1
|
Niu J, Lin S, Xu Y, Tong S, Wang Z, Cui S, Liu Y, Chen D, Cui D. A stepwise multi-stage continuous dielectrophoresis separation microfluidic chip with microfilter structures. Talanta 2024; 279:126585. [PMID: 39053361 DOI: 10.1016/j.talanta.2024.126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The separation of target microparticles using microfluidic systems owns extensive applications in biomedical, chemical, and materials science fields. Integration of microfluidic sorting systems employing dielectrophoresis (DEP) technology has been widely investigated. However, enhancing separation efficiency, purity, stability, and integration remains a pressing issue. This study proposes a stepwise multi-stage continuous DEP separation microfluidic chip with a microfilter structure. By leveraging a stepwise electrode configuration, a gradient electric field is generated to drive target microparticles along the electric field gradient, thereby enhancing separation efficiency. Innovative integration of a microfilter structure facilitates simultaneous filtration and improves flow field distribution, thus enhancing system stability. Through the synergistic effect of stepwise electrodes and the microfilter structure, superior coupling of electric and flow fields is achieved, consequently improving the sorting purity, separation efficiency, and system stability of the DEP-based microfluidic sorting system. Validation through simulation and separation of polystyrene microspheres demonstrates the excellent particle separation performance of the proposed system. It evidently shows potential for seamless extension to various biological microparticle sorting applications, harboring significant prospects in the biomedical domain field.
Collapse
Affiliation(s)
- Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Yichong Xu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
2
|
Wei X, Li J, Cheng Z, Wei S, Yu G, Olsen ML. Decoding the Epigenetic Landscape: Insights into 5mC and 5hmC Patterns in Mouse Cortical Cell Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602342. [PMID: 39026756 PMCID: PMC11257419 DOI: 10.1101/2024.07.06.602342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), represent powerful epigenetic regulators of temporal and spatial gene expression. Yet, how the cooperation of these genome-wide, epigenetic marks determine unique transcriptional signatures across different brain cell populations is unclear. Here we applied Nanopore sequencing of native DNA to obtain a complete, genome-wide, single-base resolution atlas of 5mC and 5hmC modifications in neurons, astrocytes and microglia in the mouse cortex (99% genome coverage, 40 million CpG sites). In tandem with RNA sequencing, analysis of 5mC and 5hmC patterns across cell types reveals astrocytes drive uniquely high brain 5hmC levels and support two decades of research regarding methylation patterns, gene expression and alternative splicing, benchmarking this resource. As such, we provide the most comprehensive DNA methylation data in mouse brain as an interactive, online tool (NAM-Me, https://olsenlab.shinyapps.io/NAMME/) to serve as a resource dataset for those interested in the methylome landscape.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, the United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, the United States
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Songtao Wei
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| |
Collapse
|
3
|
Kandarakov OF, Polyakova NS, Petrovskaya AV, Bruter AV, Belyavsky AV. CD52/FLAG and CD52/HA Fusion Proteins as Novel Magnetic Cell Selection Markers. Int J Mol Sci 2024; 25:6353. [PMID: 38928060 PMCID: PMC11203882 DOI: 10.3390/ijms25126353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
At present, the magnetic selection of genetically modified cells is mainly performed with surface markers naturally expressed by cells such as CD4, LNGFR (low affinity nerve growth factor receptor), and MHC class I molecule H-2Kk. The disadvantage of such markers is the possibility of their undesired and poorly predictable expression by unmodified cells before or after cell manipulation, which makes it essential to develop new surface markers that would not have such a drawback. Earlier, modified CD52 surface protein variants with embedded HA and FLAG epitope tags (CD52/FLAG and CD52/HA) were developed by the group of Dr. Mazurov for the fluorescent cell sorting of CRISPR-modified cells. In the current study, we tested whether these markers can be used for the magnetic selection of transduced cells. For this purpose, appropriate constructs were created in MigR1-based bicistronic retroviral vectors containing EGFP and DsRedExpress2 as fluorescent reporters. Cytometric analysis of the transduced NIH 3T3 cell populations after magnetic selection evaluated the efficiency of isolation and purity of the obtained populations, as well as the change in the median fluorescence intensity (MFI). The results of this study demonstrate that the surface markers CD52/FLAG and CD52/HA can be effectively used for magnetic cell selection, and their efficiencies are comparable to that of the commonly used LNGFR marker. At the same time, the significant advantage of these markers is the absence of HA and FLAG epitope sequences in cellular proteins, which rules out the spurious co-isolation of negative cells.
Collapse
Affiliation(s)
- Oleg F. Kandarakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia; (O.F.K.); (N.S.P.); (A.V.P.)
| | - Natalia S. Polyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia; (O.F.K.); (N.S.P.); (A.V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Vavilov Str. 32, 119991 Moscow, Russia;
| | - Alexandra V. Petrovskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia; (O.F.K.); (N.S.P.); (A.V.P.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Vavilov Str. 32, 119991 Moscow, Russia;
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, 119334 Moscow, Russia
| | - Alexander V. Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia; (O.F.K.); (N.S.P.); (A.V.P.)
| |
Collapse
|
4
|
Rarokar N, Yadav S, Saoji S, Bramhe P, Agade R, Gurav S, Khedekar P, Subramaniyan V, Wong LS, Kumarasamy V. Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement. Int J Pharm X 2024; 7:100231. [PMID: 38322276 PMCID: PMC10844979 DOI: 10.1016/j.ijpx.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Over the last two decades, researchers have paid more attention to magnetic nanosystems due to their wide application in diverse fields. The metal nanomaterials' antimicrobial and biocidal properties make them an essential nanosystem for biomedical applications. Moreover, the magnetic nanosystems could have also been used for diagnosis and treatment because of their magnetic, optical, and fluorescence properties. Superparamagnetic iron oxide nanoparticles (SPIONs) and quantum dots (QDs) are the most widely used magnetic nanosystems prepared by a simple process. By surface modification, researchers have recently been working on conjugating metals like silica, copper, and gold with magnetic nanosystems. This hybridization of the nanosystems modifies the structural characteristics of the nanomaterials and helps to improve their efficacy for targeted drug and gene delivery. The hybridization of metals with various nanomaterials like micelles, cubosomes, liposomes, and polymeric nanomaterials is gaining more interest due to their nanometer size range and nontoxic, biocompatible nature. Moreover, they have good injectability and higher targeting ability by accumulation at the target site by application of an external magnetic field. The present article discussed the magnetic nanosystem in more detail regarding their structure, properties, interaction with the biological system, and diagnostic applications.
Collapse
Affiliation(s)
- Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
- G H Raisoni Institute of Life Sciences, Shradha Park, Hingna MIDC, Nagpur 440016, India
| | - Sakshi Yadav
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Suprit Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Pratiksha Bramhe
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Rishabh Agade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa 403 001, India
| | - Pramod Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Ren H, Zhang L, Zhang X, Yi C, Wu L. Specific lipid magnetic sphere sorted CD146-positive bone marrow mesenchymal stem cells can better promote articular cartilage damage repair. BMC Musculoskelet Disord 2024; 25:253. [PMID: 38561728 PMCID: PMC10983655 DOI: 10.1186/s12891-024-07381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.
Collapse
Affiliation(s)
- Hanru Ren
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Lele Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Xu Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Chengqing Yi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| | - Lianghao Wu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| |
Collapse
|
6
|
Czétány P, Balló A, Márk L, Török A, Szántó Á, Máté G. An Alternative Application of Magnetic-Activated Cell Sorting: CD45 and CD235a Based Purification of Semen and Testicular Tissue Samples. Int J Mol Sci 2024; 25:3627. [PMID: 38612438 PMCID: PMC11011735 DOI: 10.3390/ijms25073627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Magnetic activated cell sorting (MACS) is a well-known sperm selection technique, which is able to remove apoptotic spermatozoa from semen samples using the classic annexinV based method. Leukocytes and erythrocytes in semen samples or in testicular tissue processed for in vitro fertilization (IVF) could exert detrimental effects on sperm. In the current study, we rethought the aforementioned technique and used magnetic microbeads conjugated with anti-CD45/CD235a antibodies to eliminate contaminating leukocytes and erythrocytes from leukocytospermic semen samples and testicular tissue samples gained via testicular sperm extraction (TESE). With this technique, a 15.7- and a 30.8-fold reduction could be achieved in the ratio of leukocytes in semen and in the number of erythrocytes in TESE samples, respectively. Our results show that MACS is a method worth to reconsider, with more potential alternative applications. Investigations to find molecules labeling high-quality sperm population and the development of positive selection procedures based on these might be a direction of future research.
