1
|
Dai B, Krishnamoorthy S, Morales E, Surti S, Karp JS. Depth-of-interaction encoding techniques for pixelated PET detectors enabled by machine learning methods and fast waveform digitization. Phys Med Biol 2025; 70:085009. [PMID: 40185124 PMCID: PMC11995716 DOI: 10.1088/1361-6560/adc96d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/07/2025]
Abstract
Objective. Pixelated detectors with single-ended readout are routinely used by commercial positron emission tomography scanners owing to their good energy and timing resolution and optimized manufacturing, but they typically do not provide depth-of-interaction (DOI) information, which can help improve the performance of systems with higher resolution and smaller ring diameter. This work aims to develop a technique for multi-level DOI classification that does not require modifications to the detector designs.Approach. We leveraged high-speed (5 Gs s-1) waveform sampling electronics with the Domino Ring Sampler (DRS4) and machine learning (ML) methods to extract DOI information from the entire scintillation waveforms of pixelated crystals. We evaluated different grouping schemes for multi-level DOI classification by analyzing the DOI positioning profile and DOI positioning error. We examined trade-offs among crystal configurations, detector timing performance, and DOI classification accuracy. We also investigated the impact of different ML algorithms and input features-extracted from scintillation waveforms-on model accuracy.Main results. The DOI positioning profile and positioning error suggest that 2- or 3-level binning was effective for 20 mm long crystals. 2-level discrete DOI models achieved 95% class-wise accuracy and 83% overall accuracy in positioning events into the correct DOI level and 3-level up to 90% class-wise accuracy for long and narrow crystals (2 × 2 × 20 mm3). Long short-term memory networks trained with time-frequency moments were twice as efficient in training time while maintaining equal or better accuracy compared to those trained with waveforms. Classical ML algorithms exhibit comparable accuracy while consuming one order less training time than deep learning models.Significance. This work demonstrates a proof-of-concept approach for obtaining DOI information from commercially available pixelated detectors without altering the detector design thereby avoiding potential degradation in detector timing performance. It provides an alternative solution for multi-level DOI classification, potentially inspiring future scanner designs.
Collapse
Affiliation(s)
- Bing Dai
- Department of Radiology, The University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Srilalan Krishnamoorthy
- Department of Radiology, The University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Emmanuel Morales
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Suleman Surti
- Department of Radiology, The University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Joel S Karp
- Department of Radiology, The University of Pennsylvania, Philadelphia, PA 19104, United States of America
| |
Collapse
|
2
|
Kiyokawa M, Kang HG, Yamaya T. Monolithic U-shaped crystal design for TOF-DOI detectors: a flat top versus a tapered top. Biomed Phys Eng Express 2025; 11:025032. [PMID: 39842042 DOI: 10.1088/2057-1976/adaced] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
For brain-dedicated positron emission tomography (PET) scanners, depth-of-interaction (DOI) information is essential to achieve uniform spatial resolution across the field-of-view (FOV) by minimizing parallax error. Time-of-flight (TOF) information can enhance the image quality. In this study, we proposed a novel monolithic U-shaped crystal design that had a tapered geometry to achieve good coincidence timing resolution (CTR) and DOI resolution simultaneously. We compared a novel tapered U-shaped crystal design with a conventional flat-top geometry for PET detectors. Each crystal had outer dimensions of 5.85 × 2.75 × 15 mm3, with a 0.2 mm central gap forming physically isolated bottom surfaces (2.85 × 2.75 mm2). The novel U-shape crystal design with a tapered top roof resulted in the best CTR of 201 ± 3 ps, and DOI resolution of 3.1 ± 0.6 mm, which were better than flat top geometry. In the next study, we plan to optimize the crystal surface treatment and reflector to further improve the CTR and DOI resolution.
Collapse
Affiliation(s)
- Miho Kiyokawa
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan
- Department of Medical Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba, 263-8522, Japan
| | - Han Gyu Kang
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan
- Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
3
|
Terragni G, Nadig V, Tribbia E, di Gangi S, Toumparidou E, Meyer T, Marton J, Schulz V, Gundacker S, Pizzichemi M, Auffray E. Exploring the performance of a DOI-capable TOF-PET module using different SiPMs, customized and commercial readout electronics. Phys Med Biol 2025; 70:025015. [PMID: 39700624 DOI: 10.1088/1361-6560/ada19a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/19/2024] [Indexed: 12/21/2024]
Abstract
Objective.Time resolution is crucial in positron emission tomography (PET) to enhance the signal-to-noise ratio and image quality. Moreover, high sensitivity requires long scintillators, which can cause distortions in the reconstructed images due to parallax effects. This study evaluates the performance of a time-of-flight (TOF)-PET module that makes use of a single-side readout of a4×43.1×3.1×15mm3LYSO:Ce matrix with an array of4×4silicon photomultipliers (SiPMs) and a light guide to extract high-resolution TOF and depth of interaction (DOI) information.Approach.This study assesses the performance of the detector prototype using the commercially available TOFPET2 ASIC and SiPMs from various producers. DOI and TOF performance are compared to results using custom-made NINO 32-chip based electronics.Main results.Using a Broadcom NUV-MT array, the detector module read out by the TOFPET2 ASIC demonstrates a DOI resolution of 2.6 ± 0.2 mm full width at half maximum (FWHM) and a coincidence time resolution (CTR) of 216 ± 6 ps FWHM. When read out using the NINO 32-chip based electronics, the same module achieves a DOI resolution of 2.5 ± 0.2 mm and a CTR of 170 ± 5 ps.Significance.The prototype module, read out by commercial electronics and using state-of-the-art SiPMs, achieves a DOI performance comparable to that obtained with custom-made electronics and a CTR of around 200 ps. This approach is scalable to thousands of channels, with only a deterioration in timing resolution compared to the custom-made electronics, which achieve a CTR of 140 ps using a standard non-DOI module.
Collapse
Affiliation(s)
- Giulia Terragni
- CERN, Geneva, Switzerland
- Technical University of Vienna, Vienna, Austria
| | - Vanessa Nadig
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Elena Tribbia
- CERN, Geneva, Switzerland
- University of Milano-Bicocca, Milan, Italy
| | | | - Ekaterini Toumparidou
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | | | | | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany
- Physics Institute IIIB, RWTH Aachen University, Aachen, Germany
| | - Stefan Gundacker
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Marco Pizzichemi
- CERN, Geneva, Switzerland
- University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
4
|
Ko GB, Kwak D, Lee JS. Enhanced Timing Performance of Dual-Ended PET Detectors for Brain Imaging Using Dual-Finishing Crystal Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:6520. [PMID: 39460003 PMCID: PMC11511292 DOI: 10.3390/s24206520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
This study presents a novel approach to enhancing the timing performance of dual-ended positron emission tomography (PET) detectors for brain imaging by employing a dual-finishing crystal method. The proposed method integrates both polished and unpolished surfaces within the scintillation crystal block to optimize time-of-flight (TOF) and depth-of-interaction (DOI) resolutions. A dual-finishing detector was constructed using an 8 × 8 LGSO array with a 2 mm pitch, and its performance was compared against fully polished and unpolished crystal blocks. The results indicate that the dual-finishing method significantly improves the timing resolution while maintaining good energy and DOI resolutions. Specifically, the timing resolution achieved with the dual-finishing block was superior, measuring 192.0 ± 12.8 ps, compared to 206.3 ± 9.4 ps and 234.8 ± 17.9 ps for polished and unpolished blocks, respectively. This improvement in timing is crucial for high-performance PET systems, particularly in brain imaging applications where high sensitivity and spatial resolution are paramount.
Collapse
Affiliation(s)
| | | | - Jae Sung Lee
- Brightonix Imaging Inc., Seoul 04782, Republic of Korea; (G.B.K.); (D.K.)
| |
Collapse
|
5
|
Pagano F, Kratochwil N, Lowis C, Choong WS, Paganoni M, Pizzichemi M, Cates JW, Auffray E. Enhancing timing performance of heterostructures with double-sided readout. Phys Med Biol 2024; 69:205012. [PMID: 39321964 DOI: 10.1088/1361-6560/ad7fc8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Objective.Heterostructured scintillators offer a promising solution to balance the sensitivity and timing in TOF-PET detectors. These scintillators utilize alternating layers of materials with complementary properties to optimize performance. However, the layering compromises time resolution due to light transport issues. This study explores double-sided readout-enabling improved light collection and Depth-of-Interaction (DOI) information retrieval-to mitigate this effect and enhance the timing capabilities of heterostructures.Approach.The time resolution and DOI performances of 3 × 3 × 20 mm3BGO&EJ232 heterostructures were assessed in a single and double-sided readout (SSR and DSR, respectively) configuration using high-frequency electronics.Main results.Selective analysis of photopeak events yielded a DOI resolution of 6.4 ± 0.04 mm. Notably, the Coincidence Time Resolution (CTR) improved from 262 ± 8 ps (SSR) to 174 ± 6 ps (DSR) when measured in coincidence with a fast reference detector. Additionally, symmetrical configuration of two identical heterostructures in coincidence was tested, yielding in DSR a CTR of 254 ± 8 ps for all photopeak events and 107 ± 5 ps for the fastest events.Significance.By using high-frequency double-sided readout, we could measure DOI resolution and improve the time resolution of heterostructures of up to 40%. The DOI information resulted intrinsically captured in the average between the timestamps of the two SiPMs, without requiring any further correction.
