1
|
Rake C, Gilham C, Scholze M, Bukasa L, Stephens J, Simpson J, Peto J, Anderson R. British nuclear test veteran family trios for the study of genetic risk. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021528. [PMID: 35726547 DOI: 10.1088/1361-6498/ac6e10] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The risk of radiation effects in children of individuals exposed to ionising radiation remains an ongoing concern for aged veterans of the British nuclear testing programme. The genetic and cytogenetic family trio (GCFT) study is the first study to obtain blood samples from a group of British nuclear test veterans and their families for the purposes of identifying genetic alterations in offspring as a consequence of historical paternal exposure to ionising radiation. In this report, we describe the processes for recruitment and sampling, and provide a general description of the study population recruited. In total, blood samples were received from 91 (49 test and 42 control) families representing veteran servicemen from the army, Royal Air Force and Royal Navy. This translated to an overall response rate of 14% (49/353) for test veterans and 4% (42/992) for control veterans (excluding responders known to be ineligible). Due to the lack of dose information available, test veterans were allocated to a three-point exposure rank. Thirty (61%) test veterans were ranked in the lower group. Nineteen (39%) of the 49 test veterans were classified in the mid (5 veterans; 10%)/high (14 veterans; 29%) exposure ranks and included 12 veterans previously identified as belonging to the special groups or listed in health physics documents. An increased number of test veteran families (20%), compared with control families (5%), self-reported offspring with congenital abnormalities (p= 0.03). Whether this observation in this small group is reflective of the entire UK test veteran cohort or whether it is selection bias requires further work. The cohort described here represent an important and unique family trio grouping whose participation is enabling genetic studies, as part of the GCFT study, to be carried out. The outcomes of these studies will be published elsewhere. ISRCTN Registry: 17461668.
Collapse
Affiliation(s)
- Christine Rake
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Clare Gilham
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Martin Scholze
- Centre for Health Effects of Radiological and Chemical Agents, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Laurette Bukasa
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Jade Stephens
- Centre for Health Effects of Radiological and Chemical Agents, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Jayne Simpson
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Julian Peto
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Rhona Anderson
- Centre for Health Effects of Radiological and Chemical Agents, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| |
Collapse
|
2
|
Yan M, Luo F, Shu X, Tang H, Chen S, Wei G, Xie Y, Wang L, Lu X. Response of simulated An3+/An4+ radioactive soil vitrification under alpha-particle irradiation. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Shakeel O, Pace N, Chambers TM, Scheurer ME, Ganguly AA, Lupo PJ, Bunin GR. Medical radiation exposure and risk of sporadic retinoblastoma. Pediatr Blood Cancer 2020; 67:e28633. [PMID: 32743912 DOI: 10.1002/pbc.28633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND While there is evidence that parental exposure to medical radiation is associated with increased risk of sporadic bilateral retinoblastoma in offspring, this association has not been confirmed. Additionally, the relationship between paternal and maternal exposures and sporadic unilateral retinoblastoma has not been fully investigated. PROCEDURE Data were obtained from two large multicenter case-control studies of retinoblastoma. For the paternal analyses, 268 bilateral cases, 155 unilateral cases, and 358 controls were included. For the maternal analyses, 298 bilateral cases, 184 unilateral cases, and 404 controls were included. Logistical regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) to evaluate the associations between parental exposures to medical radiation and sporadic retinoblastoma, while adjusting for potential confounders. RESULTS Paternal exposure to medical radiation was not significantly associated with sporadic bilateral retinoblastoma in offspring. However, increasing paternal exposure to gonadal radiation was associated with increased risk of unilateral retinoblastoma (P-trend = .03). Maternal history of upper and lower gastrointestinal (GI) series was associated with bilateral retinoblastoma (OR = 1.9, 95% CI: 1.1-3.2 and OR = 6.9, 95% CI: 2.9-16.4, respectively). However, there was no association between maternal exposure to medical radiation and unilateral retinoblastoma in offspring. CONCLUSION Our investigation adds to the evidence that medical radiation exposure in fathers as well as mothers prior to pregnancy may increase the risk of germline alterations leading to the development of retinoblastoma in their offspring. However, our findings could point to a more complex etiological framework for this important pediatric malignancy.