Collapse
Affiliation(s)
- Péter Czétány
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - András Balló
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Pannon Reproduction Institute, 8300 Tapolca, Hungary;
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary;
| | - Árpád Szántó
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Gábor Máté
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Pannon Reproduction Institute, 8300 Tapolca, Hungary;
| |
Collapse
|
7
|
Feng X, Qi F, Wang H, Li W, Gan Y, Qi C, Lin Z, Chen L, Wang P, Hu Z, Miao Y. Sorting Technology for Mesenchymal Stem Cells from a Single Tissue Source. Stem Cell Rev Rep 2024; 20:524-537. [PMID: 38112926 DOI: 10.1007/s12015-023-10635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 12/21/2023]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that can be obtained, enriched and proliferated in vitro. They owned enormous potential in fields like regenerative medicine, tissue engineering and immunomodulation. However, though isolated from the same origin, MSCs are still essentially heterogeneous cell populations with different phenotypes and functions. This heterogeneity of MSCs significantly affects their therapeutic efficacy and brings obstacles to scientific research. Thus, reliable sorting technology which can isolate or purify MSC subpopulations with various potential and differentiation pathways is urgently needed. This review summarized principles, application status and clinical implications for these sorting methods, aiming at improving the understanding of MSC heterogeneity as well as providing fresh perspectives for subsequent clinical applications.
Collapse
Affiliation(s)
- Xinyi Feng
- The First Clinical School of Southern Medical University, Guangzhou, China
| | - Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenzhen Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Caiyu Qi
- The First Clinical School of Southern Medical University, Guangzhou, China
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Piao Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Maruyama S. The Functional Assessment of T Cells. Methods Mol Biol 2024; 2766:207-232. [PMID: 38270882 DOI: 10.1007/978-1-0716-3682-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
It is important to know what kind of T-cell populations are involved in various disease states, and to know the state of T-cell functions involving in the disease. When a T cell's antigen receptors (TCR) recognize a specific antigen, the cell transmits a signal by a transduction mechanism within the T cell's cytoplasm. This signal initiates gene transcription essential for differentiation and activation of T cells. In this chapter, we will describe the methods of analyzing the transcribed mRNA and detecting the translated product in order to know the activation state of T cells.
Collapse
Affiliation(s)
- Saho Maruyama
- Department of Basic Medical Research and Education, Ehime University Graduate School of Medicine, Toon, Ehime, Japan.
| |
Collapse
|
9
|
Yang GD, Ma DS, Ma CY, Bai Y. Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction. Curr Stem Cell Res Ther 2024; 19:942-958. [PMID: 37612870 DOI: 10.2174/1574888x18666230823091017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.
Collapse
Affiliation(s)
- Guo-Dong Yang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Da-Shi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Ye Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
10
|
Harshbarger CL. Harnessing the power of Microscale AcoustoFluidics: A perspective based on BAW cancer diagnostics. BIOMICROFLUIDICS 2024; 18:011304. [PMID: 38434238 PMCID: PMC10907075 DOI: 10.1063/5.0180158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Cancer directly affects one in every three people, and mortality rates strongly correlate with the stage at which diagnosis occurs. Each of the multitude of methods used in cancer diagnostics has its own set of advantages and disadvantages. Two common drawbacks are a limited information value of image based diagnostic methods and high invasiveness when opting for methods that provide greater insight. Microfluidics offers a promising avenue for isolating circulating tumor cells from blood samples, offering high informational value at predetermined time intervals while being minimally invasive. Microscale AcoustoFluidics, an active method capable of manipulating objects within a fluid, has shown its potential use for the isolation and measurement of circulating tumor cells, but its full potential has yet to be harnessed. Extensive research has focused on isolating single cells, although the significance of clusters should not be overlooked and requires attention within the field. Moreover, there is room for improvement by designing smaller and automated devices to enhance user-friendliness and efficiency as illustrated by the use of bulk acoustic wave devices in cancer diagnostics. This next generation of setups and devices could minimize streaming forces and thereby enable the manipulation of smaller objects, thus aiding in the implementation of personalized oncology for the next generation of cancer treatments.
Collapse
Affiliation(s)
- C. L. Harshbarger
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; and Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Hossein F, Angeli P. A review of acoustofluidic separation of bioparticles. Biophys Rev 2023; 15:2005-2025. [PMID: 38192342 PMCID: PMC10771489 DOI: 10.1007/s12551-023-01112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/09/2023] [Indexed: 01/08/2024] Open
Abstract
Acoustofluidics is an emerging interdisciplinary research field that involves the integration of acoustics and microfluidics to address challenges in various scientific areas. This technology has proven to be a powerful tool for separating biological targets from complex fluids due to its label-free, biocompatible, and contact-free nature. Considering a careful designing process and tuning the acoustic field particles can be separated with high yield. Recently the advancement of acoustofluidics led to the development of point-of-care devices for separations of micro particles which address many of the limitations of conventional separation tools. This review article discusses the working principles and different approaches of acoustofluidic separation and provides a synopsis of its traditional and emerging applications, including the theory and mechanism of acoustofluidic separation, blood component separation, cell washing, fluorescence-activated cell sorting, circulating tumor cell isolation, and exosome isolation. The technology offers great potential for solving clinical problems and advancing scientific research.
Collapse
Affiliation(s)
- Fria Hossein
- Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE, London, UK
| | - Panagiota Angeli
- Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE, London, UK
| |
Collapse
|
12
|
Pareek C, Gajbe U, Bawaskar PA, Bandre GR, Badge AK. Laser-Guided Sperm Selection: Optimizing the Reproductive Success Rate in Assisted Reproductive Technology. Cureus 2023; 15:e49052. [PMID: 38116358 PMCID: PMC10728578 DOI: 10.7759/cureus.49052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023] Open
Abstract
Assisted reproductive technologies (ART) enable these patient's spermatozoa to fertilize the oocyte and create viable and healthy offspring, but the effectiveness of the various procedures still has room to increase. In the field of assisted reproductive technology, the need to improve fertility results has led to the development of novel sperm selection strategies. Laser-assisted selection of immotile sperm (LAISS) appears to be a promising strategy, harnessing the power of modern optical instruments to better the selection process and, ultimately, maximize the probability of successful fertilization. This technology takes advantage of sperm cells' distinctive features, such as shape, form, and motility patterns, that can be sensitively changed by laser forces. Using precision laser manipulation, spermatozoa with desirable features can be precisely targeted, improving the overall quality and viability of the sperm population. The existence of an elevated percentage of DNA-damaged sperm in a patient's ejaculation may be one of the key factors decreasing ART outcomes. As a result, one of the most difficult tasks in reproductive medicine is ensuring the best quality of spermatozoa utilized in ART, particularly with regard to genetic integrity. The most recent approaches for preparing and selecting human spermatozoa by LAISS techniques are covered here, with an emphasis on those that have been shown to improve.
Collapse
Affiliation(s)
- Charu Pareek
- Clinical Embryology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Nagpur, IND
| | - Ujwal Gajbe
- Anatomy, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Nagpur, IND
| | - Pranita A Bawaskar
- Clinical Embryology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Nagpur, IND
| | - Gulshan R Bandre
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, IND
| | - Ankit K Badge
- Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Nagpur, IND
| |
Collapse
|
13
|
Massonnet P, Grifnée E, Farré-Segura J, Demeuse J, Huyghebaert L, Dubrowski T, Dufour P, Schoumacher M, Peeters S, Le Goff C, Cavalier E. Concise review on the combined use of immunocapture, mass spectrometry and liquid chromatography for clinical applications. Clin Chem Lab Med 2023; 61:1700-1707. [PMID: 37128992 DOI: 10.1515/cclm-2023-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Immunocapture is now a well-established method for sample preparation prior to quantitation of peptides and proteins in complex matrices. This short review will give an overview of some clinical applications of immunocapture methods, as well as protocols with and without enzymatic digestion in a clinical context. The advantages and limitations of both approaches are discussed in detail. Challenges related to the choice of mass spectrometer are also discussed. Top-down, middle-down, and bottom-up approaches are discussed. Even though immunocapture has its limitations, its main advantage is that it provides an additional dimension of separation and/or isolation when working with peptides and proteins. Overall, this short review demonstrates the potential of such techniques in the field of proteomics-based clinical medicine and paves the way for better personalized medicine.