Collapse
Affiliation(s)
- Fiammetta Pagano
- CERN, Esplanade des Particules 1, 1211 Geneva, Switzerland
- University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | | | - Carsten Lowis
- CERN, Esplanade des Particules 1, 1211 Geneva, Switzerland
- FH Aachen University of Applied Sciences, Jülich, Germany
| | - Woon-Seng Choong
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Marco Paganoni
- CERN, Esplanade des Particules 1, 1211 Geneva, Switzerland
- University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Marco Pizzichemi
- CERN, Esplanade des Particules 1, 1211 Geneva, Switzerland
- University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Joshua W Cates
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | | |
Collapse
|
6
|
Zeng X, LaBella A, Wang Z, Li Y, Tan W, Goldan AH. Depth-encoding using optical photon TOF in a prism-PET detector with tapered crystals. Med Phys 2024; 51:4044-4055. [PMID: 38682574 PMCID: PMC11518634 DOI: 10.1002/mp.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND High-resolution brain positron emission tomography (PET) scanner is emerging as a significant and transformative non-invasive neuroimaging tool to advance neuroscience research as well as improve diagnosis and treatment in neurology and psychiatry. Time-of-flight (TOF) and depth-of-interaction (DOI) information provide markedly higher PET imaging performance by increasing image signal-to-noise ratio and mitigating spatial resolution degradation due to parallax error, respectively. PET detector modules that utilize light sharing can inherently carry DOI information from the multiple timestamps that are generated per gamma event. The difference between two timestamps that are triggered by scintillation photons traveling in opposite directions signifies the event's depth-dependent optical photon TOF (oTOF). However, light leak at the crystal-readout interface substantially degrades the resolution of this oTOF-based depth encoding. PURPOSE We demonstrate the feasibility of oTOF-based depth encoding by mitigating light leak in single-ended-readout Prism-PET detector modules using tapered crystals. Minimizing light leak also improved both energy-based DOI and coincidence timing resolutions. METHODS The tapered Prism-PET module consists of a 16 × $\times$ 16 array of 1.5 × $\times$ 1.5 × $\times$ 20 mm 3 ${\rm {mm}}^3$ lutetium yttrium oxyorthosillicate (LYSO) crystals, which are tapered down to 1.2 × $\times$ 1.2 mm 2 ${\rm {mm}}^2$ at the crystal-readout interface. The LYSO array couples 4-to-1 to an 8 × $\times$ 8 array of 3 × $\times$ 3 mm 2 ${\rm {mm}}^2$ silicon photomultiplier (SiPM) pixels on the tapered end and to a segmented prismatoid light guide array on the opposite end. Performance of tapered and non-tapered Prism-PET detectors was experimentally characterized and evaluated by measuring flood histogram, energy resolution, energy-, and oTOF-based DOI resolutions, and coincidence timing resolution. Sensitivities of scanners using different Prism-PET detector designs were simulated using Geant4 application for tomographic emission (GATE). RESULTS For the tapered (non-tapered) Prism-PET module, the measured full width at half maximum (FWHM) energy, timing, energy-based DOI, and oTOF-based DOI resolutions were 8.88 (11.18)%, 243 (286) ps, 2.35 (3.18) mm, and 5.42 (13.87) mm, respectively. The scanner sensitivities using non-tapered and tapered crystals, and 10 rings of detector modules, were simulated to be 30.9 and 29.5 kcps/MBq, respectively. CONCLUSIONS The tapered Prism-PET module with minimized light leak enabled the first experimental report of oTOF-based depth encoding at the detector module level. It also enabled the utilization of thinner (i.e., 0.1 mm) inter-crystal spacing with barium sulfate as the reflector while also improving energy-based DOI and timing resolutions.
Collapse
Affiliation(s)
- Xinjie Zeng
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Andy LaBella
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Zipai Wang
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Yixin Li
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Wanbin Tan
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Amir H Goldan
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
7
|
El Ouaridi A, Ait Elcadi Z, Mkimel M, Bougteb M, El Baydaoui R. The detection instrumentation and geometric design of clinical PET scanner: towards better performance and broader clinical applications. Biomed Phys Eng Express 2024; 10:032002. [PMID: 38412520 DOI: 10.1088/2057-1976/ad2d61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Positron emission tomography (PET) is a powerful medical imaging modality used in nuclear medicine to diagnose and monitor various clinical diseases in patients. It is more sensitive and produces a highly quantitative mapping of the three-dimensional biodistribution of positron-emitting radiotracers inside the human body. The underlying technology is constantly evolving, and recent advances in detection instrumentation and PET scanner design have significantly improved the medical diagnosis capabilities of this imaging modality, making it more efficient and opening the way to broader, innovative, and promising clinical applications. Some significant achievements related to detection instrumentation include introducing new scintillators and photodetectors as well as developing innovative detector designs and coupling configurations. Other advances in scanner design include moving towards a cylindrical geometry, 3D acquisition mode, and the trend towards a wider axial field of view and a shorter diameter. Further research on PET camera instrumentation and design will be required to advance this technology by improving its performance and extending its clinical applications while optimising radiation dose, image acquisition time, and manufacturing cost. This article comprehensively reviews the various parameters of detection instrumentation and PET system design. Firstly, an overview of the historical innovation of the PET system has been presented, focusing on instrumental technology. Secondly, we have characterised the main performance parameters of current clinical PET and detailed recent instrumental innovations and trends that affect these performances and clinical practice. Finally, prospects for this medical imaging modality are presented and discussed. This overview of the PET system's instrumental parameters enables us to draw solid conclusions on achieving the best possible performance for the different needs of different clinical applications.
Collapse
Affiliation(s)
- Abdallah El Ouaridi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Zakaria Ait Elcadi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
- Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, 23874, Qatar
| | - Mounir Mkimel
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Mustapha Bougteb
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Redouane El Baydaoui
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| |
Collapse
|
8
|
Petersen E, LaBella A, Li Y, Wang Z, Goldan AH. Resolving inter-crystal scatter in a light-sharing depth-encoding PET detector. Phys Med Biol 2024; 69:10.1088/1361-6560/ad19f1. [PMID: 38169459 PMCID: PMC11495245 DOI: 10.1088/1361-6560/ad19f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Objective.Inter-crystal scattering (ICS) in light-sharing positron emission tomography (PET) detectors leads to ambiguity in positioning the initial interaction, which significantly degrades the contrast, quantitative accuracy, and spatial resolution of the resulting image. Here, we attempt to resolve the positioning ambiguity of ICS in a light-sharing depth-encoding detector by exploiting the confined, deterministic light-sharing enabled by the segmented light guide unique to Prism-PET.Approach.We first considered a test case of ICS between two adjacent crystals using an analytical and a neural network approach. The analytical approach used a Bayesian estimation framework constructed from a scatter absorption model-the prior-and a detector response model-the likelihood. A simple neural network was generated for the same scenario, to provide mutual validation for the findings. Finally, we generalized the solution to three-dimensional event positioning that handles all events in the photopeak using a convolutional neural network with unique architecture that separately predicts the identity and depth-of-interaction (DOI) of the crystal containing the first interaction.Main results.The analytical Bayesian method generated an estimation error of 20.5 keV in energy and 3.1 mm in DOI. Further analysis showed that the detector response model was sufficiently robust to achieve adequate performance via maximum likelihood estimation (MLE), without prior information. We then found convergent results using a simple neural network. In the generalized solution using a convolutional neural network, we found crystal identification accuracy of 83% and DOI estimation error of 3.0 mm across all events. Applying this positioning algorithm to simulated data, we demonstrated significant improvements in image quality over the baseline, centroid-based positioning approach, attaining 38.9% improvement in intrinsic spatial resolution and enhanced clarity in hot spots of diameters 0.8 to 2.5 mm.Significance.The accuracy of our findings exceeds those of previous reports in the literature. The Prism-PET light guide, mediating confined and deterministic light-sharing, plays a key role in ICS recovery, as its mathematical embodiment-the detector response model-was the essential driver of accuracy in our results.
