1
|
Sun J, Jiang L, Guan M, Liu J, Wang S, Zhu W. Simulations of Femtosecond-Laser Near-Field Ablation Using Nanosphere under Dynamic Excitation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3626. [PMID: 39124290 PMCID: PMC11313208 DOI: 10.3390/ma17153626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Femtosecond lasers have garnered widespread attention owing to their subdiffraction processing capabilities. However, their intricate natures, involving intrapulse feedbacks between transient material excitation and laser propagation, often present significant challenges for near-field ablation predictions and simulations. To address these challenges, the current study introduces an improved finite-difference time-domain method (FDTD)-plasma model (plasma)-two-temperature model (TTM) framework for simulating the ablation processes of various nanospheres on diverse substrates, particularly in scenarios wherein dynamic and heterogeneous excitations significantly influence optical-field distributions. Initially, FDTD simulations of a single Au nanosphere on a Si substrate reveal that, with transitions in the excitation states of the substrate, the field-intensity distribution transforms from a profile with a single central peak to a bimodal structure, consistent with experimental reports. Subsequently, simulations of a polystyrene nanosphere array on a SiO2 substrate reveal that different excitation states of the nanospheres yield two distinct modes, namely near-field enhancement and masking. These modes cannot be adequately modeled in the FDTD simulations. Our combined model also considers the intrapulse feedback between the electromagnetic-field distribution resulting from near-field effects and material excitations. Furthermore, the model can quantitatively analyze subsequent electron-phonon coupling and material removal processes resulting from thermal-phase transitions. Consequently, our model facilitates predictions of the femtosecond-laser ablation of single nanospheres or nanosphere arrays with varying sizes and materials placed on substrates subjected to near-field effects.
Collapse
Affiliation(s)
- Jiaxin Sun
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.S.); (L.J.); (M.G.); (J.L.); (W.Z.)
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.S.); (L.J.); (M.G.); (J.L.); (W.Z.)
- Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314019, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Mingle Guan
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.S.); (L.J.); (M.G.); (J.L.); (W.Z.)
| | - Jiangfeng Liu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.S.); (L.J.); (M.G.); (J.L.); (W.Z.)
| | - Sumei Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.S.); (L.J.); (M.G.); (J.L.); (W.Z.)
- Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314019, China
| | - Weihua Zhu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.S.); (L.J.); (M.G.); (J.L.); (W.Z.)
| |
Collapse
|
2
|
Sotthewes K, Roozendaal G, Šutka A, Jimidar ISM. Toward the Assembly of 2D Tunable Crystal Patterns of Spherical Colloids on a Wafer-Scale. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12007-12017. [PMID: 38271190 PMCID: PMC10921376 DOI: 10.1021/acsami.3c16830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Entering an era of miniaturization prompted scientists to explore strategies to assemble colloidal crystals for numerous applications, including photonics. However, wet methods are intrinsically less versatile than dry methods, whereas the manual rubbing method of dry powders has been demonstrated only on sticky elastomeric layers, hindering particle transfer in printing applications and applicability in analytical screening. To address this clear impetus of broad applicability, we explore here the assembly on nonelastomeric, rigid substrates by utilizing the manual rubbing method to rapidly (≈20 s) attain monolayers comprising hexagonal closely packed (HCP) crystals of monodisperse dry powder spherical particles with a diameter ranging from 500 nm to 10 μm using a PDMS stamp. Our findings elucidate that the tribocharging-induced electrostatic attraction, particularly on relatively stiff substrates, and contact mechanics force between particles and substrates are critical contributors to attain large-scale HCP structures on conductive and insulating substrates. The best performance was obtained with polystyrene and PMMA powder, while silica was assembled only in HCP structures on fluorocarbon-coated substrates under zero-humidity conditions. Finally, we successfully demonstrated the assembly of tunable crystal patterns on a wafer-scale with great control on fluorocarbon-coated wafers, which is promising in microelectronics, bead-based assays, sensing, and anticounterfeiting applications.
