1
|
Sarafska TP, Spassova MI, Dudev TM, Pereva SM, Stoyanov SD, Spassov TG. Easy and Effective Method for α-CD:N 2O Host-Guest Complex Formation. Int J Mol Sci 2024; 25:5472. [PMID: 38791510 PMCID: PMC11121875 DOI: 10.3390/ijms25105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
α-CD:N2O "host-guest" type complexes were formed by a simple solid-gas reaction (N2O sorption into α-CD) under different gas pressures and temperatures. The new N2O inclusion method applied in the present study was compared with the already known technique based on the crystallization of clathrates from a water solution of α-CD saturated with N2O. A maximum storage capacity of 4.5 wt.% N2O was achieved when charging the cyclodextrin from a gas phase. The amount of included gas decreases to 1.3 wt.% when the complex is stored in air at 1 atm and room temperature, analogous to that achieved by the crystallization of α-CD:N2O. Furthermore, it was shown that the external coordination of N2O to either the upper or lower rim of α-CD without hydration water displacement is the preferred mode of binding, due to hydrogen bonds with neighboring -OH groups from the host macrocycle and three of the hydration water molecules nearby. The capacity of α-CD to store N2O and the thermal stability of the α-CD:N2O complex demonstrated promising applications of these types of complexes in food and beverages.
Collapse
Affiliation(s)
- Tsveta P. Sarafska
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (T.P.S.); (M.I.S.); (T.M.D.); (S.M.P.)
| | - Maya I. Spassova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (T.P.S.); (M.I.S.); (T.M.D.); (S.M.P.)
| | - Todor M. Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (T.P.S.); (M.I.S.); (T.M.D.); (S.M.P.)
| | - Stiliana M. Pereva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (T.P.S.); (M.I.S.); (T.M.D.); (S.M.P.)
| | - Simeon D. Stoyanov
- Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore;
| | - Tony G. Spassov
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (T.P.S.); (M.I.S.); (T.M.D.); (S.M.P.)
| |
Collapse
|
2
|
Sadeh P, Zeinali S, Rastegari B, Najafipour I. Functionalization of β-cyclodextrin metal-organic frameworks with gelatin and glutamine for drug delivery of curcumin to cancerous cells. Heliyon 2024; 10:e30349. [PMID: 38726172 PMCID: PMC11079092 DOI: 10.1016/j.heliyon.2024.e30349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Beta-cyclodextrin Metal-Organic Framework (β-CD-MOF) is a unique class of porous materials that merges the inherent properties of cyclodextrins with the structural advantages of metal-organic frameworks (MOFs). When combined with the concept of MOFs, which are crystalline structures composed of metal ions or clusters linked by organic ligands, the resulting β-CD-MOF holds immense potential for various applications, especially in the field of drug delivery. In this study, biocompatible metal-organic frameworks (MOFs) synthesized using β-Cyclodextrin (β-CD) and potassium enabled drug delivery of curcumin (CCM) to cancerous cells. Functionalizing β-CD-MOF with l-glutamine (glutamine-β-CD-MOF) enhanced cancer cell-specific targeting due to glutamine's essential role in cancer cell proliferation and energy pathways. Amino group functionalization provided further functionalization opportunities. Gelatin coating (gelatin@β-CD-MOF) facilitated controlled drug release in an acidic medium. High drug loading capacities (52.38-55.63 %) were achieved for β-CD-MOF@CCM and glutamine-β-CD-MOF@CCM, leveraging the high porosity and affinity of amine and phenol groups of curcumin. The MTT assay highlighted the specificity and differentiation of glutamine-β-CD-MOF in targeting cancerous over normal cells. These functionalized β-CD MOFs efficiently encapsulate curcumin, ensuring controlled drug release and enhanced therapeutic efficacy, particularly in cancer therapy.
Collapse
Affiliation(s)
- Pegah Sadeh
- Department of Nanochemical Engineering, School of Advanced Technologies, Shiraz University, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering, School of Advanced Technologies, Shiraz University, Iran
| | - Banafsheh Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Iman Najafipour
- Department of Nanochemical Engineering, School of Advanced Technologies, Shiraz University, Iran
| |
Collapse
|
3
|
Hedayati S, Tarahi M, Azizi R, Baeghbali V, Ansarifar E, Hashempur MH. Encapsulation of mint essential oil: Techniques and applications. Adv Colloid Interface Sci 2023; 321:103023. [PMID: 37863014 DOI: 10.1016/j.cis.2023.103023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Mint essential oil (MEO) is an outstanding antibacterial and antioxidant agent, that can be considered as a promising natural preservative, flavor, insecticide, coolant, and herbal medicine. However, the low solubility and volatility of MEO limits its extensive applications. In order to utilize MEO in different products, it is essential to develop treatments that can overcome these limitations. More recently, encapsulation technology has been developed as a promising method to overcome the shortcomings of MEO. In which, sensitive compounds such as essential oils (EOs) are entrapped in a carrier to produce micro or nanoparticles with increased stability against environmental conditions. Additionally, encapsulation of EOs makes transportation and handling easier, reduces their volatility, controls their release and consequently improves the efficiency of these bioactive compounds and extends their industrial applications. Several encapsulation techniques, such as emulsification, coacervation, ionic gelation, inclusion complexation, spray drying, electrospinning, melt dispersion, melt homogenization, and so on, have been emerged to improve the stability of MEO. These encapsulated MEOs can be also used in a variety of food, bioagricultural, pharmaceutical, and health care products with excellent performance. Therefore, this review aims to summarize the physicochemical and functional properties of MEO, recent advances in encapsulation techniques for MEO, and the application of micro/nanocapsulated MEO in different products.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Rezvan Azizi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Baeghbali
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Medway, UK
| | - Elham Ansarifar
- Social Determinants of Health Research Center, Department of Public Health, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Meng H, Ye W, Wang C, Gao Z, Hu B, Wang C. Crystalline micro-nanoparticles enhance cross-linked hydrogels via a confined assembly of chitosan and γ-cyclodextrin. Carbohydr Polym 2022; 298:120145. [DOI: 10.1016/j.carbpol.2022.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
|
5
|
Choi J, Ajiro H. Preparation of stereocomplex and pseudo-polyrotaxane with various cyclodextrins as wheel components using triblock copolymer of poly(ethylene glycol) and polylactide. SOFT MATTER 2022; 18:8885-8893. [PMID: 36377482 DOI: 10.1039/d2sm01124g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ABA-type triblock-copolymers (BCPs) of polylactide (PLA) and poly(ethylene glycol) (PEG) were synthesized as axle components for rotaxane formation. It is known that α-cyclodextrin (CD) exists near the PEG moiety in pseudo-polyrotaxane (PPRX), and the PLA moiety can form a stereocomplex (SC), by mixing with L- and D-isomers. In this study, various CDs, including β-CD and γ-CD, were used as wheel components, and effects of CD structures on both PPRX and SC formations were studied. The solubility of CDs is influenced to form the PPRX, resulting in differing numbers of CDs in the axle. PPRX structures were investigated by 1H NMR, NOESY, and DOSY, and SC structures were investigated by FT-IR and XRD. Their thermal properties were also evaluated by DSC and TGA, to consider the physical properties of the simultaneous formation of PPRX and SC. This study gave insight into the complicated host-guest and polymer-polymer interactions.
