1
|
Sun H, Li X, Liu Q, Sheng H, Zhu L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J Drug Target 2024; 32:672-706. [PMID: 38682299 DOI: 10.1080/1061186x.2024.2349124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Recent advances in the field of drug delivery have opened new avenues for the development of novel nanodrug delivery systems (NDDS) in cancer therapy. Self-assembled nanoparticles (SANPs) based on tumour microenvironment have great advantages in improving antitumor effect, and pH-responsive SANPs prepared by the combination of pH-responsive nanomaterials and self-assembly technology can effectively improve the efficacy and reduce the systemic toxicity of antitumor drugs. In this review, we describe the characteristics of self-assembly and its driving force, the mechanism of pH-responsive NDDS, and the nanomaterials for pH-responsive SANPs type. A series of pH-responsive SANPs for tumour-targeted drug delivery are discussed, with an emphasis on the relation between structural features and theranostic performance.
Collapse
Affiliation(s)
- Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Swain N, Sharma S, Maitra R, Saxena D, Kautu A, Singh R, Kesharwani K, Chopra S, Joshi KB. Antimicrobial peptide mimetic minimalistic approach leads to very short peptide amphiphiles-gold nanostructures for potent antibacterial activity. ChemMedChem 2024; 19:e202300576. [PMID: 38301146 DOI: 10.1002/cmdc.202300576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Strategically controlling concentrations of lipid-conjugated L-tryptophan (vsPA) guides the self-assembly of nanostructures, transitioning from nanorods to fibres and culminating in spherical shapes. The resulting Peptide-Au hybrids, exhibiting size-controlled 1D, 2D, and 3D nanostructures, show potential in antibacterial applications. Their high biocompatibility, favourable surface area-to-volume ratio, and plasmonic properties contribute to their effectiveness against clinically relevant bacteria. This controlled approach not only yields diverse nanostructures but also holds promise for applications in antibacterial therapeutics.
Collapse
Affiliation(s)
- Narayan Swain
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Rahul Maitra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
- Current address: Colorado State University USA
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
3
|
Kim YD, Jung WH, Ahn DJ, Lim DK. Self-Assembled Nanostructures of Homo-Oligopeptide as a Potent Ice Growth Inhibitor. NANO LETTERS 2023; 23:9500-9507. [PMID: 37843112 DOI: 10.1021/acs.nanolett.3c03059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This study reports the formation of self-assembled nanostructures with homo-oligopeptides consisting of amino acids (i.e., alanine, threonine, valine, and tyrosine), the resulting morphologies (i.e., spherical shape, layered structure, and wire structure) in aqueous solution, and their potential as ice growth inhibitors. Among the homo-oligopeptides investigated, an alanine homo-oligopeptide (n = 5) with a spherical nanostructure showed the highest ice recrystallization inhibition (IRI) activity without showing a burst ice growth property and with low ice nucleation activity. The presence of nanoscale self-assembled structures in the solution showed superior IRI activity compared to an amino acid monomer because of the higher binding affinity of structures on the growing ice crystal plane. Simulation results revealed that the presence of nanostructures induced a significant inhibition of ice growth and increased lifetime of hydrogen bonding compared with unassembled homo-oligopeptide. These results envision extraordinary performance for self-assembled nanostructures as a desirable and potent ice growth inhibitor.
Collapse
Affiliation(s)
- Yong Duk Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woo Hyuk Jung
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong June Ahn
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Mitrovic J, Richey G, Kim S, Guler MO. Peptide Hydrogels and Nanostructures Controlling Biological Machinery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11935-11945. [PMID: 37589176 PMCID: PMC10469456 DOI: 10.1021/acs.langmuir.3c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 08/18/2023]
Abstract
Peptides are versatile building blocks for the fabrication of various nanostructures that result in the formation of hydrogels and nanoparticles. Precise chemical functionalization promotes discrete structure formation, causing controlled bioactivity and physical properties for functional materials development. The conjugation of small molecules on amino acid side chains determines their intermolecular interactions in addition to their intrinsic peptide characteristics. Molecular information affects the peptide structure, formation, and activity. In this Perspective, peptide building blocks, nanostructure formation mechanisms, and the properties of these peptide materials are discussed with the results of recent publications. Bioinstructive and stimuli-responsive peptide materials have immense impacts on the nanomedicine field including drug delivery, cellular engineering, regenerative medicine, and biomedicine.
Collapse
Affiliation(s)
- Jovana Mitrovic
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| | - Gabriella Richey
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| | - Sarah Kim
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| | - Mustafa O. Guler
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| |
Collapse
|
5
|
Li X, Zhou Y, Lu Z, Shan R, Sun D, Li J, Li P. Switchable enzyme mimics based on self-assembled peptides for polyethylene terephthalate degradation. J Colloid Interface Sci 2023; 646:198-208. [PMID: 37196493 DOI: 10.1016/j.jcis.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Polyethylene terephthalate (PET), the most abundant polyester plastic, has become a global concern due to its refractoriness and accumulation in the environment. In this study, inspired by the structure and catalytic mechanism of the native enzyme, peptides, based on supramolecular self-assembly, were developed to construct enzyme mimics for PET degradation, which were achieved by combining the enzymatic active sites of serine, histidine and aspartate with the self-assembling polypeptide MAX. The two designed peptides with differences in hydrophobic residues at two positions exhibited a conformational transition from random coil to β-sheet by changing the pH and temperature, and the catalytic activity followed the self-assembly "switch" with the fibrils formed β-sheet, which could catalyze PET efficiently. Although the two peptides possessed same catalytic site, they showed different catalytic activities. Analysis of the structure - activity relationship of the enzyme mimics suggested that the high catalytic activity of the enzyme mimics for PET could be attributed to the formation of stable fibers of peptides and ordered arrangement of molecular conformation; in addition, hydrogen bonding and hydrophobic interactions, as the major forces, promoted effects of enzyme mimics on PET degradation. Enzyme mimics with PET-hydrolytic activity are a promising material for degrading PET and reducing environmental pollution.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Yaoling Zhou
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Zirui Lu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Ruida Shan
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China.
| |
Collapse
|
6
|
Yang K, Zhou Y, Huang B, Zhao G, Geng Y, Wan C, Jiang F, Jin H, Ye C, Chen J. Sustained release of tumor cell lysate and CpG from an injectable, cytotoxic hydrogel for melanoma immunotherapy. NANOSCALE ADVANCES 2023; 5:2071-2084. [PMID: 36998647 PMCID: PMC10044724 DOI: 10.1039/d2na00911k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Many basic research studies have shown the potential of autologous cancer vaccines in the treatment of melanoma. However, some clinical trials showed that simplex whole tumor cell vaccines can only elicit weak CD8+ T cell-mediated antitumor responses which were not enough for effective tumor elimination. So efficient cancer vaccine delivery strategies with improved immunogenicity are needed. Herein, we described a novel hybrid vaccine "MCL" (Melittin-RADA32-CpG-Lysate) which was composed of melittin, RADA32, CpG and tumor lysate. In this hybrid vaccine, antitumor peptide melittin and self-assembling fusion peptide RADA32 were assembled to form the hydrogel framework melittin-RADA32(MR). Then, whole tumor cell lysate and immune adjuvant CpG-ODN were loaded into MR to develop an injectable and cytotoxic hydrogel MCL. MCL showed excellent ability for sustained drug release, to activate dendritic cells and directly kill melanoma cells in vitro. In vivo, MCL not only exerted direct antitumor activity, but also had robust immune initiation effects including the activation of dendritic cells in draining lymph nodes and the infiltration of cytotoxic T lymphocytes (CTLs) in tumor microenvironment. In addition, MCL can efficiently inhibit melanoma growth in B16-F10 tumor bearing mice, which suggested that MCL is a potential cancer vaccine strategy for melanoma treatment.
