1
|
Zheng Q, Goodwin ZAH, Gopalakrishnan V, Hoane AG, Han M, Zhang R, Hawthorne N, Batteas JD, Gewirth AA, Espinosa-Marzal RM. Water in the Electrical Double Layer of Ionic Liquids on Graphene. ACS NANO 2023; 17:9347-9360. [PMID: 37163519 DOI: 10.1021/acsnano.3c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The performance of electrochemical devices using ionic liquids (ILs) as electrolytes can be impaired by water uptake. This work investigates the influence of water on the behavior of hydrophilic and hydrophobic ILs─with ethylsulfate and tris(perfluoroalkyl)trifluorophosphate or bis(trifluoromethyl sulfonyl)imide (TFSI) anions, respectively─on electrified graphene, a promising electrode material. The results show that water uptake slightly reduces the IL electrochemical stability and significantly influences graphene's potential of zero charge, which is justified by the extent of anion depletion from the surface. Experiments confirm the dominant contribution of graphene's quantum capacitance (CQ) to the total interfacial capacitance (Cint) near the PZC, as expected from theory. Combining theory and experiments reveals that the hydrophilic IL efficiently screens surface charge and exhibits the largest double layer capacitance (CIL ∼ 80 μF cm-2), so that CQ governs the charge stored. The hydrophobic ILs are less efficient in charge screening and thus exhibit a smaller capacitance (CIL ∼ 6-9 μF cm-2), which governs Cint already at small potentials. An increase in the total interfacial capacitance is observed at positive voltages for humid TFSI-ILs relative to dry ones, consistent with the presence of a satellite peak. Short-range surface forces reveal the change of the interfacial layering with potential and water uptake owing to reorientation of counterions, counterion binding, co-ion repulsion, and water enrichment. These results are consistent with the charge being mainly stored in a ∼2 nm-thick double layer, which implies that ILs behave as highly concentrated electrolytes. This knowledge will advance the design of IL-graphene-based electrochemical devices.
Collapse
Affiliation(s)
- Qianlu Zheng
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zachary A H Goodwin
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Varun Gopalakrishnan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alexis G Hoane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mengwei Han
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ruixian Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nathaniel Hawthorne
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - James D Batteas
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Parajó JJ, Otero-Mato JM, Lobo Ferreira AI, Varela LM, Santos LM. Enthalpy of solvation of alkali metal salts in a protic ionic liquid: Effect of cation charge and size. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Zhao J, Gorbatovski G, Oll O, Anderson E, Lust E. Influence of water on the electrochemical characteristics and nanostructure of Bi(hkl)│Ionic liquid interface. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Structure, Properties, and Phase Transformations of Water Nanoconfined between Brucite-like Layers: The Role of Wall Surface Polarity. MATERIALS 2022; 15:ma15093043. [PMID: 35591378 PMCID: PMC9100153 DOI: 10.3390/ma15093043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023]
Abstract
The interaction of water with confining surfaces is primarily governed by the wetting properties of the wall material-in particular, whether it is hydrophobic or hydrophilic. The hydrophobicity or hydrophilicity itself is determined primarily by the atomic structure and polarity of the surface groups. In the present work, we used molecular dynamics to study the structure and properties of nanoscale water layers confined between layered metal hydroxide surfaces with a brucite-like structure. The influence of the surface polarity of the confining material on the properties of nanoconfined water was studied in the pressure range of 0.1-10 GPa. This pressure range is relevant for many geodynamic phenomena, hydrocarbon recovery, contact spots of tribological systems, and heterogeneous materials under extreme mechanical loading. Two phase transitions were identified in water confined within 2 nm wide slit-shaped nanopores: (1) at p1 = 3.3-3.4 GPa, the liquid transforms to a solid phase with a hexagonal close-packed (HCP) crystal structure, and (2) at p2 = 6.7-7.1 GPa, a further transformation to face-centered cubic (FCC) crystals occurs. It was found that the behavior of the confined water radically changes when the partial charges (and, therefore, the surface polarity) are reduced. In this case, water transforms directly from the liquid phase to an FCC-like phase at 3.2-3.3 GPa. Numerical simulations enabled determination of the amount of hydrogen bonding and diffusivity of nanoconfined water, as well as the relationship between pressure and volumetric strain.