Collapse
Affiliation(s)
- Kai Sotthewes
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Gijs Roozendaal
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Andris Šutka
- Institute
of Materials and Surface Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Ignaas S. M. Jimidar
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
- Department
of Chemical Engineering CHIS, Vrije Universiteit
Brussel, Brussels 1050, Belgium
| |
Collapse
|
3
|
Park H, Choi HY, Chae H, Noe Oo MM, Kang DJ. Electrohydrodynamic Nanopatterning: A Novel Solvent-Assisted Technique for Unconventional Substrates. NANO LETTERS 2023; 23:11949-11957. [PMID: 38079430 DOI: 10.1021/acs.nanolett.3c04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Electrohydrodynamic (EHD)-driven patterning is a pioneering lithographic technique capable of replicating and modifying micro/nanostructures efficiently. However, this process is currently restricted to conventional substrates, as it necessitates a uniform and robust electric field over a large area. Consequently, the use of nontraditional substrates, such as those that are flexible, nonflat, or have high insulation, has been notably limited. In our study, we extend the applicability of EHD-driven patterning by introducing a solvent-assisted capillary peel-and-transfer method that allows the successful removal of diverse EHD-induced structures from their original substrates. Compared with the traditional route, our process boasts a success rate close to 100%. The detached structures can then be efficiently transferred to nonconventional substrates, overcoming the limitations of the traditional EHD process. Our method exhibits significant versatility, as evidenced by successful transfer of structures with engineered wettability and patterned structures composed of metals and metal oxides onto nonconventional substrates.
Collapse
Affiliation(s)
- Hyunje Park
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- Research Institute of Basic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Ha Young Choi
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Heejoon Chae
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - May Myat Noe Oo
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
4
|
Peck K, Lien J, Su M, Stacy AD, Guo T. Bottom-Up Then Top-Down Synthesis of Gold Nanostructures Using Mesoporous Silica-Coated Gold Nanorods. ACS OMEGA 2023; 8:42667-42677. [PMID: 38024760 PMCID: PMC10652254 DOI: 10.1021/acsomega.3c05444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Gold nanostructures were synthesized by etching away gold from heat-treated mesoporous silica-coated gold nanorods (AuNR@mSiO2), providing an example of top-down modification of nanostructures made using bottom-up methodology. Twelve different types of nanostructures were made using this bottom-up-then-top-down synthesis (BUTTONS), of which the etching of the same starting nanomaterial of AuNR@mSiO2 was found to be controlled by how AuNR@mSiO2 were heat treated, the etchant concentration, and etching time. When the heat treatment occurred in smooth moving solutions in round-bottomed flasks, red-shifted longitudinal surface plasmon resonance (LSPR) was observed, on the order of 10-30 min, indicating increased aspect ratios of the gold nanostructures inside the mesoporous silica shells. When the heat treatment occurred in turbulent solutions in scintillation vials, a blue shift of the LSPR was obtained within a few minutes or less, resulting from reduced aspect ratios of the rods in the shells. The influence of the shape of the glassware, which may impact the flow patterns of the solution, on the heat treatment was investigated. One possible explanation is that the flow patterns affect the location of opened pores in the mesoporous shells, with the smooth flow of solution mainly removing CTAB surfactants from the pores along the cylindrical body of mSiO2, therefore increasing the aspect ratios after etching, and the turbulent solutions removing more surfactants from the pores of the two ends or tips of the silica shells, hence decreasing the aspect ratios after etching. These new stable gold nanostructures in silica shells, bare and without surfactant protection, may possess unique chemical properties and capabilities. Catalysis using heat-treated nanomaterials was studied as an example of potential applications of these nanostructures.
Collapse
Affiliation(s)
- Kristin
A. Peck
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Jennifer Lien
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Mengqi Su
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Aaron D. Stacy
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | | |
Collapse
|
5
|
Mohanty S, Chen T, Chen IT, So F, Chang CH. Modeling the co-assembly of binary nanoparticles. NANOTECHNOLOGY 2023; 35:035301. [PMID: 37820637 DOI: 10.1088/1361-6528/ad0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
In this work, we present a binary assembly model that can predict the co-assembly structure and spatial frequency spectra of monodispersed nanoparticles with two different particle sizes. The approach relies on an iterative algorithm based on geometric constraints, which can simulate the assembly patterns of particles with two distinct diameters, size distributions, and at various mixture ratios on a planar surface. The two-dimensional spatial-frequency spectra of the modeled assembles can be analyzed using fast Fourier transform analysis to examine their frequency content. The simulated co-assembly structures and spectra are compared with assembled nanoparticles fabricated using transfer coating method are in qualitative agreement with the experimental results. The co-assembly model can also be used to predict the peak spatial frequency and the full-width at half-maximum bandwidth, which can lead to the design of the structure spectra by selection of different monodispersed particles. This work can find applications in fabrication of non-periodic nanostructures for functional surfaces, light extraction structures, and broadband nanophotonics.