Collapse
Affiliation(s)
- Kui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Department of Neurology, General Hospital of The Yang Tze River Shipping, Wuhan Brain Hospital Wuhan China
| | - Yuhan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Biwang Huang
- Orthopaedic Department, General Hospital of Central Theater Command of PLA Wuhan China
| | - Guifang Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Yuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University Wuhan China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Fagang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University Wuhan China
| | - Chengzhi Ye
- Department of Pediatrics, Renmin Hospital of Wuhan University Wuhan China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
7
|
Fortunato A, Hensel RC, Casalini S, Mba M. Self-Assembly and Electrical Conductivity of a New [1]benzothieno[3,2-b][1]-benzothiophene (BTBT)-Peptide Hydrogel. Molecules 2023; 28:molecules28072917. [PMID: 37049680 PMCID: PMC10095725 DOI: 10.3390/molecules28072917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The conjugation of small-molecule semiconductors with self-assembling peptides is a powerful tool for the fabrication of supramolecular soft materials for organic electronics and bioelectronics. Herein, we introduced the benchmark organic semiconductor [1]benzothieno[3,2-b][1]-benzothiophene (BTBT) within the structure of a self-assembling amphipathic peptide. The molecular structure of the conjugate was rationally designed to favour π-π stacking between BTBT cores and π-delocalization within the self-assembled architectures. Hydrogels with fibrillar structure were obtained upon self-assembly. Spectroscopic studies confirmed that both hydrogen bonding between peptide segments and π-π stacking between BTBT chromophores are responsible for the formation of the 3D fibrillar network observed by transmission electron microscopy. The hydrogel was successfully deposited on gold interdigitated electrodes and a conductivity up to 1.6 (±0.1) × 10−5 S cm−1 was measured.
Collapse
|
8
|
Dube T, Panda JJ. Anti-Glioma Activity Achieved by Dual Blood-Brain Barrier/Glioma Targeting Naive Chimeric Peptides-Based Co-Assembled Nanophototheranostics. Pharmaceutics 2023; 15:pharmaceutics15010265. [PMID: 36678895 PMCID: PMC9863651 DOI: 10.3390/pharmaceutics15010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Peptide monomers can either self-assemble with themselves enacting a solo-component assembly or they can co-assemble by interacting with other suitable partners to mediate peptide co-assembly. Peptide co-assemblies represent an innovative class of naive, multifunctional, bio-inspired supramolecular constructs that result in the production of nanostructures with widespread functional, structural, and chemical multiplicity. Herein, the co-assembly of novel chimeric peptides (conjugates of T7 (HAIYPRH)/t-Lyp-1 (CGNKRTR) peptides and aurein 1.2 (GLFDIIKKIAESF)) has been explored as a means to produce glioma theranostics exhibiting combinatorial chemo-phototherapy. Briefly, we have reported here the design and solid phase synthesis of a naive generation of twin-functional peptide drugs incorporating the blood-brain barrier (BBB) and glioma dual-targeting functionalities along with anti-glioma activity (G-Anti G and B-Anti G). Additionally, we have addressed their multicomponent co-assembly and explored their potential application as glioma drug delivery vehicles. Our naive peptide drug-based nanoparticles (NPs) successfully demonstrated a heightened glioma-specific delivery and anti-glioma activity. Multicomponent indocyanine green (ICG)-loaded peptide co-assembled NPs (PINPs: with a hydrodynamic size of 348 nm and a zeta-potential of 5 mV) showed enhanced anti-glioma responses in several cellular assays involving C6 cells. These included a mass demolition with no wound closure (i.e., a 100% cell destruction) and around 63% collaborative chemo-phototoxicity (with both a photothermal and photodynamic effect) after near infrared (NIR) 808 laser irradiation. The dual targeting ability of peptide bioconjugates towards both the BBB and glioma cells, presents new opportunities for designing tailored and better peptide-based nanostructures or nanophototheranostics for glioma.
Collapse
|
9
|
Fortunato A, Mba M. A Peptide-Based Hydrogel for Adsorption of Dyes and Pharmaceuticals in Water Remediation. Gels 2022; 8:672. [PMID: 36286173 PMCID: PMC9601570 DOI: 10.3390/gels8100672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 08/26/2023] Open
Abstract
The removal of dyes and pharmaceuticals from water has become a major issue in recent years due to the shortage of freshwater resources. The adsorption of these pollutants through nontoxic, easy-to-make, and environmentally friendly adsorbents has become a popular topic. In this work, a tetrapeptide-pyrene conjugate was rationally designed to form hydrogels under controlled acidic conditions. The hydrogels were thoroughly characterized, and their performance in the adsorption of various dyes and pharmaceuticals from water was investigated. The supramolecular hydrogel efficiently adsorbed methylene blue (MB) and diclofenac (DCF) from water. The effect of concentration in the adsorption efficiency was studied, and results indicated that while the adsorption of MB is governed by the availability of adsorption sites, in the case of DCF, concentration is the driving force of the process. In the case of MB, the nature of the dye-hydrogel interactions and the mechanism of the adsorption process were investigated through UV-Vis absorption spectroscopy. The studies proved how this dye is first adsorbed as a monomer, probably through electrostatic interactions; successively, at increasing concentrations as the electrostatic adsorption sites are depleted, dimerization on the hydrogel surface occurs.
Collapse
Affiliation(s)
| | - Miriam Mba
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
10
|
|
11
|
Zhou Y, Ke P, Bao X, Wu H, Xia Y, Zhang Z, Zhong H, Dai Q, Wu L, Wang T, Lin M, Li Y, Jiang X, Yang Q, Lu Y, Zhong X, Han M, Gao J. Peptide nano-blanket impedes fibroblasts activation and subsequent formation of pre-metastatic niche. Nat Commun 2022; 13:2906. [PMID: 35614076 PMCID: PMC9132894 DOI: 10.1038/s41467-022-30634-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
There is evidence to suggest that the primary tumor induces the formation of a pre-metastatic niche in distal organs by stimulating the production of pro-metastatic factors. Given the fundamental role of the pre-metastatic niche in the development of metastases, interruption of its formation would be a promising strategy to take early action against tumor metastasis. Here we report an enzyme-activated assembled peptide FR17 that can serve as a “flame-retarding blanket” in the pre-metastatic niche specifically to extinguish the “fire” of tumor-supportive microenvironment adaption. We show that the in-situ assembled peptide nano-blanket inhibits fibroblasts activation, suppressing the remodeling of the metastasis-supportive host stromal tissue, and reversing vascular destabilization and angiogenesis. Furthermore, we demonstrate that the nano-blanket prevents the recruitment of myeloid cells to the pre-metastatic niche, regulating the immune-suppressive microenvironment. We show that FR17 administration effectively inhibits the formation of the pulmonary pre-metastatic niche and postoperative metastasis, offering a therapeutic strategy against pre-metastatic niche formation. Primary tumors “spread the spark” by establishing a pre-metastatic niche. Here the authors develop an in-situ assembled peptide FR17 to serve as a “flame-retarding blanket” to extinguish the “fire” of the pre-metastatic microenvironment.