Collapse
Affiliation(s)
- Omar Shakeel
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Nelson Pace
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | - Arupa A Ganguly
- Department of Genetics, Genetic Diagnostic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Philip J Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Greta R Bunin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Boice JD. The Likelihood of Adverse Pregnancy Outcomes and Genetic Disease (Transgenerational Effects) from Exposure to Radioactive Fallout from the 1945 Trinity Atomic Bomb Test. HEALTH PHYSICS 2020; 119:494-503. [PMID: 32881736 PMCID: PMC7497471 DOI: 10.1097/hp.0000000000001170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2019] [Indexed: 06/06/2023]
Abstract
The potential health consequences of the Trinity nuclear weapon test of 16 July 1945 at Alamogordo, New Mexico, are challenging to assess. Population data are available for mortality but not for cancer incidence for New Mexico residents for the first 25 y after the test, and the estimates of radiation dose to the nearby population are lower than the cumulative dose received from ubiquitous natural background radiation. Despite the estimates of low population exposures, it is believed by some that cancer rates in counties near the Trinity test site (located in Socorro County) are elevated compared with other locations across the state. Further, there is a concern about adverse pregnancy outcomes and genetic diseases (transgenerational or heritable effects) related to population exposure to fallout radiation. The possibility of an intergenerational effect has long been a concern of exposed populations, e.g., Japanese atomic bomb survivors, survivors of childhood and adolescent cancer, radiation workers, and environmentally exposed groups. In this paper, the likelihood of discernible transgenerational effects is discounted because (1) in all large-scale comprehensive studies of exposed populations, no heritable genetic effects have been demonstrated in children of exposed parents; (2) the distribution of estimated doses from Trinity is much lower than in other studied populations where no transgenerational effects have been observed; and (3) there is no evidence of increased cancer rates among the scientific, military, and professional participants at the Trinity test and at other nuclear weapons tests who received much higher doses than New Mexico residents living downwind of the Trinity site.
Collapse
Affiliation(s)
- John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD
- Vanderbilt University Department of Medicine, Division of Epidemiology, Nashville, TN
| |
Collapse
|
5
|
Dubrova Y. Mutation Induction in Humans and Mice: Where Are We Now? Cancers (Basel) 2019; 11:cancers11111708. [PMID: 31683966 PMCID: PMC6895811 DOI: 10.3390/cancers11111708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
The analysis of mutation induction in human families exposed to mutagens provides the only source of reliable estimates of factors contributing to the genetic risk of human exposure to mutagens. In this paper, I briefly summarize the results of recent studies on the pattern of mutation induction in the human and mouse germline. The results of recent studies on the genome-wide effects of exposure to mutagens on mutation induction in the mammalian germline are presented and discussed. Lastly, this review also addresses the issue of transgenerational effects of parental exposure to mutagens on mutation rates in their non-exposed offspring, which are known as transgenerational instability. The possible contribution of transgenerational instability to the genetic risk of human exposure to mutagens is discussed.