Collapse
|
5
|
Liu S, Tan Z, Wu J, Mao B, Yan J. Electrochemical interfaces in ionic liquids/deep eutectic solvents incorporated with water: A review. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Zhuo Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiedu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| |
Collapse
|
6
|
Montes-Campos H, Rivera-Pousa A, Méndez-Morales T. Density functional theory of alkali metals at the IL/graphene electrochemical interface. J Chem Phys 2022; 156:014706. [PMID: 34998333 DOI: 10.1063/5.0077449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mechanism of charge transfer between metal ions and graphene in the presence of an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) is investigated by means of density functional theory calculations. For that purpose, two different comparisons are established: (i) the behavior of Li+ and K+ when adsorbed onto the basal plane of graphene and (ii) the differences between Li+ approaching the carbon surface from the basal plane and being intercalated through the edge plane of trilayer graphene. In the first case, it is found that the metal ions must overcome high energy barriers due to their interaction with the ionic liquid before reaching an equilibrium position close to the interface. In addition, no significant charge transfer between any of the metals and graphene takes place until very close energetically unfavorable distances. The second configuration shows that Li+ has no equilibrium position in the proximity of the interface but instead has an equilibrium position when it is inside the electrode for which it has to cross an energy barrier. In this case, the formation of a LiC12 complex is observed since the charge transfer at the equilibrium distance is achieved to a considerable extent. Thus, the interfacial charge transfer resistance on the electrode in energy devices based on ionic liquids clearly depends not only on the binding of the ionic liquid to the metal cations and their ability to form a dense solvation shell around them but also on the surface topography and its effect on the ion packing on the surface.
Collapse
Affiliation(s)
- H Montes-Campos
- Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - A Rivera-Pousa
- Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - T Méndez-Morales
- Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Amiri M, Bélanger D. Physicochemical and Electrochemical Properties of Water-in-Salt Electrolytes. CHEMSUSCHEM 2021; 14:2487-2500. [PMID: 33973406 DOI: 10.1002/cssc.202100550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Aqueous electrolytes are attractive for applications in electrochemical technologies due to features like being eco-friendly, cost effective, and non-flammable. Very recently, superconcentrated aqueous electrolytes, such as so-called water-in-salt, water-in-bisalt, and hydrate melt, have received a significant attention for electrochemical energy storage due to enhanced stability and much wider electrochemical stability window. This Review focuses on the physicochemical properties of the highly concentrated electrolytes that are derived from several analysis techniques and simulation. A summary of most common features such as ions-water interactions, structure of species present in the electrolyte, conductivity, and viscosity of the electrolytes found in the literature are presented as well. In addition, this Review explains how these characteristics affect the electrochemical behavior of the electrolyte such as double layer structure and electrode/electrolyte interface leading to enhanced electrochemical stability of aqueous electrolytes.
Collapse
Affiliation(s)
- Mona Amiri
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Daniel Bélanger
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| |
Collapse
|
8
|
Marion S, Vučemilović-Alagić N, Špadina M, Radenović A, Smith AS. From Water Solutions to Ionic Liquids with Solid State Nanopores as a Perspective to Study Transport and Translocation Phenomena. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100777. [PMID: 33955694 DOI: 10.1002/smll.202100777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Solid state nanopores are single-molecular devices governed by nanoscale physics with a broad potential for technological applications. However, the control of translocation speed in these systems is still limited. Ionic liquids are molten salts which are commonly used as alternate solvents enabling the regulation of the chemical and physical interactions on solid-liquid interfaces. While their combination can be challenging to the understanding of nanoscopic processes, there has been limited attempts on bringing these two together. While summarizing the state of the art and open questions in these fields, several major advances are presented with a perspective on the next steps in the investigations of ionic-liquid filled nanopores, both from a theoretical and experimental standpoint. By analogy to aqueous solutions, it is argued that ionic liquids and nanopores can be combined to provide new nanofluidic functionalities, as well as to help resolve some of the pertinent problems in understanding transport phenomena in confined ionic liquids and providing better control of the speed of translocating analytes.