Collapse
Affiliation(s)
- Yi Zhou
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Peng Ke
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, PR China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Honghui Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yiyi Xia
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Zhentao Zhang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Haiqing Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Qi Dai
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Linjie Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Tiantian Wang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Mengting Lin
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yaosheng Li
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Xinchi Jiang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Qiyao Yang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yiying Lu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Xincheng Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
12
|
Yosefi G, Bitton R. Hierarchical Membranes Self‐Assembled at the Interface between Peptides and Polymer Aqueous Solutions. Isr J Chem 2022. [DOI: 10.1002/ijch.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gal Yosefi
- Department of Chemical Engineering Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Ronit Bitton
- Department of Chemical Engineering Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI) Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| |
Collapse
|
13
|
Kihal N, Nazemi A, Bourgault S. Supramolecular Nanostructures Based on Perylene Diimide Bioconjugates: From Self-Assembly to Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1223. [PMID: 35407341 PMCID: PMC9000806 DOI: 10.3390/nano12071223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/18/2022]
Abstract
Self-assembling π-conjugated systems constitute efficient building blocks for the construction of supramolecular structures with tailored functional properties. In this context, perylene diimide (PDI) has attracted attention owing to its chemical robustness, thermal and photo-stability, and outstanding optical and electronic properties. Recently, the conjugation of PDI derivatives to biological molecules, including oligonucleotides and peptides, has opened new avenues for the design of nanoassemblies with unique structures and functionalities. In the present review, we offer a comprehensive summary of supramolecular bio-assemblies based on PDI. After briefly presenting the physicochemical, structural, and optical properties of PDI derivatives, we discuss the synthesis, self-assembly, and applications of PDI bioconjugates.
Collapse
Affiliation(s)
- Nadjib Kihal
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec City, QC G1V 0A6, Canada
- Centre Québécois sur les Matériaux Fonctionnels/Québec Centre for Advanced Materials, CQMF/QCAM, Montreal, QC H3A 2A7, Canada
| | - Ali Nazemi
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Centre Québécois sur les Matériaux Fonctionnels/Québec Centre for Advanced Materials, CQMF/QCAM, Montreal, QC H3A 2A7, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Wang S, Li M. Research on the Electronic Properties of Tyrosine Dipeptide Molecule: Evaluation of the First-principles Theory. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793121100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Sun T, Feng Y, Peng J, Hao Y, Zhang L, Liu L. Cofactors-like peptide self-assembly exhibiting the enhanced catalytic activity in the peptide-metal nanocatalysts. J Colloid Interface Sci 2022; 617:511-524. [PMID: 35299125 DOI: 10.1016/j.jcis.2022.02.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
The peptide self-assembly would be expected to be as the assistance of metallic nanocatalysts to promote the catalytic reaction, attracting limited attention, but being highly anticipated. Herein, we proposed and verified an alternative strategy for enhancing the catalytic activity of the 4-nitrophenol reduction as a model reaction, by optimizing and constructing "cofactors" inspired amyloid peptide self-assembly applied in the peptide-metal nanocatalysts as the template due to the potential superiority of substrate binding. Amyloid peptide self-assembled membrane exhibited better enhanced catalytic activity, compared to peptide nanofibers as the template in the peptide-gold nanocatalysts. The optimized amyloid peptide was designated by molecular dynamic simulation to display the relative strongest interaction with specific substrate and the relative good template effect on the enhanced catalytic activity was also proved accordingly. This work may shed light on the future design and construction of novel enzyme mimics with dramatic enhanced catalytic activity by peptide assembly-metal nanocatalysts.
Collapse
Affiliation(s)
- Tongtong Sun
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China.
| | - Jiali Peng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Yun Hao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Liwei Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China.
| |
Collapse
|
16
|
Mehata AK, Muthu MS. Development of Supramolecules in the Field of Nanomedicines. PHARMACEUTICAL APPLICATIONS OF SUPRAMOLECULES 2022:211-239. [DOI: 10.1007/978-3-031-21900-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
17
|
Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021; 7:4136-4163. [PMID: 33780230 PMCID: PMC8441975 DOI: 10.1021/acsbiomaterials.1c00030] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hydrogel materials have been employed as biological scaffolds for tissue regeneration across a wide range of applications. Their versatility and biomimetic properties make them an optimal choice for treating the complex and delicate milieu of neural tissue damage. Aside from finely tailored hydrogel properties, which aim to mimic healthy physiological tissue, a minimally invasive delivery method is essential to prevent off-target and surgery-related complications. The specific class of injectable hydrogels termed self-assembling peptides (SAPs), provide an ideal combination of in situ polymerization combined with versatility for biofunctionlization, tunable physicochemical properties, and high cytocompatibility. This review identifies design criteria for neural scaffolds based upon key cellular interactions with the neural extracellular matrix (ECM), with emphasis on aspects that are reproducible in a biomaterial environment. Examples of the most recent SAPs and modification methods are presented, with a focus on biological, mechanical, and topographical cues. Furthermore, SAP electrical properties and methods to provide appropriate electrical and electrochemical cues are widely discussed, in light of the endogenous electrical activity of neural tissue as well as the clinical effectiveness of stimulation treatments. Recent applications of SAP materials in neural repair and electrical stimulation therapies are highlighted, identifying research gaps in the field of hydrogels for neural regeneration.
Collapse
Affiliation(s)
- Sofia Peressotti
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Gillian E. Koehl
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Josef A. Goding
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Rylie A. Green
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| |
Collapse
|
18
|
Synthesis, Characterization and Evaluation of Peptide Nanostructures for Biomedical Applications. Molecules 2021; 26:molecules26154587. [PMID: 34361740 PMCID: PMC8348434 DOI: 10.3390/molecules26154587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.
Collapse
|
19
|
Baruch-Leshem A, Chevallard C, Gobeaux F, Guenoun P, Daillant J, Fontaine P, Goldmann M, Kushmaro A, Rapaport H. Catalytically active peptides affected by self-assembly and residues order. Colloids Surf B Biointerfaces 2021; 203:111751. [DOI: 10.1016/j.colsurfb.2021.111751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
|
20
|
Dutta A, Das S, Das P, Maity S, Ghosh P. Solid state self-assembly and morphology of a rigid non-coded γ-amino acid inserted tripeptide. Z KRIST-CRYST MATER 2021. [DOI: 10.1515/zkri-2021-2006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
A tripeptide Boc-L-Pro-m-ABA-Aib-OMe was synthesized where meta-aminobenzoic acid (m-ABA), a rigid non-coded γ-amino acid is placed as middle residue. Single crystal X-ray diffraction study indicates that the peptide self-assembles into helical motif through intermolecular hydrogen bonding interaction N–H···O, C–H···O, π···π interaction and van der Waals interaction. HR-TEM image reveals the formation of fibril in the solid state.
Collapse
Affiliation(s)
- Arpita Dutta
- Department of Chemistry , Rishi Bankim Chandra Evening College , 24-Parganas (N) , Naihati , 743165 , India
| | - Suven Das
- Department of Chemistry , Rishi Bankim Chandra College for Women , 24-Parganas (N) , Naihati , 743165 , India
| | - Purak Das
- Department of Chemistry , Rishi Bankim Chandra College for Women , 24-Parganas (N) , Naihati , 743165 , India
| | - Suvendu Maity
- Department of Chemistry , R K Mission Residential College , Narendrapur , Kolkata , 700103 , India
| | - Prasanta Ghosh
- Department of Chemistry , R K Mission Residential College , Narendrapur , Kolkata , 700103 , India
| |
Collapse
|
21
|
Zhang TD, Chen LL, Lin WJ, Shi WP, Wang JQ, Zhang CY, Guo WH, Deng X, Yin DC. Searching for conditions of protein self-assembly by protein crystallization screening method. Appl Microbiol Biotechnol 2021; 105:2759-2773. [PMID: 33683398 DOI: 10.1007/s00253-021-11188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
The self-assembly of biomacromolecules is an extremely important process. It is potentially useful in the fields of life science and materials science. To carry out the study on the self-assembly of proteins, it is necessary to find out the suitable self-assembly conditions, which have always been a challenging task in practice. Inspired by the screening technique in the field of protein crystallization, we proposed using the same screening technique for seeking suitable protein self-assembly conditions. Based on this consideration, we selected 5 proteins (β-lactoglobulin, hemoglobin, pepsin, lysozyme, α-chymotrypsinogen (II) A) together with 5 screening kits (IndexTM, BML, Morpheus, JCSG, PEG/Ion ScreenTM) to investigate the performance of these crystallization screening techniques in order to discover new optimized conditions of protein self-assembly. The screens were all kept at 293 K for certain days, and were analyzed using optical microscope, scanning electron microscope, transmission electron microscope, atomic force microscope, fluorescence microscope, and atomic absorption spectroscope. The results demonstrated that the method of protein crystallization screening can be successfully applied in the screening of self-assembly conditions. This method is fast, high throughput, and easily implemented in an automated system, with a low protein consumption feature. These results suggested that such strategy can be applied to finding new conditions or forms in routine research of protein self-assembly. KEY POINTS: • Protein crystallization screening method is successfully applied in the screening of self-assembly conditions. • This screening method can be applied on various kinds of proteins and possess a feature of low protein consumption. • This screening method is fast, high throughput, and easily implemented in an automated system.