Collapse
Affiliation(s)
- JaeYeong Choi
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Hiroharu Ajiro
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
6
|
Bodbodak S, Nejatian M, Ghandehari Yazdi AP, Kamali Rousta L, Rafiee Z, Jalali-Jivan M, Kharazmi MS, Jafari SM. Improving the thermal stability of natural bioactive ingredients via encapsulation technology. Crit Rev Food Sci Nutr 2022; 64:2824-2846. [PMID: 36178297 DOI: 10.1080/10408398.2022.2127145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds (bioactives) such as phenolic acids, coumarins, flavonoids, lignans and carotenoids have a marked improvement effect on human health by acting on body tissues or cells. Nowadays, with increasing levels of knowledge, consumers prefer foods that can provide bioactives beside the necessary nutrients (e.g., vitamins, essential fatty acids and minerals). However, an important barrier for incorporating bioactives into foods is their low thermal stability. Nevertheless, thermal processing is widely used by the food industries to achieve food safety and desired texture. The aim of this work is to give an overview of encapsulation technology to improve thermal stability of bioactives incorporated into different food products. Almost all thermal analysis and non-thermal methods in the literature suggest that incorporation of bioactives into different walls can effectively improve the thermal stability of bioactives. The level of such thermal enhancement depends on the strength of the bioactive interaction and wall molecules. Furthermore, contradictory results have been reported in relation to the effect of encapsulation technique using the same wall on thermal stability of bioactives. To date, the potential to increase the thermal resistance of various bioactives by gums, carbohydrates, and proteins have been extensively studied. However, further studies on the comparison of walls and encapsulation methods to form thermally stable carriers seem to be needed. In this regard, the same nature of bioactives and the specific protocol in the report of study results should be considered to compare the data and select the optimum conditions of encapsulation to achieve maximum thermal stability.
Collapse
Affiliation(s)
- Samad Bodbodak
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran
| | - Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Leila Kamali Rousta
- Department of Food Research and Development, Zar Research and Industrial Development Group, Alborz, Iran
| | - Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Bensouiki S, Belaib F, Sindt M, Rup-Jacques S, Magri P, Ikhlef A, Meniai AH. Synthesis of cyclodextrins-metronidazole inclusion complexes and incorporation of metronidazole - 2-hydroxypropyl-β-cyclodextrin inclusion complex in chitosan nanoparticles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Mira A, Rubio-Camacho M, Alarcón D, Rodríguez-Cañas E, Fernández-Carvajal A, Falco A, Mallavia R. L-Menthol-Loadable Electrospun Fibers of PMVEMA Anhydride for Topical Administration. Pharmaceutics 2021; 13:1845. [PMID: 34834260 PMCID: PMC8618103 DOI: 10.3390/pharmaceutics13111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA) of 119 and 139 molecular weights (P119 and P139, respectively) were electrospun to evaluate the resulting fibers as a topical delivery vehicle for (L-)menthol. Thus, electrospinning parameters were optimized for the production of uniform bead-free fibers from 12% w/w PMVEMA (±2.3% w/w menthol) solutions, and their morphology and size were characterized by field emission scanning electron microscopy (FESEM). The fibers of P119 (F119s) and P139 (F139s) showed average diameter sizes of approximately 534 and 664 nm, respectively, when unloaded, and 837 and 1369 nm when loaded with menthol. The morphology of all types of fibers was cylindrical except for F139s, which mostly displayed a double-ribbon-like shape. Gas chromatography-mass spectrometry (GC-MS) analysis determined that not only was the menthol encapsulation efficiency higher in F139s (92% versus 68% in F119s) but also that its stability over time was higher, given that in contrast with F119s, no significant losses in encapsulated menthol were detected in the F139s after 10 days post-production. Finally, in vitro biological assays showed no significant induction of cytotoxicity for any of the experimental fibers or in the full functionality of the encapsulated menthol, as it achieved equivalent free-menthol levels of activation of its specific receptor, the (human) transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8).
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Falco
- Institute of Research Development and Innovation in Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (A.M.); (M.R.-C.); (D.A.); (E.R.-C.); (A.F.-C.)
| | - Ricardo Mallavia
- Institute of Research Development and Innovation in Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (A.M.); (M.R.-C.); (D.A.); (E.R.-C.); (A.F.-C.)
| |
Collapse
|
9
|
Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264:118042. [PMID: 33910745 DOI: 10.1016/j.carbpol.2021.118042] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The present review discusses the use of cyclodextrins and their derivatives to prepare electrospun nanofibers with specific features. Cyclodextrins, owing to their unique capability to form inclusion complexes with hydrophobic and volatile molecules, can indeed facilitate the encapsulation of bioactive compounds in electrospun nanofibers allowing fast-dissolving products for food, biomedical, and pharmaceutical purposes, filtering materials for wastewater and air purification, as well as a variety of other technological applications. Additionally, cyclodextrins can improve the processability of naturally occurring biopolymers helping the fabrication of "green" materials with a strong industrial relevance. Hence, this review provides a comprehensive state-of-the-art of different cyclodextrins-based nanofibers including those made of pure cyclodextrins, of polycyclodextrins, and those made of natural biopolymer functionalized with cyclodextrins. To this end, the advantages and disadvantages of such approaches and their possible applications are investigated along with the current limitations in the exploitation of electrospinning at the industrial level.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Guy Schlatter
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France.
| | - Anne Hébraud
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy.