Collapse
Affiliation(s)
- Saurav Mohanty
- Walker Department of Mechanical Engineering, The University of Texas at Austin, TX 78712, United States of America
| | - Timothy Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, United States of America
| | - I-Te Chen
- Walker Department of Mechanical Engineering, The University of Texas at Austin, TX 78712, United States of America
| | - Franky So
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27606, United States of America
| | - Chih-Hao Chang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, TX 78712, United States of America
| |
Collapse
|
6
|
Masson JF, Wallace GQ, Asselin J, Ten A, Hojjat Jodaylami M, Faulds K, Graham D, Biggins JS, Ringe E. Optoplasmonic Effects in Highly Curved Surfaces for Catalysis, Photothermal Heating, and SERS. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46181-46194. [PMID: 37733583 PMCID: PMC10561152 DOI: 10.1021/acsami.3c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Surface curvature can be used to focus light and alter optical processes. Here, we show that curved surfaces (spheres, cylinders, and cones) with a radius of around 5 μm lead to maximal optoplasmonic properties including surface-enhanced Raman scattering (SERS), photocatalysis, and photothermal processes. Glass microspheres, microfibers, pulled fibers, and control flat substrates were functionalized with well-dispersed and dense arrays of 45 nm Au NP using polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) and chemically modified with 4-mercaptobenzoic acid (4-MBA, SERS reporter), 4-nitrobenzenethiol (4-NBT, reactive to plasmonic catalysis), or 4-fluorophenyl isocyanide (FPIC, photothermal reporter). The various curved substrates enhanced the plasmonic properties by focusing the light in a photonic nanojet and providing a directional antenna to increase the collection efficacy of SERS photons. The optoplasmonic effects led to an increase of up to 1 order of magnitude of the SERS response, up to 5 times the photocatalytic conversion of 4-NBT to 4,4'-dimercaptoazobenzene when the diameter of the curved surfaces was about 5 μm and a small increase in photothermal effects. Taken together, the results provide evidence that curvature enhances plasmonic properties and that its effect is maximal for spherical objects around a few micrometers in diameter, in agreement with a theoretical framework based on geometrical optics. These enhanced plasmonic effects and the stationary-phase-like plasmonic substrates pave the way to the next generation of sensors, plasmonic photocatalysts, and photothermal devices.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département
de chimie, Quebec center for advanced materials, Regroupement québécois
sur les matériaux de pointe, and Centre interdisciplinaire
de recherche sur le cerveau et l’apprentissage, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC Canada, H3C 3J7
| | - Gregory Q. Wallace
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Jérémie Asselin
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| | - Andrey Ten
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| | - Maryam Hojjat Jodaylami
- Département
de chimie, Quebec center for advanced materials, Regroupement québécois
sur les matériaux de pointe, and Centre interdisciplinaire
de recherche sur le cerveau et l’apprentissage, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC Canada, H3C 3J7
| | - Karen Faulds
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Duncan Graham
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - John S. Biggins
- Engineering
Department, University of Cambridge, Trumpington Street, Cambridge, U.K. CB2 1PZ
| | - Emilie Ringe
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| |
Collapse
|
7
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
8
|
Elbaz T, Chauhan A, Halstuch A, Shalev G, Karabchevsky A. Step-Index (Semi-Immersed) Model for Photonic Nanojet and Experimental Characterization via Near-Field Optical Microscopy with Microcylinder. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1033. [PMID: 36985926 PMCID: PMC10052061 DOI: 10.3390/nano13061033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Experimental limitations such as design complexity and low optical throughput have prevented photonic nanojet (PNJ) and photonic hook (PH) measurements from demonstrating and characterizing the implementation of narrow intense electromagnetic beams generated from dielectric microelements with circular symmetry. Near-fields optical microscopy can mitigate these limitations and still present a capability of detecting a highly localized electromagnetic beam for applications in step-index media. Here we model a localized PNJ and PH formation in step-index media. We show that despite negligible refractive index contrast between the water (nwater=1.33) and silica microcylinder (∼1.1), a formation of PNJ and PH is observed with equivalent performance compared to that of silica microcylinder embedded in air (nair=1). This model features a practical fiber source and silica microcylinder as an auxiliary structure. Simultaneously, we performed experimental characterization of a photonic nanojet generated from an optical fiber and studied the resulting near-fields. Our electromagnetic simulation results are in good agreement with the experimental ones, demonstrating a full width at half maximum (FHWM) with a relative error of 0.64%. This system will make fiber-based nanojet realization and characterization accessible and practical for optics and laser engineering applications, super-resolution imaging, and nanolithography.
