1
|
Alshangiti DM, Ghobashy MM, Alqahtani HA, El-Damhougy TK, Madani M. The energetic and physical concept of gold nanorod-dependent fluorescence in cancer treatment and development of new photonic compounds|review. RSC Adv 2023; 13:32223-32265. [PMID: 37928851 PMCID: PMC10620648 DOI: 10.1039/d3ra05487j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
The optical features of gold nanorods (GNR) may be precisely controlled by manipulating their size, shape, and aspect ratio. This review explores the impact of these parameters on the optical tuning of (GNR). By altering the experimental conditions, like the addition of silver ions during the seed-mediated growth process, the aspect ratio of (GNR) may be regulated. The shape is trans from spherical to rod-like structures resulting in noticeable changes in the nanoparticles surface plasmons resonance (SPR) bands. The longitudinal SPR band, associated with electron oscillations along the long axis, exhibits a pronounced red shift into the (NIR) region as the aspect ratio increases. In contrast, the transverse SPR band remains relate unchanged. Using computational methods like the discrete dipole approximation (DDA) allows for analyzing absorption, scattering, and total extinction features of gold (G) nanoparticles. Studies have shown that increasing the aspect ratio enhances the scattering efficiency, indicating a higher scattering quantum yield (QY). These findings highlight the importance of size, shape, and aspect ratio in controlling the optical features of (GNR) providing valuable insights for various uses in nanophotonics and plasmonic-dependent fluorescence in cancer treatment and developing new photonic compound NRs.
Collapse
Affiliation(s)
- Dalal Mohamed Alshangiti
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29, Nasr City Cairo Egypt
| | - Haifa A Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box 11754, Yousef Abbas Str., Nasr City Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| |
Collapse
|
2
|
Guo Y, Liu Q, Wei A, Jiang S, Chen F, Huang J, He Y, Huang G, Wu Z. Spectrum and size controllable synthesis of high-quality gold nanorods using 1,7-dihydroxynaphthalene as a reducing agent. Dalton Trans 2023; 52:1052-1061. [PMID: 36602082 DOI: 10.1039/d2dt03646k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The spectrum and size controllable synthesis of gold nanorods is of great value for their widely applicable aspect ratio dependence of anisotropic surface plasmon resonance. Herein, 1,7-dihydroxynaphthalene with a relatively strong reducibility is proposed as a reducing agent for the controllable synthesis of gold nanorods. The result indicated that gold nanorods with high monodispersity, high shape yield, relatively small diameters, and maximum plasmon resonance wavelength of above 1000 nm can be acquired. More importantly, by virtue of the reducing agent used, fine and precise controls over the plasmon wavelength and diameter of the rod can be achieved via changes in experimental conditions. In particular, increases in the concentration of both silver ions and cetyltrimethylammonium bromide (CTAB) can increase the plasmon wavelength from around 600 nm to 1000 nm but respectively show a decreased diameter with the smallest value of around 14.3 nm and a mildly increased diameter from around 9.0 nm to 14.3 nm; moreover, increasing the concentration of reducing agents and gold seeds can simultaneously cause decreases in the plasmon wavelength from around 1000 nm to 800 nm and the diameters from around 14.3 nm to 9.0 and 7.3 nm, respectively. This powerful and efficient method of controllable synthesis of AuNRs could be valuable and attractive for the application of the as-obtained particles.
Collapse
Affiliation(s)
- Yuyang Guo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Qiuyue Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Anhua Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Suju Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Feifei Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Zihua Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
3
|
Li M, Wei J, Song Y, Chen F. Gold nanocrystals: optical properties, fine-tuning of the shape, and biomedical applications. RSC Adv 2022; 12:23057-23073. [PMID: 36090439 PMCID: PMC9380198 DOI: 10.1039/d2ra04242h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Noble metal nanomaterials with special physical and chemical properties have attracted considerable attention in the past decades. In particular, Au nanocrystals (NCs), which possess high chemical inertness and unique surface plasmon resonance (SPR), have attracted extensive research interest. In this study, we review the properties and preparation of Au NCs with different morphologies as well as their important applications in biological detection. The preparation of Au NCs with different shapes by many methods such as seed-mediated growth method, seedless synthesis, polyol process, ultrasonic method, and hydrothermal treatment has already been introduced. In the seed-mediated growth method, the influence factors in determining the final shape of Au NCs are discussed. Au NCs, which show significant size-dependent color differences are proposed for preparing biological probes to detect biomacromolecules such as DNA and protein, while probe conjugate molecules serves as unique coupling agents with a target. Particularly, Au nanorods (NRs) have some unique advantages in the application of biological probes and photothermal cancer therapy compared to Au nanoparticles (NPs).
Collapse
Affiliation(s)
- Meng Li
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| | - Jianlu Wei
- Department of Orthopaedic Surgery, Qilu Hospital Shandong University 107 Wenhua Xi Road Jinan 250012 P. R. China
| | - Yang Song
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| |
Collapse
|
4
|
Photothermal Conversion Profiling of Large-Scaled Synthesized Gold Nanorods Using Binary Surfactant with Hydroquinone as a Reducing Agent. NANOMATERIALS 2022; 12:nano12101723. [PMID: 35630943 PMCID: PMC9145525 DOI: 10.3390/nano12101723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022]
Abstract
Photothermal application of gold nanorods (AuNRs) is widely increasing because of their good photothermal conversion efficiency (PCE) due to local surface plasmon resonance. However, the high concentration of hexadecyltrimethylammonium bromide used in the synthesis is a concern. Moreover, the mild and commonly used reducing agent-ascorbic acid does not reduce the Au(I) to A(0) entirely, resulting in a low yield of gold nanorods. Herein we report for the first time the PCE of large-scaled synthesized AuNRs using the binary surfactant seed-mediated method with hydroquinone (HQ) as the reducing agent. The temporal evolution of the optical properties and morphology was investigated by varying the Ag concentration, HQ concentration, HCl volumes, and seed solution volume. The results showed that the seed volume, HQ concentration, and HCl volume played a significant role in forming mini-AuNRs absorbing in the 800 nm region with a shape yield of 87.7%. The as-synthesized AuNRs were successfully up-scaled to a larger volume based on the optimum synthetic conditions followed by photothermal profiling. The photothermal profiling analysis showed a temperature increase of more than 54.2 °C at 2.55 W cm−2 at a low optical density (OD) of 0.160 after 630 s irradiation, with a PCE of approximately 21%, presenting it as an ideal photothermal agent.