| |
Collapse
|
10
|
Narayanan V, Alam M, Ahmad N, Balakrishnan SB, Ganesan V, Shanmugasundaram E, Rajagopal B, Thambusamy S. Electrospun poly (vinyl alcohol) nanofibers incorporating caffeic acid/cyclodextrins through the supramolecular assembly for antibacterial activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119308. [PMID: 33360058 DOI: 10.1016/j.saa.2020.119308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Here, we prepared the solid inclusion complexes between Caffeic acid (CA) and Cyclodextrins (β- and γ-CDs) (CA/CDs) that were effectively embedded into Poly (vinyl alcohol) (PVA) electrospun nanofibers via electrospinning technique to enhanced solubility and antibacterial activity. In tested Cyclodextrins are β-and γ-CDs with CA in the ratio of 1:1 resulting in the formation of CA/CDs by co-precipitation method. The physical properties of CA/CDs were examined by FT-IR, UV, and Raman Spectroscopy. The phase solubility test showed a much higher solubility of CA due to inclusion complexes (ICs). Furthermore, CA/β-CD and CA/γ-CD perfected achieved 0.70:1 and 0.80:1 the molar ratio of ICs, confirmed by NMR studies. The fiber size distribution, average diameter, and morphology features were evaluated by SEM analysis. The dissolution profile of PVA/CA and PVA/CA/CDs were tested within 150 min, resulting in CA dissolved in PVA/CA/CDs slightly higher than PVA/CA nanofibers due to enhanced solubility of ICs. Moreover, PVA/CA/CDs exhibit high antibacterial activity against gram-positive bacteria of E-Coli and gram-negative bacteria of S. aureus. Finally, these results suggest that PVA/CA/CDs may be promising materials for active food packaging applications.
Collapse
Affiliation(s)
- Vimalasruthi Narayanan
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Vigneshkumar Ganesan
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | | | - Brindha Rajagopal
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | - Stalin Thambusamy
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India.
| |
Collapse
|
11
|
Kadam V, Kyratzis IL, Truong YB, Wang L, Padhye R. Air filter media functionalized with β‐Cyclodextrin for efficient adsorption of volatile organic compounds. J Appl Polym Sci 2020. [DOI: 10.1002/app.49228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vinod Kadam
- School of Fashion and TextilesRMIT University Brunswick Victoria Australia
- CSIRO‐Manufacturing Clayton Victoria Australia
| | | | | | - Lijing Wang
- School of Fashion and TextilesRMIT University Brunswick Victoria Australia
| | - Rajiv Padhye
- School of Fashion and TextilesRMIT University Brunswick Victoria Australia
| |
Collapse
|
12
|
Gim S, Zhu Y, Seeberger PH, Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1558. [PMID: 31063240 DOI: 10.1002/wnan.1558] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Carbohydrates are abundant biomolecules, with a strong tendency to form supramolecular networks. A host of carbohydrate-based nanomaterials have been exploited for biomedical applications. These structures are based on simple mono- or disaccharides, as well as on complex, polymeric systems. Chemical modifications serve to tune the shapes and properties of these materials. In particular, carbohydrate-based nanoparticles and nanogels were used for drug delivery, imaging, and tissue engineering applications. Due to the reversible nature of the assembly, often based on a combination of hydrogen bonding and hydrophobic interactions, carbohydrate-based materials are valuable substrates for the creations of responsive systems. Herein, we review the current research on carbohydrate-based nanomaterials, with a particular focus on carbohydrate assembly. We will discuss how these systems are formed and how their properties are tuned. Particular emphasis will be placed on the use of carbohydrates for biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yuntao Zhu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
13
|
Topuz F, Uyar T. Electrospinning of Cyclodextrin Functional Nanofibers for Drug Delivery Applications. Pharmaceutics 2018; 11:E6. [PMID: 30586876 PMCID: PMC6358759 DOI: 10.3390/pharmaceutics11010006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022] Open
Abstract
Electrospun nanofibers have sparked tremendous attention in drug delivery since they can offer high specific surface area, tailored release of drugs, controlled surface chemistry for preferred protein adsorption, and tunable porosity. Several functional motifs were incorporated into electrospun nanofibers to greatly expand their drug loading capacity or to provide the sustained release of the embedded drug molecules. In this regard, cyclodextrins (CyD) are considered as ideal drug carrier molecules as they are natural, edible, and biocompatible compounds with a truncated cone-shape with a relatively hydrophobic cavity interior for complexation with hydrophobic drugs and a hydrophilic exterior to increase the water-solubility of drugs. Further, the formation of CyD-drug inclusion complexes can protect drug molecules from physiological degradation, or elimination and thus increases the stability and bioavailability of drugs, of which the release takes place with time, accompanied by fiber degradation. In this review, we summarize studies related to CyD-functional electrospun nanofibers for drug delivery applications. The review begins with an introductory description of electrospinning; the structure, properties, and toxicology of CyD; and CyD-drug complexation. Thereafter, the release of various drug molecules from CyD-functional electrospun nanofibers is provided in subsequent sections. The review concludes with a summary and outlook on material strategies.
Collapse
Affiliation(s)
- Fuat Topuz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
| |
Collapse
|
14
|
Assadpour E, Mahdi Jafari S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr 2018; 59:3129-3151. [PMID: 29883187 DOI: 10.1080/10408398.2018.1484687] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Today, there is an ever-growing interest on natural food ingredients both by consumers and producers in the food industry. In fact, people are looking for those products in the market which are free from artificial and synthetic additives and can promote their health. These food bioactive ingredients should be formulated in such a way that protects them against harsh process and environmental conditions and safely could be delivered to the target organs and cells. Nanoencapsulation is a perfect strategy for this situation and there have been many studies in recent years for nanoencapsulation of food components and nutraceuticals by different technologies. In this review paper, our main goal is firstly to have an overview of nanoencapsulation techniques applicable to food ingredients in a systematic classification, i.e., lipid-based nanocarriers, nature-inspired nanocarriers, special-equipment-based nanocarriers, biopolymer nanocarriers, and other miscellaneous nanocarriers. Then, application of these cutting-edge nanocarriers for different nutraceuticals including phenolic compounds and antioxidants, natural food colorants, antimicrobial agents and essential oils, vitamins, minerals, flavors, fish oils and essential fatty acids will be discussed along with presenting some examples in each field.