Collapse
Affiliation(s)
- Eric Petersen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States of America
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, United States of America
| | - Andy LaBella
- Department of Radiology, Stony Brook University, Stony Brook, NY, United States of America
| | - Yixin Li
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, United States of America
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, United States of America
| | - Zipai Wang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States of America
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, United States of America
| | - Amir H Goldan
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, United States of America
| |
Collapse
|
9
|
He W, Zhao Y, Huang W, Zhao X, Niu M, Yang H, Zhang L, Ren Q, Gu Z. A multi-resolution TOF-DOI detector for human brain dedicated PET scanner. Phys Med Biol 2024; 69:025023. [PMID: 38181423 DOI: 10.1088/1361-6560/ad1b6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Objective. We propose a single-ended readout, multi-resolution detector design that can achieve high spatial, depth-of-interaction (DOI), and time-of-flight (TOF) resolutions, as well as high sensitivity for human brain-dedicated positron emission tomography (PET) scanners.Approach. The detector comprised two layers of LYSO crystal arrays and a lightguide in between. The top (gamma ray entrance) layer consisted of a 16 × 16 array of 1.53 × 1.53 × 6 mm3LYSO crystals for providing high spatial resolution. The bottom layer consisted of an 8 × 8 array of 3.0 × 3.0 × 15 mm3LYSO crystals that were one-to-one coupled to an 8 × 8 multipixel photon counter (MPPC) array for providing high TOF resolution. The 2 mm thick lightguide introduces inter-crystal light sharing that causes variations of the light distribution patterns for high DOI resolution. The detector was read out by a PETsys TOFPET2 application-specific integrated circuit.Main result. The top and bottom layers were distinguished by a convolutional neural network with 97% accuracy. All crystals in the top and bottom layers were resolved. The inter-crystal scatter (ICS) events in the bottom layer were identified, and the measured average DOI resolution of the bottom layer was 4.1 mm. The coincidence time resolution (CTR) for the top-top, top-bottom, and bottom-bottom coincidences was 476 ps, 405 ps, and 298 ps, respectively. When ICS events were excluded from the bottom layer, the CTR of the bottom-bottom coincidence was 277 ps.Significance. The top layer of the proposed two-layer detector achieved a high spatial resolution and the bottom layer achieved a high TOF resolution. Together with its high DOI resolution and detection efficiency, the proposed detector is well suited for next-generation high-performance brain-dedicated PET scanners.
Collapse
Affiliation(s)
- Wen He
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
- Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
| | - Yangyang Zhao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Wenjie Huang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Xin Zhao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Ming Niu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Hang Yang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Lei Zhang
- Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Qiushi Ren
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
- Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
| | - Zheng Gu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
- Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
| |
Collapse
|
10
|
Sanaat A, Amini M, Arabi H, Zaidi H. The quest for multifunctional and dedicated PET instrumentation with irregular geometries. Ann Nucl Med 2024; 38:31-70. [PMID: 37952197 PMCID: PMC10766666 DOI: 10.1007/s12149-023-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
We focus on reviewing state-of-the-art developments of dedicated PET scanners with irregular geometries and the potential of different aspects of multifunctional PET imaging. First, we discuss advances in non-conventional PET detector geometries. Then, we present innovative designs of organ-specific dedicated PET scanners for breast, brain, prostate, and cardiac imaging. We will also review challenges and possible artifacts by image reconstruction algorithms for PET scanners with irregular geometries, such as non-cylindrical and partial angular coverage geometries and how they can be addressed. Then, we attempt to address some open issues about cost/benefits analysis of dedicated PET scanners, how far are the theoretical conceptual designs from the market/clinic, and strategies to reduce fabrication cost without compromising performance.
Collapse
Affiliation(s)
- Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, 500, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
11
|
Lee JS, Lee MS. Advancements in Positron Emission Tomography Detectors: From Silicon Photomultiplier Technology to Artificial Intelligence Applications. PET Clin 2024; 19:1-24. [PMID: 37802675 DOI: 10.1016/j.cpet.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
This review article focuses on PET detector technology, which is the most crucial factor in determining PET image quality. The article highlights the desired properties of PET detectors, including high detection efficiency, spatial resolution, energy resolution, and timing resolution. Recent advancements in PET detectors to improve these properties are also discussed, including the use of silicon photomultiplier technology, advancements in depth-of-interaction and time-of-flight PET detectors, and the use of artificial intelligence for detector development. The article provides an overview of PET detector technology and its recent advancements, which can significantly enhance PET image quality.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea; Brightonix Imaging Inc., Seoul 04782, South Korea
| | - Min Sun Lee
- Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon 34057, South Korea.
| |
Collapse
|
12
|
Kuang Z, Zhang L, Ren N, Kinyanjui SM, Liu Z, Sun T, Hu Z, Yang Y. Effect of depth of interaction resolution on the spatial resolution of SIAT aPET. Phys Med Biol 2023; 68:22NT02. [PMID: 37890466 DOI: 10.1088/1361-6560/ad078b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
Objective.Spatial resolution is a crucial parameter for a positron emission tomography (PET) scanner. The spatial resolution of a high-resolution small animal PET scanner is significantly influenced by the effect of depth of interaction (DOI) uncertainty. The aim of this work is to investigate the impact of DOI resolution on the spatial resolution of a small animal PET scanner called SIAT aPET and determine the required DOI resolution to achieve nearly uniform spatial resolution within the field of view (FOV).Approach. The SIAT aPET detectors utilize 1.0 × 1.0 × 20 mm3crystals, with an average DOI resolution of ∼2 mm. A default number of 16 DOI bins are used during data acquisition. First, a Na-22 point source was scanned in the center of the axial FOV with different radial offsets. Then, a Derenzo phantom was scanned at radial offsets of 0 and 15 mm in the center axial FOV. The measured DOI information was rebinned to 1, 2, 4 and 8 DOI bins to mimic different DOI resolutions of the detectors during image reconstruction.Main results. Significant artifacts were observed in images obtained from both the point source and Derenzo phantom when using only one DOI bin. When accurate measurement of DOI is not achieved, degradation in spatial resolution is more pronounced in the radial direction compared to tangential and axial directions for large radial offsets. The radial spatial resolutions at a 30 mm radial offset are 5.05, 2.62, 1.24, 0.86 and 0.78 mm when using 1, 2, 4, 8, or 16 DOI bins, respectively. The axial spatial resolution improved from ∼1.3 to 0.7 mm as the number of DOI bins increased from 1 to 16 at radial offsets from 0 to 25 mm. Two DOI bins are required to obtain images without significant artifacts. The required DOI resolution is about three times the crystal width of SIAT aPET to achieve a uniform submillimeter spatial resolution within the central 60 mm FOV and resolve the 1 mm rods of the Derenzo phantom at both positions.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- School of Physics and Electronics-Electrical Engineering, Xiangnan University, Chenzhou 423000, People's Republic of China
| | - Ling Zhang
- School of Medicine, Hunan University of Medicine, Huaihua 418000, People's Republic of China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Samuel M Kinyanjui
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhanli Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
13
|
Li Y, LaBella A, Zeng X, Wang Z, Petersen E, Cao X, Zhao W, Goldan AH. Interleaved signal multiplexing readout in depth encoding Prism-PET detectors. Med Phys 2023; 50:4234-4243. [PMID: 37191309 PMCID: PMC11057968 DOI: 10.1002/mp.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Given the large number of readout pixels in clinical positron emission tomography (PET) scanners, signal multiplexing is an indispensable feature to reduce scanner complexity, power consumption, heat output, and cost. PURPOSE In this paper, we introduce interleaved multiplexing (iMux) scheme that utilizes the characteristic light-sharing pattern of depth-encoding Prism-PET detector modules with single-ended readout. METHODS In the iMux readout, four anodes from every other silicon photomultiplier (SiPM) pixels across rows and columns, which overlap with four distinct light guides, are connected to the same application-specific integrated circuit (ASIC) channel. The 4-to-1 coupled Prism-PET detector module was used which consisted of a 16 × 16 array of 1.5 × 1.5 × 20 mm3 lutetium yttrium oxyorthosilicate (LYSO) scintillator crystals coupled to an 8 × 8 array with 3 × 3 mm2 SiPM pixels. A deep learning-based demultiplexing model was investigated to recover the encoded energy signals. Two different experiments were performed with non-multiplexed and multiplexed readouts to evaluate the spatial, depth of interaction (DOI), and timing resolutions of our proposed iMux scheme. RESULTS The measured flood histograms, using the decoded energy signals from our deep learning-based demultiplexing architecture, achieved perfect crystal identification of events with negligible decoding error. The average energy, DOI, and timing resolutions were 9.6 ± 1.5%, 2.9 ± 0.9 mm, and 266 ± 19 ps for non-multiplexed readout and 10.3 ± 1.6%, 2.8 ± 0.8 mm, and 311 ± 28 ps for multiplexed readout, respectively. CONCLUSIONS Our proposed iMux scheme improves on the already cost-effective and high-resolution Prism-PET detector module and provides 16-to-1 crystal-to-readout multiplexing without appreciable performance degradation. Also, only four SiPM pixels are shorted together in the 8 × 8 array to achieve 4-to-1 pixel-to-readout multiplexing, resulting in lower capacitance per multiplexed channel.