Collapse
|
5
|
Heiß P, Hornung J, Gemel C, Fischer RA. A combinatorial coordination-modulated approach to all-hydrocarbon-ligated intermetallic clusters. Chem Commun (Camb) 2022; 58:4332-4335. [PMID: 35290423 DOI: 10.1039/d2cc00396a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of Hume-Rothery-inspired intermetallic and all-hydrocarbon-ligated Ni/E clusters (E = Al, Ga) is studied. A library of organo-metallic complexes and small clusters is obtained when [Ni(cod)2] is treated with ECp* in the presence of 3-hexyne (hex). While the alkyne reversibly coordinates side-on to the Ni/Ga species, it dimerizes at the Ni/Al species. The mass spectrometric monitoring of the reaction solutions provides insight into the chemical complexity generated by a combinatorial, coordination-modulated approach to control cluster nucleation and growth aiming at cluster size-focusing and selective synthesis of species such as [Ni4Ga4](Cp*)4(hex)2.
Collapse
Affiliation(s)
- Patricia Heiß
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching D-85748, Germany. .,Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Strasse 1, Garching D-85748, Germany
| | - Julius Hornung
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching D-85748, Germany. .,Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Strasse 1, Garching D-85748, Germany
| | - Christian Gemel
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching D-85748, Germany. .,Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Strasse 1, Garching D-85748, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching D-85748, Germany. .,Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Strasse 1, Garching D-85748, Germany
| |
Collapse
|
6
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
7
|
Velimirovic M, Pancaro A, Mildner R, Georgiou PG, Tirez K, Nelissen I, Johann C, Gibson MI, Vanhaecke F. Characterization of Gold Nanorods Conjugated with Synthetic Glycopolymers Using an Analytical Approach Based on spICP-SFMS and EAF4-MALS. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2720. [PMID: 34685161 PMCID: PMC8539460 DOI: 10.3390/nano11102720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
A new comprehensive analytical approach based on single-particle inductively coupled plasma-sector field mass spectrometry (spICP-SFMS) and electrical asymmetric-flow field-flow-fractionation combined with multi-angle light scattering detection (EAF4-MALS) has been examined for the characterization of galactosamine-terminated poly(N-hydroxyethyl acrylamide)-coated gold nanorods (GNRs) in two different degrees of polymerization (DP) by tuning the feed ratio (short: DP 35; long: DP 60). spICP-SFMS provided information on the particle number concentration, size and size distribution of the GNRs, and was found to be useful as an orthogonal method for fast characterization of GNRs. Glycoconjugated GNRs were separated and characterized via EAF4-MALS in terms of their size and charge and compared to the bare GNRs. In contrast to spICP-SFMS, EAF4-MALS was also able of providing an estimate of the thickness of the glycopolymer coating on the GNRs surface.
Collapse
Affiliation(s)
- Milica Velimirovic
- Department of Chemistry, Atomic & Mass Spectrometry–A&MS Research Group, Campus Sterre, Ghent University, Krijgslaan 281-S12, 9000 Ghent, Belgium;
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (A.P.); (K.T.); (I.N.)
| | - Alessia Pancaro
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (A.P.); (K.T.); (I.N.)
- Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Robert Mildner
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany; (R.M.); (C.J.)
| | - Panagiotis G. Georgiou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (P.G.G.); (M.I.G.)
| | - Kristof Tirez
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (A.P.); (K.T.); (I.N.)
| | - Inge Nelissen
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (A.P.); (K.T.); (I.N.)
| | - Christoph Johann
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany; (R.M.); (C.J.)
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (P.G.G.); (M.I.G.)
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry–A&MS Research Group, Campus Sterre, Ghent University, Krijgslaan 281-S12, 9000 Ghent, Belgium;
| |
Collapse
|
8
|
Rizwan Younis M, He G, Gurram B, Lin J, Huang P. Recent Advances in Gold Nanorods‐Based Cancer Theranostics. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Gang He
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Bhaskar Gurram
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| |
Collapse
|
9
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
10
|
Núñez-Leyva JM, Kolosovas-Machuca ES, Sánchez J, Guevara E, Cuadrado A, Alda J, González FJ. Computational and Experimental Analysis of Gold Nanorods in Terms of Their Morphology: Spectral Absorption and Local Field Enhancement. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1696. [PMID: 34203448 PMCID: PMC8308185 DOI: 10.3390/nano11071696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023]
Abstract
A nanoparticle's shape and size determine its optical properties. Nanorods are nanoparticles that have double absorption bands associated to surface plasmon oscillations along their two main axes. In this work, we analize the optical response of gold nanorods with numerical simulations and spectral absorption measurements to evaluate their local field enhancement-which is key for surface-enhanced Raman spectroscopic (SERS) applications. Our experimental results are in good agreement with finite element method (FEM) simulations for the spectral optical absorption of the nanoparticles. We also observed a strong dependence of the optical properties of gold nanorods on their geometrical dimension and shape. Our numerical simulations helped us reveal the importance of the nanorods' morphology generated during the synthesis stage in the evaluation of absorption and local field enhancement. The application of these gold nanorods in surface-enhancement Raman spectroscopy is analyzed numerically, and results in a 5.8×104 amplification factor when comparing the values obtained for the nanorod deposited on a dielectric substrate compared to the nanorod immersed in water.
Collapse
Affiliation(s)
- Juan Manuel Núñez-Leyva
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico; (J.M.N.-L.); (E.S.K.-M.); (J.S.); (E.G.); (F.J.G.)