Collapse
|
9
|
Anelasticity in thin-shell nanolattices. Proc Natl Acad Sci U S A 2022; 119:e2201589119. [PMID: 36095191 PMCID: PMC9499526 DOI: 10.1073/pnas.2201589119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work, we investigate the anelastic deformation behavior of periodic three-dimensional (3D) nanolattices with extremely thin shell thicknesses using nanoindentation. The results show that the nanolattice continues to deform with time under a constant load. In the case of 30-nm-thick aluminum oxide nanolattices, the anelastic deformation accounts for up to 18.1% of the elastic deformation for a constant load of 500 μN. The nanolattices also exhibit up to 15.7% recovery after unloading. Finite element analysis (FEA) coupled with diffusion of point defects is conducted, which is in qualitative agreement with the experimental results. The anelastic behavior can be attributed to the diffusion of point defects in the presence of a stress gradient and is reversible when the deformation is removed. The FEA model quantifies the evolution of the stress gradient and defect concentration and demonstrates the important role of a wavy tube profile in the diffusion of point defects. The reported anelastic deformation behavior can shed light on time-dependent response of nanolattice materials with implication for energy dissipation applications.
Collapse
|
10
|
Qiu T, Akinoglu EM, Luo B, Konarova M, Yun JH, Gentle IR, Wang L. Nanosphere Lithography: A Versatile Approach to Develop Transparent Conductive Films for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103842. [PMID: 35119141 DOI: 10.1002/adma.202103842] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Transparent conductive films (TCFs) are irreplaceable components in most optoelectronic applications such as solar cells, organic light-emitting diodes, sensors, smart windows, and bioelectronics. The shortcomings of existing traditional transparent conductors demand the development of new material systems that are both transparent and electrically conductive, with variable functionality to meet the requirements of new generation optoelectronic devices. In this respect, TCFs with periodic or irregular nanomesh structures have recently emerged as promising candidates, which possess superior mechanical properties in comparison with conventional metal oxide TCFs. Among the methods for nanomesh TCFs fabrication, nanosphere lithography (NSL) has proven to be a versatile platform, with which a wide range of morphologically distinct nanomesh TCFs have been demonstrated. These materials are not only functionally diverse, but also have advantages in terms of device compatibility. This review provides a comprehensive description of the NSL process and its most relevant derivatives to fabricate nanomesh TCFs. The structure-property relationships of these materials are elaborated and an overview of their application in different technologies across disciplines related to optoelectronics is given. It is concluded with a perspective on current shortcomings and future directions to further advance the field.