Collapse
Affiliation(s)
- Yixin Li
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Andy LaBella
- Department of Radiology, Boston Children’s Hospital, Boston, MA, US
| | - Xinjie Zeng
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Zipai Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Eric Petersen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Xinjie Cao
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Wei Zhao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Amir H. Goldan
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, US
| |
Collapse
|
14
|
Miyata K, Ogawara R, Ishikawa M. Improvement of Crystal Identification Accuracy for Depth-of-Interaction Detector System with Peak-to-Charge Discrimination Method. SENSORS (BASEL, SWITZERLAND) 2023; 23:4584. [PMID: 37430498 DOI: 10.3390/s23104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 07/12/2023]
Abstract
In positron emission tomography (PET), parallax errors degrade spatial resolution. The depth of interaction (DOI) information provides the position in the depth of the scintillator interacting with the γ-rays, thus reducing parallax errors. A previous study developed a Peak-to-Charge discrimination (PQD), which can separate spontaneous alpha decay in LaBr3:Ce. Since decay constant of GSO:Ce depends on Ce concentration, the PQD is expected to discriminate GSO:Ce scintillators with different Ce concentration. In this study, the PQD-based DOI detector system was developed, which can be processed online and implemented in PET. A detector was composed of four layers of GSO:Ce crystals and a PS-PMT. The four crystals were obtained from both the top and bottom of ingots with a nominal Ce concentration of 0.5 mol% and 1.5 mol%. The PQD was implemented on the Xilinx Zynq-7000 SoC board with 8ch Flash ADC to gain real-time processing, flexibility, and expandability. The results showed that the mean Figure of Merits in 1D between four scintillators are 1.5, 0.99, 0.91 for layers between 1st-2nd, 2nd-3rd, and 3rd-4th respectively, and the mean Error Rate in 1D between four scintillators are 3.50%, 2.96%, 13.3%, and 1.88% for layers 1, 2, 3, and 4, respectively. In addition, the introduction of the 2D PQDs resulted in the mean Figure of Merits in 2D greater than 0.9 and the mean Error Rate in 2D less than 3% in all layers.
Collapse
Affiliation(s)
- Kento Miyata
- Graduate School of Biomedical Science and Engineering, Hokkaido University, N-15 W-7 Kita-ku, Sapporo 060-8638, Japan
| | - Ryo Ogawara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Masayori Ishikawa
- Faculty of Health Sciences, Hokkaido University, N-12 W-5 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
15
|
Zatcepin A, Ziegler SI. Detectors in positron emission tomography. Z Med Phys 2023; 33:4-12. [PMID: 36208967 PMCID: PMC10082375 DOI: 10.1016/j.zemedi.2022.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
Abstract
Positron emission tomography is a highly sensitive molecular imaging modality, based on the coincident detection of annihilation photons after positron decay. The most used detector is based on dense, fast, and luminous scintillators read out by light sensors. This review covers the various detector concepts for clinical and preclinical systems.
Collapse
Affiliation(s)
- Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
16
|
Zeng X, Wang Z, Tan W, Petersen E, Cao X, LaBella A, Boccia A, Franceschi D, de Leon M, Chiang GCY, Qi J, Biegon A, Zhao W, Goldan AH. A conformal TOF-DOI Prism-PET prototype scanner for high-resolution quantitative neuroimaging. Med Phys 2023; 50:10.1002/mp.16223. [PMID: 36651630 PMCID: PMC11025680 DOI: 10.1002/mp.16223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) has had a transformative impact on oncological and neurological applications. However, still much of PET's potential remains untapped with limitations primarily driven by low spatial resolution, which severely hampers accurate quantitative PET imaging via the partial volume effect (PVE). PURPOSE We present experimental results of a practical and cost-effective ultra-high resolution brain-dedicated PET scanner, using our depth-encoding Prism-PET detectors arranged along a compact and conformal gantry, showing substantial reduction in PVE and accurate radiotracer uptake quantification in small regions. METHODS The decagon-shaped prototype scanner has a long diameter of 38.5 cm, a short diameter of 29.1 cm, and an axial field-of-view (FOV) of 25.5 mm with a single ring of 40 Prism-PET detector modules. Each module comprises a 16 × 16 array of 1.5 × 1.5 × 20-mm3 lutetium yttrium oxyorthosillicate (LYSO) scintillator crystals coupled 4-to-1 to an 8 × 8 array of silicon photomultiplier (SiPM) pixels on one end and to a prismatoid light guide array on the opposite end. The scanner's performance was evaluated by measuring depth-of-interaction (DOI) resolution, energy resolution, timing resolution, spatial resolution, sensitivity, and image quality of ultra-micro Derenzo and three-dimensional (3D) Hoffman brain phantoms. RESULTS The full width at half maximum (FWHM) DOI, energy, and timing resolutions of the scanner are 2.85 mm, 12.6%, and 271 ps, respectively. Not considering artifacts due to mechanical misalignment of detector blocks, the intrinsic spatial resolution is 0.89-mm FWHM. Point source images reconstructed with 3D filtered back-projection (FBP) show an average spatial resolution of 1.53-mm FWHM across the entire FOV. The peak absolute sensitivity is 1.2% for an energy window of 400-650 keV. The ultra-micro Derenzo phantom study demonstrates the highest reported spatial resolution performance for a human brain PET scanner with perfect reconstruction of 1.00-mm diameter hot-rods. Reconstructed images of customized Hoffman brain phantoms prove that Prism-PET enables accurate radiotracer uptake quantification in small brain regions (2-3 mm). CONCLUSIONS Prism-PET will substantially strengthen the utility of quantitative PET in neurology for early diagnosis of neurodegenerative diseases, and in neuro-oncology for improved management of both primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Xinjie Zeng
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Zipai Wang
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Wanbin Tan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Eric Petersen
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Xinjie Cao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Andy LaBella
- Department of Radiology, Boston children’s Hospital, Boston, MA, US
| | - Anthony Boccia
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Dinko Franceschi
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Mony de Leon
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, US
| | - Gloria Chia-Yi Chiang
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, US
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California, Davis, CA, US
| | - Anat Biegon
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Wei Zhao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Amir H. Goldan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| |
Collapse
|
17
|
Cao X, Labella A, Zeng X, Zhao W, Goldan AH. Depth of Interaction and Coincidence Time Resolution Characterization of Ultrahigh Resolution Time-of-Flight Prism-PET Modules. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3110902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xinjie Cao
- Department of Eletrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Andy Labella
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Xinjie Zeng
- Department of Eletrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Wei Zhao
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Amir H. Goldan
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
18
|
Adler SS, Seidel J, Choyke PL. Advances in Preclinical PET. Semin Nucl Med 2022; 52:382-402. [PMID: 35307164 PMCID: PMC9038721 DOI: 10.1053/j.semnuclmed.2022.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
The classical intent of PET imaging is to obtain the most accurate estimate of the amount of positron-emitting radiotracer in the smallest possible volume element located anywhere in the imaging subject at any time using the least amount of radioactivity. Reaching this goal, however, is confounded by an enormous array of interlinked technical issues that limit imaging system performance. As a result, advances in PET, human or animal, are the result of cumulative innovations across each of the component elements of PET, from data acquisition to image analysis. In the report that follows, we trace several of these advances across the imaging process with a focus on small animal PET.