Collapse
Affiliation(s)
- Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wen-Juan Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wen-Pu Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jia-Qi Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chen-Yan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | | | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
22
|
Li L, Zhang J, Liu M, Shi X, Zhang W, Li Y, Zhou N, Zhang Z, Zhu X. Smart supramolecular nanofibers and nanoribbons from uniform amphiphilic azobenzene oligomers. Chem Commun (Camb) 2021; 57:2192-2195. [PMID: 33527917 DOI: 10.1039/d0cc06994a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of self-assembled 1D nanostructures, including straight and helix nanofibers, nanoribbons, and nanobelts, were fabricated from uniform amphiphilic azobenzene oligomers with tunable molecular weight and side chain functionality, promoted by multiple and cooperative supramolecular interactions. Additionally, the morphological transformation of the nanofibers was achieved during the photoisomerization process.
Collapse
Affiliation(s)
- Lishan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Jiandong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Min Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Xianheng Shi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
23
|
Saadi S, Ghazali HM, Saari N, Abdulkarim SM. The structural reconformation of peptides in enhancing functional and therapeutic properties: Insights into their solid state crystallizations. Biophys Chem 2021; 273:106565. [PMID: 33780688 DOI: 10.1016/j.bpc.2021.106565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023]
Abstract
Therapeutic peptides derived proteins with alpha-reconformation states like antibody shape have shown potential effects in combating terrible diseases linked with earlier signs of angiogensis, mutagenesis and transgenesis. Alpha reconformation in material design refers to the folding of the peptide chains and their transitions under reversible chemical bonds of disulfide chemical bridges and further non-covalence lesions. Thus, the rational design of signal peptides into alpha-helix is intended in increasing the defending effects of peptides into cores like adjuvant antibiotic and/or vaccines. Thereby, the signal peptides are able in displaying multiple eradicating regions by changing crystal-depositions and deviation angles. These types of molecular structures could have multiple advantages in tracing disease syndromes and impurities by increasing the host defense against the fates of pathogens and viruses, eventually leading to the loss in signaling by increasing peptide susceptibility levels to folding and unfolding and therefore, formation of transgenic peptide models. Alpha reconformation peptides is aimed in triggering as well as other regulatory functions such as remodulating metabolic chain disorders of lipolysis and glucolysis by increasing the insulin and leptin resistance for best lipid storages and lipoprotein density distributions.
Collapse
Affiliation(s)
- Sami Saadi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agro-alimentaires INATAA 25017, Université Frères Mentouri, Constantine 1, Algeria; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hasanah Mohd Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sabo Mohammed Abdulkarim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Li X, Li J, Hao S, Han A, Yang Y, Fang G, Liu J, Wang S. Enzyme mimics based membrane reactor for di(2-ethylhexyl) phthalate degradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123873. [PMID: 33264945 DOI: 10.1016/j.jhazmat.2020.123873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), the most abundantly used plasticizer, was considered to be a hazardous chemical that was difficult to be degraded naturally. In this study, inspired by the "catalytic triad'' in serine proteases, an enzyme mimic material was developed by combining the proteases's active sites of serine, histidine and aspartate (S-H-D) with the self-assembling sequence of LKLKLKL and the aromatic group of fluorenylmethyloxycarbonyl (Fmoc). By mixing the monomer of peptides containing separate S, H and D residues with a ratio of 2:1:1, the enzyme mimics were found to co- assemble into nanofibers (Co-HSD) and showed the highest activity towards DEHP degradation because of the synergistic effects of active sites, orderly secondary structure and stable molecular conformation. To further improve ability and applicability, the high active mimetic enzyme was immobilized onto regenerated cellulose (RC) membranes for DEHP degradation in a continuous recycling mode. The RC membranes were first functionalized by the NaIO4 oxidation method to form aldehyde groups and then conjugated with the enzyme mimics via Schiff-base reaction. As a biocatalytic membrane, this membrane could not only effectively degrade DEHP, but also showed good stability, thus establishing a promising biomaterial for large scale biodegradation of DEHP in water decontamination and liquid food depollution.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jianpeng Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China; Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
25
|
Wang F, Gnewou O, Modlin C, Beltran LC, Xu C, Su Z, Juneja P, Grigoryan G, Egelman EH, Conticello VP. Structural analysis of cross α-helical nanotubes provides insight into the designability of filamentous peptide nanomaterials. Nat Commun 2021; 12:407. [PMID: 33462223 PMCID: PMC7814010 DOI: 10.1038/s41467-020-20689-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The exquisite structure-function correlations observed in filamentous protein assemblies provide a paradigm for the design of synthetic peptide-based nanomaterials. However, the plasticity of quaternary structure in sequence-space and the lability of helical symmetry present significant challenges to the de novo design and structural analysis of such filaments. Here, we describe a rational approach to design self-assembling peptide nanotubes based on controlling lateral interactions between protofilaments having an unusual cross-α supramolecular architecture. Near-atomic resolution cryo-EM structural analysis of seven designed nanotubes provides insight into the designability of interfaces within these synthetic peptide assemblies and identifies a non-native structural interaction based on a pair of arginine residues. This arginine clasp motif can robustly mediate cohesive interactions between protofilaments within the cross-α nanotubes. The structure of the resultant assemblies can be controlled through the sequence and length of the peptide subunits, which generates synthetic peptide filaments of similar dimensions to flagella and pili.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ordy Gnewou
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Charles Modlin
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Leticia C Beltran
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Chunfu Xu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Puneet Juneja
- The Robert P. Apkarian Integrated Electron Microscopy Core (IEMC), Emory University, Atlanta, GA, 30322, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA.,Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Vincent P Conticello
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA. .,The Robert P. Apkarian Integrated Electron Microscopy Core (IEMC), Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
26
|
Abstract
Supramolecular biopolymers (SBPs) are those polymeric units derived from macromolecules that can assemble with each other by noncovalent interactions. Macromolecular structures are commonly found in living systems such as proteins, DNA/RNA, and polysaccharides. Bioorganic chemistry allows the generation of sequence-specific supramolecular units like SBPs that can be tailored for novel applications in tissue engineering (TE). SBPs hold advantages over other conventional polymers previously used for TE; these materials can be easily functionalized; they are self-healing, biodegradable, stimuli-responsive, and nonimmunogenic. These characteristics are vital for the further development of current trends in TE, such as the use of pluripotent cells for organoid generation, cell-free scaffolds for tissue regeneration, patient-derived organ models, and controlled delivery systems of small molecules. In this review, we will analyse the 3 subtypes of SBPs: peptide-, nucleic acid-, and oligosaccharide-derived. Then, we will discuss the role that SBPs will be playing in TE as dynamic scaffolds, therapeutic scaffolds, and bioinks. Finally, we will describe possible outlooks of SBPs for TE.
