1
|
Ndlovu E, Malpartida L, Sultana T, Dahms TES, Dague E. Host Cell Geometry and Cytoskeletal Organization Governs Candida-Host Cell Interactions at the Nanoscale. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37888912 DOI: 10.1021/acsami.3c09870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Candida is one of the most common opportunistic fungal pathogens in humans. Its adhesion to the host cell is required in parasitic states and is important for pathogenesis. Many studies have shown that there is an increased risk of developing candidiasis when normal tissue barriers are weakened or when immune defenses are compromised, for example, during cancer treatment that induces immunosuppression. The mechanical properties of malignant cells, such as adhesiveness and viscoelasticity, which contribute to cellular invasion and migration are different from those of noncancerous cells. To understand host invasion and its relationship with host cell health, we probed the interaction of Candida spp. with cancerous and noncancerous human cell lines using atomic force microscopy in the single-cell force spectroscopy mode. There was significant adhesion between Candida and human cells, with more adhesion to cancerous versus noncancerous cell lines. This increase in adhesion is related to the mechanobiological properties of cancer cells, which have a disorganized cytoskeleton and lower rigidity. Altered geometry and cytoskeletal disruption of the human cells impacted adhesion parameters, underscoring the role of cytoskeletal organization in Candida-human cell adhesion and implicating the manipulation of cell properties as a potential future therapeutic strategy.
Collapse
Affiliation(s)
- Easter Ndlovu
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Lucas Malpartida
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| | - Taranum Sultana
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Etienne Dague
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| |
Collapse
|
2
|
Chai Z, Childress A, Busnaina AA. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS NANO 2022; 16:17641-17686. [PMID: 36269234 PMCID: PMC9706815 DOI: 10.1021/acsnano.2c07910] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/19/2023]
Abstract
Nanofabrication has been utilized to manufacture one-, two-, and three-dimensional functional nanostructures for applications such as electronics, sensors, and photonic devices. Although conventional silicon-based nanofabrication (top-down approach) has developed into a technique with extremely high precision and integration density, nanofabrication based on directed assembly (bottom-up approach) is attracting more interest recently owing to its low cost and the advantages of additive manufacturing. Directed assembly is a process that utilizes external fields to directly interact with nanoelements (nanoparticles, 2D nanomaterials, nanotubes, nanowires, etc.) and drive the nanoelements to site-selectively assemble in patterned areas on substrates to form functional structures. Directed assembly processes can be divided into four different categories depending on the external fields: electric field-directed assembly, fluidic flow-directed assembly, magnetic field-directed assembly, and optical field-directed assembly. In this review, we summarize recent progress utilizing these four processes and address how these directed assembly processes harness the external fields, the underlying mechanism of how the external fields interact with the nanoelements, and the advantages and drawbacks of utilizing each method. Finally, we discuss applications made using directed assembly and provide a perspective on the future developments and challenges.
Collapse
Affiliation(s)
- Zhimin Chai
- State
Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing100084, China
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Anthony Childress
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Ahmed A. Busnaina
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| |
Collapse
|
3
|
Tudureanu R, Handrea-Dragan IM, Boca S, Botiz I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int J Mol Sci 2022; 23:7731. [PMID: 35887079 PMCID: PMC9315624 DOI: 10.3390/ijms23147731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
It is well known that surface topography plays an important role in cell behavior, including adhesion, migration, orientation, elongation, proliferation and differentiation. Studying these cell functions is essential in order to better understand and control specific characteristics of the cells and thus to enhance their potential in various biomedical applications. This review proposes to investigate the extent to which various surface relief patterns, imprinted in biopolymer films or in polymeric films coated with biopolymers, by utilizing specific lithographic techniques, influence cell behavior and development. We aim to understand how characteristics such as shape, dimension or chemical functionality of surface relief patterns alter the orientation and elongation of cells, and thus, finally make their mark on the cell proliferation and differentiation. We infer that such an insight is a prerequisite for pushing forward the comprehension of the methodologies and technologies used in tissue engineering applications and products, including skin or bone implants and wound or fracture healing.
Collapse
Affiliation(s)
- Raluca Tudureanu
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Iuliana M. Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| |
Collapse
|
4
|
Oh SH, Martin-Yken H, Coleman DA, Dague E, Hoyer LL. Development and Use of a Monoclonal Antibody Specific for the Candida albicans Cell-Surface Protein Hwp1. Front Cell Infect Microbiol 2022; 12:907453. [PMID: 35832385 PMCID: PMC9273023 DOI: 10.3389/fcimb.2022.907453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The Candida albicans cell-surface protein Hwp1 functions in adhesion to the host and in biofilm formation. A peptide from the Gln-Pro-rich adhesive domain of Hwp1 was used to raise monoclonal antibody (MAb) 2-E8. MAb 2-E8 specificity for Hwp1 was demonstrated using a hwp1/hwp1 C. albicans isolate and strains that expressed at least one HWP1 allele. Immunofluorescence and atomic force microscopy experiments using MAb 2-E8 confirmed C. albicans germ-tube-specific detection of the Hwp1 protein. MAb 2-E8 also immunolabeled the tips of some Candida dubliniensis germ tubes grown under conditions that maximized HWP1 expression. The phylogeny of HWP1 and closely related genes suggested that the Gln-Pro-rich adhesive domain was unique to C. albicans and C. dubliniensis focusing the utility of MAb 2-E8 on these species. This new reagent can be used to address unanswered questions about Hwp1 and its interactions with other proteins in the context of C. albicans biology and pathogenesis.
Collapse
Affiliation(s)
- Soon-Hwan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hélène Martin-Yken
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - David A. Coleman
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Lois L. Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
6
|
Spheres-in-Grating Assemblies with Altered Photoluminescence and Wetting Properties. NANOMATERIALS 2022; 12:nano12071084. [PMID: 35407201 PMCID: PMC9000395 DOI: 10.3390/nano12071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
In this work, we report the fabrication of spheres-in-grating assemblies consisting of equally spaced parallel rectangular grooves filled with fluorescent spheres, by employing embossing and convective self-assembly methods. The developed hierarchical assemblies, when compared to spheres spin-cast on glass, exhibited a blueshift in the photoluminescence spectra, as well as changes in wetting properties induced not only by the patterning process, but also by the nature and size of the utilized spheres. While the patterning process led to increased hydrophobicity, the utilization of spheres with larger diameter improved the hydrophilicity of the fabricated assemblies. Finally, by aiming at the future integration of the spheres-in-grating assemblies as critical components in different technological and medical applications, we report a successful encapsulation of the incorporated spheres within the grating with a top layer of a functional polymer.