Collapse
Affiliation(s)
- Stephen S Adler
- Frederick National Laboratory for Cancer Research, Frederick, MD; Molecular Imaging Branch, National Cancer Institute, Bethesda MD
| | - Jurgen Seidel
- Contractor to Frederick National Laboratory for Cancer Research, Leidos biodical Research, Inc., Frederick, MD; Molecular Imaging Branch, National Cancer Institute, Bethesda MD
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, Bethesda MD.
| |
Collapse
|
19
|
Liu Z, Niu M, Kuang Z, Ren N, Wu S, Cong L, Wang X, Sang Z, Williams C, Yang Y. High resolution detectors for whole-body PET scanners by using dual-ended readout. EJNMMI Phys 2022; 9:29. [PMID: 35445890 PMCID: PMC9023628 DOI: 10.1186/s40658-022-00460-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most current whole-body positron emission tomography (PET) scanners use detectors with high timing resolution to measure the time-of-flight of two 511 keV photons, improving the signal-to-noise ratio of PET images. However, almost all current whole-body PET scanners use detectors without depth-encoding capability; therefore, their spatial resolution can be affected by the parallax effect. METHODS In this work, four depth-encoding detectors consisting of LYSO arrays with crystals of 2.98 × 2.98 × 20 mm3, 2.98 × 2.98 × 30 mm3, 1.95 × 1.95 × 20 mm3, and 1.95 × 1.95 × 30 mm3, respectively, were read at both ends, with 6 × 6 mm2 silicon photomultiplier (SiPM) pixels in a 4 × 4 array being used. The timing signals of the detectors were processed individually using an ultrafast NINO application-specific integrated circuit (ASIC) to obtain good timing resolution. The 16 energy signals of the SiPM array were read using a row and column summing circuit to obtain four position-encoding energy signals. RESULTS The four PET detectors provided good flood histograms in which all crystals could be clearly resolved, the crystal energy resolutions measured being 10.2, 12.1, 11.4 and 11.7% full width at half maximum (FWHM), at an average crystal depth of interaction (DOI) resolution of 3.5, 3.9, 2.7, and 3.0 mm, respectively. The depth dependence of the timing of each SiPM was measured and corrected, the timing of the two SiPMs being used as the timing of the dual-ended readout detector. The four detectors provided coincidence time resolutions of 180, 214, 239, and 263 ps, respectively. CONCLUSIONS The timing resolution of the dual-ended readout PET detector was approximately 20% better than that of the single-ended readout detector using the same LYSO array, SiPM array, and readout electronics. The detectors developed in this work used long crystals with small cross-sections and provided good flood histograms, DOI, energy, and timing resolutions, suggesting that they could be used to develop whole-body PET scanners with high sensitivity, uniform high spatial resolution, and high timing resolution.
Collapse
Affiliation(s)
- Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - San Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longhan Cong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaohui Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziru Sang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Crispin Williams
- European Centre for Nuclear Research (CERN), Geneva, Switzerland
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
20
|
Thyssen C, Deprez K, Mollet P, Van Holen R, Vandenberghe S. Simulation study on the performance of time-over-threshold based positioning in monolithic PET detectors. Phys Med Biol 2021; 66. [PMID: 34875646 DOI: 10.1088/1361-6560/ac40d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022]
Abstract
The vast majority of PET detectors in the field today are based on pixelated scintillators. Yet, the resolution of this type of detector is limited by the pixel size. To overcome this limitation, one can use monolithic detectors. However, this detector architecture demands specific and high-speed detector readout of the photodetector array. A commonly used approach is to integrate the current pulses generated by every pixel but such circuitry quickly becomes bulky, power consuming and expensive. The objective of this work is to investigate a novel readout and event positioning scheme for monolithic PET detectors, based on time-over-threshold (ToT). In this case, we measure the time that the pulse is above a certain threshold through a comparator. The pulse widths are used for event positioning using a mean nearest neighbour approach (mNNToT). For energy determination one integrating multiplexed channel is foreseen. We evaluate the positioning accuracy and uniformity of such a ToT detector by means of Monte Carlo simulations. The impact of the threshold value is investigated and the results are compared to a detector using mean nearest neighbour with pulse-integration (mNNint), which has already proven to allow sub-mm resolution. We show minimal degradation in spatial resolution and bias performance compared to mNNint. The highest threshold results in the worst resolution performance but degradation remains below 0.1 mm. Bias is largely constant over different thresholds for mNNToTand close to identical to mNNint. Furthermore we show that ToT performs well in terms of detector uniformity and that scattered photons can be positioned inside the crystal with high accuracy. We conclude from this work that ToT is a valuable alternative to pulse-integration for monolithic PET detectors. This novel approach has an impact on PET detector development since it has the advantage of lower power consumption, compactness and inherent amplitude-to-time conversion.
Collapse
Affiliation(s)
- Charlotte Thyssen
- Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium.,MOLECUBES, Ghent, Belgium
| | | | | | - Roel Van Holen
- Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium.,MOLECUBES, Ghent, Belgium
| | | |
Collapse
|
21
|
Decuyper M, Maebe J, Van Holen R, Vandenberghe S. Artificial intelligence with deep learning in nuclear medicine and radiology. EJNMMI Phys 2021; 8:81. [PMID: 34897550 PMCID: PMC8665861 DOI: 10.1186/s40658-021-00426-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
The use of deep learning in medical imaging has increased rapidly over the past few years, finding applications throughout the entire radiology pipeline, from improved scanner performance to automatic disease detection and diagnosis. These advancements have resulted in a wide variety of deep learning approaches being developed, solving unique challenges for various imaging modalities. This paper provides a review on these developments from a technical point of view, categorizing the different methodologies and summarizing their implementation. We provide an introduction to the design of neural networks and their training procedure, after which we take an extended look at their uses in medical imaging. We cover the different sections of the radiology pipeline, highlighting some influential works and discussing the merits and limitations of deep learning approaches compared to other traditional methods. As such, this review is intended to provide a broad yet concise overview for the interested reader, facilitating adoption and interdisciplinary research of deep learning in the field of medical imaging.
Collapse
Affiliation(s)
- Milan Decuyper
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Jens Maebe
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Roel Van Holen
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Moseley ODI, Doherty TAS, Parmee R, Anaya M, Stranks SD. Halide perovskites scintillators: unique promise and current limitations. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:11588-11604. [PMID: 34671480 PMCID: PMC8444306 DOI: 10.1039/d1tc01595h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 05/31/2023]
Abstract
The widespread use of X- and gamma-rays in a range of sectors including healthcare, security and industrial screening is underpinned by the efficient detection of the ionising radiation. Such detector applications are dominated by indirect detectors in which a scintillating material is combined with a photodetector. Halide perovskites have recently emerged as an interesting class of semiconductors, showing enormous promise in optoelectronic applications including solar cells, light-emitting diodes and photodetectors. Here, we discuss how the same superior semiconducting properties that have catalysed their rapid development in these optoelectronic devices, including high photon attenuation and fast and efficient emission properties, also make them promising scintillator materials. By outlining the key mechanisms of their operation as scintillators, we show why reports of remarkable performance have already emerged, and describe how further learning from other optoelectronic devices will propel forward their applications as scintillators. Finally, we outline where these materials can make the greatest impact in detector applications by maximally exploiting their unique properties, leading to dramatic improvements in existing detection systems or introducing entirely new functionality.
Collapse
Affiliation(s)
- Oliver D I Moseley
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Tiarnan A S Doherty
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Richard Parmee
- Cheyney Design and Development, Ltd., Litlington Cambridge SG8 0SS UK
| | - Miguel Anaya
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
23
|
LaBella A, Tavernier S, Woody C, Purschke M, Zhao W, Goldan AH. Toward 100 ps Coincidence Time Resolution Using Multiple Timestamps in Depth-Encoding PET Modules: A Monte Carlo Simulation Study. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3043691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Abstract
PET/CT has become a preferred imaging modality over PET-only scanners in clinical practice. However, along with the significant improvement in diagnostic accuracy and patient throughput, pitfalls on PET/CT are reported as well. This review provides a general overview on the potential influence of the limitations with respect to PET/CT instrumentation and artifacts associated with the modality integration on the image appearance and quantitative accuracy of PET. Approaches proposed in literature to address the limitations or minimize the artifacts are discussed as well as their current challenges for clinical applications. Although the CT component can play an important role in assisting clinical diagnosis, we concentrate on the imaging scenarios where CT is used to provide auxiliary information for attenuation compensation and scatter correction in PET.