Collapse
Affiliation(s)
- Tengfei Qiu
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Eser Metin Akinoglu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, Guangdong, 526238, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bin Luo
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Muxina Konarova
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jung-Ho Yun
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Ian R Gentle
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
11
|
Kwon S, Park J, Kim K, Cho Y, Lee M. Microsphere-assisted, nanospot, non-destructive metrology for semiconductor devices. LIGHT, SCIENCE & APPLICATIONS 2022; 11:32. [PMID: 35132060 PMCID: PMC8821559 DOI: 10.1038/s41377-022-00720-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/28/2021] [Accepted: 01/17/2022] [Indexed: 05/25/2023]
Abstract
As smaller structures are being increasingly adopted in the semiconductor industry, the performance of memory and logic devices is being continuously improved with innovative 3D integration schemes as well as shrinking and stacking strategies. Owing to the increasing complexity of the design architectures, optical metrology techniques including spectroscopic ellipsometry (SE) and reflectometry have been widely used for efficient process development and yield ramp-up due to the capability of 3D structure measurements. However, there has been an increasing demand for a significant reduction in the physical spot diameter used in the SE technique; the spot diameter should be at least 10 times smaller than the cell dimension (~30 × 40 μm2) of typical dynamic random-access memory to be able to measure in-cell critical dimension (CD) variations. To this end, this study demonstrates a novel spectrum measurement system that utilizes the microsphere-assisted super-resolution effect, achieving extremely small spot spectral metrology by reducing the spot diameter to ~210 nm, while maintaining a sufficiently high signal-to-noise ratio. In addition, a geometric model is introduced for the microsphere-based spectral metrology system that can calculate the virtual image plane magnification and depth of focus, providing the optimal distance between the objective lens, microsphere, and sample to achieve the best possible imaging quality. The proof of concept was fully verified through both simulations and experiments for various samples. Thus, owing to its ultra-small spot metrology capability, this technique has great potential for solving the current metrology challenge of monitoring in-cell CD variations in advanced logic and memory devices.
Collapse
Affiliation(s)
- Soonyang Kwon
- Equipment R&D Team 4, Mechatronics Research, Samsung Electronics Co., Ltd., 1-1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18848, Republic of Korea
| | - Jangryul Park
- Equipment R&D Team 4, Mechatronics Research, Samsung Electronics Co., Ltd., 1-1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18848, Republic of Korea
| | - Kwangrak Kim
- Equipment R&D Team 4, Mechatronics Research, Samsung Electronics Co., Ltd., 1-1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18848, Republic of Korea
| | - Yunje Cho
- Equipment R&D Team 4, Mechatronics Research, Samsung Electronics Co., Ltd., 1-1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18848, Republic of Korea
| | - Myungjun Lee
- Equipment R&D Team 4, Mechatronics Research, Samsung Electronics Co., Ltd., 1-1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18848, Republic of Korea.
| |
Collapse
|
12
|
Characteristic parameters of photonic nanojets of single dielectric microspheres illuminated by focused broadband radiation. Sci Rep 2022; 12:173. [PMID: 34996911 PMCID: PMC8741904 DOI: 10.1038/s41598-021-03610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Herein, we report the theoretical investigation on the photonic nanojets (PNJs) of single dielectric microspheres illuminated by focused broadband radiation (polychromatic light) from a Halogen lamp, supercontinuum source, light-emitting diode, and Hg arc lamp. The role of incident beam waist, refractive index of the surrounding medium, and radius of the microsphere on the characteristic parameters such as the electric field intensity enhancement, effective width, and length of the PNJ is studied. Interestingly, the characteristic parameters of the PNJs of solid microspheres obtained for the above-mentioned broadband radiation sources are found close to those observed for the focused monochromatic radiation of wavelengths which are near to the central wavelengths of the sources. Moreover, the characteristic parameters of PNJs of the core-shell microspheres of different thicknesses (t) illuminated by polychromatic radiation from most commonly used sources such as Halogen and Hg arc lamps are studied. For each t value, a suitable wavelength of monochromatic radiation has been found to generate the PNJ with characteristic parameters which are close to those obtained in the case of polychromatic radiation. We believe that the analytical theory and the theoretical simulations reported here would be useful for researchers who work in the fields such as PNJ assisted photoacoustic spectroscopy, white light nanoscopy, low-coherence phase-shifting interference microscopy, and Mirau interferometry.