Collapse
Affiliation(s)
- Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
15
|
Yildiz ZI, Celebioglu A, Kilic ME, Durgun E, Uyar T. Menthol/cyclodextrin inclusion complex nanofibers: Enhanced water-solubility and high-temperature stability of menthol. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Narayanan G, Shen J, Boy R, Gupta BS, Tonelli AE. Aliphatic Polyester Nanofibers Functionalized with Cyclodextrins and Cyclodextrin-Guest Inclusion Complexes. Polymers (Basel) 2018; 10:E428. [PMID: 30966463 PMCID: PMC6415270 DOI: 10.3390/polym10040428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
The fabrication of nanofibers by electrospinning has gained popularity in the past two decades; however, only in this decade, have polymeric nanofibers been functionalized using cyclodextrins (CDs) or their inclusion complexes (ICs). By combining electrospinning of polymers with free CDs, nanofibers can be fabricated that are capable of capturing small molecules, such as wound odors or environmental toxins in water and air. Likewise, combining polymers with cyclodextrin-inclusion complexes (CD-ICs), has shown promise in enhancing or controlling the delivery of small molecule guests, by minor tweaking in the technique utilized in fabricating these nanofibers, for example, by forming core⁻shell or multilayered structures and conventional electrospinning, for controlled and rapid delivery, respectively. In addition to small molecule delivery, the thermomechanical properties of the polymers can be significantly improved, as our group has shown recently, by adding non-stoichiometric inclusion complexes to the polymeric nanofibers. We recently reported and thoroughly characterized the fabrication of polypseudorotaxane (PpR) nanofibers without a polymeric carrier. These PpR nanofibers show unusual rheological and thermomechanical properties, even when the coverage of those polymer chains is relatively sparse (~3%). A key advantage of these PpR nanofibers is the presence of relatively stable hydroxyl groups on the outer surface of the nanofibers, which can subsequently be taken advantage of for bioconjugation, making them suitable for biomedical applications. Although the number of studies in this area is limited, initial results suggest significant potential for bone tissue engineering, and with additional bioconjugation in other areas of tissue engineering. In addition, the behaviors and uses of aliphatic polyester nanofibers functionalized with CDs and CD-ICs are briefly described and summarized. Based on these observations, we attempt to draw conclusions for each of these combinations, and the relationships that exist between their presence and the functional behaviors of their nanofibers.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695, USA.
| | - Jialong Shen
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695, USA.
| | - Ramiz Boy
- Department of Textile Engineering, Namık Kemal University, Corlu/Tekirdag 59860, Turkey.
| | - Bhupender S Gupta
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695, USA.
- Department of Textile Engineering Chemistry and Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Alan E Tonelli
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695, USA.
- Department of Textile Engineering Chemistry and Science, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
17
|
Cecone C, Caldera F, Anceschi A, Scalarone D, Trotta F, Bracco P, Zanetti M. One-step facile process to obtain insoluble polysaccharides fibrous mats from electrospinning of water-soluble PMDA/cyclodextrin polymer. J Appl Polym Sci 2018. [DOI: 10.1002/app.46490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Claudio Cecone
- Department of Chemistry and NIS Centre; University of Turin, Via P. Giuria 7; Torino 10125 Italy
| | - Fabrizio Caldera
- Department of Chemistry and NIS Centre; University of Turin, Via P. Giuria 7; Torino 10125 Italy
| | - Anastasia Anceschi
- Department of Chemistry and NIS Centre; University of Turin, Via P. Giuria 7; Torino 10125 Italy
| | - Dominique Scalarone
- Department of Chemistry and NIS Centre; University of Turin, Via P. Giuria 7; Torino 10125 Italy
| | - Francesco Trotta
- Department of Chemistry and NIS Centre; University of Turin, Via P. Giuria 7; Torino 10125 Italy
| | - Pierangiola Bracco
- Department of Chemistry and NIS Centre; University of Turin, Via P. Giuria 7; Torino 10125 Italy
| | - Marco Zanetti
- Department of Chemistry and NIS Centre; University of Turin, Via P. Giuria 7; Torino 10125 Italy
- ICxT Centre, University of Turin, Lungo Dora Siena 100; Torino 10153 Italy
| |
Collapse
|
18
|
Bensabeh N, Ronda JC, Galià M, Cádiz V, Lligadas G, Percec V. SET-LRP of the Hydrophobic Biobased Menthyl Acrylate. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Joan C. Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
19
|
Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res Int 2017; 106:280-290. [PMID: 29579928 DOI: 10.1016/j.foodres.2017.12.062] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/11/2017] [Accepted: 12/24/2017] [Indexed: 12/27/2022]
Abstract
The development of novel nanomaterials that provide an efficient encapsulation and protection for the active food additives is one of the main focuses of current research efforts at food application areas. From this point of view, in this study, nanofibrous webs from inclusion complexes (IC) of modified cyclodextrins (hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) and methyl-β-cyclodextrin (MβCD)) and essential oils compound (i.e. thymol) was produced through electrospinning technique. While pure thymol has a highly volatile nature, the volatility of thymol was effectively suppressed by the inclusion complexation and ~88-100% (w/w) of thymol was preserved in electrospun thymol/cyclodextrin inclusion complex nanofibers (Thymol/CD-IC NF). The aqueous solubility enhancement for hydrophobic thymol was demonstrated by phase solubility diagram which also suggested the 1:1M inclusion complexation between thymol and CD molecules. Besides, Thymol/CD-IC NF displayed quite fast disintegration in water compared to poorly water soluble thymol. By inclusion complexation, high temperature stability for volatile thymol was achieved for Thymol/CD-IC NF samples. The loading of thymol in Thymol/CD-IC NF conferred DPPH radical scavenging ability to these nanofibrous webs. So, the Thymol/CD-IC NF have shown antioxidant activity along with enhanced water solubility and high thermal stability of thymol. In brief, encapsulation of essential oil compounds such as thymol in electrospun CD-IC nanofibers can promote its potential application in food and oral-care products by associating the large surface area of nanofibrous webs along with CD inclusion complexation which provides enhanced water solubility and antioxidant property, and high temperature stability for thymol.