Collapse
Affiliation(s)
- Philippe Massonnet
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Elodie Grifnée
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Jordi Farré-Segura
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Justine Demeuse
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Loreen Huyghebaert
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Thomas Dubrowski
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Patrice Dufour
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | | | - Stéphanie Peeters
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| |
Collapse
|
14
|
Ma X, Guo G, Wu X, Wu Q, Liu F, Zhang H, Shi N, Guan Y. Advances in Integration, Wearable Applications, and Artificial Intelligence of Biomedical Microfluidics Systems. MICROMACHINES 2023; 14:mi14050972. [PMID: 37241596 DOI: 10.3390/mi14050972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Microfluidics attracts much attention due to its multiple advantages such as high throughput, rapid analysis, low sample volume, and high sensitivity. Microfluidics has profoundly influenced many fields including chemistry, biology, medicine, information technology, and other disciplines. However, some stumbling stones (miniaturization, integration, and intelligence) strain the development of industrialization and commercialization of microchips. The miniaturization of microfluidics means fewer samples and reagents, shorter times to results, and less footprint space consumption, enabling a high throughput and parallelism of sample analysis. Additionally, micro-size channels tend to produce laminar flow, which probably permits some creative applications that are not accessible to traditional fluid-processing platforms. The reasonable integration of biomedical/physical biosensors, semiconductor microelectronics, communications, and other cutting-edge technologies should greatly expand the applications of current microfluidic devices and help develop the next generation of lab-on-a-chip (LOC). At the same time, the evolution of artificial intelligence also gives another strong impetus to the rapid development of microfluidics. Biomedical applications based on microfluidics normally bring a large amount of complex data, so it is a big challenge for researchers and technicians to analyze those huge and complicated data accurately and quickly. To address this problem, machine learning is viewed as an indispensable and powerful tool in processing the data collected from micro-devices. In this review, we mainly focus on discussing the integration, miniaturization, portability, and intelligence of microfluidics technology.
Collapse
Affiliation(s)
- Xingfeng Ma
- School of Communication and Information Engineering, Shanghai University, Shanghai 200000, China
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
| | - Gang Guo
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
| | - Xuanye Wu
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Industrial μTechnology Research Institute, Shanghai 200000, China
| | - Qiang Wu
- Shanghai Aure Technology Limited Company, Shanghai 200000, China
| | - Fangfang Liu
- Shanghai Industrial μTechnology Research Institute, Shanghai 200000, China
| | - Hua Zhang
- Shanghai Aure Technology Limited Company, Shanghai 200000, China
| | - Nan Shi
- Shanghai Industrial μTechnology Research Institute, Shanghai 200000, China
- Institute of Translational Medicine, Shanghai University, Shanghai 200000, China
| | - Yimin Guan
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Aure Technology Limited Company, Shanghai 200000, China
| |
Collapse
|
15
|
Polyakova N, Kandarakov O, Belyavsky A. Selection of Cell Populations with High or Low Surface Marker Expression Using Magnetic Sorting. Cells 2023; 12:cells12091286. [PMID: 37174686 PMCID: PMC10177026 DOI: 10.3390/cells12091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Magnetic cell sorting technology stands out because of its speed, simplicity, and ability to process large cell numbers. However, it also suffers from a number of drawbacks, in particular low discrimination power, which results in all-or-none selection outcomes limited to a bulk separation of cell populations into positive and negative fractions, as well as the modest purity of the selected cells and the inability to select subpopulations of cells with high expression of a surface marker. In the present study, we developed a simple solution to this problem and confirmed the effectiveness of this approach by multiple experiments with the magnetic selection of transduced cell populations. Murine NIH 3T3 cells were transduced with the bicistronic retroviral vector constructs co-expressing fluorescent reporter proteins EGFP (enhanced green fluorescent protein) or DsRed-Express 2 and LNGFR (low-affinity nerve growth factor receptor) as surface selection markers. The effects of the magnetic selection of transduced cells with anti-LNGFR Micro Bead (MB) doses ranging from 0.5 to 80 µL have been assessed. Low doses of MBs favored the depletion of weakly positive cells from the population, resulting in the higher expression levels of EGFP or DsRed-Express2 reporters in the selected cell fractions. Low MB doses also contributed to the increased purity of the selected population, even for samples with a low initial percentage of positive cells. At the same time, high MB doses resulted in the increased yield and a more faithful representation of the original expression profiles following selection. We further demonstrate that for populations with fairly narrow distribution of expression levels, it is possible to achieve separation into high- and low-expressing subsets using the two-stage selection scheme based on the sequential use of low and high doses of MBs. For populations with broad expression distribution, a one-stage selection with low or high doses of MBs is sufficient for a clear separation of low- and high-expressing subsets in the column-retained and flow-through fractions, respectively. This study substantially extends the potential of magnetic cell sorting, and may open new possibilities in a number of biomedical applications.
Collapse
Affiliation(s)
- Natalia Polyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Oleg Kandarakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| |
Collapse
|
16
|
Lee LM, Klarmann GJ, Haithcock DW, Wang Y, Bhatt KH, Prabhakarpandian B, Pant K, Alvarez LM, Lai E. Label-free enrichment of human adipose-derived stem cells using a continuous microfluidic sorting cascade. LAB ON A CHIP 2023; 23:2131-2140. [PMID: 36974599 DOI: 10.1039/d2lc01138g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Human adipose tissue is a rich source of mesenchymal stem cells (MSCs). Human adipose-derived stem cells (ADSCs) are first prepared by tissue digestion of lipoaspirate. The remaining constituent contains a mixture of ADSCs, other cell types and lysed fragments. We have developed a scalable microfluidic sorter cascade which enabled high-throughput and label-free enrichment of ADSCs prepared from tissue-digested human adipose samples to improve the quality of purified stem cell product. The continuous microfluidic sorter cascade was composed of spiral-shaped inertial and deterministic lateral displacement (DLD) sorters which separated cells based on size difference. The cell count characterization results showed >90% separation efficiency. We also demonstrated that the enriched ADSC sub-population by the microfluidic sorter cascade yielded 6× enhancement of expansion capacity in tissue culture. The incorporation of this microfluidic sorter cascade into ADSC preparation workflow facilitates the generation of transplantation-scale stem cell product. We anticipate our stem cell microfluidic sorter cascade will find a variety of research and clinical applications in tissue engineering and regeneration medicine.
Collapse
Affiliation(s)
- Lap Man Lee
- CFD Research Corporation, 6820 Moquin Dr NW, Huntsville, AL, 35806, U.S.A.
| | - George J Klarmann
- The Geneva Foundation, 9410 Key West Ave, Rockville, MD 20850, U.S.A
| | - Dustin W Haithcock
- CFD Research Corporation, 6820 Moquin Dr NW, Huntsville, AL, 35806, U.S.A.
| | - Yi Wang
- Mechanical Engineering, College of Engineering and Computing, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
| | - Ketan H Bhatt
- CFD Research Corporation, 6820 Moquin Dr NW, Huntsville, AL, 35806, U.S.A.
| | | | - Kapil Pant
- CFD Research Corporation, 6820 Moquin Dr NW, Huntsville, AL, 35806, U.S.A.
| | - Luis M Alvarez
- Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda, MD 20814, U.S.A
| | - Eva Lai
- Mechanical Engineering & Materials Science, Swanson School of Engineering, University of Pittsburgh, 636 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261, U.S.A
| |
Collapse
|
17
|
Hierarchal polyaniline-folic acid nanostructures act as a platform for electrochemical detection of tumor cells. Anal Biochem 2023; 662:114914. [PMID: 36272452 DOI: 10.1016/j.ab.2022.114914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
The fabrication of electrochemical sensing platforms for cancer monitoring by quantifying circulating tumor cells (CTCs) in blood holds promise for providing a low-cost, rapid, feasible, and safe approach for cancer diagnosis. Here, we isolate cancer cells using CoFe2O4 nanoparticles functionalized with folic acid and chitosan as an inexpensive magnetic nanoprobe. This electrochemical cytosensing platform was realized using polyaniline-folic acid nanohybrids with a three-dimensional hierarchical structure that presents abundant affinity sites toward overexpressed folate bioreceptors on cancer cells, in addition to retaining satisfied conductivity. Furthermore, 3D modeling and simulation of the polyaniline-folic acid structures were conducted to investigate the stable complex between aniline and folate, and the interaction between the polyaniline-folate complex and folate receptor alpha1, a bioreceptor on MCF-7 was revealed for the first time. The limit of detection was calculated to be 4 cells mL-1 with a linear range from 50 to 106 cells mL-1.