- Doctorado Institucional en Ingeniería y Ciencia de Materiales (DICIM-UASLP), Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico
| | - Eleazar Samuel Kolosovas-Machuca
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico; (J.M.N.-L.); (E.S.K.-M.); (J.S.); (E.G.); (F.J.G.)
| | - John Sánchez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico; (J.M.N.-L.); (E.S.K.-M.); (J.S.); (E.G.); (F.J.G.)
| | - Edgar Guevara
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico; (J.M.N.-L.); (E.S.K.-M.); (J.S.); (E.G.); (F.J.G.)
| | - Alexander Cuadrado
- Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, 28933 Madrid, Spain;
| | - Javier Alda
- Applied Optics Complutense Group, Faculty of Optics and Optometry, University Complutense of Madrid, 118 Arcos de Jalón Ave, 28037 Madrid, Spain
| | - Francisco Javier González
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico; (J.M.N.-L.); (E.S.K.-M.); (J.S.); (E.G.); (F.J.G.)
| |
Collapse
|
11
|
Lebepe TC, Parani S, Oluwafemi OS. Graphene Oxide-Coated Gold Nanorods: Synthesis and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2149. [PMID: 33126610 PMCID: PMC7693020 DOI: 10.3390/nano10112149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/29/2023]
Abstract
The application of gold nanorods (AuNRs) and graphene oxide (GO) has been widely studied due to their unique properties. Although each material has its own challenges, their combination produces an exceptional material for many applications such as sensor, therapeutics, and many others. This review covers the progress made so far in the synthesis and application of GO-coated AuNRs (GO-AuNRs). Initially, it highlights different methods of synthesizing AuNRs and GO followed by two approaches (ex situ and in situ approaches) of coating AuNRs with GO. In addition, the properties of GO-AuNRs composite such as biocompatibility, photothermal profiling, and their various applications, which include photothermal therapy, theranostic, sensor, and other applications of GO-AuNRs are also discussed. The review concludes with challenges associated with GO-AuNRs and future perspectives.
Collapse
Affiliation(s)
- Thabang C. Lebepe
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (T.C.L.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (T.C.L.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Oluwatobi S. Oluwafemi
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (T.C.L.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
12
|
Wu Z, Liang Y, Cao L, Guo Q, Jiang S, Mao F, Sheng J, Xiao Q. High-yield synthesis of monodisperse gold nanorods with a tunable plasmon wavelength using 3-aminophenol as the reducing agent. NANOSCALE 2019; 11:22890-22898. [PMID: 31763638 DOI: 10.1039/c9nr07949a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Facile synthesis of high quality gold nanorods (AuNRs) with a tunable size is of great value for applications of AuNRs in various fields and for the study of the growth mechanism of such anisotropic nanostructures. However, limitations usually exist in a specific synthetic protocol. In this work, using 3-aminophenol as the reducing agent, we present a AuNR synthetic strategy with an excellent comprehensive performance, which includes an exceptional monodispersity, a AuNR shape purity of around 99%, a conversion ratio of the gold precursor of about 91%, and an easily tuned longitudinal surface plasmon resonance wavelength ranging from 580 to ∼1050 nm. Studies on the impacts of the experimental parameters including silver ions, gold seeds, reducing agent, and cetyltrimethylammonium bromide (CTAB) revealed a profound recognition of the significant effect of the reductive atmosphere, in synergy with other parameters, in directing the growth and structural evolution of the gold seeds, thus deeply affecting the size, shape yield, monodispersity, and morphology of the final structure. These results could be immensely useful for the application and revelation of the growth mechanism of AuNRs.
Collapse
Affiliation(s)
- Zihua Wu
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Yuling Liang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Linqi Cao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Qing Guo
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Suju Jiang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Fangfang Mao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jiarong Sheng
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Qi Xiao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China. and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
13
|
Biswas R, Khirid S, Saha M, Liu CW, Dhayal RS, Haldar KK. Seed free high yield gold nanorods synthesis from single precursor gold(I) dithiophosphate complex. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Samreet Khirid
- Department of ChemistryCentral University of Punjab Bathinda 151001 India
| | - Monochura Saha
- Indian Institute of Science Education and Research Kolkata Nadia 741246 West Bengal India
| | - C. W. Liu
- Department of ChemistryNational Dong Hwa University Hualien 97401 Taiwan
| | - Rajendra S. Dhayal
- Department of ChemistryCentral University of Punjab Bathinda 151001 India
| | | |
Collapse
|
14
|
Wadhawan A, Chatterjee M, Singh G. Present Scenario of Bioconjugates in Cancer Therapy: A Review. Int J Mol Sci 2019; 20:ijms20215243. [PMID: 31652668 PMCID: PMC6862033 DOI: 10.3390/ijms20215243] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/24/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the deadliest diseases and poses a risk to people all over the world. Surgery, chemo, and radiation therapy have been the only options available until today to combat this major problem. Chemotherapeutic drugs have been used for treatment for more than 50 years. Unfortunately, these drugs have inherent cytotoxicities and tumor cells have started inducing resistance against these drugs. Other common techniques such as surgery and radiotherapy have their own drawbacks. Therefore, such techniques are incompetent tools to alleviate the disease efficiently without any adverse effects. This scenario has inspired researchers to develop alternative techniques with enhanced therapeutic effects and minimal side effects. Such techniques include targeted therapy, liposomal therapy, hormonal therapy, and immunotherapy, etc. However, these therapies are expensive and not effective enough. Furthermore, researchers have conjugated therapeutic agents or drugs with different molecules, delivery vectors, and/or imaging modalities to combat such problems and enhance the therapeutic effect. This conjugation technique has led to the development of bioconjugation therapy, in which at least one molecule is of biological origin. These bioconjugates are the new therapeutic strategies, having prospective synergistic antitumor effects and have potency to overcome the complications being produced by chemo drugs. Herein, we provide an overview of various bioconjugates developed so far, as well as their classification, characteristics, and targeting approach for cancer. Additionally, the most popular nanostructures based on their organic or inorganic origin (metallic, magnetic, polymeric nanoparticles, dendrimers, and silica nanoparticles) characterized as nanocarriers are also discussed. Moreover, we hope that this review will provide inspiration for researchers to develop better bioconjugates as therapeutic agents.