Collapse
Affiliation(s)
- Yuri Dubrova
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
6
|
Shore RE, Beck HL, Boice JD, Caffrey EA, Davis S, Grogan HA, Mettler FA, Preston RJ, Till JE, Wakeford R, Walsh L, Dauer LT. Recent Epidemiologic Studies and the Linear No-Threshold Model For Radiation Protection-Considerations Regarding NCRP Commentary 27. HEALTH PHYSICS 2019; 116:235-246. [PMID: 30585971 DOI: 10.1097/hp.0000000000001015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
National Council on Radiation Protection and Measurements Commentary 27 examines recent epidemiologic data primarily from low-dose or low dose-rate studies of low linear-energy-transfer radiation and cancer to assess whether they support the linear no-threshold model as used in radiation protection. The commentary provides a critical review of low-dose or low dose-rate studies, most published within the last 10 y, that are applicable to current occupational, environmental, and medical radiation exposures. The strengths and weaknesses of the epidemiologic methods, dosimetry assessments, and statistical modeling of 29 epidemiologic studies of total solid cancer, leukemia, breast cancer, and thyroid cancer, as well as heritable effects and a few nonmalignant conditions, were evaluated. An appraisal of the degree to which the low-dose or low dose-rate studies supported a linear no-threshold model for radiation protection or on the contrary, demonstrated sufficient evidence that the linear no-threshold model is inappropriate for the purposes of radiation protection was also included. The review found that many, though not all, studies of solid cancer supported the continued use of the linear no-threshold model in radiation protection. Evaluations of the principal studies of leukemia and low-dose or low dose-rate radiation exposure also lent support for the linear no-threshold model as used in protection. Ischemic heart disease, a major type of cardiovascular disease, was examined briefly, but the results of recent studies were considered too weak or inconsistent to allow firm conclusions regarding support of the linear no-threshold model. It is acknowledged that the possible risks from very low doses of low linear-energy-transfer radiation are small and uncertain and that it may never be possible to prove or disprove the validity of the linear no-threshold assumption by epidemiologic means. Nonetheless, the preponderance of recent epidemiologic data on solid cancer is supportive of the continued use of the linear no-threshold model for the purposes of radiation protection. This conclusion is in accord with judgments by other national and international scientific committees, based on somewhat older data. Currently, no alternative dose-response relationship appears more pragmatic or prudent for radiation protection purposes than the linear no-threshold model.
Collapse
Affiliation(s)
- Roy E Shore
- New York University School of Medicine, New York, NY, and Radiation Effects Research Foundation, Hiroshima, Japan (retired)
| | | | - John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, and Vanderbilt University, Nashville, TN
| | | | - Scott Davis
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kojima Y, Yokoya S, Kurita N, Idaka T, Ishikawa T, Tanaka H, Ezawa Y, Ohto H. Cryptorchidism after the Fukushima Daiichi Nuclear Power Plant accident:causation or coincidence? Fukushima J Med Sci 2019; 65:76-98. [PMID: 31915325 PMCID: PMC7012587 DOI: 10.5387/fms.2019-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 01/20/2023] Open
Abstract
Cryptorchidism (undescended testes) is among the most common congenital diseases in male children. Although many factors have been linked to the incidence of cryptorchidism, and testicular androgen plays a key role in its pathogenesis, the cause remains unknown in most cases. Recently, a Japanese group published a speculative paper entitled, "Nationwide increase in cryptorchidism after the Fukushima nuclear accident." Although the authors implicated radionuclides emitted from the Fukushima accident as contributing to an increased incidence of cryptorchidism, they failed to establish biological plausibility for their hypothesis, and glossed over an abundance of evidence and expert opinion to the contrary. We assessed the adequacy of their study in terms of design setting, data analysis, and its conclusion from various perspectives. Numerous factors must be considered, including genetic, environmental, maternal/fetal, and social factors associated with the reporting of cryptorchidism. Other investigators have established that the doses of external and internal radiation exposure in both Fukushima prefecture and the whole of Japan after the accident are too low to affect testicular descent during fetal periods;thus, a putative association can be theoretically and empirically rejected. Alternative explanations exist for the reported estimates of increased cryptorchidism surgeries in the years following Japan's 2011 earthquake, tsunami, and nuclear crisis. Data from independent sources cast doubt on the extent to which cryptorchidism increased, if at all. In any case, evidence that radionuclides from the Fukushima Daiichi Nuclear Power Plant could cause cryptorchidism is lacking.