Collapse
|
18
|
Marcu LG, Moghaddasi L, Bezak E. Cannot Target What Cannot Be Seen: Molecular Imaging of Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24021524. [PMID: 36675033 PMCID: PMC9864237 DOI: 10.3390/ijms24021524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cancer stem cells are known to play a key role in tumour development, proliferation, and metastases. Their unique properties confer resistance to therapy, often leading to treatment failure. It is believed that research into the identification, targeting, and eradication of these cells can revolutionise oncological treatment. Based on the principle that what cannot be seen, cannot be targeted, a primary step in cancer management is the identification of these cells. The current review aims to encompass the state-of-the-art functional imaging techniques that enable the identification of cancer stem cells via various pathways and mechanisms. The paper presents in vivo molecular techniques that are currently available or await clinical implementation. Challenges and future prospects are highlighted to open new research avenues in cancer stem cell imaging.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence:
| | - Leyla Moghaddasi
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
19
|
Biederbick C, Heinemann JC, Rieck S, Winkler F, Ottersbach A, Schiffer M, Duerr GD, Eberbeck D, Hesse M, Röll W, Wenzel D. Combined use of magnetic microbeads for endothelial cell isolation and enhanced cell engraftment in myocardial repair. Theranostics 2023; 13:1150-1164. [PMID: 36793861 PMCID: PMC9925315 DOI: 10.7150/thno.75871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Background: The regenerative potential of the heart after injury is limited. Therefore, cell replacement strategies have been developed. However, the engraftment of transplanted cells in the myocardium is very inefficient. In addition, the use of heterogeneous cell populations precludes the reproducibility of the outcome. Methods: To address both issues, in this proof of principle study, we applied magnetic microbeads for combined isolation of eGFP+ embryonic cardiac endothelial cells (CECs) by antigen-specific magnet-associated cell sorting (MACS) and improved engraftment of these cells in myocardial infarction by magnetic fields. Results: MACS provided CECs of high purity decorated with magnetic microbeads. In vitro experiments revealed that the angiogenic potential of microbead-labeled CECs was preserved and the magnetic moment of the cells was strong enough for site-specific positioning by a magnetic field. After myocardial infarction in mice, intramyocardial CEC injection in the presence of a magnet resulted in a strong improvement of cell engraftment and eGFP+ vascular network formation in the hearts. Hemodynamic and morphometric analysis demonstrated augmented heart function and reduced infarct size only when a magnetic field was applied. Conclusion: Thus, the combined use of magnetic microbeads for cell isolation and enhanced cell engraftment in the presence of a magnetic field is a powerful approach to improve cell transplantation strategies in the heart.
Collapse
Affiliation(s)
- Christian Biederbick
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jan C Heinemann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.,Department of Cardiac Surgery, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Florian Winkler
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annika Ottersbach
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.,Department of Cardiac Surgery, Medical Faculty, University of Bonn, Bonn, Germany
| | - Miriam Schiffer
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Bonn, Germany
| | - Georg D Duerr
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Bonn, Germany.,Department of Cardiovascular Surgery, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | | | - Michael Hesse
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Wilhelm Röll
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany.,Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Hasanzadeh Kafshgari M, Hayden O. Advances in analytical microfluidic workflows for differential cancer diagnosis. NANO SELECT 2023. [DOI: 10.1002/nano.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Morteza Hasanzadeh Kafshgari
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| | - Oliver Hayden
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| |
Collapse
|
21
|
Kalaiselvan CR, Laha SS, Somvanshi SB, Tabish TA, Thorat ND, Sahu NK. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Shen Z, Zhang Q. Mechanistic Insight of Hydrophobic Agglomeration of Rhodochrosite Fines Co-enhanced by Oleic-Kerosene Emulsion and Static Magnetic Field. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases 2022; 17:060801. [DOI: 10.1116/6.0002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
Collapse
|
24
|
Kim SH, Kim CJ, Lee EY, Son YM, Hwang YH, Joo ST. Optimal Pre-Plating Method of Chicken Satellite Cells for Cultured Meat Production. Food Sci Anim Resour 2022; 42:942-952. [PMID: 36415580 PMCID: PMC9647181 DOI: 10.5851/kosfa.2022.e61] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2023] Open
Abstract
To establish a pre-plating method of chicken satellite cells with high purity, pre-plating was performed under culture conditions of 37°C and 41°C, and the pre-plating time was set from a total of 3 hours to 6 hours in consideration of the cell attachment time. The purity of the cells was confirmed by staining paired box protein 7 (Pax7) after proliferation, and Pax7 expression was the highest in culture flasks shaken for 2 hours after incubation at 41°C for 2 hours to prevent the attachment of satellite cells (p<0.05). Also, when pre-plating and proliferation were performed at 37°C and 41°C, the Pax7 expression rate was higher at 41°C. The differentiation capabilities of the three groups (T3, T6, and T7) with high Pax7 expression were compared and the fusion index (%) and myotube formation area (%) determined by myosin heavy chain (MHC) staining was calculated. The T6 and T7 groups, which were cultured at 41°C, showed significantly higher values than the T3 group (p<0.05). There was no significant difference in the expression of Pax7 and MHC between the T6 and T7 groups (p>0.05). These results suggest that pre-plating at 41°C for a total of 4 hours was the most efficient in terms of cost and time for purifying chicken satellite cells for cultured meat.
Collapse
Affiliation(s)
- So-Hee Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Yu-Min Son
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52852,
Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52852,
Korea
| |
Collapse
|
25
|
Mukherjee P, Park SH, Pathak N, Patino CA, Bao G, Espinosa HD. Integrating Micro and Nano Technologies for Cell Engineering and Analysis: Toward the Next Generation of Cell Therapy Workflows. ACS NANO 2022; 16:15653-15680. [PMID: 36154011 DOI: 10.1021/acsnano.2c05494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The emerging field of cell therapy offers the potential to treat and even cure a diverse array of diseases for which existing interventions are inadequate. Recent advances in micro and nanotechnology have added a multitude of single cell analysis methods to our research repertoire. At the same time, techniques have been developed for the precise engineering and manipulation of cells. Together, these methods have aided the understanding of disease pathophysiology, helped formulate corrective interventions at the cellular level, and expanded the spectrum of available cell therapeutic options. This review discusses how micro and nanotechnology have catalyzed the development of cell sorting, cellular engineering, and single cell analysis technologies, which have become essential workflow components in developing cell-based therapeutics. The review focuses on the technologies adopted in research studies and explores the opportunities and challenges in combining the various elements of cell engineering and single cell analysis into the next generation of integrated and automated platforms that can accelerate preclinical studies and translational research.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - So Hyun Park
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
26
|
Abstract
Understanding how macrophages promote myocardial repair can help create new therapies for infarct repair. We aimed to determine what mechanisms underlie the reparative properties of macrophages. Cytokine arrays revealed that neonatal cardiac macrophages from the injured neonatal heart secreted high amounts of osteopontin (OPN). In vitro, recombinant OPN stimulated cardiac cell outgrowth, cardiomyocyte (CM) cell-cycle re-entry, and CM migration. In addition, OPN induced nuclear translocation of the cytoplasmatic yes-associated protein 1 (YAP1) and upregulated transcriptional factors and cell-cycle genes. Significantly, by blocking the OPN receptor CD44, we eliminated the effects of OPN on CMs. OPN also activated the proliferation and migration of non-CM cells: endothelial cells and cardiac mesenchymal stromal cells in vitro. Notably, the significant role of OPN in myocardial healing was demonstrated by impaired healing in OPN-deficient neonatal hearts. Finally, in the adult mice, a single injection of OPN into the border of the ischemic zone induced CM cell-cycle re-entry, improved scar formation, local and global cardiac function, and LV remodelling 30 days after MI. In summary, we have shown, for the first time, that recombinant OPN activates cell-cycle re-entry in CMs. In addition, recombinant OPN stimulates multiple cardiac cells and improves scar formation, LV remodelling, and regional and global function after MI. Therefore, we propose OPN as a new cell-free therapy to optimize infarct repair.
Collapse
|
27
|
Ma S, Yang L, Zuo Q, Huang Q. GPI-anchored glutathione S-transferase as marker allows affinity sorting of transfection-positive cells. Front Mol Biosci 2022; 9:1016090. [PMID: 36250010 PMCID: PMC9558730 DOI: 10.3389/fmolb.2022.1016090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
Cell transfection efficiency is still a limiting factor in gene function research. A method that allows isolation and enrichment of the transfection-positive cells is an effective solution. Here, we report a transfection-positive cell sorting system that utilizes GPI-anchored GST (Glutathione S-transferase) as a plasmid marker. The Glutathione S-transferase fusion protein will be expressed and displayed on the cell surface through GPI anchor, and hence permits the positive cells to be isolated using Glutathione (GSH) Magnetic Beads. We prove that the system works efficiently in both the adherent Lenti-X 293T cells and the suspension K-562 cells. The affinity cell sorting procedure efficiently enriched positive cells from 20% to 98% in K-562 cells. The applications in gene knockdown and overexpression experiments in K-562 cells dramatically enhanced the extent of gene alteration, with the gene knockdown efficiency increasing from 7% to 60% and the gene overexpression level rising from 47 to 253 times. This Glutathione S-transferase affinity transfection-positive cell sorting method is simple and fast to operate, large-instrument free, low cost, and hence possesses great potential in gene function study in vitro.