Collapse
Affiliation(s)
- Aishani Wadhawan
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh Pin code-160014, India.
| | - Mary Chatterjee
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh Pin code-160014, India.
| | - Gurpal Singh
- Department of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh Pin code-160014, India.
| |
Collapse
|
15
|
Pang Y, Wei C, Li R, Wu Y, Liu W, Wang F, Zhang X, Wang X. Photothermal conversion hydrogel based mini-eye patch for relieving dry eye with long-term use of the light-emitting screen. Int J Nanomedicine 2019; 14:5125-5133. [PMID: 31371951 PMCID: PMC6628948 DOI: 10.2147/ijn.s192407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/20/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: The frequent usage of various lighting screens has made dry eye syndrome an increasingly serious phenomenon. To relieve this global problem, we have developed a photothermal conversion hydrogel based mini-eye patch. Methods: Gold nanoparticles (GNRs) were synthesized by a seed-mediated method, and then used as the inner cores to grow palladium (Pd) shell by PdCl42-reduction. Then, gelatin was added to prepare GNRs @ Pd hydrogel eye patch by genipin cross-linking. We implanted temperature sensitive ink (complex composed of amino resin and styrene maleic anhydride copolymer) in the eye patch, which could change color at different temperatures. Heating performance of the eye patch was accessed with an infrared temperature profile and the circulating temperature experiment. The safety assessment of the eye patch was conducted by H&E staining of the mouse's eyelid skin and CCK-8 assay. A Keratograph 5M noninvasive ocular surface analyzer was used to assess the impact of eye patches on dry eyes. Results: It was found that GNRs @ Pd hydrogel eye patches could sense various visible light and responded by heating up spontaneously. Results from the CCK-8 assay and H&E staining showed that the eye patch has good safety performance. Measurements of the first noninvasive tear break-up time (NITBUT), the average NITBUT, the tear meniscus height (TMH), combined with red eye analysis, further demonstrated the patch's eye-protective properties. Conclusion: After being pasted to the lacrimal gland, the hydrogel patch converted various light irradiations into heat and stimulated the lacrimal gland to produce more tears to relieve dry eye. The built-in temperature-sensitive ink can play an important role in warning people of their excessive eye usage. Because this recyclable strategy does not interfere with normal eye use, it is thus more environmentally friendly and convenient than ordinary infrared eyewear.
Collapse
Affiliation(s)
- Yulian Pang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, People's Republic of China
| | - Chaochao Wei
- College of Chemistry, Nanchang University, Nanchang 330088, People's Republic of China
| | - Ruolei Li
- College of Medicine, Nanchang University, Nanchang 330088, People's Republic of China
| | - Yue Wu
- Queen Mary School of Nanchang University, Nanchang University, Nanchang 330088, People's Republic of China
| | - Wei Liu
- College of Chemistry, Nanchang University, Nanchang 330088, People's Republic of China
| | - Feifei Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, People's Republic of China
| | - Xu Zhang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, People's Republic of China
| | - Xiaolei Wang
- College of Chemistry, Nanchang University, Nanchang 330088, People's Republic of China.,Institute of Translational Medicine, Nanchang University, Nanchang 330088, People's Republic of China
| |
Collapse
|
16
|
Hočevar S, Milošević A, Rodriguez-Lorenzo L, Ackermann-Hirschi L, Mottas I, Petri-Fink A, Rothen-Rutishauser B, Bourquin C, Clift MJD. Polymer-Coated Gold Nanospheres Do Not Impair the Innate Immune Function of Human B Lymphocytes in Vitro. ACS NANO 2019; 13:6790-6800. [PMID: 31117377 DOI: 10.1021/acsnano.9b01492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles (GNPs) are intended for use within a variety of biomedical applications due to their physicochemical properties. Although, in general, biocompatibility of GNPs with immune cells such as macrophages and dendritic cells is well established, the impact of GNPs on B lymphocyte immune function remains to be determined. Since B lymphocytes play an important role in health and disease, the suitability of GNPs as a B cell-targeting tool is of high relevance. Thus, we provide information on the interactions of GNPs with B lymphocytes. Herein, we exposed freshly isolated human B lymphocytes to a set of well-characterized and biomedically relevant GNPs with distinct surface (polyethylene glycol (PEG), PEG/poly(vinyl alcohol) (PEG/PVA)) and shape (spheres, rods) characteristics. Polymer-coated GNPs poorly interacted with B lymphocytes, in contrast to uncoated GNPs. Importantly, none of the GNPs significantly affected cell viability, even at the highest concentration of 20 μg/mL over a 24 h suspension exposure period. Furthermore, none of the nanosphere formulations affected the expression of activation markers (CD69, CD86, MHC II) of the naive B lymphocytes, nor did they cause an increase in the secretion of pro-inflammatory cytokines ( i.e. , IL-6, IL-1β). However, the absence of polymer coating on the sphere GNPs and the rod shape caused a decrease in IL-6 cytokine production by activated B lymphocytes, suggesting a functional impairment. With these findings, the present study contributes imperative knowledge toward the safe-by-design approaches being conducted to benefit the development of nanomaterials, specifically those as theranostic tools.