Collapse
Affiliation(s)
- Sanjin Marion
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015, Lausanne, Switzerland
| | - Nataša Vučemilović-Alagić
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
- PULS Group, Physics Department, Interdisciplinary Center for Nanostructured Films, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Mario Špadina
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
| | - Aleksandra Radenović
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015, Lausanne, Switzerland
| | - Ana-Sunčana Smith
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
- PULS Group, Physics Department, Interdisciplinary Center for Nanostructured Films, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
9
|
Dong Y, Laaksonen A, Huo F, Gao Q, Ji X. Hydrated Ionic Liquids Boost the Trace Detection Capacity of Proteins on TiO 2 Support. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5012-5021. [PMID: 33861604 PMCID: PMC8154861 DOI: 10.1021/acs.langmuir.1c00525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Indexed: 05/05/2023]
Abstract
Trace detection based on surface-enhanced Raman scattering (SERS) has attracted considerable attention, and exploiting efficient strategies to stretch the limit of detection and understanding the mechanisms on molecular level are of utmost importance. In this work, we use ionic liquids (ILs) as trace additives in a protein-TiO2 system, allowing us to obtain an exceptionally low limit of detection down to 10-9 M. The enhancement factors (EFs) were determined to 2.30 × 104, 6.17 × 104, and 1.19 × 105, for the three systems: one without ILs, one with ILs in solutions, and one with ILs immobilized on the TiO2 substrate, respectively, corresponding to the molecular forces of 1.65, 1.32, and 1.16 nN quantified by the atomic force microscopy. The dissociation and following hydration of ILs, occurring in the SERS system, weakened the molecular forces but instead improved the electron transfer ability of ILs, which is the major contribution for the observed excellent detection. The weaker diffusion of the hydrated IL ions immobilized on the TiO2 substrate did provide a considerably greater EF value, compared to the ILs in the solution. This work clearly demonstrates the importance of the hydration of ions, causing an improved electron transfer ability of ILs and leading to an exceptional SERS performance in the field of trace detection. Our results should stimulate further development to use ILs in SERS and related applications in bioanalysis, medical diagnosis, and environmental science.
Collapse
Affiliation(s)
- Yihui Dong
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Aatto Laaksonen
- Energy
Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-10691, Sweden
- State
Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre
of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi 700487, Romania
| | - Feng Huo
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qingwei Gao
- State Key
Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoyan Ji
- Energy
Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
10
|
|
11
|
Chen M, Wu J, Ye T, Ye J, Zhao C, Bi S, Yan J, Mao B, Feng G. Adding salt to expand voltage window of humid ionic liquids. Nat Commun 2020; 11:5809. [PMID: 33199709 PMCID: PMC7670447 DOI: 10.1038/s41467-020-19469-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Humid hydrophobic ionic liquids-widely used as electrolytes-have narrowed electrochemical windows due to the involvement of water, absorbed on the electrode surface, in electrolysis. In this work, we performed molecular dynamics simulations to explore effects of adding Li salt in humid ionic liquids on the water adsorbed on the electrode surface. Results reveal that most of the water molecules are pushed away from both cathode and anode, by adding salt. The water remaining on the electrode is almost bound with Li+, having significantly lowered activity. The Li+-bonding and re-arrangement of the surface-adsorbed water both facilitate the inhibition of water electrolysis, and thus prevent the reduction of electrochemical windows of humid hydrophobic ionic liquids. This finding is testified by cyclic voltammetry measurements where salt-in-humid ionic liquids exhibit enlarged electrochemical windows. Our work provides the underlying mechanism and a simple but practical approach for protection of humid ionic liquids from electrochemical performance degradation.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Jiedu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Ting Ye
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Chang Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Sheng Bi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China.
| |
Collapse
|
12
|
Rodríguez-Fernández CD, Montes-Campos H, López-Lago E, de la Fuente R, Varela LM. Microstructure, dynamics and optical properties of metal-doped imidazolium-based ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Montes-Campos H, Méndez-Morales T, Otero-Mato JM, Cabeza O, Gallego LJ, Lomba E, Varela LM. Ionic liquids nanoconfined in zeolite-templated carbon: A computational study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Sieling T, Brand I. In Situ Spectroelectrochemical Investigation of Potential‐Dependent Changes in an Amphiphilic Imidazolium‐Based Ionic Liquid Film on the Au(111) Electrode Surface. ChemElectroChem 2020. [DOI: 10.1002/celc.202000385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Thorben Sieling
- University of Oldenburg, Department of Chemistry 26111 Oldenburg Germany
| | - Izabella Brand
- University of Oldenburg, Department of Chemistry 26111 Oldenburg Germany
| |
Collapse
|
15
|
Chen M, Feng G, Qiao R. Water-in-salt electrolytes: An interfacial perspective. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Umeda K, Kobayashi K, Minato T, Yamada H. Atomic-Scale Three-Dimensional Local Solvation Structures of Ionic Liquids. J Phys Chem Lett 2020; 11:1343-1348. [PMID: 31990558 DOI: 10.1021/acs.jpclett.9b03874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Room-temperature ionic liquids are promising media for next-generation energy devices because of their various superior characteristics. Because device performance is often dictated by the solvation structures at the solid-liquid interfaces, particularly at the local reactive sites, their atomistic pictures are in great demand. However, there has been no experimental technique for their three-dimensional solvation structures. Here, we first demonstrate the measurement of the atomic-scale ionic liquids using a recently established ultralow-noise three-dimensional frequency-modulation atomic force microscopy technique supported by molecular dynamics simulations. We conducted the experiments in protic and aprotic aqueous solutions and reveal that the aprotic solvation structure exhibits the higher site specificity, which resolves atomic-scale surface charge distribution on mica because of the absence of the H-bonding network. Our methodology is also applicable to pure liquids and would be a breakthrough for expanding their future applications.
