mm. The performance of the scanner including spatial resolution, sensitivity, count rate, scatter fraction, and image quality was measured. Imaging studies of phantoms and the brain of a volunteer were performed. The mutual interferences of the PET insert and the uMR790 3 T MRI scanner were measured, and simultaneous PET/MRI imaging of the brain of a volunteer was performed. RESULTS A spatial resolution of better than 1.5 mm with an average of 1.2 mm within the whole FOV was obtained. A sensitivity of 11.0% was achieved at the center FOV for an energy window of 350-750 keV. Except for the dedicated RF coil, which caused a ~ 30% reduction of the sensitivity of the PET scanner, the MRI sequences running had a negligible effect on the performance of the PET scanner. The reduction of the SNR and homogeneity of the MRI images was less than 2% as the PET scanner was inserted to the MRI scanner and powered-on. High quality PET and MRI images of a human brain were obtained from simultaneous PET/MRI scans. CONCLUSION The SIAT bPET scanner achieved a spatial resolution and sensitivity better than all MR-compatible brain PET scanners developed up to date. It can be used either as a standalone brain PET scanner or a PET insert placed inside a commercial whole-body MRI scanner to perform simultaneous PET/MRI imaging.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Physics and Electronics-Electrical Engineering, Xiangnan University, Chenzhou, 423000, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziru Sang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ning Ren
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaohui Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianyi Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - San Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Niu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longhan Cong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Samuel M Kinyanjui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiaoyan Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Changjun Tie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zheng Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhanli Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junwei Du
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ye Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yongfeng Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Seo M, Ko GB, Kim KY, Son JW, Byun JW, Lee YS, Kim KM, Park JW, Kim K, Lee T, Lee JS. Performance evaluation of SimPET-L and SimPET-XL: MRI-compatible small-animal PET systems with rat-body imaging capability. EJNMMI Phys 2023; 10:16. [PMID: 36881339 PMCID: PMC9992463 DOI: 10.1186/s40658-023-00534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND SimPET-L and SimPET-XL have recently been introduced with increased transaxial fields of view (FOV) compared with their predecessors (SimPET™ and SimPET-X), enabling whole-body positron emission tomography (PET) imaging of rats. We conducted performance evaluations of SimPET-L and SimPET-XL and rat-body imaging with SimPET-XL to demonstrate the benefits of increased axial and transaxial FOVs. PROCEDURES The detector blocks in SimPET-L and SimPET-XL consist of two 4 × 4 silicon photomultiplier arrays coupled with 20 × 9 array lutetium oxyorthosilicate crystals. SimPET-L and SimPET-XL have an inner diameter (bore size) of 7.6 cm, and they are composed of 40 and 80 detector blocks yielding axial lengths of 5.5 and 11 cm, respectively. Each system was evaluated according to the National Electrical Manufacturers Association NU4-2008 protocol. Rat imaging studies, such as 18F-NaF and 18F-FDG PET, were performed using SimPET-XL. RESULTS The radial resolutions at the axial center measured using the filtered back projection, 3D ordered-subset expectation maximization (OSEM), and 3D OSEM with point spread functions correction were 1.7, 0.82, and 0.82 mm FWHM in SimPET-L and 1.7, 0.91, and 0.91 mm FWHM in SimPET-XL, respectively. The peak sensitivities of SimPET-L and SimPET-XL were 6.30% and 10.4% for an energy window of 100-900 keV and 4.44% and 7.25% for a window of 250-750 keV, respectively. The peak noise equivalent count rate with an energy window of 250-750 keV was 249 kcps at 44.9 MBq for SimPET-L and 349 kcps at 31.3 MBq for SimPET-XL. In SimPET-L, the uniformity was 4.43%, and the spill-over ratios in air- and water-filled chambers were 5.54% and 4.10%, respectively. In SimPET-XL, the uniformity was 3.89%, and the spill-over ratio in the air- and water-filled chambers were 3.56% and 3.60%. Moreover, SimPET-XL provided high-quality images of rats. CONCLUSION SimPET-L and SimPET-XL show adequate performance compared with other SimPET systems. In addition, their large transaxial and long axial FOVs provide imaging capability for rats with high image quality.
Collapse
Affiliation(s)
- Minjee Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Guen Bae Ko
- Brightonix Imaging Inc., Seoul, 04782, South Korea
| | | | | | - Jung Woo Byun
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyeong Min Kim
- Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea
| | - Jang Woo Park
- Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea
| | - Kipom Kim
- Brain Research Core Facility, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea
| | - Taekwan Lee
- Brain Research Core Facility, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Jae Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea. .,Brain Research Core Facility, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| |
Collapse
|
3
|
Sang Z, Kuang Z, Wang X, Ren N, Wu S, Niu M, Cong L, Liu Z, Hu Z, Sun T, Liang D, Liu X, Zheng H, Li Y, Yang Y. Mutual interferences between SIAT aPET insert and a 3 T uMR 790 MRI scanner. Phys Med Biol 2023; 68. [PMID: 36549011 DOI: 10.1088/1361-6560/acae17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Dual-modality small animal PET/MR imaging provides temporally correlated information on two biochemical processes of a living object. An magnetic resonance imaging (MRI)-compatible small animal PET insert named Shenzhen Institutes of Advanced Technology (SIAT) aPET was developed by using dual-ended readout depth encoding detectors to simultaneously achieve a uniform high spatial resolution and high sensitivity at the SIAT. In this work, the mutual interferences between SIAT aPET and the 3 T uMR 790 MRI scanner of United Imaging was quantitatively evaluated.Approach.To minimize the mutual interferences, only the PET detectors and the readout electronics were placed inside the MRI scanner, the major signal processing electronic was placed in the corner of the MRI room and the auxiliary unit was placed in the MRI technical room. A dedicated mouse radio fRequency (RF) coil with a transmitter and receiver was developed for the PET insert. The effects of PET scanner on theB0andB1field of the MRI scanner and the quality of the MRI images were measured. The effects of MRI imaging on the performance of both the PET detectors and scanner were also measured.Main results.The electronic and mechanical components of the PET insert affected the homogeneity of theB0field. The PET insert had no effect on the homogeneity ofB1produced by the dedicated mouse coil but slightly reduced the strength ofB1. The mean and standard deviation of the RF noise map were increased by 2.2% and 11.6%, respectively, while the PET insert was placed in the MRI scanner and powered on. Eddy current was produced while the PET insert was placed in the MRI scanner, and it was further increased while the PET insert was powered on. Despite the above-mentioned interferences from the PET insert, the MR images of a uniform cylindrical water phantom showed that the changes in the signal-to-noise ratio (SNR) and homogeneity as the PET insert was placed in the MRI scanner were acceptable regardless of whether the PET insert was powered off or powered on. The maximum reduction of SNR was less than 11%, and the maximum reduction of homogeneity was less than 2.5% while the PET insert was placed inside the MRI scanner and powered on for five commonly used MRI sequences. MRI using gradient echo (GRE), spin echo (SE) and fast spin echo (FSE) sequences had negligible effects on the flood histograms and energy resolution of the PET detectors, as well as the spatial resolution and sensitivity of the PET scanner.Significance.The mutual interference between the SIAT aPET and the 3 T uMR 790 MRI scanner are acceptable. Simultaneous PET/MRI imaging of small animals can be performed with the two scanners.