Collapse
Affiliation(s)
- Yu-Jung Tsai
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT.
| |
Collapse
|
25
|
Evaluation of high-resolution and depth-encoding PET detector modules based on single-ended readout with TOFPET2 ASIC. RADIATION DETECTION TECHNOLOGY AND METHODS 2021. [DOI: 10.1007/s41605-021-00270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Gonzalez-Montoro A, Gonzalez AJ, Pourashraf S, Miyaoka RS, Bruyndonckx P, Chinn G, Pierce LA, Levin CS. Evolution of PET Detectors and Event Positioning Algorithms Using Monolithic Scintillation Crystals. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2021.3059181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Zhang X, Ye B, Yu H, Zhang Y, Xie S, Xu J, Peng Q. Depth of Interaction Measurements Based on Rectangular Light Sharing Window Technology and Nine-Crystals-to-One-SiPM Coupling Method. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3023073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Zhang C, Wang X, Sun M, Kuang Z, Zhang X, Ren N, Wu S, Sang Z, Sun T, Hu Z, Yang Y, Liu Z. A thick semi-monolithic scintillator detector for clinical PET scanners. Phys Med Biol 2021; 66:065023. [PMID: 33709958 DOI: 10.1088/1361-6560/abe761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Both monolithic and semi-monolithic scintillator positron emission tomography (PET) detectors can measure the depth of interaction with single-ended readout. Usually scintillators with a thickness of 10 mm or less are used since the position resolutions of the detectors degrade as the scintillator thickness increases. In this work, the performance of a 20 mm thick long rectangular semi-monolithic scintillator PET detector was measured by using both single-ended and dual-ended readouts with silicon photomultiplier (SiPM) arrays to provide a high detection efficiency. The semi-monolithic scintillator detector consists of nine lutetium-yttrium oxyorthosilicate slices measuring 1.37 × 51.2 × 20 mm3 with erythrocyte sedimentation rate foils of 0.065 mm thickness in between the slices. The SiPM array at each end of the scintillator detector consists of 16 × 4 SiPMs with a pixel size of 3.0 × 3.0 mm2 and a pitch of 3.2 mm. The 64 signals of each SiPM array are processed by using the TOFPET2 application-specific integrated circuit individually. All but the edge slices can be clearly resolved for the detectors with both single-ended and dual-ended readouts. The single-ended readout detector provides an average full width at half maximum (FWHM) Y (continuous direction) position resolution of 2.43 mm, Z (depth direction) position resolution of 4.77 mm, energy resolution of 25.7% and timing resolution of 779 ps. The dual-ended readout detector significantly improves the Y and Z position resolutions, slightly improves the energy and timing resolution at the cost of two photodetectors required for one detector module and provides an average FWHM Y position resolution of 1.97 mm, Z position resolution of 2.60 mm, energy resolution of 21.7% and timing resolution of 718 ps. The energy and timing resolution of the semi-monolithic scintillator detector in this work are worse than those of the segmented scintillator array detector and need to be further improved. The semi-monolithic scintillator detector described in this work reduces costs as compared to the traditional segmented scintillator array detector and reduces the edge effect as compared to the monolithic scintillator detector.
Collapse
Affiliation(s)
- Chunhui Zhang
- Center for Advanced Material Diagnostic Technology, Shenzhen Technology University, Shenzhen 518118, People's Republic of China. Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Decuyper M, Stockhoff M, Vandenberghe S, Van Holen R. Artificial neural networks for positioning of gamma interactions in monolithic PET detectors. Phys Med Biol 2021; 66. [PMID: 33662940 DOI: 10.1088/1361-6560/abebfc] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/04/2021] [Indexed: 11/12/2022]
Abstract
To detect gamma rays with good spatial, timing and energy resolution while maintaining high sensitivity we need accurate and efficient algorithms to estimate the first gamma interaction position from the measured light distribution. Furthermore, monolithic detectors are investigated as an alternative to pixelated detectors due to increased sensitivity, resolution and intrinsic DOI encoding. Monolithic detectors, however, are challenging because of complicated calibration setups and edge effects. In this work, we evaluate the use of neural networks to estimate the 3D first (Compton or photoelectric) interaction position. Using optical simulation data of a 50×50×16 mm3LYSO crystal, performance is evaluated as a function of network complexity (two to five hidden layers with 64 to 1024 neurons) and amount of training data (1000 to 8000 training events per calibration position). We identify and address the potential pitfall of overfitting on the training grid through evaluation on intermediate positions that are not in the training set. Additionally, the performance of neural networks is directly compared with nearest neighbour positioning. Optimal performance was achieved with a network containing three hidden layers of 256 neurons trained on 1000 events/position. For more complex networks, the performance degrades at intermediate positions and overfitting starts to occur. A median 3D positioning error of 0.77 mm and a 2D FWHM of 0.46 mm is obtained. This is a 17% improvement in terms of FWHM compared to the nearest neighbour algorithm. Evaluation only on events that are not Compton scattered results in a 3D positioning error of 0.40 mm and 2D FWHM of 0.42 mm. This reveals that Compton scatter results in a considerable increase of 93% in positioning error. This study demonstrates that very good spatial resolutions can be achieved with neural networks, superior to nearest neighbour positioning. However, potential overfitting on the training grid should be carefully evaluated.
Collapse
Affiliation(s)
- Milan Decuyper
- Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP), Ghent University, Gent, BELGIUM
| | - Mariele Stockhoff
- Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP), Ghent University, Gent, BELGIUM
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP), Ghent University, Gent, BELGIUM
| | - Roel Van Holen
- Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP), Ghent University, Gent, BELGIUM
| |
Collapse
|
30
|
LaBella A, Cao X, Zeng X, Zhao W, Goldan AH. Sub-2 mm depth of interaction localization in PET detectors with prismatoid light guide arrays and single-ended readout using convolutional neural networks. Med Phys 2021; 48:1019-1025. [PMID: 33305482 PMCID: PMC11025679 DOI: 10.1002/mp.14654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Depth of interaction (DOI) readout in PET imaging has been researched in efforts to mitigate parallax error, which would enable the development of small diameter, high-resolution PET scanners. However, DOI PET has not yet been commercialized due to the lack of practical, cost-effective, and data efficient DOI readout methods. The rationale for this study was to develop a supervised machine learning algorithm for DOI estimation in PET that can be trained and deployed on unique sets of crystals. METHODS Depth collimated flood data was experimentally acquired using a Na-22 source with a depth-encoding single-ended readout Prism-PET module consisting of lutetium yttrium orthosilicate (LYSO) crystals coupled 4-to-1 to 3×3 mm 2 silicon photomultiplier (SiPM) pixels on one end and a segmented prismatoid light guide array on the other end. A convolutional neural network (CNN) was trained to perform DOI estimation on data from center, edge and corner crystals in the Prism-PET module using (a) all non-zero readout pixels and (b) only the 4 highest readout signals per event. CNN testing was performed on data from crystals not included in CNN training. RESULTS An average DOI resolution of 1.84 mm full width at half maximum (FWHM) across all crystals was achieved when using all readout signals per event with the CNN compared to 3.04 mm FWHM DOI resolution using classical estimation. When using only the 4 highest signals per event, an average DOI resolution of 1.92 mm FWHM was achieved, representing only a 4% dropoff in CNN performance compared to using all non-zero pixels per event. CONCLUSIONS Our CNN-based DOI estimation algorithm provides the best reported DOI resolution in a single-ended readout module and can be readily deployed on crystals not used for model training.
Collapse
Affiliation(s)
- Andy LaBella
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xinjie Cao
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Xinjie Zeng
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Wei Zhao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Amir H. Goldan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
31
|
Li M, Wang Y, Abbaszadeh S. Development and initial characterization of a high-resolution PET detector module with DOI. Biomed Phys Eng Express 2020; 6:065020. [PMID: 34234961 PMCID: PMC8260077 DOI: 10.1088/2057-1976/abbd4f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Organ-dedicated PET scanners are becoming more prevalent because of their advantages in higher sensitivity, improved image quality, and lower cost. Detectors utilized in these scanners have finer pixel size with depth of interaction (DOI) capability. This work presents a LYSO(Ce) detector module with DOI capability which has the potential to be scaled up to a high-resolution small animal or organ-dedicated PET system. For DOI capability, a submodule with one LYSO block detector utilizing PETsys TOFPET2 application-specific integrated circuit (ASIC) was previously developed in our lab. We scaled up the submodule and optimized the configuration to allow for a compact housing of the dual-readout boards in one side of the blocks by designing a high-speed dual-readout cable to maintain the original pin-to-pin relationship between the Samtec connectors. The module size is 53.8 × 57.8 mm2. Each module has 2 × 2 LYSO blocks, each LYSO block consists of 4 × 4 LYSO units, and each LYSO unit contains a 6 × 6 array of 1 × 1 × 20 mm3 LYSO crystals. The four lateral surfaces of LYSO crystal were mechanically ground to W14, and the two end surfaces were polished. Two ends of the LYSO crystal are optically connected to SiPM for DOI measurement. Eight LYSO blocks performance including energy, timing, and DOI resolution is characterized with a single LYSO slab. The in-panel and orthogonal-panel spatial resolution of the two modules with 107.4 mm distance between each other are measured at 9 positions within the field of view (FOV) with a 22Na source. Results show that the average energy, timing, and DOI resolution of all LYSO blocks are 16.13% ± 1.01% at 511 keV, 658.03 ± 15.18 ps, and 2.62 ± 0.06 mm, respectively. The energy and timing resolution of two modules are 16.35% and 0.86 ns, respectively. The in-panel and orthogonal-panel spatial resolution of the two modules at the FOV center are 1.9 and 4.4 mm respectively.