Collapse
|
7
|
Shahina Z, Bhat SV, Ndlovu E, Sultana T, Körnig A, Dague É, Dahms TES. Cellulomics of Live Yeast by Advanced and Correlative Microscopy. Fungal Biol 2022. [DOI: 10.1007/978-3-030-83749-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Chang D, Hirate T, Uehara C, Maruyama H, Uozumi N, Arai F. Evaluating Young's Modulus of Single Yeast Cells Based on Compression Using an Atomic Force Microscope with a Flat Tip. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:392-399. [PMID: 33446296 DOI: 10.1017/s1431927620024903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this research, atomic force microscopy (AFM) with a flat tip cantilever is utilized to measure Young's modulus of a whole yeast cell (Saccharomyces cerevisiae BY4741). The results acquired from AFM are similar to those obtained using a microfluidic chip compression system. The mechanical properties of single yeast cells are important parameters which can be examined using AFM. Conventional studies apply AFM with a sharp cantilever tip to indent the cell and measure the force-indentation curve, from which Young's modulus can be calculated. However, sharp tips introduce problems because the shape variation can lead to a different result and cannot represent the stiffness of the whole cell. It can lead to a lack of broader meaning when evaluating Young's modulus of yeast cells. In this report, we confirm the differences in results obtained when measuring the compression of a poly(dimethylsiloxane) bead using a commercial sharp tip versus a unique flat tip. The flat tip effectively avoids tip-derived errors, so we use this method to compress whole yeast cells and generate a force–deformation curve. We believe our proposed method is effective for evaluating Young's modulus of whole yeast cells.
Collapse
Affiliation(s)
- Di Chang
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Room 108, Aerospace Mechanical Engineering Research Building, Furo-cho, Chikusa-ku, Nagoya, Aichi464-8603, Japan
| | - Takahiro Hirate
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Room 108, Aerospace Mechanical Engineering Research Building, Furo-cho, Chikusa-ku, Nagoya, Aichi464-8603, Japan
| | - Chihiro Uehara
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai980-8579, Japan
| | - Hisataka Maruyama
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Room 108, Aerospace Mechanical Engineering Research Building, Furo-cho, Chikusa-ku, Nagoya, Aichi464-8603, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai980-8579, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Room 108, Aerospace Mechanical Engineering Research Building, Furo-cho, Chikusa-ku, Nagoya, Aichi464-8603, Japan
- Department of Mechanical Engineering, The University of Tokyo, Tokyo113-8654, Japan
| |
Collapse
|
9
|
Pioli R, Fernandez-Rodriguez MA, Grillo F, Alvarez L, Stocker R, Isa L, Secchi E. Sequential capillarity-assisted particle assembly in a microfluidic channel. LAB ON A CHIP 2021; 21:888-895. [PMID: 33427254 DOI: 10.1039/d0lc00962h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal patterning enables the placement of a wide range of materials into prescribed spatial arrangements, as required in a variety of applications, including micro- and nano-electronics, sensing, and plasmonics. Directed colloidal assembly methods, which exploit external forces to place particles with high yield and great accuracy, are particularly powerful. However, currently available techniques require specialized equipment, which limits their applicability. Here, we present a microfluidic platform to produce versatile colloidal patterns within a microchannel, based on sequential capillarity-assisted particle assembly (sCAPA). This new microfluidic technology exploits the capillary forces resulting from the controlled motion of an evaporating droplet inside a microfluidic channel to deposit individual particles in an array of traps microfabricated onto a substrate. Sequential depositions allow the generation of a desired spatial layout of colloidal particles of single or multiple types, dictated solely by the geometry of the traps and the filling sequence. We show that the platform can be used to create a variety of patterns and that the microfluidic channel easily allows surface functionalization of trapped particles. By enabling colloidal patterning to be carried out in a controlled environment, exploiting equipment routinely used in microfluidics, we demonstrate an easy-to-build platform that can be implemented in microfluidics labs.
Collapse
Affiliation(s)
- Roberto Pioli
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Stefano-Franscini-Platz 5, 8093 Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
10
|
Agboola JO, Schiavone M, Øverland M, Morales-Lange B, Lagos L, Arntzen MØ, Lapeña D, Eijsink VGH, Horn SJ, Mydland LT, François JM, Mercado L, Hansen JØ. Impact of down-stream processing on functional properties of yeasts and the implications on gut health of Atlantic salmon (Salmo salar). Sci Rep 2021; 11:4496. [PMID: 33627754 PMCID: PMC7904851 DOI: 10.1038/s41598-021-83764-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Yeasts are becoming popular as novel ingredients in fish feeds because of their potential to support better growth and concomitantly ensure good fish health. Here, three species of yeasts (Cyberlindnera jadinii, Blastobotrys adeninivorans and Wickerhamomyces anomalus), grown on wood sugars and hydrolysates of chicken were subjected to two down-stream processes, either direct heat-inactivation or autolysis, and the feed potential of the resulting yeast preparations was assessed through a feeding trial with Atlantic salmon fry. Histological examination of distal intestine based on widening of lamina propria, showed that autolyzed W. anomalus was effective in alleviating mild intestinal enteritis, while only limited effects were observed for other yeasts. Our results showed that the functionality of yeast in counteracting intestinal enteritis in Atlantic salmon was dependent on both the type of yeast and the down-stream processing method, and demonstrated that C. jadinii and W. anomalus have promising effects on gut health of Atlantic salmon.
Collapse
Affiliation(s)
- Jeleel Opeyemi Agboola
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Marion Schiavone
- grid.432671.5Lallemand SAS, 19 rue des Briquetiers, BP59, 31702 Blagnac, France ,grid.461574.50000 0001 2286 8343TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France ,grid.462430.70000 0001 2188 216XLAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Margareth Øverland
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Byron Morales-Lange
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Leidy Lagos
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Magnus Øverlie Arntzen
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - David Lapeña
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Vincent G. H. Eijsink
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Liv Torunn Mydland
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Jean Marie François
- grid.461574.50000 0001 2286 8343TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Luis Mercado
- grid.8170.e0000 0001 1537 5962Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso, Chile
| | - Jon Øvrum Hansen
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
11
|
Handrea-Dragan M, Botiz I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers (Basel) 2021; 13:445. [PMID: 33573248 PMCID: PMC7866561 DOI: 10.3390/polym13030445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
There is an astonishing number of optoelectronic, photonic, biological, sensing, or storage media devices, just to name a few, that rely on a variety of extraordinary periodic surface relief miniaturized patterns fabricated on polymer-covered rigid or flexible substrates. Even more extraordinary is that these surface relief patterns can be further filled, in a more or less ordered fashion, with various functional nanomaterials and thus can lead to the realization of more complex structured architectures. These architectures can serve as multifunctional platforms for the design and the development of a multitude of novel, better performing nanotechnological applications. In this work, we aim to provide an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns. Our aim is to provide the readers with a toolbox of the most suitable patterning and deposition methodologies that could be easily identified and further combined when the fabrication of novel structured platforms exhibiting interesting properties is targeted.