Collapse
Affiliation(s)
- Ziru Sang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhonghua Kuang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaohui Wang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ning Ren
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - San Wu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ming Niu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Longhan Cong
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zheng Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhanli Hu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Tao Sun
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ye Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
4
|
Park H, Yi M, Lee JS. Silicon photomultiplier signal readout and multiplexing techniques for positron emission tomography: a review. Biomed Eng Lett 2022; 12:263-283. [PMID: 35892029 PMCID: PMC9308856 DOI: 10.1007/s13534-022-00234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, silicon photomultiplier (SiPM) is replacing the photomultiplier tube (PMT) in positron emission tomography (PET) systems due to its superior properties, such as fast single-photon timing response, small gap between adjacent photosensitive pixels in the array, and insensitivity to magnetic fields. One of the technical challenges when developing SiPM-based PET systems or other position-sensitive radiation detectors is the large number of output channels coming from the SiPM array. Therefore, various signal multiplexing methods have been proposed to reduce the number of output channels and the load on the subsequent data acquisition (DAQ) system. However, the large PN-junction capacitance and quenching resistance of the SiPM yield undesirable resistance-capacitance delay when multiple SiPMs are combined, which subsequently causes the accumulation of dark counts and signal fluctuation of SiPMs. Therefore, without proper SiPM signal handling and processing, the SiPMs may yield worse timing characteristics than the PMTs. This article reviews the evolution of signal readout and multiplexing methods for the SiPM. In this review, we focus primarily on analog electronics for SiPM signal multiplexing, which allows for the reduction of DAQ channels required for the SiPM-based position-sensitive detectors used in PET and other radiation detector systems. Although the applications of most technologies described in the article are not limited to PET systems, the review highlights efforts to improve the physical performance (e.g. spatial, energy, and timing resolutions) of PET detectors and systems.
Collapse
Affiliation(s)
- Haewook Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
| | - Minseok Yi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Engineering, Seoul, 03080 South Korea
| | - Jae Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Brightonix Imaging Inc, Seoul, 04782 South Korea
| |
Collapse
|
5
|
Shim HS, Park H, Lee JS. A temperature-dependent gain compensation technique for positron emission tomography detectors based on a silicon photomultiplier. Phys Med Biol 2021; 66. [PMID: 34587608 DOI: 10.1088/1361-6560/ac2b81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
In this study, we propose a simple gain compensation technique for silicon photomultiplier (SiPM)-based positron emission tomography detectors, using a temperature sensor that automatically controls the bias voltage of the SiPM depending upon the ambient temperature. The temperature sensor output, for which the temperature coefficient can be controlled by the input voltage, is used as one end of the bias voltage. By adjusting the temperature coefficient, the proposed gain compensation method can be applied to various SiPMs with different breakdown voltages. As a proof of concept, the proposed method was evaluated for two scintillation detector setups. Applying the proposed method to a single-channel SiPM (ASD-NUV3S-P; AdvanSiD, Italy) coupled with a 3 mm × 3 mm × 20 mm LGSO crystal, the 511 keV photopeak position in the energy histogram changed by only 1.52% per 10 °C while, without gain compensation, it changed by 13.27% per 10 °C between 10 °C and 30 °C. On a 4 × 4 array MPPC (S14161-3050HS-04; Hamamatsu, Japan), coupled with a 3.12 mm × 3.12 mm × 15 mm 4 × 4 LSO array, the photopeak changes with and without gain compensation were 2.34% and 20.53% per 10 °C between 10 °C and 30 °C, respectively. On the wider range of temperature, between 0 °C and 40 °C, the photopeak changes with and without gain compensation were 3.09% and 20.89%, respectively. The energy resolution degradation of SiPM-based scintillation detectors operating at temperatures was negligible when the proposed gain compensation method was applied.
Collapse
Affiliation(s)
- Hyeong Seok Shim
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Republic of Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Haewook Park
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Sung Lee
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Republic of Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Brightonix Imaging Inc., Seoul, Republic of Korea
| |
Collapse
|
6
|
Son JW, Kim KY, Park JY, Kim K, Lee YS, Ko GB, Lee JS. SimPET: a Preclinical PET Insert for Simultaneous PET/MR Imaging. Mol Imaging Biol 2021; 22:1208-1217. [PMID: 32285357 DOI: 10.1007/s11307-020-01491-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE SimPET/M7 system is a small-animal dedicated simultaneous positron emission tomography and magnetic resonance imaging (PET/MRI) scanner. The SimPET insert has been upgraded from its prototype with a focus on count rate performance and sensitivity. The M7 scanner is a 1-T permanent magnet-based compact MRI system without any cryogens. Here, we present performance evaluation results of SimPET along with the results of mutual interference evaluation and simultaneously acquired PET/MR imaging. PROCEDURES Following NEMA NU 4-2008 standard, we evaluated the performance of the SimPET system. The M7 MRI compatibility of SimPET was also assessed by analyzing MRI images of a uniform phantom under different PET conditions and PET count rates with different MRI pulse sequences. Mouse imaging was performed including a whole-body 18F-NaF PET scan and a simultaneous PET/MRI scan with 64Cu-NOTA-ironoxide. RESULTS The spatial resolution at center based on 3D OSEM without and with warm background was 0.7 mm and 1.45 mm, respectively. Peak sensitivity was 4.21 % (energy window = 250-750 keV). The peak noise equivalent count rate with the same energy window was 151 kcps at 38.4 MBq. The uniformity was 4.42 %, and the spillover ratios in water- and air-filled chambers were 14.6 % and 12.7 %, respectively. In the hot rod phantom image, 0.75-mm-diameter rods were distinguishable. There were no remarkable differences in the SNR and uniformity of MRI images and PET count rates with different PET conditions and MRI pulse sequences. In the whole-body 18F-NaF PET images, fine skeletal structures were well resolved. In the simultaneous PET/MRI study with 64Cu-NOTA-ironoxide, both PET and MRI signals changed before and after injection of the dual-modal imaging probe, which was evident with the exact spatiotemporal correlation. CONCLUSIONS We demonstrated that the SimPET scanner has a high count rate performance and excellent spatial resolution. The combined SimPET/M7 enabled simultaneous PET/MR imaging studies with no remarkable mutual interference between the two imaging modalities.