Collapse
|
13
|
Wang H, Liu Y, Rao G, Wang Y, Du X, Hu A, Hu Y, Gong C, Wang X, Xiong J. Coupling enhancement mechanisms, materials, and strategies for surface-enhanced Raman scattering devices. Analyst 2021; 146:5008-5032. [PMID: 34296232 DOI: 10.1039/d1an00624j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become one of the most sensitive analytical techniques for identifying the chemical components, molecular structures, molecular conformations, and the interactions between molecules. However, great challenges still need to be addressed until it can be widely accepted by the absolute quantification of analytes. Recently, many efforts have been devoted to addressing these issues via various electromagnetic (EM), chemical (CM), and EM-CM hybrid coupling enhancement strategies. In comparison with uncoupled SERS devices, they offer key advantages in terms of sensitivity, reproducibility, uniformity, stability, controllability and reliability. This review provides an in-depth analysis of coupled SERS devices, including coupling enhancement mechanisms, materials and approaches. Finally, we also discuss the remaining bottlenecks and possible strategies for the development of coupling-enhanced SERS devices in the future.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Döhler D, Triana A, Büttner P, Scheler F, Goerlitzer ESA, Harrer J, Vasileva A, Metwalli E, Gruber W, Unruh T, Manshina A, Vogel N, Bachmann J, Mínguez-Bacho I. A Self-Ordered Nanostructured Transparent Electrode of High Structural Quality and Corresponding Functional Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100487. [PMID: 33817974 DOI: 10.1002/smll.202100487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The preparation of a highly ordered nanostructured transparent electrode based on a combination of nanosphere lithography and anodization is presented. The size of perfectly ordered pore domains is improved by an order of magnitude with respect to the state of the art. The concomitantly reduced density of defect pores increases the fraction of pores that are in good electrical contact with the underlying transparent conductive substrate. This improvement in structural quality translates directly and linearly into an improved performance of energy conversion devices built from such electrodes in a linear manner.
Collapse
Affiliation(s)
- Dirk Döhler
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Andrés Triana
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Pascal Büttner
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Florian Scheler
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Eric S A Goerlitzer
- E. S. A. Goerlitzer, J. Harrer, Prof. N. Vogel, Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Johannes Harrer
- E. S. A. Goerlitzer, J. Harrer, Prof. N. Vogel, Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Anna Vasileva
- A. Vasileva, Prof. A. Manshina, Prof. J. Bachmann, Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504, Russia
| | - Ezzeldin Metwalli
- Dr. E. Metwalli, Dr. W. Gruber, Prof. T. Unruh, Institute for Crystallography and Structure Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstrasse 3, 91058, Erlangen, Germany
| | - Wolfgang Gruber
- Dr. E. Metwalli, Dr. W. Gruber, Prof. T. Unruh, Institute for Crystallography and Structure Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstrasse 3, 91058, Erlangen, Germany
| | - Tobias Unruh
- Dr. E. Metwalli, Dr. W. Gruber, Prof. T. Unruh, Institute for Crystallography and Structure Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstrasse 3, 91058, Erlangen, Germany
| | - Alina Manshina
- A. Vasileva, Prof. A. Manshina, Prof. J. Bachmann, Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504, Russia
| | - Nicolas Vogel
- E. S. A. Goerlitzer, J. Harrer, Prof. N. Vogel, Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Julien Bachmann
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
- A. Vasileva, Prof. A. Manshina, Prof. J. Bachmann, Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504, Russia
| | - Ignacio Mínguez-Bacho
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
15
|
Lee D, Hsu MY, Tang YL, Liu SJ. Manufacture of Binary Nanofeatured Polymeric Films Using Nanosphere Lithography and Ultraviolet Roller Imprinting. MATERIALS 2021; 14:ma14071669. [PMID: 33805269 PMCID: PMC8037049 DOI: 10.3390/ma14071669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
This paper describes the manufacture of binary nanostructured films utilizing nanosphere lithography and ultraviolet (UV) roller imprinting. To manufacture the binary nanofeatured template, polystyrene nanocolloids of two distinct dimensions (900 and 300 nm) were primarily self-assembly spun coated on a silicon substrate. A roller imprinting facility equipped with polydimethylsiloxane molds and ultraviolet radiation was employed. During the imprinting procedure, the roller was steered by a motor and compressed the ultraviolet-curable polymeric layer against the glass substrate, where the nanofeatured layer was cured by the UV light source. Binary nanofeatured films were thus obtained. The influence of distinct processing variables on the imprinting of nanofeatured films was investigated. The empirical data suggested that with appropriate processing conditions, binary nanofeatured plastic films can be satisfactorily manufactured. It also demonstrated that roller imprinting combined with ultraviolet radiation can offer an easy yet effective method to prepare binary nanofeatured films, with a miniatured processing time and enhanced part quality.