Collapse
Affiliation(s)
- Madalina Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str. 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
| |
Collapse
|
12
|
Wang L, Wang R, Zhan J, Huang W. High levels of copper retard the growth of
Saccharomyces cerevisiae
by altering cellular morphology and reducing its potential for ethanolic fermentation. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lihua Wang
- Beijing Key Laboratory of Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Tsinghua East Road 17, Haidian District Beijing100083China
| | - Ronghua Wang
- Beijing Key Laboratory of Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Tsinghua East Road 17, Haidian District Beijing100083China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Tsinghua East Road 17, Haidian District Beijing100083China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Tsinghua East Road 17, Haidian District Beijing100083China
| |
Collapse
|
13
|
Abstract
Candida albicans is one of the most common pathogens of humans. One important virulence factor of C. albicans is its ability to form elongated hyphae that can invade host tissues and cause disseminated infections. Here, we show the effect of different physiologically relevant temperatures and common antifungal drugs on the growth and mechanical properties of C. albicans hyphae using atomic force microscopy. We demonstrate that minor temperature fluctuations within the normal range can have profound effects on hyphal cell growth and that different antifungal drugs impact hyphal cell stiffness and adhesion in different ways. Candida albicans is an opportunistic fungal pathogen of humans known for its ability to cause a wide range of infections. One major virulence factor of C. albicans is its ability to form hyphae that can invade host tissues and cause disseminated infections. Here, we introduce a method based on atomic force microscopy to investigate C. albicans hyphae in situ on silicone elastomer substrates, focusing on the effects of temperature and antifungal drugs. Hyphal growth rates differ significantly for measurements performed at different physiologically relevant temperatures. Furthermore, it is found that fluconazole is more effective than caspofungin in suppressing hyphal growth. We also investigate the effects of antifungal drugs on the mechanical properties of hyphal cells. An increase in Young’s modulus and a decrease in adhesion force are observed in hyphal cells subjected to caspofungin treatment. Young’s moduli are not significantly affected following treatment with fluconazole; the adhesion force, however, increases. Overall, our results provide a direct means of observing the effects of environmental factors and antifungal drugs on C. albicans hyphal growth and mechanics with high spatial resolution. IMPORTANCECandida albicans is one of the most common pathogens of humans. One important virulence factor of C. albicans is its ability to form elongated hyphae that can invade host tissues and cause disseminated infections. Here, we show the effect of different physiologically relevant temperatures and common antifungal drugs on the growth and mechanical properties of C. albicans hyphae using atomic force microscopy. We demonstrate that minor temperature fluctuations within the normal range can have profound effects on hyphal cell growth and that different antifungal drugs impact hyphal cell stiffness and adhesion in different ways.
Collapse
|
14
|
Elhasi T, Blomberg A. Integrins in disguise - mechanosensors in Saccharomyces cerevisiae as functional integrin analogues. MICROBIAL CELL 2019; 6:335-355. [PMID: 31404395 PMCID: PMC6685044 DOI: 10.15698/mic2019.08.686] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to sense external mechanical stimuli is vital for all organisms. Integrins are transmembrane receptors that mediate bidirectional signalling between the extracellular matrix (ECM) and the cytoskeleton in animals. Thus, integrins can sense changes in ECM mechanics and can translate these into internal biochemical responses through different signalling pathways. In the model yeast species Saccharomyces cerevisiae there are no proteins with sequence similarity to mammalian integrins. However, we here emphasise that the WSC-type (Wsc1, Wsc2, and Wsc3) and the MID-type (Mid2 and Mtl1) mechanosensors in yeast act as partial functional integrin analogues. Various environmental cues recognised by these mechanosensors are transmitted by a conserved signal transduction cascade commonly referred to as the PKC1-SLT1 cell wall integrity (CWI) pathway. We exemplify the WSC- and MID-type mechanosensors functional analogy to integrins with a number of studies where they resemble the integrins in terms of both mechanistic and molecular features as well as in the overall phenotypic consequences of their activity. In addition, many important components in integrin-dependent signalling in humans are conserved in yeast; for example, Sla1 and Sla2 are homologous to different parts of human talin, and we propose that they together might be functionally similar to talin. We also propose that the yeast cell wall is a prominent cellular feature involved in sensing a number of external factors and subsequently activating different signalling pathways. In a hypothetical model, we propose that nutrient limitations modulate cell wall elasticity, which is sensed by the mechanosensors and results in filamentous growth. We believe that mechanosensing is a somewhat neglected aspect of yeast biology, and we argue that the physiological and molecular consequences of signal transduction initiated at the cell wall deserve more attention.
Collapse
Affiliation(s)
- Tarek Elhasi
- Dept. of Chemistry and Molecular Biology, Univ. of Gothenburg, Sweden
| | - Anders Blomberg
- Dept. of Chemistry and Molecular Biology, Univ. of Gothenburg, Sweden
| |
Collapse
|
15
|
Defining Cell Cluster Size by Dielectrophoretic Capture at an Array of Wireless Electrodes of Several Distinct Lengths. MICROMACHINES 2019; 10:mi10040271. [PMID: 31018537 PMCID: PMC6523886 DOI: 10.3390/mi10040271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Clusters of biological cells play an important role in normal and disease states, such as in the release of insulin from pancreatic islets and in the enhanced spread of cancer by clusters of circulating tumor cells. We report a method to pattern cells into clusters having sizes correlated to the dimensions of each electrode in an array of wireless bipolar electrodes (BPEs). The cells are captured by dielectrophoresis (DEP), which confers selectivity, and patterns cells without the need for physical barriers or adhesive interactions that can alter cell function. Our findings demonstrate that this approach readily achieves fine control of cell cluster size over a broader range set by other experimental parameters. These parameters include the magnitude of the voltage applied externally to drive capture at the BPE array, the rate of fluid flow, and the time allowed for DEP-based cell capture. Therefore, the reported method is anticipated to allow the influence of cluster size on cell function to be more fully investigated.