Collapse
Affiliation(s)
- Kenichi Umeda
- Department of Electronic Science and Engineering , Kyoto University , Katsura, Nishikyo, Kyoto 615-8510 , Japan
- Department of Advanced Material Science , The University of Tokyo , Kashiwa , Chiba 277-8561 , Japan
- Nano Life Science Institute, Institute for Frontier Science Initiative , Kanazawa University , Kakuma, Kanazawa , Ishikawa 920-1192 , Japan
| | - Kei Kobayashi
- Department of Electronic Science and Engineering , Kyoto University , Katsura, Nishikyo, Kyoto 615-8510 , Japan
| | - Taketoshi Minato
- Office of Society-Academia Collaboration for Innovation , Kyoto University , Katsura, Nishikyo, Kyoto 615-8530 , Japan
| | - Hirofumi Yamada
- Department of Electronic Science and Engineering , Kyoto University , Katsura, Nishikyo, Kyoto 615-8510 , Japan
| |
Collapse
|
17
|
Verma A, Stoppelman JP, McDaniel JG. Tuning Water Networks via Ionic Liquid/Water Mixtures. Int J Mol Sci 2020; 21:E403. [PMID: 31936347 PMCID: PMC7013630 DOI: 10.3390/ijms21020403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 11/17/2022] Open
Abstract
Water in nanoconfinement is ubiquitous in biological systems and membrane materials, with altered properties that significantly influence the surrounding system. In this work, we show how ionic liquid (IL)/water mixtures can be tuned to create water environments that resemble nanoconfined systems. We utilize molecular dynamics simulations employing ab initio force fields to extensively characterize the water structure within five different IL/water mixtures: [BMIM + ][BF 4 - ], [BMIM + ][PF 6 - ], [BMIM + ][OTf - ], [BMIM + ][NO 3 - ]and [BMIM + ][TFSI - ] ILs at varying water fraction. We characterize water clustering, hydrogen bonding, water orientation, pairwise correlation functions and percolation networks as a function of water content and IL type. The nature of the water nanostructure is significantly tuned by changing the hydrophobicity of the IL and sensitively depends on water content. In hydrophobic ILs such as [BMIM + ][PF 6 - ], significant water clustering leads to dynamic formation of water pockets that can appear similar to those formed within reverse micelles. Furthermore, rotational relaxation times of water molecules in supersaturated hydrophobic IL/water mixtures indicate the close-connection with nanoconfined systems, as they are quantitatively similar to water relaxation in previously characterized lyotropic liquid crystals. We expect that this physical insight will lead to better design principles for incorporation of ILs into membrane materials to tune water nanostructure.
Collapse
Affiliation(s)
| | | | - Jesse G. McDaniel
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta 30332-0400, Georgia; (A.V.); (J.P.S.)