Collapse
|
20
|
Celebioglu A, Yildiz ZI, Uyar T. Electrospun nanofibers from cyclodextrin inclusion complexes with cineole and
p
‐cymene: enhanced water solubility and thermal stability. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13564] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Asli Celebioglu
- Institute of Materials Science & Nanotechnology UNAM‐National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology UNAM‐National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology UNAM‐National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| |
Collapse
|
21
|
Neoh TL, Ariyanto HD, Menéndez Galvan P, Yoshii H. Controlled release of 1-methylcyclopropene from its functionalised electrospun fibres under constant and linearly ramped humidity. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:1690-1702. [PMID: 28513302 DOI: 10.1080/19440049.2017.1325520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The methodology to electrospin polystyrene (PS) fibres functionalised with the inclusion complex between 1-methylcyclopropene (1-MCP) and α-cyclodextrin (α-CD) has been developed successfully. Due to limited availability, α-CD crystals instead of 1-MCP/α-CD complex were suspended in the electrospinning (ES) solutions to investigate the ES process. The ES solutions were characterised in terms of viscosity, conductivity and surface tension. Meanwhile, the fibres were subjected to scanning electron microscopy. The average fibre diameter was proportional to approximately one-sixth power of the capillary number of the ES solution. Viscosity, which was a function of PS concentration and α-CD loading, was the main property that dictated the spin ability of the ES solutions. ES fibres with 1.5-4.4 μm in diameter were produced with 12.5-20.0% (w/w) PS in ES solution and an equal amount of the inclusion complex for PS. In the case of the ES solutions of 20 wt% PS loaded with the inclusion complex from 0 to 100% (w/w) to PS, all the ES solutions were electrospinnable with the average diameter ranging from 3.8 to 4.6 μm. X-ray diffractometry indicated that the α-CD crystals were homogeneously suspended on the fibre mats. Confocal laser scanning microscopy showed that the crystals were suspended on the fibre mats while being coated with a layer of PS. The complex-functionalised fibre was formed from the ES solution of 20% PS and 50% (w/w) inclusion complex with the ES. The release characteristics of 1-methylcyclopropene (1-MCP) from the functionalised fibre and the inclusion complex were investigated real time under linearly ramping humidity conditions at constant temperatures with a home-built humidity regulating system coupled with gas chromatography. The irregular release profiles were successfully modelled and the activation energies of release for the functionalised fibre and inclusion complex were about 128 and 69 kJ/mol, respectively..
Collapse
Affiliation(s)
- Tze Loon Neoh
- a Department of Applied Biological Science , Kagawa University , Kagawa , Japan.,c School of Mathematics and Physics , University of Queensland , St Lucia 4072 , Australia
| | | | - Patricia Menéndez Galvan
- b Department of Statistics and Operational Research , Public University of Navarre , Pamplona , Spain
| | - Hidefumi Yoshii
- a Department of Applied Biological Science , Kagawa University , Kagawa , Japan
| |
Collapse
|
22
|
Aytac Z, Ipek S, Durgun E, Tekinay T, Uyar T. Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem 2017; 233:117-124. [PMID: 28530556 DOI: 10.1016/j.foodchem.2017.04.095] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Thymol (THY)/γ-Cyclodextrin(γ-CD) inclusion complex (IC) encapsulated electrospun zein nanofibrous webs (zein-THY/γ-CD-IC-NF) were fabricated as a food packaging material. The formation of THY/γ-CD-IC (1:1 and 2:1) was proved by experimental (X-ray diffraction (XRD), thermal gravimetric analysis (TGA), 1H NMR) and computational techniques. THY/γ-CD-IC (2:1) exhibited higher preservation rate and stability than THY/γ-CD-IC (1:1). It is worth mentioning that zein-THY/γ-CD-IC-NF (2:1) preserved much more THY as observed in TGA and stability of THY/γ-CD-IC (2:1) was higher, as shown by a modelling study. Therefore, much more THY was released from zein-THY/γ-CD-IC-NF (2:1) than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). Similarly, antibacterial activity of zein-THY/γ-CD-IC-NF (2:1) was higher than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). It was demonstrated that zein-THY/γ-CD-IC-NF (2:1) was most effective in inhibiting the growth of bacteria on meat samples. These webs show potential application as an antibacterial food packaging material.
Collapse
Affiliation(s)
- Zeynep Aytac
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Semran Ipek
- Department of Engineering Physics, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Engin Durgun
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey; Faculty of Medicine, Department of Medical Biology and Genetics, Gazi University, Ankara 06560, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
23
|
Aytac Z, Yildiz ZI, Kayaci-Senirmak F, Tekinay T, Uyar T. Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem 2017; 231:192-201. [PMID: 28449997 DOI: 10.1016/j.foodchem.2017.03.113] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022]
Abstract
The volatility and limited water solubility of linalool is a critical issue to be solved. Here, we demonstrated the electrospinning of polymer-free nanofibrous webs of cyclodextrin/linalool-inclusion complex (CD/linalool-IC-NFs). Three types of modified cyclodextrin (HPβCD, MβCD, and HPγCD) were used to electrospin CD/linalool-IC-NFs. Free-standing CD/linalool-IC-NFs facilitate maximum loading of linalool up to 12% (w/w). A significant amount of linalool (45-89%) was preserved in CD/linalool-IC-NFs, due to enhancement in the thermal stability of linalool by cyclodextrin inclusion complexation. Remarkably, CD/linalool-IC-NFs have shown fast-dissolving characteristics in which these nanofibrous webs dissolved in water within two seconds. Furthermore, linalool release from CD/linalool-IC-NFs inhibited growth of model Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria to a great extent. Briefly, characteristics of liquid linalool have been preserved in a solid nanofiber form and designed CD/linalool-IC-NFs confer high loading capacity, enhanced shelf life and strong antibacterial activity of linalool.
Collapse
Affiliation(s)
- Zeynep Aytac
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Fatma Kayaci-Senirmak
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06560, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
24
|
Shalaby TI, El-Kady MF, Zaki AEHM, El-Kholy SM. Preparation and application of magnetite nanoparticles immobilized on cellulose acetate nanofibers for lead removal from polluted water. WATER SUPPLY 2017; 17:176-187. [DOI: 10.2166/ws.2016.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Novel magnetic cellulose acetate (CA) nanofibers were fabricated using an electrospinning process. Co-precipitated magnetite iron oxide nanoparticles were immobilized onto CA nanofibers at different weight ratios (0.2–2.5% wt/v) with a CA concentration of 15% (wt %), applied electric voltage of 20 kV, feeding rate of 1.5 ml/h and 7 cm distance between needle tip and collector. The prepared iron oxide nanoparticles were characterized using X-ray diffraction, a transmission electron microscope, a Fourier transform infrared spectrophotometer (FT-IR) and a vibrating sample magnetometer (VSM). The magnetic nanofibers were characterized by scanning electron microscopy, FT-IR, thermogravimetric analysis and VSM. The fabricated composite nanofibers were evaluated as a sorbent matrix for lead decontamination from aqueous solution using a batch technique. The influence of solution pH, contact time and adsorbent concentration on the removal efficiency was investigated. Adsorption kinetics models and isotherms were applied to the lead decontamination process onto the fabricated composite nanofibers. The kinetics of the sorption process revealed that the pseudo-second-order model fitted relatively better than the pseudo-first-order model. On the other hand, both the Langmuir and Freundlich isotherms gave a comparable fit to the adsorption data, with a high coefficient of regression of 0.999.