Collapse
Affiliation(s)
- Sandra Hočevar
- BioNanomaterials , Adolphe Merkle Institute, University of Fribourg , 1700 Fribourg , Switzerland
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , 1211 Geneva , Switzerland
| | - Ana Milošević
- BioNanomaterials , Adolphe Merkle Institute, University of Fribourg , 1700 Fribourg , Switzerland
| | - Laura Rodriguez-Lorenzo
- BioNanomaterials , Adolphe Merkle Institute, University of Fribourg , 1700 Fribourg , Switzerland
| | | | - Ines Mottas
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , 1211 Geneva , Switzerland
- Chair of Pharmacology, Faculty of Science and Medicine , University of Fribourg , 1700 Fribourg , Switzerland
| | - Alke Petri-Fink
- BioNanomaterials , Adolphe Merkle Institute, University of Fribourg , 1700 Fribourg , Switzerland
| | | | - Carole Bourquin
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , 1211 Geneva , Switzerland
- Chair of Pharmacology, Faculty of Science and Medicine , University of Fribourg , 1700 Fribourg , Switzerland
- Faculty of Medicine , University of Geneva , Rue Michel-Servet 1 , 1211 Geneva , Switzerland
| | - Martin James David Clift
- BioNanomaterials , Adolphe Merkle Institute, University of Fribourg , 1700 Fribourg , Switzerland
- In Vitro Toxicology Group , Swansea University Medical School , Wales SA2 8PP , U.K
| |
Collapse
|
17
|
Shajari D, Bahari A, Gill P. Fast and simple detection of bovine serum albumin concentration by studying its interaction with gold nanorods. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Requejo KI, Liopo AV, Derry PJ, Zubarev ER. Accelerating Gold Nanorod Synthesis with Nanomolar Concentrations of Poly(vinylpyrrolidone). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12681-12688. [PMID: 29032680 DOI: 10.1021/acs.langmuir.7b02942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel modification for the seedless synthesis of gold nanorods (AuNRs) has been developed. Nanomolar concentrations of 10 kDa poly(vinylpyrrolidone) (PVP) can be introduced to a growth solution containing 25, 50, or 100 mM cetyltrimethylammonium bromide (CTAB) to significantly reduce the dimensions of AuNRs. We found that PVP accelerates the growth rate of AuNRs by more than two times that of nanorods grown in 50 and 100 mM CTAB solutions. Additionally, there is a time-dependent effect of adding PVP to the nanorod growth solution that can be utilized to tune their aspect ratio. Because the concentration of PVP is far below the concentration of HAuCl4 in the reaction mixture, PVP primarily functions not as a reducing agent, but as a capping or templating ligand to stabilize the growing nanorods. Our reproducible protocol enables the synthesis of AuNRs in high yield with tunable sizes: 45 × 6.7, 28 × 5.5, and 12 × 4.5 nm for 100, 50, and 25 mM CTAB, respectively. We estimated the number of PVP chains per nanorod in growth solutions to be around 30, which suggests that the effect on the aspect ratio is caused by a direct interaction between the AuNR surface and the PVP.
Collapse
Affiliation(s)
| | - Anton V Liopo
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Paul J Derry
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Eugene R Zubarev
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
19
|
Ortiz N, Zoellner B, Hong SJ, Ji Y, Wang T, Liu Y, Maggard PA, Wang G. Harnessing Hot Electrons from Near IR Light for Hydrogen Production Using Pt-End-Capped-AuNRs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25962-25969. [PMID: 28714663 DOI: 10.1021/acsami.7b05064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gold nanorods show great potential in harvesting natural sunlight and generating hot charge carriers that can be employed to produce electrical or chemical energies. We show that photochemical reduction of Pt(IV) to Pt metal mainly takes place at the ends of gold nanorods (AuNRs), suggesting photon-induced hot electrons are localized in a time-averaged manner at AuNR ends. To use these hot electrons efficiently, a novel synthetic method to selectively overgrow Pt at the ends of AuNRs has been developed. These Pt-end-capped AuNRs show relatively high activity for the production of hydrogen gas using artificial white light, natural sunlight, and more importantly, near IR light at 976 nm. Tuning of the surface plasmon resonance (SPR) wavelength of AuNRs changes the hydrogen gas production rate, indicating that SPR is involved in hot electron generation and photoreduction of hydrogen ions. This study shows that gold nanorods are excellent for converting low-energy photons into high-energy hot electrons, which can be used to drive chemical reactions at their surfaces.
Collapse
Affiliation(s)
- Nathalia Ortiz
- Department of Chemistry, ‡Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Brandon Zoellner
- Department of Chemistry, ‡Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Soung Joung Hong
- Department of Chemistry, ‡Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Yue Ji
- Department of Chemistry, ‡Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Tao Wang
- Department of Chemistry, ‡Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Yang Liu
- Department of Chemistry, ‡Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Paul A Maggard
- Department of Chemistry, ‡Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Gufeng Wang
- Department of Chemistry, ‡Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
20
|
Almada M, Leal-Martínez BH, Hassan N, Kogan MJ, Burboa MG, Topete A, Valdez MA, Juárez J. Photothermal conversion efficiency and cytotoxic effect of gold nanorods stabilized with chitosan, alginate and poly(vinyl alcohol). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:583-593. [PMID: 28532069 DOI: 10.1016/j.msec.2017.03.218] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
Gold nanorods (GNR) use has been proposed in medical applications because of their intrinsic photothermal properties. However, the presence of CTAB molecules adsorbed onto the surface of GNRs results in a highly cytotoxic GNR system. In this work we replace the CTAB molecules with a thiolated chitosan. Once chitosan coated GNRs (Chi-SH-GNR) were attained, a film of alginate (Alg-Chi-SH-GNR) or polyvinyl alcohol (PVA-Chi-SH-GNR) was deposited onto the surface of Chi-GNR by a layer-by-layer process. The photothermal conversion efficiency for the GNR systems was determined irradiating the GNRs suspended in aqua media with a CW 808nm diode laser (CNI, China). The cytotoxicity effect and the photothermal cellular damage of GNR systems were evaluated on a breast cancer cell line. Results show that polymer coats did not affect the transduction photothermal efficiency. Values around 50% were obtained for the different coated gold nanorods. The cytotoxicity of coated gold nanorods diminished significantly compared with those GNR stabilized with CTAB. The laser irradiation of cells treated with gold nanorods showed a decrease in their viability compared with the cells treated but no irradiated.