Collapse
Affiliation(s)
- Mohan Li
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Yuli Wang
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, 95064, United States of America
| | - Shiva Abbaszadeh
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, 95064, United States of America
| |
Collapse
|
32
|
Park H, Lee JS. SiPM signal readout for inter-crystal scatter event identification in PET detectors. Phys Med Biol 2020; 65:205010. [PMID: 32702670 DOI: 10.1088/1361-6560/aba8b4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In positron emission tomography (PET) with pixelated detectors, a significant number of annihilation photons interact with scintillation crystals through single or multiple Compton scattering events. When these partial energy depositions occur across multiple crystal elements, we call them inter-crystal scatter (ICS) events. ICS events lead to incorrect localization of the annihilation photons, thereby degrading the PET image contrast, spatial resolution, and lesion detectability. The accurate identification of ICS events is the first essential step to improve the quality of PET images by rejecting ICS events or recovering ICS events without losing PET sensitivity. In this study, we propose a novel silicon photomultiplier (SiPM) readout method to identify ICS events in one-to-one coupled PET detectors with a reduced number of data acquisition channels. For concept verification, we assembled a PET detector that consists of a 16-channel SiPM array and 4 [Formula: see text] 4 lutetium oxyorthosilicate (LSO) array with a 3.2 mm crystal pitch. The proposed SiPM readout scheme serializes the 16 SiPM anode signals into four pulse train outputs encoded with four increasing time-delays in steps of 250 ns intervals. A Sum signal of the 16 SiPM anodes provides the timing information for time-of-flight measurement and a trigger signal for coincidence detection. A time-over-threshold (TOT) method was applied for obtaining the energy information followed by a subsequent TOT-to-energy calibration. We successfully identified the ICS events and determined their interacted positions and deposited energies by analyzing the digital pulses from the four pulse train output channels. The occurrence rate of ICS events was 10.85% for the 4 × 4 PET detector module with 3.2 mm-pitch LSO crystals. The PET detector yielded an energy resolution of 10.9 [Formula: see text] 0.6% and coincidence timing resolution of 285 [Formula: see text] 12 ps FWHM. We expect that the proposed method can be a useful solution for alleviating the readout burden of SiPM-based PET scanners with ICS event identification capability.
Collapse
Affiliation(s)
- Haewook Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea. Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | | |
Collapse
|
33
|
LaBella A, Zhao W, Lubinsky R, Goldan AH. Prismatoid light guide array for enhanced gamma ray localization in PET: a Monte Carlo simulation study of scintillation photon transport. Phys Med Biol 2020; 65:18LT01. [PMID: 32413872 PMCID: PMC11025681 DOI: 10.1088/1361-6560/ab9373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High spatial resolution PET relies on having excellent depth-of-interaction (DOI) resolution and small detector elements. Depth-encoding in PET modules has traditionally been performed using dual-ended readout. In recent years, researchers have explored the feasibility of replacing the second readout array with a light guide at the entrance layer that introduces intercrystal light sharing in order to reduce cost and and make depth-encoding modules more compact. However, single-ended readout depth-encoding modules have suboptimal and non-uniform crystal separation and DOI performance due to the random light sharing patterns of the uniform light guide, resulting in degraded peformance along the edges and corners of the detector arrays. In this paper, we introduce and characterize a segmented light guide composed of an array of prism mirrors which introduce deterministic intercrystal light sharing in single-ended readout PET detectors. We determined the expected spatial performance of our modules with our light guide using optical ray tracing Monte Carlo simulations. We demonstrate that having controlled, deterministic light sharing improves both DOI and crystal identification performance, enabling uniform spatial performance throughout the detector array. Designed specifically for high resolution PET, our prismatoid light guide array can be used to build cost-effective total-body and organ-dedicated PET systems with single-ended readout depth-encoding modules.
Collapse
Affiliation(s)
- Andy LaBella
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States of America
| | | | | | | |
Collapse
|
34
|
Zatcepin A, Pizzichemi M, Polesel A, Paganoni M, Auffray E, Ziegler SI, Omidvari N. Improving depth-of-interaction resolution in pixellated PET detectors using neural networks. Phys Med Biol 2020; 65:175017. [PMID: 32570223 DOI: 10.1088/1361-6560/ab9efc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Parallax error is a common issue in high-resolution preclinical positron emission tomography (PET) scanners as well as in clinical scanners that have a long axial field of view (FOV), which increases estimation uncertainty of the annihilation position and therefore degrades the spatial resolution. A way to address this issue is depth-of-interaction (DOI) estimation. In this work we propose two machine learning-based algorithms, a dense and a convolutional neural network (NN), as well as a multiple linear regression (MLR)-based method to estimate DOI in depolished PET detector arrays with single-sided readout. The algorithms were tested on an 8× 8 array of 1.53× 1.53× 15 mm3 crystals and a 4× 4 array of 3.1× 3.1× 15 mm3 crystals, both made of Ce:LYSO scintillators and coupled to a 4× 4 array of 3× 3 mm3 silicon photomultipliers (SiPMs). Using the conventional linear DOI estimation method resulted in an average DOI resolution of 3.76 mm and 3.51 mm FWHM for the 8× 8 and the 4× 4 arrays, respectively. Application of MLR outperformed the conventional method with average DOI resolutions of 3.25 mm and 3.33 mm FWHM, respectively. Using the machine learning approaches further improved the DOI resolution, to an average DOI resolution of 2.99 mm and 3.14 mm FWHM, respectively, and additionally improved the uniformity of the DOI resolution in both arrays. Lastly, preliminary results obtained by using only a section of the crystal array for training showed that the NN-based methods could be used to reduce the number of calibration steps required for each detector array.
Collapse
Affiliation(s)
- Artem Zatcepin
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany. Current address: Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
LaBella A, Vaska P, Zhao W, Goldan AH. Convolutional Neural Network for Crystal Identification and Gamma Ray Localization in PET. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2980985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
LaBella A, Cao X, Petersen E, Lubinsky R, Biegon A, Zhao W, Goldan AH. High-Resolution Depth-Encoding PET Detector Module with Prismatoid Light-Guide Array. J Nucl Med 2020; 61:1528-1533. [PMID: 32111684 DOI: 10.2967/jnumed.119.239343] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
Depth-encoding detectors with single-ended readout provide a practical, cost-effective approach for constructing high-resolution and high-sensitivity PET scanners. However, the current iteration of such detectors uses a uniform glass light-guide to achieve depth encoding, resulting in nonuniform performance throughout the detector array due to suboptimal intercrystal light sharing. We introduce Prism-PET, a single-ended-readout PET detector module with a segmented light-guide composed of an array of prismatoids that introduce enhanced, deterministic light sharing. Methods: High-resolution PET detector modules were fabricated with single-ended readout of polished multicrystal lutetium yttrium orthosilicate scintillator arrays directly coupled 4-to-1 and 9-to-1 to arrays of 3 × 3 mm silicon photomultiplier pixels. Each scintillator array was coupled at the nonreadout side to a light-guide (one 4-to-1 module with a uniform glass light-guide, one 4-to-1 Prism-PET module, and one 9-to-1 Prism-PET module) to introduce intercrystal light sharing, which closely mimics the behavior of dual-ended readout, with the additional benefit of improved crystal identification. Flood histogram data were acquired using a 3-MBq 22Na source to characterize crystal identification and energy resolution. Lead collimation was used to acquire data at specific depths to determine depth-of-interaction (DOI) resolution. Results: The flood histogram measurements showed excellent and uniform crystal separation throughout the Prism-PET modules, whereas the uniform glass light-guide module had performance degradation at the edges and corners. A DOI resolution of 5.0 mm full width at half maximum (FWHM) and an energy resolution of 13% FWHM were obtained in the uniform glass light-guide module. By comparison, the 4-to-1 coupled Prism-PET module achieved a DOI resolution of 2.5 mm FWHM and an energy resolution of 9% FWHM. Conclusion: PET scanners based on our Prism-PET modules with segmented prismatoid light-guide arrays can achieve high and uniform spatial resolution (9-to-1 coupling with ∼1-mm crystals), high sensitivity (20-mm-thick detectors and intercrystal Compton scatter recovery), good energy and timing resolutions (using polished crystals and after applying DOI correction), and compact size (depth encoding eliminates parallax error and permits smaller ring-diameter).