Collapse
Affiliation(s)
- Jeong-Whan Son
- Brightonix Imaging Inc., Yeonmujang 5ga-gil, Seongdong-gu, Seoul, 04782, South Korea
| | - Kyeong Yun Kim
- Brightonix Imaging Inc., Yeonmujang 5ga-gil, Seongdong-gu, Seoul, 04782, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Ji Yong Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyuwan Kim
- Brightonix Imaging Inc., Yeonmujang 5ga-gil, Seongdong-gu, Seoul, 04782, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Guen Bae Ko
- Brightonix Imaging Inc., Yeonmujang 5ga-gil, Seongdong-gu, Seoul, 04782, South Korea. .,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Jae Sung Lee
- Brightonix Imaging Inc., Yeonmujang 5ga-gil, Seongdong-gu, Seoul, 04782, South Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea. .,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
7
|
Won JY, Park H, Lee S, Son JW, Chung Y, Ko GB, Kim KY, Song J, Seo S, Ryu Y, Chung JY, Lee JS. Development and Initial Results of a Brain PET Insert for Simultaneous 7-Tesla PET/MRI Using an FPGA-Only Signal Digitization Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1579-1590. [PMID: 33625980 DOI: 10.1109/tmi.2021.3062066] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In study, we developed a positron emission tomography (PET) insert for simultaneous brain imaging within 7-Tesla (7T) magnetic resonance (MR) imaging scanners. The PET insert has 18 sectors, and each sector is assembled with two-layer depth-of-interaction (DOI)-capable high-resolution block detectors. The PET scanner features a 16.7-cm-long axial field-of-view (FOV) to provide entire human brain images without bed movement. The PET scanner early digitizes a large number of block detector signals at a front-end data acquisition (DAQ) board using a novel field-programmable gate array (FPGA)-only signal digitization method. All the digitized PET data from the front-end DAQ boards are transferred using gigabit transceivers via non-magnetic high-definition multimedia interface (HDMI) cables. A back-end DAQ system provides a common clock and synchronization signal for FPGAs over the HDMI cables. An active cooling system using copper heat pipes is applied for thermal regulation. All the 2.17-mm-pitch crystals with two-layer DOI information were clearly identified in the block detectors, exhibiting a system-level energy resolution of 12.6%. The PET scanner yielded clear hot-rod and Hoffman brain phantom images and demonstrated 3D PET imaging capability without bed movement. We also performed a pilot simultaneous PET/MR imaging study of a brain phantom. The PET scanner achieved a spatial resolution of 2.5 mm at the center FOV (NU 4) and a sensitivity of 18.9 kcps/MBq (NU 2) and 6.19% (NU 4) in accordance with the National Electrical Manufacturers Association (NEMA) standards.
Collapse
|
8
|
Performance Evaluation of SimPET-X, a PET Insert for Simultaneous Mouse Total-Body PET/MR Imaging. Mol Imaging Biol 2021; 23:703-713. [PMID: 33768465 DOI: 10.1007/s11307-021-01595-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE In this study, a small animal PET insert (SimPET-X, Brightonix Imaging Inc.) for simultaneous PET/MR imaging studies is presented. This insert covers an 11-cm-long axial field-of-view (FOV) and enables imaging of mouse total-bodies and rat heads. PROCEDURES SimPET-X comprises 16 detector modules to yield a ring diameter of 63 mm and an axial FOV of 110 mm. The detector module supports four detector blocks, each comprising two 4 × 4 SiPM arrays coupled with a 20 × 9 array of LSO crystals (1.2 × 1.2 × 10 mm3). The physical characteristics of SimPET-X were measured in accordance with the NEMA NU4-2008 standard protocol. In addition, we assessed the compatibility of SimPET-X with a small animal-dedicated MRI (M7, Aspect Imaging) and conducted phantom and animal studies. RESULTS The radial spatial resolutions at the center based on 3D OSEM without and with the warm background were 0.73 mm and 0.99 mm, respectively. The absolute peak sensitivity of the system was 10.44% with an energy window of 100-900 keV and 8.27% with an energy window of 250-750 keV. The peak NECR and scatter fraction for the mouse phantom were 348 kcps at 26.2 MBq and 22.1% with an energy window of 250-750 keV, respectively. The standard deviation of pixel value in the uniform region of an NEMA IQ phantom was 4.57%. The spillover ratios for air- and water-filled chambers were 9.0% and 11.0%, respectively. In the hot-rod phantom image reconstructed using 3D OSEM-PSF, all small rods were resolved owing to the high spatial resolution of the SimPET-X system. There was no notable interference between SimPET-X and M7 MRI. SimPET-X provided high-quality mouse images with superior spatial resolution, sensitivity, and counting rate performance. CONCLUSION SimPET-X yielded a remarkably improved sensitivity and NECR compared with SimPETTM.
Collapse
|
9
|
Abstract
Positron emission tomography (PET) is a non-invasive imaging technology employed to describe metabolic, physiological, and biochemical processes in vivo. These include receptor availability, metabolic changes, neurotransmitter release, and alterations of gene expression in the brain. Since the introduction of dedicated small-animal PET systems along with the development of many novel PET imaging probes, the number of PET studies using rats and mice in basic biomedical research tremendously increased over the last decade. This article reviews challenges and advances of quantitative rodent brain imaging to make the readers aware of its physical limitations, as well as to inspire them for its potential applications in preclinical research. In the first section, we briefly discuss the limitations of small-animal PET systems in terms of spatial resolution and sensitivity and point to possible improvements in detector development. In addition, different acquisition and post-processing methods used in rodent PET studies are summarized. We further discuss factors influencing the test-retest variability in small-animal PET studies, e.g., different receptor quantification methodologies which have been mainly translated from human to rodent receptor studies to determine the binding potential and changes of receptor availability and radioligand affinity. We further review different kinetic modeling approaches to obtain quantitative binding data in rodents and PET studies focusing on the quantification of endogenous neurotransmitter release using pharmacological interventions. While several studies have focused on the dopamine system due to the availability of several PET tracers which are sensitive to dopamine release, other neurotransmitter systems have become more and more into focus and are described in this review, as well. We further provide an overview of latest genome engineering technologies, including the CRISPR/Cas9 and DREADD systems that may advance our understanding of brain disorders and function and how imaging has been successfully applied to animal models of human brain disorders. Finally, we review the strengths and opportunities of simultaneous PET/magnetic resonance imaging systems to study drug-receptor interactions and challenges for the translation of PET results from bench to bedside.