Collapse
|
27
|
Dao TPT, Vezenkov L, Subra G, Ladmiral V, Semsarilar M. Nano-assemblies with core-forming hydrophobic polypeptide via polymerization-induced self-assembly (PISA). Polym Chem 2021. [DOI: 10.1039/d0py00793e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study is to produce self-assembled structures with hydrophobic polypeptide cores via Reversible Addition–Fragmentation chain Transfer (RAFT) – mediated Polymerisation-Induced Self-Assembly (PISA).
Collapse
Affiliation(s)
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron
- IBMM
- Univ Montpellier
- CNRS
- ENSCM
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron
- IBMM
- Univ Montpellier
- CNRS
- ENSCM
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier
- ICGM
- Univ Montpellier
- CNRS
- ENSCM
| | | |
Collapse
|
28
|
Fortunato A, Sanzone A, Mattiello S, Beverina L, Mba M. The pH- and salt-controlled self-assembly of [1]benzothieno[3,2- b][1]-benzothiophene–peptide conjugates in supramolecular hydrogels. NEW J CHEM 2021. [DOI: 10.1039/d1nj02294f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salt- and pH-triggered supramolecular hydrogels were obtained from a novel [1]benzothieno[3,2-b][1]benzothiophene (BTBT)-peptide hybrid.
Collapse
Affiliation(s)
- Anna Fortunato
- Department of Chemical Sciences
- University of Padova
- Padova, PD
- Italy
| | - Alessandro Sanzone
- Department of Materials Science
- University of Milano-Bicocca and INSTM
- Milano I-20125
- Italy
| | - Sara Mattiello
- Department of Materials Science
- University of Milano-Bicocca and INSTM
- Milano I-20125
- Italy
| | - Luca Beverina
- Department of Materials Science
- University of Milano-Bicocca and INSTM
- Milano I-20125
- Italy
| | - Miriam Mba
- Department of Chemical Sciences
- University of Padova
- Padova, PD
- Italy
| |
Collapse
|
29
|
Muthusivarajan R, Allen WJ, Pehere AD, Sokolov KV, Fuentes D. Role of alkylated residues in the tetrapeptide self-assembly-A molecular dynamics study. J Comput Chem 2020; 41:2634-2640. [PMID: 32930440 PMCID: PMC7983104 DOI: 10.1002/jcc.26419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022]
Abstract
Designing peptide sequences that self-assemble into well-defined nanostructures can open a new venue for the development of novel drug carriers and molecular contrast agents. Current approaches are often based on a linear block-design of amphiphilic peptides where a hydrophilic peptide chain is terminated by a hydrophobic tail. Here, a new template for a self-assembling tetrapeptide (YXKX, Y = tyrosine, X = alkylated tyrosine, K = lysine) is proposed with two distinct sides relative to the peptide's backbone: alkylated hydrophobic residues on one side and hydrophilic residues on the other side. Using all-atom molecular dynamics simulations, the self-assembly pathway of the tetrapeptide is analyzed for two different concentrations. At both concentrations, tetrapeptides self-assembled into a nanosphere structure. The alkylated tyrosines initialize the self-assembly process via a strong hydrophobic effect and to reduce exposure to the aqueous solvent, they formed a hydrophobic core. The hydrophilic residues occupied the surface of the self-assembled nanosphere. Ordered arrangement of tetrapeptides within the nanosphere with the backbone hydrogen bonding led to a beta sheet formation. Alkyl chain length constrained the size and shape of the nanosphere. This study provides foundation for further exploration of self-assembling structures that are based on peptides with hydrophobic and hydrophilic moieties located on the opposite sides of a peptide backbone.
Collapse
Affiliation(s)
| | - William J. Allen
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas
| | - Ashok D. Pehere
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Konstantin V. Sokolov
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - David Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
30
|
Varma LT, Singh N, Gorain B, Choudhury H, Tambuwala MM, Kesharwani P, Shukla R. Recent Advances in Self-Assembled Nanoparticles for Drug Delivery. Curr Drug Deliv 2020; 17:279-291. [DOI: 10.2174/1567201817666200210122340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/28/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
The collection of different bulk materials forms the nanoparticles, where the properties of the
nanoparticle are solely different from the individual components before being ensembled. Selfassembled
nanoparticles are basically a group of complex functional units that are formed by gathering
the individual bulk components of the system. It includes micelles, polymeric nanoparticle, carbon nanotubes,
liposomes and niosomes, <i>etc</i>. This self-assembly has progressively heightened interest to control
the final complex structure of the nanoparticle and its associated properties. The main challenge of formulating
self-assembled nanoparticle is to improve the delivery system, bioavailability, enhance circulation
time, confer molecular targeting, controlled release, protection of the incorporated drug from external
environment and also serve as nanocarriers for macromolecules. Ultimately, these self-assembled
nanoparticles facilitate to overcome the physiological barriers <i>in vivo</i>. Self-assembly is an equilibrium
process where both individual and assembled components are subsisting in equilibrium. It is a bottom up
approach in which molecules are assembled spontaneously, non-covalently into a stable and welldefined
structure. There are different approaches that have been adopted in fabrication of self-assembled
nanoparticles by the researchers. The current review is enriched with strategies for nanoparticle selfassembly,
associated properties, and its application in therapy.
Collapse
Affiliation(s)
- Lanke Tejesh Varma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER, Raebareli), Lucknow (U.P.), India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER, Raebareli), Lucknow (U.P.), India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Murtaza M. Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi-110062, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER, Raebareli), Lucknow (U.P.), India
| |
Collapse
|
31
|
Daso R, Osborn LJ, Thomas MF, Banerjee IA. Development of Nanoscale Hybrids from Ionic Liquid-Peptide Amphiphile Assemblies as New Functional Materials. ACS OMEGA 2020; 5:14543-14554. [PMID: 32596592 PMCID: PMC7315584 DOI: 10.1021/acsomega.0c01254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/25/2020] [Indexed: 05/11/2023]
Abstract
Over the years, ionic liquids (ILs) have gained tremendous importance because of their unique properties and plethora of applications. In this work, we have developed a new nanoscale hybrid gel consisting of 1-ethyl-3-methylimidazolium dimethyl phosphate, [C2mim][dmp], and self-assembled peptide nanoassemblies. The peptide nanoassemblies were formed by self-assembly of a newly synthesized peptide bolaamphiphile bis(N-α-amido-threonine) 1,7 heptane dicarboxylate (ThrC7). Upon mild heating and sonication of the IL and ThrC7 nanoassemblies, ThrC7-IL nanocomposites were formed. We explored the formation of nanohybrids by varying the ratio of IL to ThrC7 assemblies. While at lower IL ratios, a gelatinous matrix was formed, at higher IL ratios, highly ordered multilayered structures were observed by atomic force microscopy (AFM) imaging. The interactions between the ThrC7 nanofibers and [C2mim][dmp] IL were probed by Fourier transform infrared spectroscopy, transmission electron microscopy, and AFM imaging. Differential scanning calorimetry and thermogravimetric analysis showed that the nanohybrids illustrated distinct thermal phase changes due to changes in hydrogen bonding interactions and unfolding of the nanoassemblies. The viscoelastic behavior of the nanohybrids indicated that the materials displayed higher storage modulus upon incorporation of the ThrC7 nanoassemblies when compared to the IL. Furthermore, the nanohybrids were found to adhere to and promote proliferation of human dermal fibroblasts, while cytotoxicity was observed toward MCF-7 breast cancer cells. Thus, for the first time, we have developed peptide-based nanohybrids with an imidazolium-based IL with unique structural properties that may open new avenues for exploring potential biological applications.