Collapse
Affiliation(s)
- Andy LaBella
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York
| | - Xinjie Cao
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York; and
| | - Eric Petersen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York
| | - Rick Lubinsky
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Anat Biegon
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Wei Zhao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Amir H Goldan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
37
|
Mohammadi I, Castro IFC, Correia PMM, Silva ALM, Veloso JFCA. Minimization of parallax error in positron emission tomography using depth of interaction capable detectors: methods and apparatus. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab4a1b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Li M, Abbaszadeh S. Depth-of-interaction study of a dual-readout detector based on TOFPET2 application-specific integrated circuit. Phys Med Biol 2019; 64:175008. [PMID: 31382253 DOI: 10.1088/1361-6560/ab3866] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Depth-of-interaction (DOI) capability is important for achieving high spatial resolution and sensitivity in dedicated organ and small animal positron emission tomography (PET) scanners. The dual-ended readout is one of the common methods that can achieve good DOI resolution. The aim of this study is to evaluate a dual-ended readout detector based on silicon photomultiplier (SiPM) and TOFPET2 application-specific integrated circuit (ASIC). The detector is based on 4 [Formula: see text] 4 lutetium-yttrium oxyorthosilicate (LYSO) units, each unit contained 6 [Formula: see text] 6 LYSO crystals, and the crystal size was 1 [Formula: see text] 1 [Formula: see text] 20 mm3. The four lateral surfaces of LYSO crystals were mechanically ground to W14 (surface roughness 10-14 [Formula: see text]m), and the two ended surfaces were polished (surface roughness <0.5 [Formula: see text]m). The reflector was Toray Lumirror E60, and the packing fraction of the LYSO block was 86.5%. Each LYSO unit was read out from both ends with two Hamamatsu S13361-3050AE-08 SiPM arrays. The analog output signals of SiPM were digitized by PETsys TOFPET2 ASIC and acquired by PETsys SiPM Readout System. The ASIC and SiPM were cooled by a fan and a Peltier element. To investigate the crystal resolvability, different light guide thicknesses including 0.8, 1, 1.2 and 2 mm were tested. The light guide was made of optical glass (H-K9L-Foctek Photoincs), and the size and refractive index were 6.45 [Formula: see text] 6.45 mm2 and 1.53 (at 420 nm), respectively. To characterize the detector performance at different depths, another 1 [Formula: see text] 25.8 [Formula: see text] 20 mm3 single LYSO slab was used. Data were acquired at 10 depths (1, 3, …, 19 mm), and each depth had a 10 min acquisition time and about 40 thousand coincidence events. During the experiment, the SiPM temperature was controlled as 27.6 [Formula: see text] 0.4 °C. The results showed that the 1.2 mm light guide offered the best crystal resolvability. The energy, coincidence time, and DOI resolution full-width at half-maximum of the detector were characterized as 15.66% [Formula: see text] 0.66%, 602.98 [Formula: see text] 10.58 ps, and 2.33 [Formula: see text] 0.07 mm, respectively. The good DOI resolution indicates the potential of utilizing the detector for high-resolution PET applications.
Collapse
Affiliation(s)
- Mohan Li
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | | |
Collapse
|
39
|
Pizzichemi M, Polesel A, Stringhini G, Gundacker S, Lecoq P, Tavernier S, Paganoni M, Auffray E. On light sharing TOF-PET modules with depth of interaction and 157 ps FWHM coincidence time resolution. ACTA ACUST UNITED AC 2019; 64:155008. [DOI: 10.1088/1361-6560/ab2cb0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Toussaint M, Loignon-Houle F, Dussault JP, Lecomte R. Analytical model of DOI-induced time bias in ultra-fast scintillation detectors for TOF-PET. ACTA ACUST UNITED AC 2019; 64:065009. [DOI: 10.1088/1361-6560/ab038b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, Gorgol M, Hiesmayr B, Jasińska B, Kacprzak K, Kapłon Ł, Korcyl G, Kowalski P, Krzemień W, Kozik T, Kubicz E, Mohammed M, Niedźwiecki S, Pałka M, Pawlik-Niedźwiecka M, Raczyński L, Raj J, Sharma S, Shivani, Shopa RY, Silarski M, Skurzok M, Stępień E, Wiślicki W, Zgardzińska B. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019; 64:055017. [PMID: 30641509 DOI: 10.1088/1361-6560/aafe20] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A detection system of the conventional PET tomograph is set-up to record data from [Formula: see text] annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In this paper we explore the possibility of performing the three gamma photons imaging based on ortho-positronium annihilation, as well as the possibility of positronium mean lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons' momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in point-like sources and in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2.0 ns to 3.0 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of ∼40 ps. Recent positron annihilation lifetime spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.
Collapse
Affiliation(s)
- P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bläckberg L, Moebius M, Fakhri GE, Mazur E, Sabet H. Light Spread Manipulation in Scintillators Using Laser Induced Optical Barriers. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2018; 65:2208-2215. [PMID: 30905974 PMCID: PMC6424510 DOI: 10.1109/tns.2018.2809570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We are using the Laser Induced Optical Barriers (LIOB) technique to fabricate scintillator detectors with combined performance characteristics of the two standard detector types, mechanically pixelated arrays and monolithic crystals. This is done by incorporation of so-called optical barriers that have a refractive index lower than that of the crystal bulk. Such barriers can redirect the scintillation light and allow for control of the light spread in the detector. Previous work has shown that the LIOB technique has the potential to achieve detectors with high transversal and depth of interaction (DOI) resolution simultaneously in a single-side readout configuration, suitable for high resolution PET imaging. However, all designs studied thus far present edge effect issues similarly as in the standard detector categories. In this work we take advantage of the inherent flexibility of the LIOB technique and investigate alternative barrier patterns with the aim to address this problem. Light transport simulations of barrier patterns in LYSO:Ce, with deeper barrier walls moving towards the detector edge show great promise in reducing the edge effect, however there is a trade-off in terms of achievable DOI information. Furthermore, fabrication and characterization of a 20 mm thick LYSO:Ce detector with optical barriers forming a pattern of 1 × 1 × 20mm3 pixel like structures show that light channeling in laser-processed detectors in agreement with optical barriers with refractive index between 1.2 and 1.4 is achievable.
Collapse
Affiliation(s)
- Lisa Bläckberg
- Dept. of Radiolgy at Massachusetts General Hospital and Harvard Medical School, Boston, USA, and Dept. of Physics and Astronomy, Uppsala University, Sweden
| | - Michael Moebius
- School of Engineering and Applied Sciences, Harvard University. He is now with The Charles Stark Draper Laboratory
| | - Georges El Fakhri
- Dept. of Radiology at Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Eric Mazur
- School of Engineering and Applied Sciences, Harvard University
| | - Hamid Sabet
- Dept. of Radiology at Massachusetts General Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
43
|
Van Elburg DJ, Noble SD, Hagey S, Goertzen AL. Comparison of acrylic polymer adhesive tapes and silicone optical grease in light sharing detectors for positron emission tomography. ACTA ACUST UNITED AC 2018; 63:05NT02. [DOI: 10.1088/1361-6560/aaa815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Kuang Z, Yang Q, Wang X, Fu X, Ren N, Sang Z, Wu S, Zheng Y, Zhang X, Hu Z, Du J, Liang D, Liu X, Zheng H, Yang Y. A depth-encoding PET detector that uses light sharing and single-ended readout with silicon photomultipliers. Phys Med Biol 2018; 63:045009. [PMID: 29438101 DOI: 10.1088/1361-6560/aaa94e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Detectors with depth-encoding capability and good timing resolution are required to develop high-performance whole-body or total-body PET scanners. In this work, depth-encoding PET detectors that use light sharing between two discrete crystals and single-ended readout with silicon photomultipliers (SiPMs) were manufactured and evaluated. The detectors consisted of two unpolished 3 × 3 × 20 mm3 LYSO crystals with different coupling materials between them and were read out by Hamamatsu 3 × 3 mm2 SiPMs with one-to-one coupling. The ratio of the energy of one SiPM to the total energy of two SiPMs was used to measure the depth of interaction (DOI). Detectors with different coupling materials in-between the crystals were measured in the singles mode in an effort to obtain detectors that can provide good DOI resolution. The DOI resolution and energy resolution of three types of detector were measured and the timing resolution was measured for the detector with the best DOI and energy resolution. The optimum detector, with 5 mm optical glue, a 9 mm triangular ESR and a 6 mm rectangular ESR in-between the unpolished crystals, provides a DOI resolution of 2.65 mm, an energy resolution of 10.0% and a timing resolution of 427 ps for events of E > 400 keV. The detectors simultaneously provide good DOI and timing resolution, and show great promise for the development of high-performance whole-body and total-body PET scanners.
Collapse
|
45
|
Hutton BF, Erlandsson K, Thielemans K. Advances in clinical molecular imaging instrumentation. Clin Transl Imaging 2018. [DOI: 10.1007/s40336-018-0264-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
46
|
Son JW, Lee MS, Lee JS. A depth-of-interaction PET detector using a stair-shaped reflector arrangement and a single-ended scintillation light readout. Phys Med Biol 2016; 62:465-483. [DOI: 10.1088/1361-6560/aa5076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|