Collapse
|
16
|
Martin-Yken H, Bedekovic T, Brand AC, Richard ML, Znaidi S, d'Enfert C, Dague E. A conserved fungal hub protein involved in adhesion and drug resistance in the human pathogen Candida albicans. Cell Surf 2018; 4:10-19. [PMID: 32743132 PMCID: PMC7389261 DOI: 10.1016/j.tcsw.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022] Open
Abstract
Drug resistance and cellular adhesion are two key elements of both dissemination and prevalence of the human fungal pathogen Candida albicans. Smi1 belongs to a family of hub proteins conserved among the fungal kingdom whose functions in cellular signaling affect morphogenesis, cell wall synthesis and stress resistance. The data presented here indicate that C. albicans SMI1 is a functional homolog of Saccharomyces cerevisiae KNR4 and is involved in the regulation of cell wall synthesis. Expression of SMI1 in S. cerevisiae knr4Δ null mutants rescued their sensitivity to caspofungin and to heat stress. Deletion of SMI1 in C. albicans resulted in sensitivity to the cell-wall-perturbing compounds Calcofluor White and Caspofungin. Analysis of wild-type and mutant cells by Atomic Force Microscopy showed that the Young's Modulus (stiffness) of the cell wall was reduced by 85% upon deletion of SMI1, while cell surface adhesion measured by Force Spectroscopy showed that the surface expression of adhesive molecules was also reduced in the mutant. Over-expression of SMI1, on the contrary, increased cell surface adhesion by 6-fold vs the control strain. Finally, Smi1-GFP localized as cytoplasmic patches and concentrated spots at the sites of new cell wall synthesis including the tips of growing hyphae, consistent with a role in cell wall regulation. Thus, Smi1 function appears to be conserved across fungi, including the yeast S. cerevisiae, the yeast and hyphal forms of C. albicans and the filamentous fungus Neurospora crassa.
Collapse
Affiliation(s)
- Hélène Martin-Yken
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- LAAS CNRS UPR 8001, Université de Toulouse, Toulouse, France
| | - Tina Bedekovic
- MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexandra C. Brand
- MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Sadri Znaidi
- Institut Pasteur de Tunis, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, Tunis-Belvédère, Tunisia
- Institut Pasteur, INRA USC2019, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, INRA USC2019, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Etienne Dague
- LAAS CNRS UPR 8001, Université de Toulouse, Toulouse, France
| |
Collapse
|
17
|
Ni S, Isa L, Wolf H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. SOFT MATTER 2018; 14:2978-2995. [PMID: 29611588 DOI: 10.1039/c7sm02496g] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During the past decade, capillary assembly in topographical templates has evolved into an efficient method for the heterogeneous integration of micro- and nano-scale objects on a variety of surfaces. This assembly route has been applied to a large spectrum of materials of micrometer to nanometer dimensions, supplied in the form of aqueous colloidal suspensions. Using systems produced via bulk synthesis affords a huge flexibility in the choice of materials, holding promise for the realization of novel superior devices in the fields of optics, electronics and health, if they can be integrated into surface structures in a fast, simple, and reliable way. In this review, the working principles of capillary assembly and its fundamental process parameters are first presented and discussed. We then examine the latest developments in template design and tool optimization to perform capillary assembly in more robust and efficient ways. This is followed by a focus on the broad range of functional materials that have been realized using capillary assembly, from single components to large-scale heterogeneous multi-component assemblies. We then review current applications of capillary assembly, especially in optics, electronics, and in biomaterials. We conclude with a short summary and an outlook for future developments.
Collapse
Affiliation(s)
- Songbo Ni
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | | | | |
Collapse
|
18
|
Andriukonis E, Stirke A, Garbaras A, Mikoliunaite L, Ramanaviciene A, Remeikis V, Thornton B, Ramanavicius A. Yeast-assisted synthesis of polypyrrole: Quantification and influence on the mechanical properties of the cell wall. Colloids Surf B Biointerfaces 2018; 164:224-231. [DOI: 10.1016/j.colsurfb.2018.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/01/2023]
|
19
|
Martinez-Rivas A, González-Quijano GK, Proa-Coronado S, Séverac C, Dague E. Methods of Micropatterning and Manipulation of Cells for Biomedical Applications. MICROMACHINES 2017; 8:E347. [PMID: 30400538 PMCID: PMC6187909 DOI: 10.3390/mi8120347] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Micropatterning and manipulation of mammalian and bacterial cells are important in biomedical studies to perform in vitro assays and to evaluate biochemical processes accurately, establishing the basis for implementing biomedical microelectromechanical systems (bioMEMS), point-of-care (POC) devices, or organs-on-chips (OOC), which impact on neurological, oncological, dermatologic, or tissue engineering issues as part of personalized medicine. Cell patterning represents a crucial step in fundamental and applied biological studies in vitro, hence today there are a myriad of materials and techniques that allow one to immobilize and manipulate cells, imitating the 3D in vivo milieu. This review focuses on current physical cell patterning, plus chemical and a combination of them both that utilizes different materials and cutting-edge micro-nanofabrication methodologies.
Collapse
Affiliation(s)
- Adrian Martinez-Rivas
- CIC, Instituto Politécnico Nacional (IPN), Av. Juan de Dios Bátiz S/N, Nueva Industrial Vallejo, 07738 Mexico City, Mexico.
| | - Génesis K González-Quijano
- CONACYT-CNMN, Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro s/n, Nueva Industrial Vallejo, 07738 Mexico City, Mexico.
| | - Sergio Proa-Coronado
- ENCB, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu, Unidad Adolfo López Mateos, 07738 Mexico City, Mexico.
| | | | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
20
|
Schiavone M, Déjean S, Sieczkowski N, Castex M, Dague E, François JM. Integration of Biochemical, Biophysical and Transcriptomics Data for Investigating the Structural and Nanomechanical Properties of the Yeast Cell Wall. Front Microbiol 2017; 8:1806. [PMID: 29085340 PMCID: PMC5649194 DOI: 10.3389/fmicb.2017.01806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022] Open
Abstract
The yeast cell is surrounded by a cell wall conferring protection and resistance to environmental conditions that can be harmful. Identify the molecular cues (genes) which shape the biochemical composition and the nanomechanical properties of the cell wall and the links between these two parameters represent a major issue in the understanding of the biogenesis and the molecular assembly of this essential cellular structure, which may have consequences in diverse biotechnological applications. We addressed this question in two ways. Firstly, we compared the biochemical and biophysical properties using atomic force microscopy (AFM) methods of 4 industrial strains with the laboratory sequenced strain BY4743 and used transcriptome data of these strains to infer biological hypothesis about differences of these properties between strains. This comparative approach showed a 4–6-fold higher hydrophobicity of industrial strains that was correlated to higher expression of genes encoding adhesin and adhesin-like proteins and not to their higher mannans content. The second approach was to employ a multivariate statistical analysis to identify highly correlated variables among biochemical, biophysical and genes expression data. Accordingly, we found a tight association between hydrophobicity and adhesion events that positively correlated with a set of 22 genes in which the main enriched GO function was the sterol metabolic process. We also identified a strong association of β-1,3-glucans with contour length that corresponds to the extension of mannans chains upon pulling the mannosyl units with the lectin-coated AFM tips. This association was positively correlated with a group of 27 genes in which the seripauperin multigene family was highly documented and negatively connected with a set of 23 genes whose main GO biological process was sulfur assimilation/cysteine biosynthetic process. On the other hand, the elasticity modulus was found weakly associated with levels of β-1,6-glucans, and this biophysical variable was positively correlated with a set of genes implicated in microtubules polymerization, tubulin folding and mitotic organization.