Collapse
|
10
|
Gsell W, Molinos C, Correcher C, Belderbos S, Wouters J, Junge S, Heidenreich M, Velde GV, Rezaei A, Nuyts J, Cawthorne C, Cleeren F, Nannan L, Deroose CM, Himmelreich U, Gonzalez AJ. Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing. Phys Med Biol 2020; 65:245016. [PMID: 32590380 DOI: 10.1088/1361-6560/aba08c] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study evaluates the performance of the Bruker positron emission tomograph (PET) insert combined with a BioSpec 70/30 USR magnetic resonance imaging (MRI) scanner using the manufacturer acceptance protocol and the NEMA NU 4-2008 for small animal PET. The PET insert is made of 3 rings of 8 monolithic LYSO crystals (50 × 50 × 10 mm3) coupled to silicon photomultipliers (SiPM) arrays, conferring an axial and transaxial FOV of 15 cm and 8 cm. The MRI performance was evaluated with and without the insert for the following radiofrequency noise, magnetic field homogeneity and image quality. For the PET performance, we extended the NEMA protocol featuring system sensitivity, count rates, spatial resolution and image quality to homogeneity and accuracy for quantification using several MRI sequences (RARE, FLASH, EPI and UTE). The PET insert does not show any adverse effect on the MRI performances. The MR field homogeneity is well preserved (Diameter Spherical Volume, for 20 mm of 1.98 ± 4.78 without and -0.96 ± 5.16 Hz with the PET insert). The PET insert has no major effect on the radiofrequency field. The signal-to-noise ratio measurements also do not show major differences. Image ghosting is well within the manufacturer specifications (<2.5%) and no RF noise is visible. Maximum sensitivity of the PET insert is 11.0% at the center of the FOV even with simultaneous acquisition of EPI and RARE. PET MLEM resolution is 0.87 mm (FWHM) at 5 mm off-center of the FOV and 0.97 mm at 25 mm radial offset. The peaks for true/noise equivalent count rates are 410/240 and 628/486 kcps for the rat and mouse phantoms, and are reached at 30.34/22.85 and 27.94/22.58 MBq. PET image quality is minimally altered by the different MRI sequences. The Bruker PET insert shows no adverse effect on the MRI performance and demonstrated a high sensitivity, sub-millimeter resolution and good image quality even during simultaneous MRI acquisition.
Collapse
Affiliation(s)
- Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gagliardi V, Tosetti M, Bisogni MG, Puccini A, Belcari N, Carmarlinghi N, Fantacci ME, Fidecaro F, Franchi G, Sportelli G, Biagi L. MR Compatible Power Supply Module for PET Detectors of an Integrated PET/MR System. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2019.2920735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Lee JS, Kovalski G, Sharir T, Lee DS. Advances in imaging instrumentation for nuclear cardiology. J Nucl Cardiol 2019; 26:543-556. [PMID: 28718074 DOI: 10.1007/s12350-017-0979-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
Abstract
Advances in imaging instrumentation and technology have greatly contributed to nuclear cardiology. Dedicated cardiac SPECT cameras incorporating novel, highly efficient detector, collimator, and system designs have emerged with the expansion of nuclear cardiology. Solid-state radiation detectors incorporating cadmium zinc telluride, which directly convert radiation to electrical signals and yield improved energy resolution and spatial resolution and enhanced count sensitivity geometries, are increasingly gaining favor as the detector of choice for application in dedicated cardiac SPECT systems. Additionally, hybrid imaging systems in which SPECT and PET are combined with X-ray CT are currently widely used, with PET/MRI hybrid systems having also been recently introduced. The improved quantitative SPECT/CT has the potential to measure the absolute quantification of myocardial blood flow and flow reserve. Rapid development of silicon photomultipliers leads to enhancement in PET image quality and count rates. In addition, the reduction of emission-transmission mismatch artifacts via application of accurate time-of-flight information, and cardiac motion de-blurring aided by anatomical images, are emerging techniques for further improvement of cardiac PET. This article reviews recent advances such as these in nuclear cardiology imaging instrumentation and technology, and the corresponding diagnostic benefits.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | | | - Tali Sharir
- Department of Nuclear Cardiology, Assuta Medical Centers, 96 Igal Alon, C Building, 67891, Tel Aviv, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea.
| |
Collapse
|
13
|
Narayanan D, Berg WA. Use of Breast-Specific PET Scanners and Comparison with MR Imaging. Magn Reson Imaging Clin N Am 2018; 26:265-272. [PMID: 29622131 DOI: 10.1016/j.mric.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The goals of this article are to discuss the role of breast-specific PET imaging of women with breast cancer, compare the clinical performance of positron emission mammography (PEM) and MR imaging for current indications, and provide recommendations for when women should undergo PEM instead of breast MR imaging.
Collapse
Affiliation(s)
- Deepa Narayanan
- SBIR Development Center, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Wendie A Berg
- Department of Radiology, University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, 300 Halket Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Chang CM, Lee BJ, Grant AM, Groll AN, Levin CS. Performance study of a radio-frequency field-penetrable PET insert for simultaneous PET/MRI. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018; 2:422-431. [PMID: 30911706 DOI: 10.1109/trpms.2018.2852686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) has risen to the cutting edge of medical imaging technology as it allows simultaneous acquisition of structural, functional and molecular information of the patient. A PET insert that can be installed into existing MR systems can in principle reduce the cost barriers for an existing MR site to achieve simultaneous PET/MRI compared to procuring an integrated PET+MRI system. The PET insert systems developed so far for PET/MRI require the RF transmitter coil to reside inside the PET ring as those PET inserts block the RF fields from the MRI system. Here we report for the first time on the performance of a full-ring brain-sized "RF-penetrable" PET insert we have recently completed. This insert allows the RF fields generated by the built-in body coil to penetrate the PET ring. The PET insert comprises a ring of 16 detector modules employing electro-optical coupled signal transmission and a multiplexing framework based on compressed sensing. Energy resolution, coincidence timing resolution (CTR), photopeak position, and coincidence count rate were acquired outside and inside a 3-Tesla MRI system under simultaneous acquisition to evaluate the impact of MRI on the PET performance. Coincidence count rate performance was evaluated by acquiring a cylinder source with high initial activity decaying over time. Tomographic imaging of two phantoms, a custom 6.5-cm diameter resolution phantom with hot rods of four different sizes (2.8 mm, 3.2 mm, 4.2 mm, and 5.2 mm diameter) and a 3D Hoffman brain phantom, were performed to evaluate the imaging capability of the PET insert. The energy resolution at 511 keV and CTR acquired by the PET insert were 16.2±0.1% and 5.3±0.1 ns FWHM, respectively, and remained stable during MRI operation except when the EPI sequence was applied. The PET system starts to show saturation in coincidence count rate at 2.76 million photon counts per second. Most of the 2.8-mm diameter hot rods and main features of the 3D Hoffman brain phantom were resolved by the PET insert, demonstrating its high spatial resolution and capability to image a complex tracer distribution mimicking that seen in the human brain.