Collapse
Affiliation(s)
- Rachel
E. Daso
- Department
of Chemistry, Fordham University, 441 East Fordham Road, Bronx, New York 10458, United States
| | - Luke J. Osborn
- Department
of Natural Science, Fordham College at Lincoln
Center, 113 W. 60th Street, New York, New York 10023, United States
| | - Marie F. Thomas
- Department
of Natural Science, Fordham College at Lincoln
Center, 113 W. 60th Street, New York, New York 10023, United States
| | - Ipsita A. Banerjee
- Department
of Chemistry, Fordham University, 441 East Fordham Road, Bronx, New York 10458, United States
| |
Collapse
|
32
|
Novelli F, Strofaldi A, De Santis S, Del Giudice A, Casciardi S, Galantini L, Morosetti S, Pavel NV, Masci G, Scipioni A. Polymorphic Self-Organization of Lauroyl Peptide in Response to pH and Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3941-3951. [PMID: 32118446 DOI: 10.1021/acs.langmuir.9b02924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphipathic peptides are attractive building blocks for the preparation of self-assembling, bio-inspired, and stimuli responsive nanomaterials with pharmaceutical interest. The bioavailability of these materials can be improved with the insertion of d amino acid residues to avoid fast proteolysis in vivo. With this knowledge, a new lauroyl peptide consisting of a sequence of glycine, glycine, d-serine, and d-lysine was designed. In spite of its simple sequence, this lipopeptide self-assembles into spherical micelles at acid pH, when the peptide moiety adopts disordered conformations. Self-aggregates reshape toward fibers at basic pH, following the conformational transition of the peptide region from random coil to β-sheet. Finally, hydrogels are achieved at basic pH and higher concentrations. The transition from random coil to β-sheet conformation of the peptide headgroup obtained by increasing pH was monitored by circular dichroism and vibrational spectroscopy. A structural analysis, performed by combining dynamic light scattering, small-angle X-ray scattering, transmission electron microscopy, and molecular dynamic simulations, demonstrated that the transition allows the self-assemblies to remodel from spherical micelles to rodlike shapes, to long fibers with rectangular cross-section and a head-tail-tail-head structure. The viscoelastic behavior of the hydrogels formed at the highest pH was investigated by rheology measurements.
Collapse
Affiliation(s)
- Federica Novelli
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Alessandro Strofaldi
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Serena De Santis
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Alessandra Del Giudice
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL Research), Rome 00144, Italy
| | - Luciano Galantini
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Stefano Morosetti
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Nicolae V Pavel
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Giancarlo Masci
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Anita Scipioni
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| |
Collapse
|
33
|
Li X, Li J, Hao S, Han A, Yang Y, Luo X, Fang G, Liu J, Wang S. Enzyme mimics based on self-assembled peptides for di(2-ethylhexyl)phthalate degradation. J Mater Chem B 2020; 8:9601-9609. [DOI: 10.1039/d0tb01931c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enzyme mimics inspired by serine proteases are developed through self-assembled peptides to degrade di(2-ethylhexyl)phthalate (DEHP).
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Jianpeng Li
- School of Food Science and Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Ji’nan
- P. R. China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Xiaoyu Luo
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
- Research Center of Food Science and Human Health
| |
Collapse
|
34
|
Li LL, Qiao ZY, Wang L, Wang H. Programmable Construction of Peptide-Based Materials in Living Subjects: From Modular Design and Morphological Control to Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804971. [PMID: 30450607 DOI: 10.1002/adma.201804971] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/30/2018] [Indexed: 06/09/2023]
Abstract
Self-assembled nanomaterials show potential high efficiency as theranostics for high-performance bioimaging and disease treatment. However, the superstructures of pre-assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self-assembly and biomedicine, a new strategy of "in vivo self-assembly" is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide-based nanomaterials constructed by the in vivo self-assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self-assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self-assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation-induced retention (AIR), are introduced, followed by their applications in high-performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self-assembled peptide-based nanomaterials for translational medicine are concluded.
Collapse
Affiliation(s)
- Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| |
Collapse
|
35
|
Crowet JM, Sinnaeve D, Fehér K, Laurin Y, Deleu M, Martins JC, Lins L. Molecular Model for the Self-Assembly of the Cyclic Lipodepsipeptide Pseudodesmin A. J Phys Chem B 2019; 123:8916-8922. [PMID: 31558021 DOI: 10.1021/acs.jpcb.9b08035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-assembly of peptides into supramolecular structures represents an active field of research with potential applications ranging from material science to medicine. Their study typically involves the application of a large toolbox of spectroscopic and imaging techniques. However, quite often, the structural aspects remain underexposed. Besides, molecular modeling of the self-assembly process is usually difficult to handle, since a vast conformational space has to be sampled. Here, we have used an approach that combines short molecular dynamics simulations for peptide dimerization and NMR restraints to build a model of the supramolecular structure from the dimeric units. Experimental NMR data notably provide crucial information about the conformation of the monomeric units, the supramolecular assembly dimensions, and the orientation of the individual peptides within the assembly. This in silico/in vitro mixed approach enables us to define accurate atomistic models of supramolecular structures of the bacterial cyclic lipodepsipeptide pseudodesmin A.
Collapse
Affiliation(s)
- Jean-Marc Crowet
- Laboratory of Molecular Biophysics at Interfaces, TERRA Research Center, Gembloux Agro-Bio Tech , University of Liège , Passage des déportés 2 , B-5030 Gembloux , Belgium
| | - Davy Sinnaeve
- CNRS-Unité de Glycobiologie structurale et fonctionnelle (UGSF) UMR 8576 , 50, Avenue de Halley, Campus CNRS de la Haute Borne , 59658 Villeneuve d'Ascq , France
| | - Krisztina Fehér
- Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35 , 69118 Heidelberg , Germany
| | - Yoann Laurin
- Laboratory of Molecular Biophysics at Interfaces, TERRA Research Center, Gembloux Agro-Bio Tech , University of Liège , Passage des déportés 2 , B-5030 Gembloux , Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, TERRA Research Center, Gembloux Agro-Bio Tech , University of Liège , Passage des déportés 2 , B-5030 Gembloux , Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 S4 , B-9000 Gent , Belgium
| | - Laurence Lins
- Laboratory of Molecular Biophysics at Interfaces, TERRA Research Center, Gembloux Agro-Bio Tech , University of Liège , Passage des déportés 2 , B-5030 Gembloux , Belgium
| |
Collapse
|
36
|
Nambiar M, Nepal M, Chmielewski J. Self-Assembling Coiled-Coil Peptide Nanotubes with Biomolecular Cargo Encapsulation. ACS Biomater Sci Eng 2019; 5:5082-5087. [PMID: 33455255 DOI: 10.1021/acsbiomaterials.9b01304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Monessha Nambiar
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Manish Nepal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
37
|
Kan A, Joshi NS. Towards the directed evolution of protein materials. MRS COMMUNICATIONS 2019; 9:441-455. [PMID: 31750012 PMCID: PMC6867688 DOI: 10.1557/mrc.2019.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/22/2019] [Indexed: 05/06/2023]
Abstract
Protein-based materials have emerged as a powerful instrument for a new generation of biological materials, with many chemical and mechanical capabilities. Through the manipulation of DNA, researchers can design proteins at the molecular level, engineering a vast array of structural building blocks. However, our capability to rationally design and predict the properties of such materials is limited by the vastness of possible sequence space. Directed evolution has emerged as a powerful tool to improve biological systems through mutation and selection, presenting another avenue to produce novel protein materials. In this prospective review, we discuss the application of directed evolution for protein materials, reviewing current examples and developments that could facilitate the evolution of protein for material applications.