Collapse
Affiliation(s)
- Marion Schiavone
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, Institut National des Sciences Appliquées de Toulouse, UPS, INP, Université de ToulouseToulouse, France.,Lallemand SASBlagnac, France
| | | | | | | | - Etienne Dague
- Laboratoire D'analyse et D'architecture des Systèmes du-Centre National de la Recherche Scientifique, Université de ToulouseToulouse, France
| | - Jean M François
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, Institut National des Sciences Appliquées de Toulouse, UPS, INP, Université de ToulouseToulouse, France
| |
Collapse
|
21
|
Overbeck A, Günther S, Kampen I, Kwade A. Compression Testing and Modeling of Spherical Cells - Comparison of Yeast and Algae. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201600145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Achim Overbeck
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Steffi Günther
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Ingo Kampen
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
- Technische Universität Braunschweig; PVZ - Center of Pharmaceutical Engineering; Franz-Liszt-Strasse 35a 38106 Braunschweig Germany
| | - Arno Kwade
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
- Technische Universität Braunschweig; PVZ - Center of Pharmaceutical Engineering; Franz-Liszt-Strasse 35a 38106 Braunschweig Germany
| |
Collapse
|
22
|
Gaveau A, Coetsier C, Roques C, Bacchin P, Dague E, Causserand C. Bacteria transfer by deformation through microfiltration membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
|
24
|
Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress. Appl Environ Microbiol 2016; 82:4789-4801. [PMID: 27235439 DOI: 10.1128/aem.01213-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties.
Collapse
|
25
|
Smolyakov G, Formosa-Dague C, Severac C, Duval R, Dague E. High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments. Micron 2016; 85:8-14. [DOI: 10.1016/j.micron.2016.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
|
26
|
Formosa C, Dague E. Imaging Living Yeast Cells and Quantifying Their Biophysical Properties by Atomic Force Microscopy. Fungal Biol 2015. [DOI: 10.1007/978-3-319-22437-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
27
|
Schiavone M, Sieczkowski N, Castex M, Dague E, Marie François J. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts. FEMS Yeast Res 2015; 15:fou012. [PMID: 25762053 DOI: 10.1093/femsyr/fou012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Saccharomyces cerevisiae cell surface is endowed with some relevant technological properties, notably antimicrobial and biosorption activities. For these purposes, yeasts are usually processed and packaged in an 'autolysed/dried' formula, which may have some impacts on cell surface properties. In this report, we showed using a combination of biochemical, biophysical and molecular methods that the composition of the cell wall of two wine yeast strains was not altered by the autolysis process. In contrast, this process altered the nanomechanical properties as shown by a 2- to 4-fold increased surface roughness and to a higher adhesion to the atomic force microscope tips of the autolysed cells as compared to live yeast cells. Besides, we found that the two strains harboured differences in biomechanical properties that could be due in part to higher levels of mannan in one of them, and to the fact that the surface of this mannan-enriched strain is decorated with highly adhesive patches forming nanodomains. The presence of these nanodomains could be correlated with the upregulation of flocculin encoding FLO11 as well as to higher expression of few other genes encoding cell wall mannoproteins in this mannan-enriched strain as compared to the other strain.
Collapse
Affiliation(s)
- Marion Schiavone
- Université de Toulouse, INSA, UPS, INP, 135 Avenue de Rangueil, F-31077 Toulouse, France INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France CNRS, UMR5504, F-31400 Toulouse, France CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France Lallemand SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
| | | | - Mathieu Castex
- Lallemand SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Etienne Dague
- Université de Toulouse, INSA, UPS, INP, 135 Avenue de Rangueil, F-31077 Toulouse, France CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Jean Marie François
- Université de Toulouse, INSA, UPS, INP, 135 Avenue de Rangueil, F-31077 Toulouse, France INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France CNRS, UMR5504, F-31400 Toulouse, France
| |
Collapse
|
28
|
Abstract
The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock.