Collapse
Affiliation(s)
- Chen-Ming Chang
- Departments of Applied Physics and Radiology, Stanford University, Stanford, CA, USA
| | - Brian J Lee
- Departments of Mechanical Engineering and Radiology, Stanford University, Stanford, CA, USA
| | - Alexander M Grant
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA, USA
| | - Andrew N Groll
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Craig S Levin
- Departments of Radiology, Electrical Engineering, Bioengineering and Physics, Stanford University, Stanford, CA, USA, )
| |
Collapse
|
15
|
Cabello J, Ziegler SI. Advances in PET/MR instrumentation and image reconstruction. Br J Radiol 2018; 91:20160363. [PMID: 27376170 PMCID: PMC5966194 DOI: 10.1259/bjr.20160363] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
The combination of positron emission tomography (PET) and MRI has attracted the attention of researchers in the past approximately 20 years in small-animal imaging and more recently in clinical research. The combination of PET/MRI allows researchers to explore clinical and research questions in a wide number of fields, some of which are briefly mentioned here. An important number of groups have developed different concepts to tackle the problems that PET instrumentation poses to the exposition of electromagnetic fields. We have described most of these research developments in preclinical and clinical experiments, including the few commercial scanners available. From the software perspective, an important number of algorithms have been developed to address the attenuation correction issue and to exploit the possibility that MRI provides for motion correction and quantitative image reconstruction, especially parametric modelling of radiopharmaceutical kinetics. In this work, we give an overview of some exemplar applications of simultaneous PET/MRI, together with technological hardware and software developments.
Collapse
Affiliation(s)
- Jorge Cabello
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sibylle I Ziegler
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
16
|
Abstract
Combined PET/MR imaging scanners capable of acquiring simultaneously the complementary information provided by the 2 imaging modalities are now available for human use. After addressing the hardware challenges for integrating the 2 imaging modalities, most of the efforts in the field have focused on developing MR-based attenuation correction methods for neurologic and whole-body applications, implementing approaches for improving one modality by using the data provided by the other and exploring research and clinical applications that could benefit from the synergistic use of the multimodal data.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Room 2.301, Charlestown, MA 02129, USA.
| |
Collapse
|
17
|
Stortz G, Thiessen JD, Bishop D, Khan MS, Kozlowski P, Retière F, Schellenberg G, Shams E, Zhang X, Thompson CJ, Goertzen AL, Sossi V. Performance of a PET Insert for High-Resolution Small-Animal PET/MRI at 7 Tesla. J Nucl Med 2017; 59:536-542. [DOI: 10.2967/jnumed.116.187666] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022] Open
|
18
|
Parl C, Kolb A, Schmid AM, Wehrl HF, Disselhorst JA, Soubiran PD, Stricker-Shaver D, Pichler BJ. A novel optically transparent RF shielding for fully integrated PET/MRI systems. ACTA ACUST UNITED AC 2017; 62:7357-7378. [DOI: 10.1088/1361-6560/aa8384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Yamamoto S. Effective Radiofrequency Attenuation Methods to Reduce the Interference Between PET and MRI Systems. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017. [DOI: 10.1109/trpms.2017.2729620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Du J, Schmall JP, Di K, Yang Y, Dokhale PA, Shah KS, Cherry SR. Performance Comparison of Different Readouts for Position-Sensitive Solid-State Photomultiplier Arrays. Biomed Phys Eng Express 2017; 3. [PMID: 29915669 DOI: 10.1088/2057-1976/aa7c6a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A thorough comparison of five different readouts for reading out a 2 × 2 array of 5 mm × 5 mm position-sensitive solid-state photomultipliers (PS-SSPM) was undertaken. The five readouts include reading out the 20 signals (16 position and 4 timing) individually, two signal multiplexing readouts, and two position decoding readouts. Flood histogram quality, signal-to-noise ratio (SNR) and energy resolution were compared at different bias voltage (27.0 V to 32.0 V, at 0.5 V intervals) and at a fixed temperature of 0 °C by coupling a 6 × 6 array of 1.3 mm × 1.3 mm × 20 mm polished LSO crystals to the center of the PS-SSPM array. The timing resolution was measured at a bias voltage of 31.0 V (optimal bias voltage in terms of flood histogram quality). The best flood histogram quality value and signal-to-noise were 7.3 ± 1.6 and 33.5 ± 3.1, respectively, and were obtained by shaping and digitizing the 16 position signals individually. The capacitive charge-division readout is the simplest readout among the five evaluated but still resulted in good performance with a flood histogram quality value of 3.3 ± 0.4 and a SNR of 18.3 ± 1.3. The average energy resolution and the average timing resolution were 15.2 ± 1.2 % and 8.4 ± 1.6 ns for individual signal readout and 15.9 ± 1.2 % and 8.8 ± 1.3 ns by using the capacitive charge-division readout method. These studies show that for an ultra-high spatial resolution applications using the 2 × 2 PS-SSPM array, reading out the 20 signals individually is necessary; whilst the capacitive charge-division readout is a cost-effective readout for less demanding applications.