Collapse
|
28
|
Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol 2022; 15:131. [PMID: 36096847 PMCID: PMC9465933 DOI: 10.1186/s13045-022-01351-y] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Liquid biopsies are increasingly used for cancer molecular profiling that enables a precision oncology approach. Circulating extracellular nucleic acids (cell-free DNA; cfDNA), circulating tumor DNA (ctDNA), and circulating tumor cells (CTCs) can be isolated from the blood and other body fluids. This review will focus on current technologies and clinical applications for liquid biopsies. ctDNA/cfDNA has been isolated and analyzed using many techniques, e.g., droplet digital polymerase chain reaction, beads, emulsion, amplification, and magnetics (BEAMing), tagged-amplicon deep sequencing (TAm-Seq), cancer personalized profiling by deep sequencing (CAPP-Seq), whole genome bisulfite sequencing (WGBS-Seq), whole exome sequencing (WES), and whole genome sequencing (WGS). CTCs have been isolated using biomarker-based cell capture, and positive or negative enrichment based on biophysical and other properties. ctDNA/cfDNA and CTCs are being exploited in a variety of clinical applications: differentiating unique immune checkpoint blockade response patterns using serial samples; predicting immune checkpoint blockade response based on baseline liquid biopsy characteristics; predicting response and resistance to targeted therapy and chemotherapy as well as immunotherapy, including CAR-T cells, based on serial sampling; assessing shed DNA from multiple metastatic sites; assessing potentially actionable alterations; analyzing prognosis and tumor burden, including after surgery; interrogating difficult-to biopsy tumors; and detecting cancer at early stages. The latter can be limited by the small amounts of tumor-derived components shed into the circulation; furthermore, cfDNA assessment in all cancers can be confounded by clonal hematopoeisis of indeterminate potential, especially in the elderly. CTCs can be technically more difficult to isolate that cfDNA, but permit functional assays, as well as evaluation of CTC-derived DNA, RNA and proteins, including single-cell analysis. Blood biopsies are less invasive than tissue biopsies and hence amenable to serial collection, which can provide critical molecular information in real time. In conclusion, liquid biopsy is a powerful tool, and remarkable advances in this technology have impacted multiple aspects of precision oncology, from early diagnosis to management of refractory metastatic disease. Future research may focus on fluids beyond blood, such as ascites, effusions, urine, and cerebrospinal fluid, as well as methylation patterns and elements such as exosomes.
Collapse
Affiliation(s)
- Mina Nikanjam
- Division of Hematology-Oncology, University of California San Diego, La Jolla, 1200 Garden View Road, Encinitas, CA, 92024, USA.
| | - Shumei Kato
- Division of Hematology-Oncology, University of California San Diego, La Jolla, 1200 Garden View Road, Encinitas, CA, 92024, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA.,WIN Consortium, Paris, France
| |
Collapse
|
29
|
Andrianto, Pikir BS, Suryawan IGR, Hermawan HO, Harsoyo PM. Isolation and Culture of Non-adherent Cells for Cell Reprogramming. J Stem Cells Regen Med 2022; 18:21-26. [PMID: 36003658 DOI: 10.46582/jsrm.1801004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
Abstract
Coronary heart disease (CHD) is a leading cause of death globally, while its current management is limited to reducing the myocardial infarction area without actually replacing dead cardiomyocytes. Direct cell reprogramming is a method of cellular cardiomyoplasty which aims for myocardial tissue regeneration, and CD34+ cells are one of the potential sources due to their shared embryonic origin with cardiomyocytes. However, the isolation and culture of non-adherent CD34+ cells is crucial to obtain adequate cells for high-efficiency genetic modification. This study aimed to investigate the optimal method for isolation and culture of CD34+ peripheral blood cells using certain culture media. A peripheral blood sample was obtained from a healthy subject and underwent pre-enrichment, isolation, and expansion. The culture was subsequently observed for their viability, adherence, and confluence. Day 0 observation of the culture showed a healthy CD34+ cell with a round cell shape, without any adherent cells present yet. Day 4 of observation showed that CD34+ cells within the blood plasma medium became adherent, indicated by their transformations into spindle or oval morphologies. Meanwhile, CD34+ cells in vitronectin and fibronectin media showed no adherent cells and many of them died. Day 7 observation revealed more adherent CD34+ cells in blood plasma medium, and which had 75% of confluence. In conclusion, the CD34+ cells that were isolated using a combination of density and magnetic methods may be viable and adequately adhere in culture using blood plasma medium, but not in cultures using fibronectin and vitronectin.
Collapse
Affiliation(s)
- Andrianto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - Budi Susetyo Pikir
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - I Gde Rurus Suryawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - Hanestya Oky Hermawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - Primasitha Maharany Harsoyo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| |
Collapse
|
30
|
Separation and Concentration of Astaxanthin and Lutein from Microalgae Liquid Extracts Using Magnetic Nanoparticles. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8080080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The downstream processing of natural active molecules remains the most significant cost in the production pipeline. This considerable cost is largely attributed to rigorous chromatographic purification protocols. In an ongoing effort to abate the dependence on chromatography in downstream processing, alternative affinity matrices in the form of magnetic particles (e.g., iron oxide) have emerged as viable candidates. Nevertheless, biotechnological applications of iron oxide particles are still confined to the research level or for low-throughput clinical applications. Herein, we describe an efficient, quick, and environmentally friendly method for the isolation of astaxanthin and lutein, two carotenoids with very similar chemical structure, from extracts of the microalga Haematococcus pluvialis. The technology proposed, named Selective Magnetic Separation (SMS), is based on the use of magnetic materials carrying affinity ligands that bind carotenoids and is applied as second step of purification. The method, thanks to functionalized magnetic nanoparticles, reduces the use of organic or toxic solvents. In the present work, we examined the most efficient binding conditions such as temperature, magnetic nanoparticles concentration, and elution time, as well as their effects on carotenoids recovery, with the aim to improve the non-covalent binding between the ligand (amines) and astaxanthin/lutein. Our initial results clearly showed that it is possible to use magnetic separation as an alternative to chromatography to isolate important and valuable compounds.
Collapse
|
31
|
Zhao S, Zhang JY, Fu Y, Zhu S, Shum HC, Liu X, Wang Z, Ye R, Tang BZ, Russell TP, Chai Y. Shape-Reconfigurable Ferrofluids. NANO LETTERS 2022; 22:5538-5543. [PMID: 35766622 DOI: 10.1021/acs.nanolett.2c01721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ferrofluids (FFs) can adapt their shape to a magnetic field. However, they cannot maintain their shape when the magnetic field is removed. Here, with a magneto-responsive and reconfigurable interfacial self-assembly (MRRIS) process, we show that FFs can be structured by a magnetic field and maintain their shape, like solids, after removing the magnetic field. The competing self-assembly of magnetic and nonmagnetic nanoparticles at the liquid interface endow FFs with both reconfigurability and structural stability. By manipulating the external magnetic field, we show that it is possible to "write" and "erase" the shape of the FFs remotely and repeatedly. To gain an in-depth understanding of the effect of MRRIS on the structure of FFs, we systematically study the shape variation of these liquids under both the static and dynamic magnetic fields. Our study provides a simple yet novel way of manipulating FFs and opens opportunities for the fabrication of all-liquid devices.