Collapse
Affiliation(s)
- M Almada
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - B H Leal-Martínez
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - N Hassan
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana (UTEM), Chile
| | - M J Kogan
- Laboratorio de Nanobiotecnología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile
| | - M G Burboa
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Rosales y Transversal, 83000 Hermosillo, Sonora, Mexico
| | - A Topete
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, 44340 Guadalajara, Jalisco, Mexico
| | - M A Valdez
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - J Juárez
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
21
|
Zhu D, Liu M, Liu X, Liu Y, Prasad PN, Swihart MT. Au–Cu2−xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy. J Mater Chem B 2017; 5:4934-4942. [DOI: 10.1039/c7tb01004d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we show that Au–Cu2−xSe heterogeneous nanocrystals have great promise for use in photothermal therapy (PTT).
Collapse
Affiliation(s)
- Dewei Zhu
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | - Maixian Liu
- Institute for Lasers
- Photonics, and Biophotonics
- University at Buffalo
- The State University of New York
- Buffalo
| | - Xin Liu
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | - Yang Liu
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | - Paras N. Prasad
- Institute for Lasers
- Photonics, and Biophotonics
- University at Buffalo
- The State University of New York
- Buffalo
| | - Mark T. Swihart
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| |
Collapse
|
22
|
|
23
|
Pissuwan D, Niidome T. Polyelectrolyte-coated gold nanorods and their biomedical applications. NANOSCALE 2015; 7:59-65. [PMID: 25387820 DOI: 10.1039/c4nr04350b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gold nanorods (GNRs) have been extensively used in biomedical applications, because of their favourable optical properties. Their longitudinal surface plasmon resonance can be tuned, providing a strong near-infrared (NIR) extinction coefficient peak within the tissue transparency window. However, the modification of the surface of GNRs is essential before they can be used for biomedical applications. The number of GNRs taken up by cells and their biodistribution depend on their surface modification. Here, we review the recent advances in modifying GNR surfaces with polyelectrolytes for biomedical applications. Major polyelectrolytes used to coat GNR surfaces over the past few years and the biocompatibility of polyelectrolyte-coated GNRs are discussed.
Collapse
Affiliation(s)
- Dakrong Pissuwan
- Materials Science and Engineering Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Thailand.
| | | |
Collapse
|
24
|
Borwankar AU, Willsey BW, Twu A, Hung JJ, Stover RJ, Wang TW, Feldman MD, Milner TE, Truskett TM, Johnston KP. Gold nanoparticles with high densities of small protuberances on nanocluster cores with strong NIR extinction. RSC Adv 2015. [DOI: 10.1039/c5ra21712a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plasmonic nanoparticles with sizes well below 100 nm and high near infrared (NIR) extinction are of great interest in biomedical imaging.
Collapse
Affiliation(s)
- Ameya U. Borwankar
- McKetta Department of Chemical Engineering
- The University of Texas at Austin
- USA
| | - Brian W. Willsey
- McKetta Department of Chemical Engineering
- The University of Texas at Austin
- USA
| | - April Twu
- McKetta Department of Chemical Engineering
- The University of Texas at Austin
- USA
| | - Jessica J. Hung
- McKetta Department of Chemical Engineering
- The University of Texas at Austin
- USA
| | - Robert J. Stover
- McKetta Department of Chemical Engineering
- The University of Texas at Austin
- USA
| | - Tianyi W. Wang
- Department of Biomedical Engineering
- The University of Texas at Austin
- USA
| | - Marc D. Feldman
- South Texas Veterans Health Care System
- San Antonio
- USA
- Division of Cardiology
- Department of Medicine
| | - Thomas E. Milner
- Department of Biomedical Engineering
- The University of Texas at Austin
- USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering
- The University of Texas at Austin
- USA
| | - Keith P. Johnston
- McKetta Department of Chemical Engineering
- The University of Texas at Austin
- USA
| |
Collapse
|
25
|
Abstract
Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy.
Collapse
Affiliation(s)
- Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging & Nanomedicine (LOMIN), National Institute of Biomedical Imaging & Bioengineering (NIBIB), NIH, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Spadavecchia J, Casale S, Landoulsi J, Pradier CM. Tuning the shape and size of hybrid gold nanoparticles by porphyrins using seed-mediated synthesis. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Alarfaj NA, El-Tohamy MF. Applications of micelle enhancement in luminescence-based analysis. LUMINESCENCE 2014; 30:3-11. [PMID: 24802358 DOI: 10.1002/bio.2694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 02/24/2014] [Accepted: 03/26/2014] [Indexed: 11/07/2022]
Abstract
Micelles are self-assembled aggregates that arrange themselves into spheres in aqueous media. When the surfactant concentration reaches the critical micelle concentration, extensive aggregation of the surfactant monomers occurs to form micelles. A micelle has both a hydrophilic and a hydrophobic part. This allows them to form a spherical shape and for their glycolipid and phospholipid components to form lipid bilayers. The importance of micelles is increasing because of their wide analytical applications. Recently, colloidal carrier systems have received much attention in the field of analytical chemistry, especially in luminescence enhancement applications.
Collapse
Affiliation(s)
- Nawal A Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | | |
Collapse
|
28
|
Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures. NANOSCALE 2014; 6:2502-30. [PMID: 24445488 DOI: 10.1039/c3nr05112a] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.