Collapse
Affiliation(s)
- Junwei Du
- Department of Biomedical Engineering, University of California, Davis, CA 95616 USA
| | - Jeffrey P Schmall
- Department of Biomedical Engineering, University of California, Davis, CA 95616 USA
| | - Kun Di
- Department of Biomedical Engineering, University of California, Davis, CA 95616 USA
| | - Yongfeng Yang
- Department of Biomedical Engineering, University of California, Davis, CA 95616 USA
| | | | - Kanai S Shah
- Radiation Monitoring Devices Inc., Watertown, MA 02172, USA
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, CA 95616 USA
| |
Collapse
|
21
|
Park H, Ko GB, Lee JS. Hybrid charge division multiplexing method for silicon photomultiplier based PET detectors. Phys Med Biol 2017; 62:4390-4405. [DOI: 10.1088/1361-6560/aa6aea] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Ko GB, Lee JS. Single transmission-line readout method for silicon photomultiplier based time-of-flight and depth-of-interaction PET. Phys Med Biol 2017; 62:2194-2207. [DOI: 10.1088/1361-6560/aa5a44] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Thiessen JD, Shams E, Stortz G, Schellenberg G, Bishop D, Khan MS, Kozlowski P, Retière F, Sossi V, Thompson CJ, Goertzen AL. MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI. Phys Med Biol 2016; 61:7934-7956. [DOI: 10.1088/0031-9155/61/22/7934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Ko GB, Kim KY, Yoon HS, Lee MS, Son JW, Im HJ, Lee JS. Evaluation of a silicon photomultiplier PET insert for simultaneous PET and MR imaging. Med Phys 2016; 43:72. [PMID: 26745901 DOI: 10.1118/1.4937784] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE In this study, the authors present a silicon photomultiplier (SiPM)-based positron emission tomography (PET) insert dedicated to small animal imaging with high system performance and robustness to temperature change. METHODS The insert consists of 64 LYSO-SiPM detector blocks arranged in 4 rings of 16 detector blocks to yield a ring diameter of 64 mm and axial field of view of 55 mm. Each detector block consists of a 9 × 9 array of LYSO crystals (1.2 × 1.2 × 10 mm(3)) and a monolithic 4 × 4 SiPM array. The temperature of each monolithic SiPM is monitored, and the proper bias voltage is applied according to the temperature reading in real time to maintain uniform performance. The performance of this PET insert was characterized using National Electrical Manufacturers Association NU 4-2008 standards, and its feasibility was evaluated through in vivo mouse imaging studies. RESULTS The PET insert had a peak sensitivity of 3.4% and volumetric spatial resolutions of 1.92 (filtered back projection) and 0.53 (ordered subset expectation maximization) mm(3) at center. The peak noise equivalent count rate and scatter fraction were 42.4 kcps at 15.08 MBq and 16.5%, respectively. By applying the real-time bias voltage adjustment, an energy resolution of 14.2% ± 0.3% was maintained and the count rate varied ≤1.2%, despite severe temperature changes (10-30 °C). The mouse imaging studies demonstrate that this PET insert can produce high-quality images useful for imaging studies on the small animals. CONCLUSIONS The developed MR-compatible PET insert is designed for insertion into a narrow-bore magnetic resonance imaging scanner, and it provides excellent imaging performance for PET/MR preclinical studies.
Collapse
Affiliation(s)
- Guen Bae Ko
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799, South Korea and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Kyeong Yun Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799, South Korea and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Hyun Suk Yoon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799, South Korea and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Min Sun Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799, South Korea and Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Jeong-Whan Son
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799, South Korea and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Hyung-Jun Im
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea; Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-799, South Korea; and Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| |
Collapse
|
25
|
Won JY, Ko GB, Lee JS. Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers. Phys Med Biol 2016; 61:7113-7135. [DOI: 10.1088/0031-9155/61/19/7113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Gebhardt P, Wehner J, Weissler B, Botnar R, Marsden PK, Schulz V. FPGA-based RF interference reduction techniques for simultaneous PET-MRI. Phys Med Biol 2016; 61:3500-26. [PMID: 27049898 PMCID: PMC5362065 DOI: 10.1088/0031-9155/61/9/3500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/13/2015] [Accepted: 01/28/2016] [Indexed: 11/30/2022]
Abstract
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
Collapse
Affiliation(s)
- P Gebhardt
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London WC2R 2LS, UK
- Department of Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging, RWTH Aachen University, 52062 Aachen, Germany
| | - J Wehner
- Department of Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging, RWTH Aachen University, 52062 Aachen, Germany
| | - B Weissler
- Department of Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging, RWTH Aachen University, 52062 Aachen, Germany
| | - R Botnar
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London WC2R 2LS, UK
| | - P K Marsden
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London WC2R 2LS, UK
| | - V Schulz
- Department of Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging, RWTH Aachen University, 52062 Aachen, Germany
- Philips Research Europe, 52066 Aachen, Germany
| |
Collapse
|
27
|
Ko GB, Yoon HS, Kim KY, Lee MS, Yang BY, Jeong JM, Lee DS, Song IC, Kim SK, Kim D, Lee JS. Simultaneous Multiparametric PET/MRI with Silicon Photomultiplier PET and Ultra-High-Field MRI for Small-Animal Imaging. J Nucl Med 2016; 57:1309-15. [PMID: 27081173 DOI: 10.2967/jnumed.115.170019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/11/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Visualization of biologic processes at molecular and cellular levels has revolutionized the understanding and treatment of human diseases. However, no single biomedical imaging modality provides complete information, resulting in the emergence of multimodal approaches. Combining state-of-the-art PET and MRI technologies without loss of system performance and overall image quality can provide opportunities for new scientific and clinical innovations. Here, we present a multiparametric PET/MR imager based on a small-animal dedicated, high-performance, silicon photomultiplier (SiPM) PET system and a 7-T MR scanner. METHODS A SiPM-based PET insert that has the peak sensitivity of 3.4% and center volumetric resolution of 1.92/0.53 mm(3) (filtered backprojection/ordered-subset expectation maximization) was developed. The SiPM PET insert was placed between the mouse body transceiver coil and gradient coil of a 7-T small-animal MRI scanner for simultaneous PET/MRI. Mutual interference between the MRI and SiPM PET systems was evaluated using various MR pulse sequences. A cylindric corn oil phantom was scanned to assess the effects of the SiPM PET on the MR image acquisition. To assess the influence of MRI on the PET imaging functions, several PET performance indicators including scintillation pulse shape, flood image quality, energy spectrum, counting rate, and phantom image quality were evaluated with and without the application of MR pulse sequences. Simultaneous mouse PET/MRI studies were also performed to demonstrate the potential and usefulness of the multiparametric PET/MRI in preclinical applications. RESULTS Excellent performance and stability of the PET system were demonstrated, and the PET/MRI combination did not result in significant image quality degradation of either modality. Finally, simultaneous PET/MRI studies in mice demonstrated the feasibility of the developed system for evaluating the biochemical and cellular changes in a brain tumor model and facilitating the development of new multimodal imaging probes. CONCLUSION We developed a multiparametric imager with high physical performance and good system stability and demonstrated its feasibility for small-animal experiments, suggesting its usefulness for investigating in vivo molecular interactions of metabolites, and cross-validation studies of both PET and MRI.