Collapse
|
29
|
Multiparametric imaging of adhesive nanodomains at the surface of Candida albicans by atomic force microscopy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:57-65. [DOI: 10.1016/j.nano.2014.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/25/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023]
|
30
|
|
31
|
Formosa C, Lachaize V, Galés C, Rols MP, Martin-Yken H, François JM, Duval RE, Dague E. Mapping HA-tagged protein at the surface of living cells by atomic force microscopy. J Mol Recognit 2014; 28:1-9. [DOI: 10.1002/jmr.2407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 11/08/2022]
Affiliation(s)
- C. Formosa
- CNRS; LAAS; 7 avenue du Colonel Roche 31400 Toulouse France
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- CNRS; UMR 7565, SRSMC; Vandœuvre-lès-Nancy France
- Université de Lorraine; UMR 7565, Faculté de Pharmacie; Nancy France
| | - V. Lachaize
- CNRS; LAAS; 7 avenue du Colonel Roche 31400 Toulouse France
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale U1048; Université Toulouse III Paul Sabatier; 31432 Toulouse France
- CNRS; ITAV; 1 Place Pierre Potier 31000 Toulouse France
| | - C. Galés
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale U1048; Université Toulouse III Paul Sabatier; 31432 Toulouse France
- CNRS; ITAV; 1 Place Pierre Potier 31000 Toulouse France
| | - M. P. Rols
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- CNRS; IPBS, UMR 5089; 205 route de Narbonne 31077 Toulouse France
| | - H. Martin-Yken
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- INRA; UMR 972 LISBP; Toulouse France
| | - J. M. François
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- INRA; UMR 972 LISBP; Toulouse France
| | - R. E. Duval
- CNRS; UMR 7565, SRSMC; Vandœuvre-lès-Nancy France
- Université de Lorraine; UMR 7565, Faculté de Pharmacie; Nancy France
- ABC Platform®; Nancy France
| | - E. Dague
- CNRS; LAAS; 7 avenue du Colonel Roche 31400 Toulouse France
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- CNRS; ITAV; 1 Place Pierre Potier 31000 Toulouse France
| |
Collapse
|
32
|
Cabral V, Znaidi S, Walker LA, Martin-Yken H, Dague E, Legrand M, Lee K, Chauvel M, Firon A, Rossignol T, Richard ML, Munro CA, Bachellier-Bassi S, d'Enfert C. Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms. PLoS Pathog 2014; 10:e1004542. [PMID: 25502890 PMCID: PMC4263760 DOI: 10.1371/journal.ppat.1004542] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 10/28/2014] [Indexed: 12/29/2022] Open
Abstract
Biofilm formation is an important virulence trait of the pathogenic yeast Candida albicans. We have combined gene overexpression, strain barcoding and microarray profiling to screen a library of 531 C. albicans conditional overexpression strains (∼10% of the genome) for genes affecting biofilm development in mixed-population experiments. The overexpression of 16 genes increased strain occupancy within a multi-strain biofilm, whereas overexpression of 4 genes decreased it. The set of 16 genes was significantly enriched for those encoding predicted glycosylphosphatidylinositol (GPI)-modified proteins, namely Ihd1/Pga36, Phr2, Pga15, Pga19, Pga22, Pga32, Pga37, Pga42 and Pga59; eight of which have been classified as pathogen-specific. Validation experiments using either individually- or competitively-grown overexpression strains revealed that the contribution of these genes to biofilm formation was variable and stage-specific. Deeper functional analysis of PGA59 and PGA22 at a single-cell resolution using atomic force microscopy showed that overexpression of either gene increased C. albicans ability to adhere to an abiotic substrate. However, unlike PGA59, PGA22 overexpression led to cell cluster formation that resulted in increased sensitivity to shear forces and decreased ability to form a single-strain biofilm. Within the multi-strain environment provided by the PGA22-non overexpressing cells, PGA22-overexpressing cells were protected from shear forces and fitter for biofilm development. Ultrastructural analysis, genome-wide transcript profiling and phenotypic analyses in a heterologous context suggested that PGA22 affects cell adherence through alteration of cell wall structure and/or function. Taken together, our findings reveal that several novel predicted GPI-modified proteins contribute to the cooperative behaviour between biofilm cells and are important participants during C. albicans biofilm formation. Moreover, they illustrate the power of using signature tagging in conjunction with gene overexpression for the identification of novel genes involved in processes pertaining to C. albicans virulence. Candida albicans is the most prevalent human fungal pathogen. Its ability to cause disease relies, in part, on the formation of biofilms, a protective structure of highly adherent cells tolerant to antifungal agents and the host immune response. The biofilm is considered as a persistent root of infection, disseminating infectious cells to other locations. In this study, we performed large-scale phenotypic analyses aimed at identifying genes whose overexpression affects biofilm development in C. albicans. Our screen relied on a collection of 531 C. albicans strains, each conditionally overexpressing one given gene and carrying one specific molecular tag allowing the quantification of strain abundance in mixed-population experiments. Our results strikingly revealed the enrichment of strains overproducing poorly-characterized surface proteins called Pgas (Putative GPI-Anchored proteins), within a 531-strain-containing biofilm model. We show that these PGA genes differentially contribute to single-strain and multi-strain biofilm formation and are involved in specific stages of the biofilm developmental process. Taken together, our results reveal the importance of C. albicans cell surface proteins during biofilm formation and reflect the powerful use of strain barcoding in combination with gene overexpression to identify genes and/or pathways involved in processes pertaining to virulence of pathogenic microbes.
Collapse
Affiliation(s)
- Vitor Cabral
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Louise A. Walker
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Hélène Martin-Yken
- INSA, UPS, INP, ISAE, LAAS, Université de Toulouse, Toulouse, France
- UMR792 Ingénierie des Systèmes Biologiques et des Procédés, INRA, Toulouse, France
- UMR5504, CNRS, Toulouse, France
| | - Etienne Dague
- INSA, UPS, INP, ISAE, LAAS, Université de Toulouse, Toulouse, France
- LAAS, CNRS, Toulouse, France
| | - Mélanie Legrand
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Keunsook Lee
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Murielle Chauvel
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Tristan Rossignol
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Mathias L. Richard
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Thiverval Grignon, France
| | - Carol A. Munro
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Jauvert E, Palleau E, Dague E, Ressier L. Directed assembly of living Pseudomonas aeruginosa bacteria on PEI patterns generated by nanoxerography for statistical AFM bioexperiments. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21230-21236. [PMID: 25434422 DOI: 10.1021/am506241n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Immobilization of living micro-organisms on predefined areas of substrates is a prerequisite for their characterizations by atomic force microscopy (AFM) in culture media. It remains challenging since micro-organisms should not be denatured but attached strongly enough to be scanned with an AFM tip, in a liquid phase. In this work, a novel approach is proposed to electrostatically assemble biological objects of interest on 2 nm thick polyethylenimine (PEI) patterns fabricated by nanoxerography. This nanoxerography process involves electrostatic trapping of PEI chains on negatively charged patterns written on electret thin films by AFM or electrical microcontact printing. The capability of this approach is demonstrated using a common biological system, Pseudomonas aeruginosa bacteria. These negatively charged bacteria are selectively assembled on large scale arrays of PEI patterns. In contrast to other PEI continuous films commonly used for cell anchoring, these ultrathin PEI patterns strongly attached on the surface do not cause any denaturation of the assembled Pseudomonas aeruginosa bacteria. AFM characterizations of large populations of individual living bacteria in culture media can thus be easily performed through this approach, providing the opportunity to perform representative statistical data analysis. Interestingly, this process may be extended to any negatively charged micro-organism in solution.