Collapse
Affiliation(s)
- Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine
| | - Susumu Yokoya
- Thyroid and Endocrine Center, Fukushima Medical University School of Medicine
| | - Noriaki Kurita
- Department of Clinical Epidemiology, Graduate School of Medicine, Fukushima Medical University
- Department of Innovative Research and Education for Clinicians and Trainees (DiRECT), Fukushima Medical University Hospital
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University
| | - Takayuki Idaka
- Medical Research Center, Fukushima Medical University School of Medicine
| | - Tetsuo Ishikawa
- Department of Radiation Physics and Chemistry, Fukushima Medical University
| | - Hideaki Tanaka
- Department of Pediatric Surgery, Fukushima Medical University Hospital
| | - Yoshiko Ezawa
- Medical Affairs Division, Fukushima Medical University Hospital
| | - Hitoshi Ohto
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University
| |
Collapse
|
8
|
Soubry A. Epigenetics as a Driver of Developmental Origins of Health and Disease: Did We Forget the Fathers? Bioessays 2017; 40. [PMID: 29168895 DOI: 10.1002/bies.201700113] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/04/2017] [Indexed: 12/15/2022]
Abstract
What are the effects of our environment on human development and the next generation? Numerous studies have provided ample evidence that a healthy environment and lifestyle of the mother is important for her offspring. Biological mechanisms underlying these environmental influences have been proposed to involve alterations in the epigenome. Is there enough evidence to suggest a similar contribution from the part of the father? Animal models provide proof of a transgenerational epigenetic effect through the paternal germ line, but can this be translated to humans? To date, literature on fathers is scarce. Human studies do not always incorporate appropriate tools to evaluate paternal influences or epigenetic effects. In reviewing the literature, I stress the need to explore and recognize paternal contributions to offspring's health within the Developmental Origins of Health and Disease hypothesis, and coin this new concept the Paternal Origins of Health and Disease paradigm (POHaD). A better understanding of preconceptional origins of disease through the totality of paternal exposures, or the paternal exposome, will provide evidence-based public health recommendations for future fathers.
Collapse
Affiliation(s)
- Adelheid Soubry
- Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Tawn EJ, Curwen GB, Jonas P, Riddell AE, Hodgson L. Chromosome aberrations determined by sFISH and G-banding in lymphocytes from workers with internal deposits of plutonium. Int J Radiat Biol 2016; 92:312-20. [PMID: 27043761 PMCID: PMC4898148 DOI: 10.3109/09553002.2016.1152414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Purpose: To examine the influence of α-particle radiation exposure from internally deposited plutonium on chromosome aberration frequencies in peripheral blood lymphocytes of workers from the Sellafield nuclear facility, UK. Materials and methods: Chromosome aberration data from historical single colour fluorescence in situ hybridization (sFISH) and Giemsa banding (G-banding) analyses, together with more recent sFISH results, were assessed using common aberration analysis criteria and revised radiation dosimetry. The combined sFISH group comprised 29 men with a mean internal red bone marrow dose of 21.0 mGy and a mean external γ-ray dose of 541 mGy. The G-banding group comprised 23 men with a mean internal red bone marrow dose of 23.0 mGy and a mean external γ-ray dose of 315 mGy. Results: Observed translocation frequencies corresponded to expectations based on age and external γ-ray dose with no need to postulate a contribution from α-particle irradiation of the red bone marrow by internally deposited plutonium. Frequencies of stable cells with complex aberrations, including insertions, were similar to those in a group of controls and a group of workers with external radiation exposure only, who were studied concurrently. In a similar comparison there is some suggestion of an increase in cells with unstable complex aberrations and this may reflect recent direct exposure to circulating lymphocytes. Conclusions: Reference to in vitro dose response data for the induction of stable aberrant cells by α-particle irradiation indicates that the low red bone marrow α-particle radiation doses received by the Sellafield workers would not result in a discernible increase in translocations, thus supporting the in vivo findings. Therefore, the greater risk from occupational radiation exposure of the bone marrow resulting in viable chromosomally aberrant cells comes from, in general, much larger γ-ray exposure in comparison to α-particle exposure from plutonium.