Collapse
Affiliation(s)
- Guen Bae Ko
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Department of Biomedical Sciences, Seoul National University, Seoul, Korea
| | - Hyun Suk Yoon
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Department of Biomedical Sciences, Seoul National University, Seoul, Korea
| | - Kyeong Yun Kim
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Department of Biomedical Sciences, Seoul National University, Seoul, Korea
| | - Min Sun Lee
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, Korea
| | - Bo Yeun Yang
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Department of Biomedical Sciences, Seoul National University, Seoul, Korea Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea
| | - In Chan Song
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea Department of Radiology, Seoul National University, Seoul, Korea
| | - Seok-Ki Kim
- Department of Nuclear Medicine, National Cancer Center, Goyang, Korea; and Molecular Imaging and Therapy Branch, National Cancer Center, Goyang, Korea
| | - Daehong Kim
- Molecular Imaging and Therapy Branch, National Cancer Center, Goyang, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Department of Biomedical Sciences, Seoul National University, Seoul, Korea Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Zhang Y, Yan H, Baghaei H, Wong WH. A novel depth-of-interaction block detector for positron emission tomography using a dichotomous orthogonal symmetry decoding concept. Phys Med Biol 2016; 61:1608-33. [PMID: 26836144 DOI: 10.1088/0031-9155/61/4/1608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Conventionally, a dual-end depth-of-interaction (DOI) block detector readout requires two two-dimensional silicon photomultiplier (SiPM) arrays, one on top and one on the bottom, to define the XYZ positions. However, because both the top and bottom SiPM arrays are reading the same pixels, this creates information redundancy. We propose a dichotomous orthogonal symmetric (DOS) dual-end readout block detector design, which removes this redundancy by reducing the number of SiPMs and still achieves XY and DOI (Z) decoding for positron emission tomography (PET) block detector. Reflecting films are used within the block detector to channel photons going to the top of the block to go only in the X direction, and photons going to the bottom are channeled along the Y direction. Despite the unidirectional channeling on each end, the top readout provides both X and Y information using two one-dimensional SiPM arrays instead of a two-dimensional SiPM array; similarly, the bottom readout also provides both X and Y information with just two one-dimensional SiPM arrays. Thus, a total of four one-dimensional SiPM arrays (4 × N SiPMs) are used to decode the XYZ positions of the firing pixels instead of two two-dimensional SiPM arrays (2 × N × N SiPMs), reducing the number of SiPM arrays per block from 2N(2) to 4 N for PET/MR or PET/CT systems. Moreover, the SiPM arrays on one end can be replaced by two regular photomultiplier tubes (PMTs), so that a block needs only 2 N SiPMs + 2 half-PMTs; this hybrid-DOS DOI block detector can be used in PET/CT systems. Monte Carlo simulations were carried out to study the performance of our DOS DOI block detector design, including the XY-decoding quality, energy resolution, and DOI resolution. Both BGO and LSO scintillators were studied. We found that 4 mm pixels were well decoded for 5 × 5 BGO and 9 × 9 LSO arrays with 4 to 5 mm DOI resolution and 16-20% energy resolution. By adding light-channel decoding, we modified the DOS design to a high-resolution design, which resolved scintillator pixels smaller than the SiPM dimensions. Detector pixels of 2.4 mm were decoded for 8 × 8 BGO and 15 × 15 LSO arrays with 5 mm DOI resolution and 20-23% energy resolution. Time performance was also studied for the 8 × 8 BGO and 15 × 15 LSO HR-DOS arrays. The timing resolution for the corner and central crystals is 986 ± 122 ps and 1.89 ± 0.17 μs respectively with BGO, 137 ± 42 ps and 458 ± 67 ps respectively with LSO. Monte Carlo simulations with GATE/Geant4 demonstrated the feasibility of our DOS DOI block detector design. In conclusion, our novel design achieved good performance except the time performance while using fewer SiPMs and supporting electronic channels than the current non-DOI PET detectors. This novel design can significantly reduce the cost, heat, and readout complexity of DOI block detectors for PET/MR/CT systems that don't require the time-of-flight capability.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Cancer Systems Imaging, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
29
|
An HJ, Seo S, Kang H, Choi H, Cheon GJ, Kim HJ, Lee DS, Song IC, Kim YK, Lee JS. MRI-Based Attenuation Correction for PET/MRI Using Multiphase Level-Set Method. J Nucl Med 2015; 57:587-93. [PMID: 26697962 DOI: 10.2967/jnumed.115.163550] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/25/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Hyun Joon An
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seongho Seo
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Hyejin Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea
| | - In Chan Song
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea; and
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Nuclear Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Kolb A, Parl C, Mantlik F, Liu CC, Lorenz E, Renker D, Pichler BJ. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding. Med Phys 2015; 41:081916. [PMID: 25086547 DOI: 10.1118/1.4890609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. METHODS The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25 μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated (18)F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. RESULTS All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90 ± 0.15 mm. CONCLUSIONS The novel DoI PET detector, which is based on strip G-APD arrays, yielded a DoI resolution of 2.9 mm and excellent timing and energy resolution. Its high multiplexing factor reduces the number of electronic channels. Thus, this cross-strip approach enables low-cost, high-performance PET detectors for dedicated small animal PET and PET/MRI and potentially clinical PET/MRI systems.
Collapse
Affiliation(s)
- A Kolb
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
| | - C Parl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
| | - F Mantlik
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany and Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany
| | - C C Liu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
| | - E Lorenz
- Max Planck Institute for Physics, Föhringer Ring 6, 80805 München, Germany
| | - D Renker
- Department of Physics, Technische Universität München, 85748 Garching, Germany
| | - B J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
| |
Collapse
|
31
|
Yang BY, Moon SH, Seelam SR, Jeon MJ, Lee YS, Lee DS, Chung JK, Kim YI, Jeong JM. Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging. Nanomedicine (Lond) 2015; 10:1899-910. [DOI: 10.2217/nnm.15.41] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: We tried to develop a multimodal iron oxide nanoparticles (IO NP) imaging probe by an encapsulation method using specific amphiphiles for 68Ga-labeling and lymph node-targeting. Materials & methods: Nanoparticles (NPs) were encapsulated with a solution containing polysorbate 60 and the amphiphiles. The prepared NPs were labeled with 68Ga and tested in vitro and in vivo. Results: Prepared 1,4,7-triazacyclononane-1,4,7-triacetic acid-IO-Mannose (NOTA-IO-Man) showed a narrow size distribution, and no significant aggregation or degradation under harsh conditions. The relaxivity coefficient of 68Ga-NOTA-IO-Man was higher than that of ferumoxide. The accumulation of 68Ga-NOTA-IO-Man in the lymph node after injection into rat's footpad was confirmed by both positron emission tomography and MRI. Conclusion: We successfully developed PET/MRI dual-modality imaging probe targeting lymph nodes by using the facile encapsulation method.