Collapse
Affiliation(s)
- Joseph A Webb
- Department of Chemical and Biomolecular Engineering Department, Vanderbilt University, Nashville, TN 37235, USA.
| | | |
Collapse
|
29
|
Zeng S, Baillargeat D, Ho HP, Yong KT. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 2014; 43:3426-52. [PMID: 24549396 DOI: 10.1039/c3cs60479a] [Citation(s) in RCA: 531] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main challenge for all electrical, mechanical and optical sensors is to detect low molecular weight (less than 400 Da) chemical and biological analytes under extremely dilute conditions. Surface plasmon resonance sensors are the most commonly used optical sensors due to their unique ability for real-time monitoring the molecular binding events. However, their sensitivities are insufficient to detect trace amounts of small molecular weight molecules such as cancer biomarkers, hormones, antibiotics, insecticides, and explosive materials which are respectively important for early-stage disease diagnosis, food quality control, environmental monitoring, and homeland security protection. With the rapid development of nanotechnology in the past few years, nanomaterials-enhanced surface plasmon resonance sensors have been developed and used as effective tools to sense hard-to-detect molecules within the concentration range between pmol and amol. In this review article, we reviewed and discussed the latest trend and challenges in engineering and applications of nanomaterials-enhanced surface plasmon resonance sensors (e.g., metallic nanoparticles, magnetic nanoparticles, carbon-based nanomaterials, latex nanoparticles and liposome nanoparticles) for detecting "hard-to-identify" biological and chemical analytes. Such information will be viable in terms of providing a useful platform for designing future ultrasensitive plasmonic nanosensors.
Collapse
Affiliation(s)
- Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | | | |
Collapse
|
30
|
Olesiak-Banska J, Gordel M, Matczyszyn K, Shynkar V, Zyss J, Samoc M. Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix. NANOSCALE 2013; 5:10975-81. [PMID: 24065150 DOI: 10.1039/c3nr03319h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We show how a single gold nanorod can serve as a multifunctional probe in an organized DNA matrix. Polarization analysis of two-photon luminescence excited with a femtosecond laser enables imaging of the orientation of a single nanorod, which reports the orientation of DNA strands. Carefully controlled photoinduced heating by the same laser is able to degrade the DNA matrix in a highly localized volume.
Collapse
Affiliation(s)
- Joanna Olesiak-Banska
- Wroclaw University of Technology, Institute of Physical and Theoretical Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | | | | | | | | | | |
Collapse
|
31
|
Ye X, Gao Y, Chen J, Reifsnyder DC, Zheng C, Murray CB. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. NANO LETTERS 2013; 13:2163-71. [PMID: 23547734 DOI: 10.1021/nl400653s] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We demonstrate for the first time that monodisperse gold nanorods (NRs) with broadly tunable dimensions and longitudinal surface plasmon resonances can be synthesized using a bromide-free surfactant mixture composed of alkyltrimethylammonium chloride and sodium oleate. It is found that uniform gold NRs can be obtained even with an iodide concentration approaching 100 μM in the growth solution. In contrast to conventional wisdom, our results provide conclusive evidence that neither bromide as the surfactant counterion nor a high concentration of bromide ions in the growth solution is essential for gold NR formation. Correlated electron microscopy study of three-dimensional structures of gold NRs reveals a previously unprecedented octagonal prismatic structure enclosed predominantly by high index {310} crystal planes. These findings should have profound implications for a comprehensive mechanistic understanding of seeded growth of anisotropic metal nanocrystals.
Collapse
Affiliation(s)
- Xingchen Ye
- Department of Chemistry, University of Pennsylvania, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lim EK, Lee K, Huh YM, Haam S. Remotely Triggered Drug Release from Gold Nanoparticle-based Systems. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849734318-00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nanoparticles are attractive drug carriers that can combine drug molecules and targeting moieties in order to improve treatment efficacy and reduce unwanted side effects. In addition, activatable nanoparticles may enable drug release in the target sites at accurate timings or conditions, in which drug discharge can be controlled by specific stimuli. Especially, gold nanoparticles provide a great opportunity as drug carriers because of the following advantageous features: i) simple formulation with various sizes and shapes and non-toxicity; ii) easy incorporation of targeting molecules, drugs or other therapeutic molecules on them; iii) triggered drug release by means of external or internal stimuli. In this chapter, we describe relevant examples of the preparation techniques and the performance of various types of gold nanoparticles for drug delivery as well as theranostics.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- Department of Chemical and Bimolecular Engineering Yonsei University Seoul 120-749, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry Korea University Seoul, 136-701, Republic of Korea
| | - Yong-Min Huh
- Department of Radiology Yonsei University Seoul, 120-752, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Bimolecular Engineering Yonsei University Seoul 120-749, Republic of Korea
| |
Collapse
|
33
|
Ye X, Zheng C, Chen J, Gao Y, Murray CB. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. NANO LETTERS 2013; 13:765-71. [PMID: 23286198 DOI: 10.1021/nl304478h] [Citation(s) in RCA: 569] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report a dramatically improved synthesis of colloidal gold nanorods (NRs) using a binary surfactant mixture composed of hexadecyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL). Both thin (diameter <25 nm) and thicker (diameter >30 nm) gold NRs with exceptional monodispersity and broadly tunable longitudinal surface plasmon resonance can be synthesized using seeded growth at reduced CTAB concentrations (as low as 0.037 M). The CTAB-NaOL binary surfactant mixture overcomes the difficulty of growing uniform thick gold NRs often associated with the single-component CTAB system and greatly expands the dimensions of gold NRs that are accessible through a one-pot seeded growth process. Gold NRs with large overall dimensions and thus high scattering/absorption ratios are ideal for scattering-based applications such as biolabeling as well as the enhancement of optical processes.