Collapse
Affiliation(s)
- Anton Kan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Neel S. Joshi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| |
Collapse
|
38
|
Vertical Alignment of Size-Controlled Self-Assembled Diphenylalanine Peptide Nanotubes Using Polyethersulfone Hollow Fiber Membranes On Silicon. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Gerbelli BB, Vassiliades SV, Rojas JEU, Pelin JNBD, Mancini RSN, Pereira WSG, Aguilar AM, Venanzi M, Cavalieri F, Giuntini F, Alves WA. Hierarchical Self‐Assembly of Peptides and its Applications in Bionanotechnology. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900085] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Barbara B. Gerbelli
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Sandra V. Vassiliades
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Jose E. U. Rojas
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Juliane N. B. D. Pelin
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Rodrigo S. N. Mancini
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Wallace S. G. Pereira
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Andrea M. Aguilar
- Instituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo Diadema 09972270 Brazil
| | - Mariano Venanzi
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via Cracovia, 50 00133 Roma RM Italy
| | - Francesca Cavalieri
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via Cracovia, 50 00133 Roma RM Italy
- Department of Chemical and Biomolecular EngineeringThe University of Melbourne Parkville Vitória 3010 Australia
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street Liverpool L3 3AF UK
| | - Wendel A. Alves
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| |
Collapse
|
40
|
Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. NANOSCALE 2019; 11:4147-4182. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinspired synthesis offers potential green strategies to build highly complex nanomaterials by utilizing the unique nanostructures, functions, and properties of biomolecules, in which the biomolecular recognition and self-assembly processes play important roles in tailoring the structures and functions of bioinspired materials. Further understanding of biomolecular self-assembly for inspiring the formation and assembly of nanoparticles would promote the design and fabrication of functional nanomaterials for various applications. In this review, we focus on recent advances in bioinspired synthesis and applications of hierarchical nanomaterials based on biomolecular self-assembly. We first discuss biomolecular self-assembly towards biological nanomaterials, in which the mechanisms and ways of biomolecular self-assembly as well as various self-assembled biomolecular nanostructures are demonstrated. Secondly, the bioinspired synthesis strategies including molecule-molecule interaction, molecule-material recognition, molecule-mediated nucleation and growth, and molecule-mediated reduction/oxidation are introduced and discussed. Meanwhile, typical examples and discussions on how biomolecular self-assembly inspires the formation of hierarchical hybrid nanomaterials are presented. Finally, the applications of bioinspired nanomaterials in biofuel cells, light-harvesting systems, batteries, supercapacitors, catalysis, water/air purification, and environmental monitoring are presented and discussed. We believe that this review will be very helpful for readers to understand the self-assembly of biomolecules and the biomimetic/bioinspired strategies for synthesizing hierarchical nanomaterials on the one hand, and on the other hand to design novel materials for extended applications in nanotechnology, materials science, analytical science, and biomedical engineering.
Collapse
Affiliation(s)
- Coucong Gong
- Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rivas M, Del Valle LJ, Alemán C, Puiggalí J. Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels 2019; 5:E14. [PMID: 30845674 PMCID: PMC6473879 DOI: 10.3390/gels5010014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023] Open
Abstract
Amphiphilic peptides can be self-assembled by establishing physical cross-links involving hydrogen bonds and electrostatic interactions with divalent ions. The derived hydrogels have promising properties due to their biocompatibility, reversibility, trigger capability, and tunability. Peptide hydrogels can mimic the extracellular matrix and favor the growth of hydroxyapatite (HAp) as well as its encapsulation. Newly designed materials offer great perspectives for applications in the regeneration of hard tissues such as bones, teeth, and cartilage. Furthermore, development of drug delivery systems based on HAp and peptide self-assembly is attracting attention.
Collapse
Affiliation(s)
- Manuel Rivas
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Luís J Del Valle
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Carlos Alemán
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jordi Puiggalí
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|
42
|
Lombardi L, Shi Y, Falanga A, Galdiero E, de Alteriis E, Franci G, Chourpa I, Azevedo HS, Galdiero S. Enhancing the Potency of Antimicrobial Peptides through Molecular Engineering and Self-Assembly. Biomacromolecules 2019; 20:1362-1374. [PMID: 30735368 DOI: 10.1021/acs.biomac.8b01740] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Healthcare-associated infections resulting from bacterial attachment and biofilm formation on medical implants are posing significant challenges in particular with the emergence of bacterial resistance to antibiotics. Here, we report the design, synthesis and characterization of self-assembled nanostructures, which integrate on their surface antibacterial peptides. The antibacterial WMR peptide, which is a modification of the native sequence of the myxinidin, a marine peptide isolated from the epidermal mucus of hagfish, was used considering its enhanced activity against Gram-negative bacteria. WMR was linked to a peptide segment of aliphatic residues (AAAAAAA) containing a lipidic tail (C19H38O2) attached to the ε-amino of a terminal lysine to generate a peptide amphiphile (WMR PA). The self-assembly of the WMR PA alone, or combined with coassembling shorter PAs, was studied using spectroscopy and microscopy techniques. The designed PAs were shown to self-assemble into stable nanofiber structures and these nanoassemblies significantly inhibit biofilm formation and eradicate the already formed biofilms of Pseudomonas aeruginosa (Gram-negative bacteria) and Candida albicans (pathogenic fungus) when compared to the native WMR peptide. Our results provide insights into the design of peptide based supramolecular assemblies with antibacterial activity, and establish an innovative strategy to develop self-assembled antimicrobial materials for biomedical applications.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Pharmacy, School of Medicine , University of Naples Federico II , Via Mezzocannone 16 , 80134 Naples , Italy.,School of Engineering and Materials Science , Queen Mary, University of London , Mile End Road , London E1 4NS , United Kingdom
| | - Yejiao Shi
- School of Engineering and Materials Science , Queen Mary, University of London , Mile End Road , London E1 4NS , United Kingdom
| | - Annarita Falanga
- CIRPEB, University of Naples Federico II , Via Mezzocannone 16 , 80134 Naples , Italy.,Department of Agricultural Science , University of Naples Federico II , via Università 100 , 80055 Naples , Italy
| | - Emilia Galdiero
- Department of Biology , University of Naples Federico II , via Cinthia , 80100 Naples , Italy
| | - Elisabetta de Alteriis
- Department of Biology , University of Naples Federico II , via Cinthia , 80100 Naples , Italy
| | - Gianluigi Franci
- Department of Experimental Medicine , University of Campania Luigi Vanvitelli , via Costantinopoli 16 , 80138 Naples , Italy
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Université François-Rabelais de Tours , 31 avenue Monge , 37000 Tours , France
| | - Helena S Azevedo
- School of Engineering and Materials Science , Queen Mary, University of London , Mile End Road , London E1 4NS , United Kingdom
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine , University of Naples Federico II , Via Mezzocannone 16 , 80134 Naples , Italy.,CIRPEB, University of Naples Federico II , Via Mezzocannone 16 , 80134 Naples , Italy
| |
Collapse
|
43
|
Gorla L, Martí-Centelles V, Altava B, Burguete MI, Luis SV. The role of the side chain in the conformational and self-assembly patterns of C2-symmetric Val and Phe pseudopeptidic derivatives. CrystEngComm 2019. [DOI: 10.1039/c8ce02088d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Side chain as the main conformational and self-assembly structural factor for C2-pseudopeptides.