Collapse
Affiliation(s)
- Sai Zhao
- Department of Physics, The City University of Hong Kong; 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Jun-Yan Zhang
- Department of Physics, The City University of Hong Kong; 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Yuchen Fu
- Department of Physics, The City University of Hong Kong; 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Shipei Zhu
- Department of Mechanical Engineering, The University of Hong Kong; Hong Kong (SAR), Hong Kong SAR 999077, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong; Hong Kong (SAR), Hong Kong SAR 999077, China
| | - Xubo Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaoyu Wang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study. The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Polymer Science and Engineering Department, University of Massachusetts; Amherst, Massachusetts 01003, United States
- Advanced Institute for Materials Research (AIMR), Tohoku University; Sendai 980-8577, Japan
| | - Yu Chai
- Department of Physics, The City University of Hong Kong; 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing first Road, Gaoxin District, Shenzhen 518057, China
| |
Collapse
|
32
|
Jiang Z, He J, Wang X, Zhu D, Li N, Ren L, Yang G. Nanomaterial-based cell sheet technology for regenerative medicine and tissue engineering. Colloids Surf B Biointerfaces 2022; 217:112661. [PMID: 35777168 DOI: 10.1016/j.colsurfb.2022.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Nanomaterial-based cell sheet technology has been reported to be an effective method in regenerative medicine and tissue engineering. Here, we summarized several types of nanomaterials used to harvest cell sheets. Currently, the technology is divided into four categories according to the mechanisms: light-induced cell sheet technology, thermo-responsive cell sheet technology, magnetic-controlled cell sheet technology, and reactive oxygen species (ROS)-induced cell sheet technology. Furthermore, some studies have been conducted to show that nanomaterial-based cell sheets produce satisfying outcomes in the regeneration of bone, skeletal muscle, cardiac tissue, and tendon, as well as angiogenesis and osseointegration. Nevertheless, some shortcomings still exist, such as comprehensive preparation, unclear safety, and cell quality. Thus, future studies should aim to produce more types of nanomaterials to solve this problem.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
33
|
One-Chip Isolation of Drug-Resistant Acute Myeloid Leukemia Cells with CXCR4-Targeted Magnetic Fluorescent Nanoprobes. NANOMATERIALS 2022; 12:nano12101711. [PMID: 35630929 PMCID: PMC9142899 DOI: 10.3390/nano12101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Drug resistance and relapse lead to high mortality in acute myeloid leukemia, and studies have shown that CXCR4 overexpression is highly correlated with poor prognosis and drug resistance in leukemia cells. Isolation and detection of AML cells with CXCR4 overexpression will be crucial to the treatment of AML. In this paper, magnetic nanoparticles were firstly prepared successfully by high-temperature thermal decomposition method, and then characterized by TEM, VSM and DLS. Subsequently CXCR4-targeted magnetic fluorescent nanoprobes conjugated with antibody 12G5 were constructed by stepwise coupling. In cell experiments, the obtained probes demonstrated excellent targeting efficacy to CXCR4 overexpressed AML cells HL-60. In addition, HL-60 cells labelled with the magnetic probes can be magnetic isolated successfully in one microfluidics chip, with efficiency of 82.92 ± 7.03%. Overall, this method utilizes the superiority of superparamagnetic nanomaterials and microfluidic technology to achieve the enrichment and capture of drug-resistant cells in a microfluidic chip, providing a new idea for the isolation and detective of drug-resistant acute myeloid leukemia cells.
Collapse
|
34
|
|
35
|
Gao C, Zhang L, Wang J, Cheng Y, Chen Z, Yang R, Zhao G. Coaxial structured drug loaded dressing combined with induced stem cell differentiation for enhanced wound healing. BIOMATERIALS ADVANCES 2022; 134:112542. [PMID: 35525764 DOI: 10.1016/j.msec.2021.112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/06/2021] [Indexed: 12/01/2022]
Abstract
Controllable drug-loaded dressings combined with induced stem cell differentiation have received considerable interest. In this study, a directional core-shell drug-loaded magnetocaloric response PCL/Gelatin-Antibiotics/Fe3O4 multifunctional dressing was developed. Due to the magnetothermal heating effect of magnetic nanoparticles and the contraction of elastic electrospun fibers, the fibers release antibiotics as needed to prevent drug-resistant infection. IV collagenase catalyzes the degradation of gelatin by achieving an optimum reaction temperature, the purpose of which is also to reduce the viscosity of liquid gelatin and promote the release of drugs. With the sacrifice of gelatin, the directional structure of scaffold and the internal steric hindrance promoted stem cell differentiation and wound healing. The expression of Vimentin, VEGF, bFGF, TGF-β, and THY1 was confirmed by fluorescence immunostaining and RT-PCR. Western blot was used to detect expression of Vimentin, collagen, CD34, and CD31 in the (5/5, v/v) PCL/gelatin scaffold incubated with mouse wound. Therefore, the functional fibers can significantly accelerate the healing process.
Collapse
Affiliation(s)
- Chen Gao
- College of Life Sciences, Anhui Medical University, Hefei 230022, Anhui, China
| | - Liyuan Zhang
- School of Basic Medicine, Anhui Medical University, Hefei 230022, Anhui, China
| | - Juan Wang
- Chaohu Clinical Medical College, Anhui Medical University, Hefei 230022, Anhui, China
| | - Yue Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, Anhui, China
| | - Zhongrong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, Anhui, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, Anhui, China.
| | - Gang Zhao
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, Anhui, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
36
|
Ewins EJ, Han K, Bharti B, Robinson T, Velev OD, Dimova R. Controlled adhesion, membrane pinning and vesicle transport by Janus particles. Chem Commun (Camb) 2022; 58:3055-3058. [PMID: 35166272 DOI: 10.1039/d1cc07026f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The interactions between biomembranes and particles are key to many applications, but the lack of controllable model systems to study them limits the progress in their research. Here, we describe how Janus polystyrene microparticles, half coated with iron, can be partially engulfed by artificial cells, namely giant vesicles, with the goals to control and investigate their adhesion and degree of encapsulation. The interaction between the Janus particles and these model cell membrane systems is mediated by electrostatic charge, offering a further mode of modulation in addition to the iron patches. The ferromagnetic particle coatings also enable manipulation and transport of the vesicles by magnetic fields.
Collapse
Affiliation(s)
- Eleanor J Ewins
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.
| | - Koohee Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Bhuvnesh Bharti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Tom Robinson
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.
| |
Collapse
|
37
|
Ryu JH, Xu L, Wong TT. Advantages, Factors, Obstacles, Potential Solutions, and Recent Advances of Fish Germ Cell Transplantation for Aquaculture-A Practical Review. Animals (Basel) 2022; 12:ani12040423. [PMID: 35203131 PMCID: PMC8868515 DOI: 10.3390/ani12040423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This review aims to provide practical information and viewpoints regarding fish germ cell transplantation for enhancing its commercial applications. We reviewed and summarized the data from more than 70 important studies and described the advantages, obstacles, recent advances, and future perspectives of fish germ cell transplantation. We concluded and proposed the critical factors for achieving better success and various options for germ cell transplantation with their pros and cons. Additionally, we discussed why this technology has not actively been utilized for commercial purposes, what barriers need to be overcome, and what potential solutions can advance its applications in aquaculture. Abstract Germ cell transplantation technology enables surrogate offspring production in fish. This technology has been expected to mitigate reproductive barriers, such as long generation time, limited fecundity, and complex broodstock management, enhancing seed production and productivity in aquaculture. Many studies of germ cell transplantation in various fish species have been reported over a few decades. So far, surrogate offspring production has been achieved in many commercial species. In addition, the knowledge of fish germ cell biology and the related technologies that can enhance transplantation efficiency and productivity has been developed. Nevertheless, the commercial application of this technology still seems to lag behind, indicating that the established models are neither beneficial nor cost-effective enough to attract potential commercial users of this technology. Furthermore, there are existing bottlenecks in practical aspects such as impractical shortening of generation time, shortage of donor cells with limited resources, low efficiency, and unsuccessful surrogate offspring production in some fish species. These obstacles need to be overcome through further technology developments. Thus, we thoroughly reviewed the studies on fish germ cell transplantation reported to date, focusing on the practicality, and proposed potential solutions and future perspectives.