| |
Collapse
|
18
|
He Y, Saang’onyo D, Ladipo F, Knutson BL, Rankin SE. In Situ Fourier Transform Infrared Study of the Effects of Silica Mesopore Confinement on Hydration of Ionic Liquid 1-Butyl-3-methylimidazolium Chloride. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Bahuguna G, Adhikary VS, Sharma RK, Gupta R. Ultrasensitive Organic Humidity Sensor with High Specificity for Healthcare Applications. ELECTROANAL 2019. [DOI: 10.1002/elan.201900327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gaurav Bahuguna
- Department of ChemistryIndian Institute of Technology Jodhpur, Jodhpur Rajasthan India- 342037
| | - Vinod S. Adhikary
- Department of ChemistryIndian Institute of Technology Jodhpur, Jodhpur Rajasthan India- 342037
| | - Rakesh K. Sharma
- Department of ChemistryIndian Institute of Technology Jodhpur, Jodhpur Rajasthan India- 342037
| | - Ritu Gupta
- Department of ChemistryIndian Institute of Technology Jodhpur, Jodhpur Rajasthan India- 342037
| |
Collapse
|
20
|
Coles SW, Borgis D, Vuilleumier R, Rotenberg B. Computing three-dimensional densities from force densities improves statistical efficiency. J Chem Phys 2019. [DOI: 10.1063/1.5111697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Samuel W. Coles
- Sorbonne Université, CNRS, Physicochimie des électrolytes et nanosystèmes interfaciaux, UMR PHENIX, F-75005 Paris, France
| | - Daniel Borgis
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
- Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Rodolphe Vuilleumier
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physicochimie des électrolytes et nanosystèmes interfaciaux, UMR PHENIX, F-75005 Paris, France
| |
Collapse
|
21
|
Li K, Li S, Huang W, Yu C, Zhou Y. MembrFactory: A Force Field and composition Double Independent Universal Tool for Constructing Polyamide Reverse Osmosis Membranes. J Comput Chem 2019; 40:2432-2438. [DOI: 10.1002/jcc.26015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Ke Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240 China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240 China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240 China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240 China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
22
|
Zaleski R, Gorgol M, Goworek J, Kierys A, Pietrow M, Zgardzińska B. Positron study of adsorption of n-heptane in SBA-3. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00084-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Docampo-Álvarez B, Gómez-González V, Cabeza O, Ivaništšev VB, Gallego LJ, Varela LM. Molecular dynamics simulations of novel electrolytes based on mixtures of protic and aprotic ionic liquids at the electrochemical interface: Structure and capacitance of the electric double layer. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Bi S, Wang R, Liu S, Yan J, Mao B, Kornyshev AA, Feng G. Minimizing the electrosorption of water from humid ionic liquids on electrodes. Nat Commun 2018; 9:5222. [PMID: 30514881 PMCID: PMC6279789 DOI: 10.1038/s41467-018-07674-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/16/2018] [Indexed: 01/26/2023] Open
Abstract
In supercapacitors based on ionic liquid electrolytes, small amounts of absorbed water could potentially reduce the electrochemical window of electrolytes and cause performance degradation. The same would take place if ionic liquids are used as solvents for electrocatalysis involving the dissolved molecular species. In this work, we carry out molecular dynamics simulations, with gold and carbon electrodes in typical ionic liquids, hydrophobic and hydrophilic, to study electrosorption of water. We investigate the effects of hydrophobicity/hydrophilicity of ionic liquids and electrodes on interfacial distribution of ions and electrosorbed water. Results reveal that using hydrophilic ionic liquids would help to keep water molecules away from the negatively charged electrodes, even at large electrode polarizations. This conclusion is supported by electrochemical cyclic voltammetry measurements on gold and carbon electrodes in contact with humid ionic liquids. Thereby, our findings suggest potential mechanisms for protection of electrodes from water electrosorption. Ionic liquid electrolytes can impart increased operational voltage and energy density in supercapacitors, but water may diminish performance. Here the authors show that the hydrophilicity/hydrophobicity of ionic liquids can influence electrosorption of water and ultimately the supercapacitor performance.
Collapse
Affiliation(s)
- Sheng Bi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Runxi Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Shuai Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jiawei Yan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| | - Bingwei Mao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Alexei A Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China.
| |
Collapse
|
25
|
NaRIBaS—A Scripting Framework for Computational Modeling of Nanomaterials and Room Temperature Ionic Liquids in Bulk and Slab. COMPUTATION 2018. [DOI: 10.3390/computation6040057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Computational modeling is more and more often used in studies of novel ionic liquids. The inevitable side-effect is the growing number of similar computations that require automation. This article introduces NaRIBaS (Nanomaterials and Room Temperature Ionic Liquids in Bulk and Slab)—a scripting framework that combines bash scripts with computational codes to ease modeling of nanomaterials and ionic liquids in bulk and slab. NaRIBaS helps to organize and document all input and output data, thus, improving the reproducibility of computations. Three examples are given to illustrate the NaRIBaS workflows for density functional theory (DFT) calculations of ionic pairs, molecular dynamics (MD) simulations of bulk ionic liquids (ILs), and MD simulations of ILs at an interface.