Collapse
Affiliation(s)
- E Janet Tawn
- a Centre for Integrated Genomic Medical Research (CIGMR) , Centre for Epidemiology, Institute of Population Health, The University of Manchester , Manchester , UK ;,b Formerly of Westlakes Research Institute*, Westlakes Science and Technology Park , Moor Row , Cumbria , UK
| | - Gillian B Curwen
- a Centre for Integrated Genomic Medical Research (CIGMR) , Centre for Epidemiology, Institute of Population Health, The University of Manchester , Manchester , UK ;,b Formerly of Westlakes Research Institute*, Westlakes Science and Technology Park , Moor Row , Cumbria , UK
| | - Patricia Jonas
- c Formerly of Northern Genetics Service, Institute of Genetic Medicine, International Centre for Life, Newcastle University , Newcastle upon Tyne , UK
| | - Anthony E Riddell
- b Formerly of Westlakes Research Institute*, Westlakes Science and Technology Park , Moor Row , Cumbria , UK ;,d Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Westlakes Science and Technology Park , Moor Row , Cumbria , UK
| | - Leanne Hodgson
- b Formerly of Westlakes Research Institute*, Westlakes Science and Technology Park , Moor Row , Cumbria , UK
| |
Collapse
|
10
|
|
11
|
Tawn EJ, Curwen GB, Jonas P, Gillies M, Hodgson L, Cadwell KK. Chromosome Aberrations Determined by FISH in Radiation Workers from the Sellafield Nuclear Facility. Radiat Res 2015; 184:296-303. [PMID: 26305405 DOI: 10.1667/rr14125.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Workers from the Sellafield nuclear facility (Cumbria, UK) with occupational exposures to external sources of ionizing radiation were examined for translocation frequencies in peripheral blood lymphocytes using fluorescence in situ hybridization (FISH). This is an extension of an earlier study of retired workers, and includes analyses of additional samples from the earlier collection, bringing the total to 321. Another 164 samples from both current and retired employees, including 26 repeat samples, were obtained from a new collection, thus giving a combined dataset of 459 workers. This all-male population of workers was divided into 6 dose groups comprising 97 with recorded external occupational doses <50 mGy, 118 with 50-249 mGy, 129 with 250-499 mGy, 89 with 500-749 mGy, 17 with 750-999 mGy and 9 with >1,000 mGy. Univariate analysis showed a significant association between external dose and translocation frequency (P < 0.001) with the estimate of slope ± standard error being 1.174 ± 0.164 × 10(-2) translocations per Gy. Multivariate analysis revealed that age increased the rate of translocations by 0.0229 ± 0.0052 × 10(-2) per year (P < 0.001). However, the impact of age adjustment on the radiation dose response for translocation frequencies was minor with the new estimate of slope ± standard error being 1.163 ± 0.162 × 10(-2) translocations per Gy. With the dose response for the induction of translocations by chronic in vivo low-LET radiation now well characterized, cytogenetic analysis can play an integral role in retrospective dose reconstruction of chronic exposure in epidemiological studies of exposed populations.
Collapse
Affiliation(s)
- E Janet Tawn
- a Centre for Integrated Genomic Medical Research (CIGMR), Centre for Epidemiology, Institute of Population Health, The University of Manchester, Manchester, M13 9PT, United Kingdom.,b Formerly of Westlakes Research Institute2, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3LN, United Kingdom
| | - Gillian B Curwen
- a Centre for Integrated Genomic Medical Research (CIGMR), Centre for Epidemiology, Institute of Population Health, The University of Manchester, Manchester, M13 9PT, United Kingdom.,b Formerly of Westlakes Research Institute2, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3LN, United Kingdom
| | - Patricia Jonas
- c Formerly of Northern Genetics Service, Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Michael Gillies
- b Formerly of Westlakes Research Institute2, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3LN, United Kingdom.,d Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3HU, United Kingdom
| | - Leanne Hodgson
- b Formerly of Westlakes Research Institute2, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3LN, United Kingdom
| | - Kevin K Cadwell
- b Formerly of Westlakes Research Institute2, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3LN, United Kingdom
| |
Collapse
|
12
|
Little MP. Germline minisatellite mutations in the offspring of irradiated parents. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2015; 35:E1-E4. [PMID: 25485602 DOI: 10.1088/0952-4746/35/1/e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|