Collapse
|
38
|
Afsaneh H, Mohammadi R. Microfluidic platforms for the manipulation of cells and particles. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
39
|
Andrianto , Pikir BS, Ferdiansyah , Pristianto T, Hermawan HO, Zaini BSI, Muhammad AR. Efficiency Comparison of Direct Reprogramming CD34+ Cells into Cardiomyocytes Using Cardiomyocyte Differentiation Medium vs MicroRNA-1. Cell Reprogram 2022; 24:21-25. [DOI: 10.1089/cell.2021.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Andrianto
- Cardiology and Vascular Medicine Department, Medical Faculty of Airlangga University—Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Budi Susetyo Pikir
- Cardiology and Vascular Medicine Department, Medical Faculty of Airlangga University—Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Ferdiansyah
- Orthopedy and Traumatology Department, Medical Faculty of Airlangga University—Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Tinton Pristianto
- Cardiology and Vascular Medicine Department, Medical Faculty of Airlangga University—Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Hanestya Oky Hermawan
- Cardiology and Vascular Medicine Department, Medical Faculty of Airlangga University—Dr. Soetomo General Hospital, Surabaya, Indonesia
| | | | | |
Collapse
|
40
|
Frankman ZD, Jiang L, Schroeder JA, Zohar Y. Application of Microfluidic Systems for Breast Cancer Research. MICROMACHINES 2022; 13:152. [PMID: 35208277 PMCID: PMC8877872 DOI: 10.3390/mi13020152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Cancer is a disease in which cells in the body grow out of control; breast cancer is the most common cancer in women in the United States. Due to early screening and advancements in therapeutic interventions, deaths from breast cancer have declined over time, although breast cancer remains the second leading cause of cancer death among women. Most deaths are due to metastasis, as cancer cells from the primary tumor in the breast form secondary tumors in remote sites in distant organs. Over many years, the basic biological mechanisms of breast cancer initiation and progression, as well as the subsequent metastatic cascade, have been studied using cell cultures and animal models. These models, although extremely useful for delineating cellular mechanisms, are poor predictors of physiological responses, primarily due to lack of proper microenvironments. In the last decade, microfluidics has emerged as a technology that could lead to a paradigm shift in breast cancer research. With the introduction of the organ-on-a-chip concept, microfluidic-based systems have been developed to reconstitute the dominant functions of several organs. These systems enable the construction of 3D cellular co-cultures mimicking in vivo tissue-level microenvironments, including that of breast cancer. Several reviews have been presented focusing on breast cancer formation, growth and metastasis, including invasion, intravasation, and extravasation. In this review, realizing that breast cancer can recur decades following post-treatment disease-free survival, we expand the discussion to account for microfluidic applications in the important areas of breast cancer detection, dormancy, and therapeutic development. It appears that, in the future, the role of microfluidics will only increase in the effort to eradicate breast cancer.
Collapse
Affiliation(s)
- Zachary D. Frankman
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Joyce A. Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
41
|
Herbig M, Tessmer K, Nötzel M, Nawaz AA, Santos-Ferreira T, Borsch O, Gasparini SJ, Guck J, Ader M. Label-free imaging flow cytometry for analysis and sorting of enzymatically dissociated tissues. Sci Rep 2022; 12:963. [PMID: 35046492 PMCID: PMC8770577 DOI: 10.1038/s41598-022-05007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023] Open
Abstract
Biomedical research relies on identification and isolation of specific cell types using molecular biomarkers and sorting methods such as fluorescence or magnetic activated cell sorting. Labelling processes potentially alter the cells’ properties and should be avoided, especially when purifying cells for clinical applications. A promising alternative is the label-free identification of cells based on physical properties. Sorting real-time deformability cytometry (soRT-DC) is a microfluidic technique for label-free analysis and sorting of single cells. In soRT-FDC, bright-field images of cells are analyzed by a deep neural net (DNN) to obtain a sorting decision, but sorting was so far only demonstrated for blood cells which show clear morphological differences and are naturally in suspension. Most cells, however, grow in tissues, requiring dissociation before cell sorting which is associated with challenges including changes in morphology, or presence of aggregates. Here, we introduce methods to improve robustness of analysis and sorting of single cells from nervous tissue and provide DNNs which can distinguish visually similar cells. We employ the DNN for image-based sorting to enrich photoreceptor cells from dissociated retina for transplantation into the mouse eye.
Collapse
Affiliation(s)
- Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Karen Tessmer
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Martin Nötzel
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Ahsan Ahmad Nawaz
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum Für Physik Und Medizin, Erlangen, Germany
| | - Tiago Santos-Ferreira
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,Roche Innovation Center Basel, F. Hoffman-La Roche Ltd., Basel, Switzerland
| | - Oliver Borsch
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Sylvia J Gasparini
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum Für Physik Und Medizin, Erlangen, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
42
|
Abstract
Magnetic cell separation has become a key methodology for the isolation of target cell populations from biological suspensions, covering a wide spectrum of applications from diagnosis and therapy in biomedicine to environmental applications or fundamental research in biology. There now exists a great variety of commercially available separation instruments and reagents, which has permitted rapid dissemination of the technology. However, there is still an increasing demand for new tools and protocols which provide improved selectivity, yield and sensitivity of the separation process while reducing cost and providing a faster response. This review aims to introduce basic principles of magnetic cell separation for the neophyte, while giving an overview of recent research in the field, from the development of new cell labeling strategies to the design of integrated microfluidic cell sorters and of point-of-care platforms combining cell selection, capture, and downstream detection. Finally, we focus on clinical, industrial and environmental applications where magnetic cell separation strategies are amongst the most promising techniques to address the challenges of isolating rare cells.
Collapse
|
43
|
Onishi T, Mihara K, Matsuda S, Sakamoto S, Kuwahata A, Sekino M, Kusakabe M, Handa H, Kitagawa Y. Application of Magnetic Nanoparticles for Rapid Detection and In Situ Diagnosis in Clinical Oncology. Cancers (Basel) 2022; 14:cancers14020364. [PMID: 35053527 PMCID: PMC8774179 DOI: 10.3390/cancers14020364] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Screening, monitoring, and diagnosis are critical in oncology treatment. However, there are limitations with the current clinical methods, notably the time, cost, and special facilities required for radioisotope-based methods. An alternative approach, which uses magnetic beads, offers faster analyses with safer materials over a wide range of oncological applications. Magnetic beads have been used to detect extracellular vesicles (EVs) in the serum of pancreatic cancer patients with statistically different EV levels in preoperative, postoperative, and negative control samples. By incorporating fluorescence, magnetic beads have been used to quantitatively measure prostate-specific antigen (PSA), a prostate cancer biomarker, which is sensitive enough even at levels found in healthy patients. Immunostaining has also been incorporated with magnetic beads and compared with conventional immunohistochemical methods to detect lesions; the results suggest that immunostained magnetic beads could be used for pathological diagnosis during surgery. Furthermore, magnetic nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs), can detect sentinel lymph nodes in breast cancer in a clinical setting, as well as those in gallbladder cancer in animal models, in a surgery-applicable timeframe. Ultimately, recent research into the applications of magnetic beads in oncology suggests that the screening, monitoring, and diagnosis of cancers could be improved and made more accessible through the adoption of this technology.
Collapse
Affiliation(s)
- Tatsuya Onishi
- Department of Breast Surgery, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa 277-8577, Chiba, Japan;
| | - Kisyo Mihara
- Department of Surgery, Kawasaki Municipal Kawasaki Hospital, Kawasaki-ku, Kawasaki 210-0013, Kanagawa, Japan;
| | - Sachiko Matsuda
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence: ; Tel.: +81-3-3353-1211
| | - Satoshi Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Kanagawa, Japan;
| | - Akihiro Kuwahata
- Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki-aza, Aoba-ku, Sendai 980-8579, Miyagi, Japan;
| | - Masaki Sekino
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Moriaki Kusakabe
- Graduate School of Agricultural and Life Sciences, Research Center for Food Safety, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
- Matrix Cell Research Institute Inc., 1-35-3 Kamikashiwada, Ushiku 300-1232, Ibaraki, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan;
| | - Yuko Kitagawa
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| |
Collapse
|
44
|
The Origins and the Current Applications of Microfluidics-Based Magnetic Cell Separation Technologies. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The magnetic separation of cells based on certain traits has a wide range of applications in microbiology, immunology, oncology, and hematology. Compared to bulk separation, performing magnetophoresis at micro scale presents advantages such as precise control of the environment, larger magnetic gradients in miniaturized dimensions, operational simplicity, system portability, high-throughput analysis, and lower costs. Since the first integration of magnetophoresis and microfluidics, many different approaches have been proposed to magnetically separate cells from suspensions at the micro scale. This review paper aims to provide an overview of the origins of microfluidic devices for magnetic cell separation and the recent technologies and applications grouped by the targeted cell types. For each application, exemplary experimental methods and results are discussed.
Collapse
|
45
|
Ha Y, Kim I. Recent Developments in Innovative Magnetic Nanoparticles-Based Immunoassays: From Improvement of Conventional Immunoassays to Diagnosis of COVID-19. BIOCHIP JOURNAL 2022; 16:351-365. [PMID: 35822174 PMCID: PMC9263806 DOI: 10.1007/s13206-022-00064-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
During the ongoing COVID-19 pandemic, the development of point-of-care (POC) detection with high sensitivity and rapid detection time is urgently needed to prevent transmission of infectious diseases. Magnetic nanoparticles (MNPs) have been considered attractive materials for enhancing sensitivity and reducing the detection time of conventional immunoassays due to their unique properties including magnetic behavior, high surface area, excellent stability, and easy biocompatibility. In addition, detecting target analytes through color development is necessary for user-friendly POC detection. In this review, recent advances in different types of MNPs-based immunoassays such as improvement of the conventional enzyme-linked immunosorbent assay (ELISA), immunoassays based on the peroxidase-like activity of MNPs and based on the dually labeled MNPs, filtration method, and lateral-flow immunoassay are described and we analyze the advantages and strategies of each method. Furthermore, immunoassays incorporating MNPs for COVID-19 diagnosis through color development are also introduced, demonstrating that MNPs can become common tools for on-site diagnosis.