Collapse
Affiliation(s)
- Eric Jauvert
- Université de Toulouse , LPCNO, INSA-CNRS-UPS, 135 avenue de Rangueil, F-31400 Toulouse, France
| | | | | | | |
Collapse
|
34
|
Pillet F, Lemonier S, Schiavone M, Formosa C, Martin-Yken H, Francois JM, Dague E. Uncovering by atomic force microscopy of an original circular structure at the yeast cell surface in response to heat shock. BMC Biol 2014; 12:6. [PMID: 24468076 PMCID: PMC3925996 DOI: 10.1186/1741-7007-12-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atomic Force Microscopy (AFM) is a polyvalent tool that allows biological and mechanical studies of full living microorganisms, and therefore the comprehension of molecular mechanisms at the nanoscale level. By combining AFM with genetical and biochemical methods, we explored the biophysical response of the yeast Saccharomyces cerevisiae to a temperature stress from 30°C to 42°C during 1 h. RESULTS We report for the first time the formation of an unprecedented circular structure at the cell surface that takes its origin at a single punctuate source and propagates in a concentric manner to reach a diameter of 2-3 μm at least, thus significantly greater than a bud scar. Concomitantly, the cell wall stiffness determined by the Young's Modulus of heat stressed cells increased two fold with a concurrent increase of chitin. This heat-induced circular structure was not found either in wsc1Δ or bck1Δ mutants that are defective in the CWI signaling pathway, nor in chs1Δ, chs3Δ and bni1Δ mutant cells, reported to be deficient in the proper budding process. It was also abolished in the presence of latrunculin A, a toxin known to destabilize actin cytoskeleton. CONCLUSIONS Our results suggest that this singular morphological event occurring at the cell surface is due to a dysfunction in the budding machinery caused by the heat shock and that this phenomenon is under the control of the CWI pathway.
Collapse
Affiliation(s)
- Flavien Pillet
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse, France
- Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France
| | - Stéphane Lemonier
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse, France
- Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France
- CNRS, ITAV-USR 3505, F31106 Toulouse, France
| | - Marion Schiavone
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse, France
- Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France
- Université de Toulouse, INSA, UPS, INP, 135 avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| | - Cécile Formosa
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse, France
- Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France
- CNRS, UMR 7565, SRSMC, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, UMR 7565, Faculté de Pharmacie, Nancy, France
| | - Hélène Martin-Yken
- Université de Toulouse, INSA, UPS, INP, 135 avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| | - Jean Marie Francois
- Université de Toulouse, INSA, UPS, INP, 135 avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| | - Etienne Dague
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse, France
- Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France
- CNRS, ITAV-USR 3505, F31106 Toulouse, France
| |
Collapse
|
35
|
Kuyukina MS, Korshunova IO, Rubtsova EV, Ivshina IB. Methods of microorganism immobilization for dynamic atomic-force studies (review). APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683814010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Pillet F, Chopinet L, Formosa C, Dague E. Atomic Force Microscopy and pharmacology: from microbiology to cancerology. Biochim Biophys Acta Gen Subj 2013; 1840:1028-50. [PMID: 24291690 DOI: 10.1016/j.bbagen.2013.11.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atomic Force Microscopy (AFM) has been extensively used to study biological samples. Researchers take advantage of its ability to image living samples to increase our fundamental knowledge (biophysical properties/biochemical behavior) on living cell surface properties, at the nano-scale. SCOPE OF REVIEW AFM, in the imaging modes, can probe cells morphological modifications induced by drugs. In the force spectroscopy mode, it is possible to follow the nanomechanical properties of a cell and to probe the mechanical modifications induced by drugs. AFM can be used to map single molecule distribution at the cell surface. We will focus on a collection of results aiming at evaluating the nano-scale effects of drugs, by AFM. Studies on yeast, bacteria and mammal cells will illustrate our discussion. Especially, we will show how AFM can help in getting a better understanding of drug mechanism of action. MAJOR CONCLUSIONS This review demonstrates that AFM is a versatile tool, useful in pharmacology. In microbiology, it has been used to study the drugs fighting Candida albicans or Pseudomonas aeruginosa. The major conclusions are a better understanding of the microbes' cell wall and of the drugs mechanism of action. In cancerology, AFM has been used to explore the effects of cytotoxic drugs or as an innovative diagnostic technology. AFM has provided original results on cultured cells, cells extracted from patient and directly on patient biopsies. GENERAL SIGNIFICANCE This review enhances the interest of AFM technologies for pharmacology. The applications reviewed range from microbiology to cancerology.
Collapse
Affiliation(s)
- Flavien Pillet
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Louise Chopinet
- CNRS, IPBS-UMR 5089, BP64182, 205 route de Narbonne, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Cécile Formosa
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS, UMR 7565, SRSMC, Vandoeuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, Faculté de Pharmacie, Nancy, France
| | - Etienne Dague
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS; ITAV-USR 3505; F31106 Toulouse, France.
| |
Collapse
|
37
|
Beauvais A, Bozza S, Kniemeyer O, Formosa C, Balloy V, Henry C, Roberson RW, Dague E, Chignard M, Brakhage AA, Romani L, Latgé JP. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog 2013; 9:e1003716. [PMID: 24244155 PMCID: PMC3828178 DOI: 10.1371/journal.ppat.1003716] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/22/2013] [Indexed: 01/12/2023] Open
Abstract
α-(1,3)-Glucan is a major component of the cell wall of Aspergillus fumigatus, an opportunistic human fungal pathogen. There are three genes (AGS1, AGS2 and AGS3) controlling the biosynthesis of α-(1,3)-glucan in this fungal species. Deletion of all the three AGS genes resulted in a triple mutant that was devoid of α-(1,3)-glucan in its cell wall; however, its growth and germination was identical to that of the parental strain in vitro. In the experimental murine aspergillosis model, this mutant was less pathogenic than the parental strain. The AGS deletion resulted in an extensive structural modification of the conidial cell wall, especially conidial surface where the rodlet layer was covered by an amorphous glycoprotein matrix. This surface modification was responsible for viability reduction of conidia in vivo, which explains decrease in the virulence of triple agsΔ mutant. Aspergillus fumigatus is the predominant mold pathogen of humans, responsible for life-threatening systemic infections in patients with depressed immunity. Because of its external localization and specific composition, the fungal cell wall represents a target for recognition by and interaction with the host immune cells. In A. fumigatus, α-(1,3)-glucan is a key component of the extracellular matrix, which encloses the cell wall β-(1,3)-glucan-chitin fibrillar core. Interestingly, the deletion of the genes responsible for α-(1,3)-glucan synthesis resulted in a mutant that exhibited wild type phenotype in vitro; while the altered cell wall organization resulted in this fungus being avirulent in vivo. This study confirms that any modification in the cell wall components is associated with compensatory reactions developed by the fungus to counteract stress on the cell wall that may result in unexpected fungal response when challenged with the host immune system.