Collapse
Affiliation(s)
- Thanaa I. Shalaby
- Medical Biophysics Department, Medical Research Institute, Alexandria, Egypt
| | - Marwa F. El-Kady
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt and Fabrication Technology Researches Department Advanced Technology and New Materials Researches Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria Egypt
| | | | - Soheir M. El-Kholy
- Medical Biophysics Department, Medical Research Institute, Alexandria, Egypt
| |
Collapse
|
25
|
Aytac Z, Uyar T. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin. Int J Pharm 2017; 518:177-184. [DOI: 10.1016/j.ijpharm.2016.12.061] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/24/2016] [Accepted: 12/31/2016] [Indexed: 11/29/2022]
|
26
|
Noruzi M. Electrospun nanofibres in agriculture and the food industry: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4663-4678. [PMID: 27029997 DOI: 10.1002/jsfa.7737] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/05/2016] [Accepted: 03/24/2016] [Indexed: 05/27/2023]
Abstract
The interesting characteristics of electrospun nanofibres, such as high surface-to-volume ratio, nanoporosity, and high safety, make them suitable candidates for use in a variety of applications. In the recent decade, electrospun nanofibres have been applied to different potential fields such as filtration, wound dressing, drug delivery, etc. and a significant number of review papers have been published in these fields. However, the use of electrospun nanofibres in agriculture is comparatively novel and is still in its infancy. In this paper, the specific applications of electrospun nanofibres in agriculture and food science, including plant protection using pheromone-loaded nanofibres, plant protection using encapsulation of biocontrol agents, preparation of protective clothes for farm workers, encapsulation of agrochemical materials, deoxyribonucleic acid extraction in agricultural research studies, pre-concentration and measurement of pesticides in crops and environmental samples, preparation of nanobiosensors for pesticide detection, encapsulation of food materials, fabrication of food packaging materials, and filtration of beverage products are reviewed and discussed. This paper may help researchers develop the use of electrospun nanofibres in agriculture and food science to address some serious problems such as the intensive use of pesticides. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Masumeh Noruzi
- Nanotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. ,
| |
Collapse
|
27
|
Aytac Z, Yildiz ZI, Kayaci-Senirmak F, San Keskin NO, Kusku SI, Durgun E, Tekinay T, Uyar T. Fast-Dissolving, Prolonged Release, and Antibacterial Cyclodextrin/Limonene-Inclusion Complex Nanofibrous Webs via Polymer-Free Electrospinning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7325-7334. [PMID: 27616160 DOI: 10.1021/acs.jafc.6b02632] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have proposed a new strategy for preparing free-standing nanofibrous webs from an inclusion complex (IC) of a well-known flavor/fragrance compound (limonene) with three modified cyclodextrins (HPβCD, MβCD, and HPγCD) via electrospinning (CD/limonene-IC-NFs) without using a polymeric matrix. The experimental and computational modeling studies proved that the stoichiometry of the complexes was 1:1 for CD/limonene systems. MβCD/limonene-IC-NF released much more limonene at 37, 50, and 75 °C than HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF because of the greater amount of preserved limonene. Moreover, MβCD/limonene-IC-NF has released only 25% (w/w) of its limonene, whereas HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF released 51 and 88% (w/w) of their limonene in 100 days, respectively. CD/limonene-IC-NFs exhibited high antibacterial activity against E. coli and S. aureus. The water solubility of limonene increased significantly and CD/limonene-IC-NFs were dissolved in water in a few seconds. In brief, CD/limonene-IC-NFs with fast-dissolving character enhanced the thermal stability and prolonged the shelf life along with antibacterial properties could be quite applicable in food and oral care applications.
Collapse
Affiliation(s)
- Zeynep Aytac
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara 06800, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara 06800, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Fatma Kayaci-Senirmak
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara 06800, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Nalan Oya San Keskin
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
- Department of Biology, Polatlı Faculty of Literature and Science, Gazi University , Ankara 06900, Turkey
- Life Sciences Application and Research Center, Gazi University , Ankara 06830, Turkey
| | - Semran Ipek Kusku
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
- Department of Engineering Physics, Istanbul Medeniyet University , Istanbul 34700, Turkey
| | - Engin Durgun
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara 06800, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center, Gazi University , Ankara 06830, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University , Ankara 06560, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara 06800, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| |
Collapse
|
28
|
Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.04.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Aytac Z, Kusku SI, Durgun E, Uyar T. Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:231-9. [PMID: 27040215 DOI: 10.1016/j.msec.2016.02.063] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/03/2016] [Accepted: 02/22/2016] [Indexed: 01/05/2023]
Abstract
Cyclodextrin-inclusion complexes (CD-ICs) possess great prominence in food and pharmaceutical industries due to their enhanced ability for stabilization of active compounds during processing, storage and usage. Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HPβCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF) using electrospinning technique to observe the effect of CD-ICs in the release behavior of GA into three different mediums (water, 10% ethanol and 95% ethanol). The GA incorporated PLA nanofibers (PLA/GA-NFs) were served as control. Phase solubility studies showed an enhanced solubility of GA with increasing amount of HPβCD. The detailed characterization techniques (XRD, TGA and (1)H-NMR) confirmed the formation of inclusion complex between GA and HPβCD. Computational modeling studies indicated that the GA made an efficient complex with HPβCD at 1:1 either in vacuum or aqueous system. SEM images revealed the bead-free and uniform morphology of PLA/GA/HPβCD-IC-NF. The release studies of GA from PLA/GA/HPβCD-IC-NF and PLA/GA-NF were carried out in water, 10% ethanol and 95% ethanol, and the findings revealed that PLA/GA/HPβCD-IC-NF has released much more amount of GA in water and 10% ethanol system when compared to PLA/GA-NF. In addition, GA was released slowly from PLA/GA/HPβCD-IC-NF into 95% ethanol when compared to PLA/GA-NF. It was also observed that electrospinning process had no negative effect on the antioxidant activity of GA when GA was incorporated in PLA nanofibers.
Collapse
Affiliation(s)
- Zeynep Aytac
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Semran Ipek Kusku
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; Department of Engineering Physics, Istanbul Medeniyet University, Göztepe 34700, Istanbul, Turkey
| | - Engin Durgun
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
30
|
Aytac Z, Yildiz ZI, Kayaci-Senirmak F, San Keskin NO, Tekinay T, Uyar T. Electrospinning of polymer-free cyclodextrin/geraniol–inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Adv 2016. [DOI: 10.1039/c6ra07088d] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Free-standing nanofibrous webs of cyclodextrin/geraniol–inclusion complex (CD/geraniol–IC-NF) showing antibacterial, antioxidant activity and slow release of geraniol were developed as flavour/fragrance releasing materialsviaelectrospinning.