Collapse
Affiliation(s)
- Yeonjeong Ha
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Ijung Kim
- Department of Civil and Environmental Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, 04066 Republic of Korea
| |
Collapse
|
46
|
Kim Y, Laradji AM, Sharma S, Zhang W, Yadavalli NS, Xie J, Popik V, Minko S. Refining of Particulates at Stimuli‐Responsive Interfaces: Label‐Free Sorting and Isolation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yongwook Kim
- Nanostructured Materials Lab University of Georgia Athens GA 30602 USA
| | - Amine M. Laradji
- Nanostructured Materials Lab University of Georgia Athens GA 30602 USA
- Current address: Department of Ophthalmology and Visual Sciences Washington University School of Medicine St. Louis MO 63110 USA
| | - Shubham Sharma
- Department of Chemistry University of Georgia Athens GA 30602 USA
| | - Weizhong Zhang
- Department of Chemistry University of Georgia Athens GA 30602 USA
| | | | - Jin Xie
- Department of Chemistry University of Georgia Athens GA 30602 USA
| | - Vladimir Popik
- Department of Chemistry University of Georgia Athens GA 30602 USA
| | - Sergiy Minko
- Nanostructured Materials Lab University of Georgia Athens GA 30602 USA
| |
Collapse
|
47
|
Liu X, Xia F, Wu X, Tang Y, Wang L, Sun Q, Xue M, Chang W, Liu L, Guo F, Yang Y, Qiu H. Isolation of Primary Mouse Pulmonary Microvascular Endothelial Cells and Generation of an Immortalized Cell Line to Obtain Sufficient Extracellular Vesicles. Front Immunol 2021; 12:759176. [PMID: 34956190 PMCID: PMC8692730 DOI: 10.3389/fimmu.2021.759176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary microvascular endothelial cells (PMECs) and the extracellular vesicles (EVs) derived from PMECs participate in maintaining pulmonary homeostasis and mediating the inflammatory response. However, obtaining a high-purity population of PMECs and their EVs from mouse is still notoriously difficult. Herein we provide a method to isolate primary mouse PMECs (pMPMECs) and to transduce SV40 lentivirus into pMPMECs to establish an immortalized cell line (iMPMECs), which provides sufficient quantities of EVs for further studies. pMPMECs and iMPMECs can be identified using morphologic criteria, a phenotypic expression profile (e.g., CD31, CD144, G. simplicifolia lectin binding), and functional properties (e.g., Dil-acetylated low-density protein uptake, Matrigel angiogenesis). Furthermore, pMPMEC-EVs and iMPMEC-EVs can be identified and compared. The characteristics of pMPMEC-EVs and iMPMEC-EVs are ascertained by transmission electron microscopy, nanoparticle tracking analysis, and specific protein markers. iMPMECs produce far more EVs than pMPMECs, while their particle size distribution is similar. Our detailed protocol to isolate and immortalize MPMECs will provide researchers with an in vitro model to investigate the specific roles of EVs in pulmonary physiology and diseases.
Collapse
Affiliation(s)
- Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feiping Xia
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming Xue
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Chang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fengmei Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
48
|
Sperm Selection for ICSI: Do We Have a Winner? Cells 2021; 10:cells10123566. [PMID: 34944074 PMCID: PMC8700516 DOI: 10.3390/cells10123566] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
In assisted reproductive technology (ART), the aim of sperm cells’ preparation is to select competent spermatozoa with the highest fertilization potential and in this context, the intracytoplasmic sperm injection (ICSI) represents the most applied technique for fertilization. This makes the process of identifying the perfect spermatozoa extremely important. A number of methods have now been developed to mimic some of the natural selection processes that exist in the female reproductive tract. Although many studies have been conducted to identify the election technique, many doubts and disagreements still remain. In this review, we will discuss all the sperm cell selection techniques currently available for ICSI, starting from the most basic methodologies and continuing with those techniques suitable for sperm cells with reduced motility. Furthermore, different techniques that exploit some sperm membrane characteristics and the most advanced strategy for sperm selection based on microfluidics, will be examined. Finally, a new sperm selection method based on a micro swim-up directly on the ICSI dish will be analyzed. Eventually, advantages and disadvantages of each technique will be debated, trying to draw reasonable conclusions on their efficacy in order to establish the gold standard method.
Collapse
|
49
|
Kang B, Han S, Son HY, Mun B, Shin MK, Choi Y, Park J, Min JK, Park D, Lim EK, Huh YM, Haam S. Immunomagnetic microfluidic integrated system for potency-based multiple separation of heterogeneous stem cells with high throughput capabilities. Biosens Bioelectron 2021; 194:113576. [PMID: 34454345 DOI: 10.1016/j.bios.2021.113576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
Multipotent adult stem cells (MASCs) derived from Pluripotent stem cells (PSCs) have found widespread use in various applications, including regenerative therapy and drug screening. For these applications, highly pluripotent PSCs need to be selectively separated from those that show low pluripotency for reusage of PSCs, and MASCs need to be collected for further application. Herein, we developed immunomagnetic microfluidic integrated system (IM-MIS) for separation of stem cells depending on potency level. In this system, each stem cell was multiple-separated in microfluidics chip by magnetophoretic mobility of magnetic-activated cells based on the combination of two sizes of magnetic nanoparticles and two different antibodies. Magnetic particles had a difference in the degree of magnetization, and antibodies recognized potency-related surface markers. IM-MIS showed superior cell separation performance than FACS with high throughput (49.5%) in a short time (<15 min) isolate 1 × 107 cells, and higher purity (92.1%) than MACS. IM-MIS had a cell viability of 89.1%, suggesting that IM-MIS had no effect on cell viability during isolation. Furthermore, IM-MIS did not affect the key characteristics of stem cells including its differentiation potency, phenotype, genotype, and karyotype. IM-MIS may offer a new platform for the development of multi-separation systems for diverse stem cell applications.
Collapse
Affiliation(s)
- Byunghoon Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seungmin Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Division of Cardio-Thoracic Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Severance Biomedical Science Institute, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moo-Kwang Shin
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yuna Choi
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jongjin Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Daewon Park
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; YUHS-KRIBB Medical Convergence Research Institute, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Severance Biomedical Science Institute, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; YUHS-KRIBB Medical Convergence Research Institute, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
50
|
Tajti G, Szanto TG, Csoti A, Racz G, Evaristo C, Hajdu P, Panyi G. Immunomagnetic separation is a suitable method for electrophysiology and ion channel pharmacology studies on T cells. Channels (Austin) 2021; 15:53-66. [PMID: 33356811 PMCID: PMC7781520 DOI: 10.1080/19336950.2020.1859753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels play pivotal role in the physiological and pathological function of immune cells. As immune cells represent a functionally diverse population, subtype-specific functional studies, such as single-cell electrophysiology require proper subset identification and separation. Magnetic-activated cell sorting (MACS) techniques provide an alternative to fluorescence-activated cell sorting (FACS), however, the potential impact of MACS-related beads on the biophysical and pharmacological properties of the ion channels were not studied yet. We studied the aforementioned properties of the voltage-gated Kv1.3 K+ channel in activated CD4+ T-cells as well as the membrane capacitance using whole-cell patch-clamp following immunomagnetic positive separation, using the REAlease® kit. This kit allows three experimental configurations: bead-bound configuration, bead-free configuration following the removal of magnetic beads, and the label-free configuration following removal of CD4 recognizing antibody fragments. As controls, we used FACS separation as well as immunomagnetic negative selection. The membrane capacitance and of the biophysical parameters of Kv1.3 gating, voltage-dependence of steady-state activation and inactivation kinetics of the current were not affected by the presence of MACS-related compounds on the cell surface. We found subtle differences in the activation kinetics of the Kv1.3 current that could not be explained by the presence of MACS-related compounds. Neither the equilibrium block of Kv1.3 by TEA+ or charybdotoxin (ChTx) nor the kinetics of ChTx block are affected by the presence of the magnetics beads on the cell surface. Based on our results MACS is a suitable method to separate cells for studying ion channels in non-excitable cells, such as T-lymphocytes.
Collapse
Affiliation(s)
- Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Gabor Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Greta Racz
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - César Evaristo
- R&D Reagents Chemical Biology, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Peter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|