Collapse
|
26
|
Wei Y, Yi Z, Xu J, Yang W, Yang L, Liu H. Study on the binding characteristics of hydroxylated polybrominated diphenyl ethers and thyroid transporters using the multispectral technique and computational simulation. J Biomol Struct Dyn 2018; 37:1402-1413. [DOI: 10.1080/07391102.2018.1461134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yuchen Wei
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongsheng Yi
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jie Xu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wu Yang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Lulu Yang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Hongyan Liu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
27
|
Ahn MM, Yang YD, Im DJ, Oh JM, Kang IS. Selective cation depletion from an ionic liquid droplet under an electric field. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Vatamanu J, Borodin O. Ramifications of Water-in-Salt Interfacial Structure at Charged Electrodes for Electrolyte Electrochemical Stability. J Phys Chem Lett 2017; 8:4362-4367. [PMID: 28846430 DOI: 10.1021/acs.jpclett.7b01879] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Development of safe aqueous batteries and supercapacitors critically relies on expanding the electrolyte electrochemical stability window. A novel mechanism responsible for widening the electrochemical stability window of water-in-salt electrolytes (WiSEs) compared to conventional salt-in-water electrolytes is suggested based on molecular dynamics (MD) simulations of the electrolyte-electrode interface. Water exclusion from the interfacial layer at the positive electrode provided additional kinetic protection that delayed the onset of the oxygen evolution reactions. The interfacial structure of a WiSE at negative electrodes near the potential of zero charge clarified why the recently discovered passivation layers formed in WiSEs are robust. The onset of water accumulation at potentials below 1.5 V vs Li/Li+ leads to formation of water-rich nanodomains at the negative electrode, limiting the robustness of the WiSE. Unexpectedly, the bis(trifluoromethanesulfonyl)imide anion adsorbed and trifluoromethanesulfonate desorbed with positive electrode polarization, demonstrating selective anion partitioning in the double layer.
Collapse
Affiliation(s)
- Jenel Vatamanu
- Electrochemistry Branch, Sensors and Electron Devices Directorate, U.S. Army Research Laboratory , 2800 Powder Mill Road, Adelphi, Maryland 20703, United States
| | - Oleg Borodin
- Electrochemistry Branch, Sensors and Electron Devices Directorate, U.S. Army Research Laboratory , 2800 Powder Mill Road, Adelphi, Maryland 20703, United States
| |
Collapse
|
29
|
Insight into the Electrical Double Layer of an Ionic Liquid on Graphene. Sci Rep 2017; 7:4225. [PMID: 28652593 PMCID: PMC5484676 DOI: 10.1038/s41598-017-04576-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/24/2017] [Indexed: 11/14/2022] Open
Abstract
Graphene is a promising next-generation conducting material with the potential to replace traditional electrode materials in supercapacitors. Since energy storage in supercapacitors relies on the electrolyte-electrode interface, here we elucidate the interfacial subnanometer structure of a single component liquid composed solely of cations and anions – an ionic liquid- on electrified graphene. We study the effect of applied potential on the interaction between graphene and a silicon tip in an ionic liquid and describe it within the framework of the Derjaguin-Landau-Verwey-Overbeck (DLVO) theory. The energy is stored in an electrical double layer composed of an extended Stern layer, which consists of multiple ion layers over ~2 nanometers, beyond which a diffuse layer forms to compensate the applied potential on graphene. The electrical double layer significantly responds to the applied potential, and it shows the transition from overscreening to crowding of counterions at the interface at the highest applied potentials. It is proposed that surface charging occurs through the adsorption of the imidazolium cation to unbiased graphene (likely due to π-π interactions) and that the surface potential is better compensated when counterion crowding happens. This study scrutinizes the electrified graphene-ionic liquid interface, with implications not only in the field of energy storage, but also in lubrication.
Collapse
|
30
|
Kondrat S, Kornyshev A, Qiao R. Two tributaries of the electrical double layer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:460301. [PMID: 27625412 DOI: 10.1088/0953-8984/28/46/460301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Svyatoslav Kondrat
- Forschungszentrum Jülich, IBG-1: Biotechnology, 52425 Jülich, Germany. Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, UK. Department of Mechanical Engineering, Virginia Tech, 460 Old Turner St. Blacksburg, VA 24061, USA
| | | | | |
Collapse
|