Collapse
Affiliation(s)
- Zeynep Aytac
- Institute of Materials Science & Nanotechnology
- Bilkent University
- Ankara 06800
- Turkey
- UNAM-National Nanotechnology Research Center
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology
- Bilkent University
- Ankara 06800
- Turkey
- UNAM-National Nanotechnology Research Center
| | - Fatma Kayaci-Senirmak
- Institute of Materials Science & Nanotechnology
- Bilkent University
- Ankara 06800
- Turkey
- UNAM-National Nanotechnology Research Center
| | - Nalan Oya San Keskin
- Polatlı Faculty of Literature and Science
- Department of Biology
- Gazi University
- Ankara 06900
- Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center
- Gazi University
- Ankara 06830
- Turkey
- University Faculty of Medicine
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology
- Bilkent University
- Ankara 06800
- Turkey
- UNAM-National Nanotechnology Research Center
| |
Collapse
|
31
|
Kayaci F, Sen HS, Durgun E, Uyar T. Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.03.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Sharma J, Zhang X, Sarker T, Yan X, Washburn L, Qu H, Guo Z, Kucknoor A, Wei S. Biocompatible electrospun tactic poly(methyl methacrylate) blend fibers. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Aytac Z, Dogan SY, Tekinay T, Uyar T. Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers. Colloids Surf B Biointerfaces 2014; 120:125-31. [PMID: 24907582 DOI: 10.1016/j.colsurfb.2014.04.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/19/2014] [Accepted: 04/13/2014] [Indexed: 11/18/2022]
Abstract
Allyl isothiocyanate (AITC) is known as an efficient antibacterial agent but it has a very high volatility. Herein, AITC and AITC/β-cyclodextrin (CD)-inclusion complex (IC) incorporated in polyvinyl alcohol (PVA) nanofibers were produced via electrospinning. SEM images elucidated that incorporation of AITC and AITC/β-CD-IC into polymer matrix did not affect the bead-free fiber morphology of PVA nanofibers. (1)H-NMR and headspace GC-MS analyses revealed that very low amount of AITC was remained in PVA/AITC-NF because of the rapid evaporation of AITC during the electrospinning process. Nevertheless, much higher amount of AITC was preserved in the PVA/AITC/β-CD-IC-NF due to the CD inclusion complexation. The sustained release of AITC from nanofibers was evaluated at 30°C, 50°C and 75°C via headspace GC-MS. When compared to PVA/AITC-NF, PVA/AITC/β-CD-IC-NF has shown higher antibacterial activity against Escherichia coli and Staphylococcus aureus due to the presence of higher amount of AITC in this sample which was preserved by CD-IC.
Collapse
Affiliation(s)
- Zeynep Aytac
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Sema Y Dogan
- Gazi University, Life Sciences Application and Research Center, Ankara 06830, Turkey
| | - Turgay Tekinay
- Gazi University, Life Sciences Application and Research Center, Ankara 06830, Turkey; Gazi University, Polatlı Science and Literature Faculty, Ankara 06900, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
34
|
Akçakoca Kumbasar EP, Akduman Ç, Çay A. Effects of β-cyclodextrin on selected properties of electrospun thermoplastic polyurethane nanofibres. Carbohydr Polym 2014; 104:42-9. [DOI: 10.1016/j.carbpol.2013.12.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/07/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|
35
|
Canbolat MF, Celebioglu A, Uyar T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surf B Biointerfaces 2014; 115:15-21. [DOI: 10.1016/j.colsurfb.2013.11.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 11/30/2022]
|
36
|
Manasco JL, Tang C, Burns NA, Saquing CD, Khan SA. Rapidly dissolving poly(vinyl alcohol)/cyclodextrin electrospun nanofibrous membranes. RSC Adv 2014. [DOI: 10.1039/c3ra43836h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Motealleh B, Zahedi P, Rezaeian I, Moghimi M, Abdolghaffari AH, Zarandi MA. Morphology, drug release, antibacterial, cell proliferation, and histology studies of chamomile-loaded wound dressing mats based on electrospun nanofibrous poly(ɛ-caprolactone)/polystyrene blends. J Biomed Mater Res B Appl Biomater 2013; 102:977-87. [DOI: 10.1002/jbm.b.33078] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Behrooz Motealleh
- Department of Polymer; School of Chemical Engineering, College of Engineering, University of Tehran; Tehran Iran
| | - Payam Zahedi
- Department of Polymer; School of Chemical Engineering, College of Engineering, University of Tehran; Tehran Iran
| | - Iraj Rezaeian
- Department of Polymer; School of Chemical Engineering, College of Engineering, University of Tehran; Tehran Iran
| | - Morvarid Moghimi
- Department of Polymer; School of Chemical Engineering, College of Engineering, University of Tehran; Tehran Iran
| | - Amir Hossein Abdolghaffari
- International Campuses; Tehran University of Medical Sciences; Tehran Iran
- Pharmacology and Applied Medicine Department of Medicinal Plants Research Centre; Institute of Medicinal Plants; ACECR Karaj Iran
| | - Mohammad Amin Zarandi
- Department of Polymer; School of Chemical Engineering, College of Engineering, University of Tehran; Tehran Iran
| |
Collapse
|
38
|
Chen M, Wang C, Fang W, Wang J, Zhang W, Jin G, Diao G. Electrospinning of calixarene-functionalized polyacrylonitrile nanofiber membranes and application as an adsorbent and catalyst support. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11858-11867. [PMID: 23984721 DOI: 10.1021/la4017799] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polyacrylonitrile (PAN) nanofiber membranes functionalized with calix[8]arenes (C[8]) were successfully prepared by electrospinning of PAN solutions with addition of various calixarenes. Uniform electrospun C[8]/PAN nanofibers were obtained by incorporating three types of calix[8]arenes into the PAN matrix and characterized by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR), thermal gravimetric analysis (TGA), and X-ray powder diffraction (XRD). The SEM results showed that the addition of calix[8]arenes resulted in a decrease in the diameter of PAN nanofibers. Static adsorption behavior was studied by using C[8]/PAN nanofibers as an adsorbent and Congo red and Neutral red as model dye molecules. The adsorption of Congo red onto Amide-Cal[8]-15/PAN nanofibers fitted the second-order kinetic model, and the apparent adsorption rate constant was 1.1 × 10(-3) g·mg(-1)·min(-1) at 25 °C. Then, by virtue of electrostatic attraction, as-prepared Au nanoparticles were immobilized on Amide-Cal[8]/PAN nanofibers to form Au/Amide-Cal[8]/PAN composite nanofibers. The catalytic activity of the as-prepared Au/Amide-Cal[8]/PAN composite nanofibers was investigated by monitoring the reduction of Congo red in the presence of NaBH4. The reduction kinetics was explained by the assumption of a pseudo-first-order reaction with regard to Congo red. Au/Amide-Cal[8]/PAN composite nanofibers exhibited high catalytic activity, excellent stability, and convenient recycling.