Collapse
Affiliation(s)
- Bo Yeun Yang
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - Sung-Hyun Moon
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - Sudhakara Reddy Seelam
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - Min Jeong Jeon
- Department of Radiology, Seoul National University Hospital, 110–744, Seoul, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - June-Key Chung
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - Young Il Kim
- Department of Radiology, Seoul National University Hospital, 110–744, Seoul, South Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| |
Collapse
|
32
|
Nishikido F, Tachibana A, Obata T, Inadama N, Yoshida E, Suga M, Murayama H, Yamaya T. Development of 1.45-mm resolution four-layer DOI-PET detector for simultaneous measurement in 3T MRI. Radiol Phys Technol 2014; 8:111-9. [PMID: 25348721 DOI: 10.1007/s12194-014-0298-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 10/15/2014] [Accepted: 10/15/2014] [Indexed: 11/30/2022]
Abstract
Recently, various types of PET-MRI systems have been developed by a number of research groups. However, almost all of the PET detectors used in these PET-MRI systems have no depth-of-interaction (DOI) capability. The DOI detector can reduce the parallax error and lead to improvement of the performance. We are developing a new PET-MRI system which consists of four-layer DOI detectors positioned close to the measured object to achieve high spatial resolution and high scanner sensitivity. As a first step, we are investigating influences the PET detector and the MRI system have on each other using a prototype four-layer DOI-PET detector. This prototype detector consists of a lutetium yttrium orthosilicate crystal block and a 4 × 4 multi-pixel photon counter array. The size of each crystal element is 1.45 mm × 1.45 mm × 4.5 mm, and the crystals are arranged in 6 × 6 elements × 4 layers with reflectors. The detector and some electric components are packaged in an aluminum shielding box. Experiments were carried out with 3.0 T MRI (GE, Signa HDx) and a birdcage-type RF coil. We demonstrated that the DOI-PET detector was normally operated in simultaneous measurements with no influence of the MRI measurement. A slight influence of the PET detector on the static magnetic field of the MRI was observed near the PET detector. The signal-to-noise ratio was decreased by presence of the PET detector due to environmental noise entering the MRI room through the cables, even though the PET detector was not powered up. On the other hand, no influence of electric noise from the PET detector in the simultaneous measurement on the MRI images was observed, even though the PET detector was positioned near the RF coil.
Collapse
Affiliation(s)
- Fumihiko Nishikido
- Department of Biophysics Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yamamoto S, Hamamura F, Watabe T, Ikeda H, Kanai Y, Watabe H, Kato K, Ogata Y, Hatazawa J. Development of a PET/Cerenkov-light hybrid imaging system. Med Phys 2014; 41:092504. [DOI: 10.1118/1.4893535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
34
|
Abstract
Hybrid PET/MR systems have rapidly progressed from the prototype stage to systems that are increasingly being used in the clinics. This review provides an overview of developments in hybrid PET/MR systems and summarizes the current state of the art in PET/MR instrumentation, correction techniques, and data analysis. The strong magnetic field requires considerable changes in the manner by which PET images are acquired and has led, among others, to the development of new PET detectors, such as silicon photomultipliers. During more than a decade of active PET/MR development, several system designs have been described. The technical background of combined PET/MR systems is explained and related challenges are discussed. The necessity for PET attenuation correction required new methods based on MR data. Therefore, an overview of recent developments in this field is provided. Furthermore, MR-based motion correction techniques for PET are discussed, as integrated PET/MR systems provide a platform for measuring motion with high temporal resolution without additional instrumentation. The MR component in PET/MR systems can provide functional information about disease processes or brain function alongside anatomic images. Against this background, we point out new opportunities for data analysis in this new field of multimodal molecular imaging.
Collapse
Affiliation(s)
- Jonathan A Disselhorst
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany; and
| | - Ilja Bezrukov
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany; and Max-Planck-Institute for Intelligent Systems, Tübingen, Germany
| | - Armin Kolb
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany; and
| | - Christoph Parl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany; and
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany; and
| |
Collapse
|
35
|
Yamamoto S, Watabe H, Kanai Y, Watabe T, Kato K, Hatazawa J. Development of an ultrahigh resolution Si-PM based PET system for small animals. Phys Med Biol 2013; 58:7875-88. [PMID: 24145308 DOI: 10.1088/0031-9155/58/21/7875] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since a high resolution PET system is needed for small animal imaging, especially for mouse studies, we developed a new small animal PET system that decreased the size of the scintillators to less than 1 mm. Our developed PET system used 0.5 × 0.7 × 5 mm(3) LYSO pixels arranged in an 11 × 13 matrix to form a block with a 0.1 mm BaSO4 reflector between the pixels. Two LYSO blocks were optically coupled to two optical fiber based angled image guides. These LYSO blocks and image guides were coupled to a Si-PM array (Hamamatsu MPPC S11064-050P) to form a block detector. Eight block detectors (16 LYSO blocks) were arranged in a 34 mm inner diameter ring to form a small animal PET system. The block detector showed good separation for the 22 × 13 LYSO pixels in the two-dimensional position histogram. The energy resolution was 20% full-with at half-maximum (FWHM) for 511 keV gamma photons. The transaxial resolution reconstructed by filtered backprojection was 0.71 to 0.75 mm FWHM and the axial resolution was 0.70 mm. The point source sensitivity was 0.24% at the central axial field-of-view. High resolution mouse images were obtained using our PET system. The developed ultrahigh resolution PET system showed attractive images for small animal studies and has a potential to provide new findings in molecular imaging researches.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Bieniosek MF, Olcott PD, Levin CS. Readout strategy of an electro-optical coupled PET detector for time-of-flight PET/MRI. Phys Med Biol 2013; 58:7227-38. [PMID: 24061218 DOI: 10.1088/0031-9155/58/20/7227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Combining PET with MRI in a single system provides clinicians with complementary molecular and anatomical information. However, existing integrated PET/MRI systems do not have time-of-flight (ToF) PET capabilities. This work describes an MRI-compatible front-end electronic system with ToF capabilities. The approach employs a fast arrival-time pickoff comparator to digitize the timing information, and a laser diode to drive a 10 m fiber-optic cable to optically transmit asynchronous timing information to a photodiode receiver readout system. The FWHM jitter of the comparator and this electo-optical link is 11.5 ps in response to a fast digital pulse. When configured with LYSO scintillation crystals and Hamamatsu MPPC silicon photo-multipliers the comparator and electro-optical link achieved a 511 keV coincidence time resolution of 254.7 ps +/- 8.0 ps FWHM with 3 × 3 × 20 mm(3) crystals and 166.5 +/- 2.5 ps FWHM with 3 × 3 × 5 mm(3) crystals.
Collapse
Affiliation(s)
- M F Bieniosek
- Department of Radiology, Stanford University, Stanford, CA 94305, USA. Molecular Imaging Program at Stanford (MIPS), Stanford, CA 94305, USA. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
37
|
Kwee TC, Donswijk ML. Application of Advanced MR Imaging Techniques and the Evolving Role of PET/MR Imaging in Neuro-oncology. PET Clin 2013; 8:183-99. [DOI: 10.1016/j.cpet.2012.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Vaska P, Cao T. The State of Instrumentation for Combined Positron Emission Tomography and Magnetic Resonance Imaging. Semin Nucl Med 2013. [DOI: 10.1053/j.semnuclmed.2012.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
|