Collapse
Affiliation(s)
- Xingchen Ye
- Department of Chemistry, University of Pennsylvania, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Zhu J, Gong T, Kopwitthaya A, Hu R, Law WC, Roy I, Huang H, Yong KT. Synthesis of PEGylated gold nanorods (Au NRs) as absorption nanoprobes for near-infrared optical imaging. RSC Adv 2013. [DOI: 10.1039/c3ra41777h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
35
|
Wen T, Hu Z, Liu W, Zhang H, Hou S, Hu X, Wu X. Copper-ion-assisted growth of gold nanorods in seed-mediated growth: significant narrowing of size distribution via tailoring reactivity of seeds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17517-17523. [PMID: 23173599 DOI: 10.1021/la304181k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the well-developed seed-mediated growth of gold nanorods (GNRs), adding the proper amount of Cu(2+) ions in the growth solution leads to significant narrowing in the size distribution of the resultant GNRs, especially for those with shorter aspect ratios (corresponding longitudinal surface plasmon resonance (LSPR) peaks shorter than 750 nm). Cu(2+) ions were found to be able to catalyze the oxidative etching of gold seeds by oxygen, thus mediating subsequent growth kinetics of the GNRs. At proper Cu(2+) concentrations, the size distribution of the original seeds is greatly narrowed via oxidative etching. The etched seeds are highly reactive and grow quickly into desired GNRs with significantly improved size distribution. A similar mechanism can be employed to tune the end cap of the GNRs. Except for copper ions, no observable catalytic effect is observed from other cations presumably due to their lower affinity to oxygen. Considering the widespread use of seed-mediated growth in the morphology-controlled synthesis of noble metal nanostructures, the tailoring in seed reactivity we presented herein could be extended to other systems.
Collapse
Affiliation(s)
- Tao Wen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan CR, Murray CB. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS NANO 2012; 6:2804-17. [PMID: 22376005 DOI: 10.1021/nn300315j] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report an improved synthesis of colloidal gold nanorods (NRs) by using aromatic additives that reduce the concentration of hexadecyltrimethylammonium bromide surfactant to ~0.05 M as opposed to 0.1 M in well-established protocols. The method optimizes the synthesis for each of the 11 additives studied, allowing a rich array of monodisperse gold NRs with longitudinal surface plasmon resonance tunable from 627 to 1246 nm to be generated. The gold NRs form large-area ordered assemblies upon slow evaporation of NR solution, exhibiting liquid crystalline ordering and several distinct local packing motifs that are dependent upon the NR's aspect ratio. Tailored synthesis of gold NRs with simultaneous improvements in monodispersity and dimensional tunability through rational introduction of additives will not only help to better understand the mechanism of seed-mediated growth of gold NRs but also advance the research on plasmonic metamaterials incorporating anisotropic metal nanostructures.
Collapse
Affiliation(s)
- Xingchen Ye
- Department of Chemistry, University of Pennsylvania, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wu F, Tamhane M, Morris ME. Pharmacokinetics, lymph node uptake, and mechanistic PK model of near-infrared dye-labeled bevacizumab after IV and SC administration in mice. AAPS JOURNAL 2012; 14:252-61. [PMID: 22391791 DOI: 10.1208/s12248-012-9342-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/21/2012] [Indexed: 12/31/2022]
Abstract
Our objective was to determine the pharmacokinetics, bioavailability and lymph node uptake of the monoclonal antibody bevacizumab, labeled with the near-infrared (IR) dye 800CW, after intravenous (IV) and subcutaneous (SC) administration in mice. Fluorescence imaging and enzyme-linked immunosorbent assay (ELISA) assays were developed and validated to measure the concentration of bevacizumab in plasma. The bevacizumab-IRDye conjugate remained predominantly intact in plasma and in lymph node homogenate samples over a 24-h period, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and size exclusion chromatography. The plasma concentration vs. time plots obtained by fluorescence and ELISA measurements were similar; however, unlike ELISA, fluorescent imaging was only able to quantitate concentrations for 24 h after administration. At a low dose of 0.45 mg/kg, the plasma clearance of bevacizumab was 6.96 mL/h/kg after IV administration; this clearance is higher than that reported after higher doses. Half-lives of bevacizumab after SC and IV administration were 4.6 and 3.9 days, respectively. After SC administration, bevacizumab-IRDye800CW was present in the axillary lymph nodes that drain the SC site; lymph node uptake of bevacizumab-IRDye 800CW was negligible after IV administration. Bevacizumab exhibited complete bioavailability after SC administration. Using a compartmental pharmacokinetic model, the fraction absorbed through the lymphatics after SC administration was estimated to be about 1%. This is the first report evaluating the use of fluorescent imaging to determine the pharmacokinetics, lymphatic uptake, and bioavailability of a near-infrared dye-labeled antibody conjugate.
Collapse
Affiliation(s)
- Fang Wu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York 14260, USA
| | | | | |
Collapse
|
38
|
Olivo M, Fu CY, Raghavan V, Lau WKO. New frontier in hypericin-mediated diagnosis of cancer with current optical technologies. Ann Biomed Eng 2011; 40:460-73. [PMID: 22124793 PMCID: PMC3281199 DOI: 10.1007/s10439-011-0462-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/01/2011] [Indexed: 12/12/2022]
Abstract
Photosensitizers (PSs) have shown great potentials as molecular contrast agents in photodynamic diagnosis (PDD) of cancer. While the diagnostic values of PSs have been proven previously, little efforts have been put into developing optical imaging and diagnostic algorithms. In this article, we review the recent development of optical probes that have been used in conjunction with a potent PS, hypericin (HY). Various fluorescence techniques such as laser confocal microscopy, fluorescence urine cytology, endoscopy and endomicroscopy are covered. We will also discuss about image processing and classification approaches employed for accurate PDD. We anticipate that continual efforts in these developments could lead to an objective PDD and complete surgical clearance of tumors. Recent advancements in nanotechnology have also opened new horizons for PSs. The use of biocompatible gold nanoparticles as carrier for enhanced targeted delivery of HY has been attained. In addition, plasmonic properties of nanoparticles were harnessed to induce localized hyperthermia and to manage the release of PS molecules, enabling a better therapeutic outcome of a combined photodynamic and photothermal therapy. Finally, we discuss how nanoparticles can be used as contrast agents for other optical techniques such as optical coherence tomography and surface-enhanced Raman scattering imaging.
Collapse
Affiliation(s)
- Malini Olivo
- School of Physics, National University of Ireland, Galway, Ireland.
| | | | | | | |
Collapse
|
39
|
Photothermal Cancer Therapy and Imaging Based on Gold Nanorods. Ann Biomed Eng 2011; 40:534-46. [DOI: 10.1007/s10439-011-0388-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/23/2011] [Indexed: 01/16/2023]
|