Collapse
Affiliation(s)
- Ming Chen
- College of Chemistry and Chemical Engineering, Yangzhou University , Yangzhou 225002, P. R. China
| | | | | | | | | | | | | |
Collapse
|
39
|
Kayaci F, Ertas Y, Uyar T. Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8156-8165. [PMID: 23898890 DOI: 10.1021/jf402923c] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polyvinyl alcohol (PVA) nanofibers encapsulating eugenol (EG)/cyclodextrin (CD) inclusion complexes (IC) (EG/CD-IC) were produced via electrospinning technique in order to achieve high thermal stability and slow release of EG. In order to find out the most favorable CD type for the stabilization of EG, three types of native cyclodextrins (α-CD, β-CD, and γ-CD) were used for the formation of EG/CD-IC. In the case of PVA/EG/α-CD nanofibers, uncomplexed EG was detected indicating that α-CD is not a proper host for EG/CD-IC formation. However, for PVA/EG/β-CD-IC and PVA/EG/γ-CD-IC nanofibers, enhanced durability and high thermal stability for EG were achieved due to the inclusion complexation. The electrospun nanofibers encapsulating CD-IC of active compounds such as eugenol may be quite useful in the food industry due to the extremely large surface area of nanofibers along with specific functionality, enhanced thermal stability, and slow release of the active compounds by CD inclusion complexation.
Collapse
Affiliation(s)
- Fatma Kayaci
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | | | | |
Collapse
|
40
|
Kayaci F, Umu OCO, Tekinay T, Uyar T. Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3901-3908. [PMID: 23590460 DOI: 10.1021/jf400440b] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, β-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas β-CD and γ-CD successfully formed TR/CD-IC crystals, and the molar ratio of TR to CD was found to be 1:1. The structural and thermal characteristics of TR/CD-IC were investigated by (1)H NMR, FTIR, XRD, DSC, and TGA studies. Then, the encapsulation of TR/β-CD-IC and TR/γ-CD-IC in PLA nanofibers was achieved. Electrospun PLA and PLA/TR nanofibers obtained for comparison were uniform, whereas the aggregates of TR/CD-IC crystals were present and distributed within the PLA fiber matrix as confirmed by SEM and XRD analyses. The antibacterial activity of these nanofibrous webs was investigated. The results indicated that PLA nanofibers incorporating TR/CD-IC showed better antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria compared to PLA nanofibers containing only TR without CD-IC. Electrospun nanofibrous webs incorporating TR/CD-IC may be applicable in active food packaging due to their very high surface area and nanoporous structure as well as efficient antibacterial property.
Collapse
Affiliation(s)
- Fatma Kayaci
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
| | | | | | | |
Collapse
|
41
|
Kayaci F, Uyar T. Electrospun zein nanofibers incorporating cyclodextrins. Carbohydr Polym 2012; 90:558-68. [DOI: 10.1016/j.carbpol.2012.05.078] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/16/2012] [Accepted: 05/22/2012] [Indexed: 11/26/2022]
|
42
|
Kayaci F, Uyar T. Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.040] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Atılkan N, Nur Y, Hacaloglu J, Schlaad H. Direct Insertion Mass Spectrometric Analysis of Thermal Degradation of Poly(2-alkyl-2-oxazoline). MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Orhan T, Isitman NA, Hacaloglu J, Kaynak C. Thermal degradation of organophosphorus flame-retardant poly(methyl methacrylate) nanocomposites containing nanoclay and carbon nanotubes. Polym Degrad Stab 2012. [DOI: 10.1016/j.polymdegradstab.2011.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
45
|
Zhang W, Chen M, Zha B, Diao G. Correlation of polymer-like solution behaviors with electrospun fiber formation of hydroxypropyl-β-cyclodextrin and the adsorption study on the fiber. Phys Chem Chem Phys 2012; 14:9729-37. [DOI: 10.1039/c2cp41092c] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Manasco JL, Saquing CD, Tang C, Khan SA. Cyclodextrin fibers via polymer-free electrospinning. RSC Adv 2012. [DOI: 10.1039/c2ra00004k] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Gries K, Bubel K, Wohlfahrt M, Agarwal S, Koert U, Greiner A. Preparation of Gold Nanoparticle- Poly(L
-menthyl methacrylate) Conjugates via ATRP Polymerization. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201100449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Nanoporous poly(methyl methacrylate)-quantum dots nanocomposite fibers toward biomedical applications. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.10.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Orhan T, Isitman NA, Hacaloglu J, Kaynak C. Thermal degradation mechanisms of aluminium phosphinate, melamine polyphosphate and zinc borate in poly(methyl methacrylate). Polym Degrad Stab 2011. [DOI: 10.1016/j.polymdegradstab.2011.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Celebioglu A, Uyar T. Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6218-6226. [PMID: 21513339 DOI: 10.1021/la1050223] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The electrospinning of polymer-free nanofibers from highly concentrated (160%, w/v) aqueous solutions of hydroxypropyl-β-cyclodextrin (HPβCD) and its inclusion complexes with triclosan (HPβCD/triclosan-IC) was achieved successfully. The dynamic light scattering (DLS) and rheology measurements indicated that the presence of considerable HPβCD aggregates and the high solution viscosity were the key factors in obtaining electrospun HPβCD and HPβCD/triclosan-IC nanofibers without the use of any polymeric carrier. The HPβCD and HPβCD/triclosan-IC solutions containing 20% (w/w) urea yielded no fibers but only beads and splashes because of the depression of the self-aggregation of the HPβCD. The inclusion complexation of triclosan with HPβCD was studied by isothermal titration calorimetry (ITC) and turbidity measurements. The characteristics of the HPβCD and HPβCD/triclosan-IC nanofibers were investigated by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). It was found that the electrospinning of HPβCD/triclosan-IC solution having a 1:1 molar ratio was optimal for obtaining nanofibers without any uncomplexed guest molecules.
Collapse
Affiliation(s)
- Asli Celebioglu
- UNAM-Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | | |
Collapse
|