Collapse
Affiliation(s)
- Anne Beauvais
- Unité des Aspergillus, Institut Pasteur, Paris, France
- * E-mail:
| | - Silvia Bozza
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology (HKI), University of Jena, Jena, Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), Jena, Germany
| | | | - Viviane Balloy
- Unité de Défence Innée et Inflammation, Institut Pasteur, Inserm U874, Paris, France
| | | | - Robert W. Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Michel Chignard
- Unité de Défence Innée et Inflammation, Institut Pasteur, Inserm U874, Paris, France
| | - Axel A. Brakhage
- Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology (HKI), University of Jena, Jena, Germany
| | - Luigina Romani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | |
Collapse
|
38
|
Francois JM, Formosa C, Schiavone M, Pillet F, Martin-Yken H, Dague E. Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae. Curr Genet 2013; 59:187-96. [PMID: 24071902 DOI: 10.1007/s00294-013-0411-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 11/30/2022]
Abstract
Over the past 20 years, the yeast cell wall has been thoroughly investigated by genetic and biochemical methods, leading to remarkable advances in the understanding of its biogenesis and molecular architecture as well as to the mechanisms by which this organelle is remodeled in response to environmental stresses. Being a dynamic structure that constitutes the frontier between the cell interior and its immediate surroundings, imaging cell surface, measuring mechanical properties of cell wall or probing cell surface proteins for localization or interaction with external biomolecules are among the most burning questions that biologists wished to address in order to better understand the structure-function relationships of yeast cell wall in adhesion, flocculation, aggregation, biofilm formation, interaction with antifungal drugs or toxins, as well as response to environmental stresses, such as temperature changes, osmotic pressure, shearing stress, etc. The atomic force microscopy (AFM) is nowadays the most qualified and developed technique that offers the possibilities to address these questions since it allows working directly on living cells to explore and manipulate cell surface properties at nanometer resolution and to analyze cell wall proteins at the single molecule level. In this minireview, we will summarize the most recent contributions made by AFM in the analysis of the biomechanical and biochemical properties of the yeast cell wall and illustrate the power of this tool to unravel unexpected effects caused by environmental stresses and antifungal agents on the surface of living yeast cells.
Collapse
Affiliation(s)
- Jean Marie Francois
- Université de Toulouse, INSA, UPS, INP, 135 avenue de Rangueil, 31077, Toulouse, France,
| | | | | | | | | | | |
Collapse
|
39
|
Atomic force microscopy imaging of live mammalian cells. SCIENCE CHINA-LIFE SCIENCES 2013; 56:811-7. [DOI: 10.1007/s11427-013-4532-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
|
40
|
Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans. Antimicrob Agents Chemother 2013; 57:3498-506. [PMID: 23669379 DOI: 10.1128/aac.00105-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Saccharomyces cerevisiae and Candida albicans are model yeasts for biotechnology and human health, respectively. We used atomic force microscopy (AFM) to explore the effects of caspofungin, an antifungal drug used in hospitals, on these two species. Our nanoscale investigation revealed similar, but also different, behaviors of the two yeasts in response to treatment with the drug. While administration of caspofungin induced deep cell wall remodeling in both yeast species, as evidenced by a dramatic increase in chitin and decrease in β-glucan content, changes in cell wall composition were more pronounced with C. albicans cells. Notably, the increase of chitin was proportional to the increase in the caspofungin dose. In addition, the Young modulus of the cell was three times lower for C. albicans cells than for S. cerevisiae cells and increased proportionally with the increase of chitin, suggesting differences in the molecular organization of the cell wall between the two yeast species. Also, at a low dose of caspofungin (i.e., 0.5× MIC), the cell surface of C. albicans exhibited a morphology that was reminiscent of cells expressing adhesion proteins. Interestingly, this morphology was lost at high doses of the drug (i.e., 4× MIC). However, the treatment of S. cerevisiae cells with high doses of caspofungin resulted in impairment of cytokinesis. Altogether, the use of AFM for investigating the effects of antifungal drugs is relevant in nanomedicine, as it should help in understanding their mechanisms of action on fungal cells, as well as unraveling unexpected effects on cell division and fungal adhesion.
Collapse
|
41
|
Dhahri S, Ramonda M, Marlière C. In-situ determination of the mechanical properties of gliding or non-motile bacteria by atomic force microscopy under physiological conditions without immobilization. PLoS One 2013; 8:e61663. [PMID: 23593493 PMCID: PMC3625152 DOI: 10.1371/journal.pone.0061663] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM) around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions.
Collapse
Affiliation(s)
- Samia Dhahri
- Géosciences Montpellier, University Montpellier 2, CNRS, Montpellier, France
| | - Michel Ramonda
- Centrale de Technologie en Micro et nanoélectronique, Laboratoire de Microscopie en Champ Proche, University Montpellier 2, Montpellier, France
| | - Christian Marlière
- Géosciences Montpellier, University Montpellier 2, CNRS, Montpellier, France
- Institut des Sciences Moléculaires d'Orsay, University Paris-Sud, CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
42
|
Imaging living cells surface and quantifying its properties at high resolution using AFM in QI™ mode. Micron 2013; 48:26-33. [PMID: 23522742 DOI: 10.1016/j.micron.2013.02.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 11/21/2022]
Abstract
Since the last 10 years, AFM has become a powerful tool to study biological samples. However, the classical modes offered (imaging or tapping mode) often damage sample that are too soft or loosely immobilized. If imaging and mechanical properties are required, it requests long recording time as two different experiments must be conducted independently. In this study we compare the new QI™ mode against contact imaging mode and force volume mode, and we point out its benefit in the new challenges in biology on six different models: Escherichia coli, Candida albicans, Aspergillus fumigatus, Chinese hamster ovary cells and their isolated nuclei, and human colorectal tumor cells.
Collapse
|
43
|
Dorobantu LS, Goss GG, Burrell RE. Atomic force microscopy: A nanoscopic view of microbial cell surfaces. Micron 2012; 43:1312-22. [DOI: 10.1016/j.micron.2012.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/26/2012] [Accepted: 05/11/2012] [Indexed: 11/28/2022]
|
44
|
Virus scaffolds as enzyme nano-carriers. Trends Biotechnol 2012; 30:369-76. [PMID: 22560649 DOI: 10.1016/j.tibtech.2012.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 12/15/2022]
Abstract
The cooperative organization of enzymes by cells is a key feature for the efficiency of living systems. In the field of nanotechnologies, effort currently aims at mimicking this natural organization. Nanoscale resolution and high-registration alignment are necessary to control enzyme distribution in nano-containers or on the surface of solid supports. Virus capsid self-assembly is driven by precise supramolecular combinations of protein monomers, which have made them attractive building blocks to engineer enzyme nano-carriers (ENCs). We discuss some examples of what in our opinion constitute the latest advances in the use of plant viruses, bacteriophages and virus-like particles (VLPs) as nano-scaffolds for enzyme selection, enzyme confinement and patterning, phage therapy, raw material processing, and single molecule enzyme kinetics studies.
Collapse
|