Collapse
Affiliation(s)
- Lingaraju Gorla
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | | | - Belén Altava
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - M. Isabel Burguete
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - Santiago V. Luis
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| |
Collapse
|
44
|
Li X, Li J, Zhu J, Hao S, Fang G, Liu J, Wang S. Degradation of phthalic acid esters (PAEs) by an enzyme mimic and its application in the degradation of intracellular DEHP. Chem Commun (Camb) 2019; 55:13458-13461. [DOI: 10.1039/c9cc06794a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An enzyme mimic inspired by serine proteases was developed for the degradation of PAEs and applied in the hydrolysis of intracellular DEHP.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Jianpeng Li
- School of Food Science and Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Ji’nan
- P. R. China
| | - Junxiang Zhu
- College of Food Science and Engineering
- Qingdao Agricultural University
- Qingdao
- P. R. China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
- Research Center of Food Science and Human Health
| |
Collapse
|
45
|
Chan KH, Lee WH, Ni M, Loo Y, Hauser CAE. C-Terminal Residue of Ultrashort Peptides Impacts on Molecular Self-Assembly, Hydrogelation, and Interaction with Small-Molecule Drugs. Sci Rep 2018; 8:17127. [PMID: 30459362 PMCID: PMC6244206 DOI: 10.1038/s41598-018-35431-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022] Open
Abstract
Single molecular changes on a tripeptide can have dramatic effects on their self-assembly and hydrogelation. Herein, we explore C-terminal residue variation on two consistent ultrashort peptide backbones, i.e. acetylated-Leu-Ile-Val-Ala-Gly-Xaa and acetylated-Ile-Val-Xaa (Xaa = His, Arg, Asn). The objective of this study is to identify candidates that can form hydrogels for small-molecule drug (SMD) delivery. Haemolysis and cytotoxicity (with human adipose-derived mesenchymal stem cells) assays showed that the new soluble peptides (Xaa = His, Arg) are cytocompatible. Gelation studies showed that all but acetylated-Ile-Val-Arg could gel under physiological conditions. Longer peptidic backbones drive self-assembly more effectively as reflected in field emission scanning electron microscopy (FESEM) and circular dichroism spectroscopy studies. Rheological studies revealed that the resultant hydrogels have varying stiffness and yield stress, depending on the backbone and C-terminal residue. Visible spectroscopy-based elution studies with SMDs (naltrexone, methotrexate, doxorubicin) showed that besides the C-terminal residue, the shape of the SMD also determines the rate and extent of SMD elution. Based on the elution assays, infrared spectroscopy, and FESEM, we propose models for the peptide fibril-SMD interaction. Our findings highlight the importance of matching the molecular properties of the self-assembling peptide and SMD in order to achieve the desired SMD release profile.
Collapse
Affiliation(s)
- Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore.
| | - Wei Hao Lee
- Department of Chemistry, Krieger School of Arts & Sciences, 3400 North Charles Street, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ming Ni
- School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, 100105, Ecuador
| | - Yihua Loo
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
46
|
Amit M, Yuran S, Gazit E, Reches M, Ashkenasy N. Tailor-Made Functional Peptide Self-Assembling Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707083. [PMID: 29989255 DOI: 10.1002/adma.201707083] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/05/2018] [Indexed: 05/08/2023]
Abstract
Noncovalent interactions are the main driving force in the folding of proteins into a 3D functional structure. Motivated by the wish to reveal the mechanisms of the associated self-assembly processes, scientists are focusing on studying self-assembly processes of short protein segments (peptides). While this research has led to major advances in the understanding of biological and pathological process, only in recent years has the applicative potential of the resulting self-assembled peptide assemblies started to be explored. Here, major advances in the development of biomimetic supramolecular peptide assemblies as coatings, gels, and as electroactive materials, are highlighted. The guiding lines for the design of helical peptides, β strand peptides, as well as surface binding monolayer-forming peptides that can be utilized for a specific function are highlighted. Examples of their applications in diverse immerging applications in, e.g., ecology, biomedicine, and electronics, are described. Taking into account that, in addition to extraordinary design flexibility, these materials are naturally biocompatible and ecologically friendly, and their production is cost effective, the emergence of devices incorporating these biomimetic materials in the market is envisioned in the near future.
Collapse
Affiliation(s)
- Moran Amit
- Department of Materials Engineering, Ben Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA, 92093-0407, USA
| | - Sivan Yuran
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Nurit Ashkenasy
- Department of Materials Engineering, Ben Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
47
|
Richtar J, Heinrichova P, Apaydin DH, Schmiedova V, Yumusak C, Kovalenko A, Weiter M, Sariciftci NS, Krajcovic J. Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules 2018; 23:E2271. [PMID: 30189689 PMCID: PMC6225382 DOI: 10.3390/molecules23092271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022] Open
Abstract
Flavins are known to be extremely versatile, thus enabling routes to innumerable modifications in order to obtain desired properties. Thus, in the present paper, the group of bio-inspired conjugated materials based on the alloxazine core is synthetized using two efficient novel synthetic approaches providing relatively high reaction yields. The comprehensive characterization of the materials, in order to evaluate the properties and application potential, has shown that the modification of the initial alloxazine core with aromatic substituents allows fine tuning of the optical bandgap, position of electronic orbitals, absorption and emission properties. Interestingly, the compounds possess multichromophoric behavior, which is assumed to be the results of an intramolecular proton transfer.
Collapse
Affiliation(s)
- Jan Richtar
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Patricie Heinrichova
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Dogukan Hazar Apaydin
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Veronika Schmiedova
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Cigdem Yumusak
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Alexander Kovalenko
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Martin Weiter
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Jozef Krajcovic
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
48
|
Abstract
The formation of ordered nanostructures by molecular self-assembly of proteins and peptides represents one of the principal directions in nanotechnology. Indeed, polyamides provide superior features as materials with diverse physical properties. A reductionist approach allowed the identification of extremely short peptide sequences, as short as dipeptides, which could form well-ordered amyloid-like β-sheet-rich assemblies comparable to supramolecular structures made of much larger proteins. Some of the peptide assemblies show remarkable mechanical, optical, and electrical characteristics. Another direction of reductionism utilized a natural noncoded amino acid, α-aminoisobutryic acid, to form short superhelical assemblies. The use of this exceptional helix inducer motif allowed the fabrication of single heptad repeats used in various biointerfaces, including their use as surfactants and DNA-binding agents. Two additional directions of the reductionist approach include the use of peptide nucleic acids (PNAs) and coassembly techniques. The diversified accomplishments of the reductionist approach, as well as the exciting future advances it bears, are discussed.
Collapse
Affiliation(s)
- Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
49
|
Lampel A, Ulijn RV, Tuttle T. Guiding principles for peptide nanotechnology through directed discovery. Chem Soc Rev 2018; 47:3737-3758. [PMID: 29748676 DOI: 10.1039/c8cs00177d] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Life's diverse molecular functions are largely based on only a small number of highly conserved building blocks - the twenty canonical amino acids. These building blocks are chemically simple, but when they are organized in three-dimensional structures of tremendous complexity, new properties emerge. This review explores recent efforts in the directed discovery of functional nanoscale systems and materials based on these same amino acids, but that are not guided by copying or editing biological systems. The review summarises insights obtained using three complementary approaches of searching the sequence space to explore sequence-structure relationships for assembly, reactivity and complexation, namely: (i) strategic editing of short peptide sequences; (ii) computational approaches to predicting and comparing assembly behaviours; (iii) dynamic peptide libraries that explore the free energy landscape. These approaches give rise to guiding principles on controlling order/disorder, complexation and reactivity by peptide sequence design.
Collapse
Affiliation(s)
- A Lampel
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), New York, NY, USA.
| | | | | |
Collapse
|
50
|
Khalily MA, Usta H, Ozdemir M, Bakan G, Dikecoglu FB, Edwards-Gayle C, Hutchinson JA, Hamley IW, Dana A, Guler MO. The design and fabrication of supramolecular semiconductor nanowires formed by benzothienobenzothiophene (BTBT)-conjugated peptides. NANOSCALE 2018; 10:9987-9995. [PMID: 29774920 DOI: 10.1039/c8nr01604f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
π-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT π-core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C3-COHN-Ahx-VVAGKK-Am) and the C8-BTBT-peptide (C8-BTBT-C3-COHN-Ahx-VVAGKK-Am), as β-sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(±1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type π-π interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 × 10-6 S cm-1. The BTBT π-core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.
Collapse
Affiliation(s)
- Mohammad Aref Khalily
- Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|