Collapse
Affiliation(s)
- Demei Lee
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (D.L.); (M.-Y.H.); (Y.-L.T.)
| | - Ming-Yi Hsu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (D.L.); (M.-Y.H.); (Y.-L.T.)
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
| | - Ya-Ling Tang
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (D.L.); (M.-Y.H.); (Y.-L.T.)
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (D.L.); (M.-Y.H.); (Y.-L.T.)
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-211-8166; Fax: +886-3-211-8558
| |
Collapse
|
16
|
Surdo S, Duocastella M, Diaspro A. Nanopatterning with Photonic Nanojets: Review and Perspectives in Biomedical Research. MICROMACHINES 2021; 12:256. [PMID: 33802351 PMCID: PMC8000863 DOI: 10.3390/mi12030256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Nanostructured surfaces and devices offer astounding possibilities for biomedical research, including cellular and molecular biology, diagnostics, and therapeutics. However, the wide implementation of these systems is currently limited by the lack of cost-effective and easy-to-use nanopatterning tools. A promising solution is to use optical methods based on photonic nanojets, namely, needle-like beams featuring a nanometric width. In this review, we survey the physics, engineering strategies, and recent implementations of photonic nanojets for high-throughput generation of arbitrary nanopatterns, along with applications in optics, electronics, mechanics, and biosensing. An outlook of the potential impact of nanopatterning technologies based on photonic nanojets in several relevant biomedical areas is also provided.
Collapse
Affiliation(s)
- Salvatore Surdo
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
| | - Martí Duocastella
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
17
|
A Closer Look at Photonic Nanojets in Reflection Mode: Control of Standing Wave Modulation. PHOTONICS 2021. [DOI: 10.3390/photonics8020054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The photonic nanojet phenomenon is commonly used both to increase the resolution of optical microscopes and to trap nanoparticles. However, such photonic nanojets are not applicable to an entire class of objects. Here we present a new type of photonic nanojet in reflection mode with the possibility to control the modulation of the photonic nanojet by a standing wave. In contrast to the known kinds of reflective photonic nanojets, the reported one occurs when the aluminum oxide hemisphere is located at a certain distance from the substrate. Under illumination, the hemisphere generates a primary photonic nanojet directed to the substrate. After reflection, the primary nanojet acts as an illumination source for the hemisphere, leading to the formation of a new reflective photonic nanojet. We show that the distance between the hemisphere and substrate affects the phase of both incident and reflected radiation, and due to constructive interference, the modulation of the reflective photonic nanojet by a standing wave can be significantly reduced. The results obtained contribute to the understanding of the processes of photonic nanojet formation in reflection mode and open new pathways for designing functional optical devices.
Collapse
|
18
|
Mitin N, Pikulin A. Interference surface patterning using colloidal particle lens arrays. OPTICS LETTERS 2020; 45:6134-6137. [PMID: 33186933 DOI: 10.1364/ol.410684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Surface patterns of complex morphology can be made by combining the near-field colloidal lithography and the multiple-beam interference of the incident laser light. Our calculation shows that patterns made of bright and dim photonic jets can be formed beneath the dielectric spheres within the close-packed colloidal monolayer. An algorithm to find the propagation directions, amplitudes, and phases of the incident beams needed to make the desired photonic jet pattern is proposed. The field contrast in those patterns is studied.
Collapse
|
19
|
Liu X, Zhou H, Yang M, Xie Z, Han Q, Gou J, Wang J. Photonic nanojets with ultralong working distance and narrowed beam waist by immersed engineered dielectric hemisphere. OPTICS EXPRESS 2020; 28:33959-33970. [PMID: 33182874 DOI: 10.1364/oe.406127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Engineered spherical micro-lens can manipulate light at sub-wavelength scale and emerges as a promising candidate to extend the focal length and narrow the focal spot size. Here, we report the generation of photonic nanojets (PNJs) with an ultralong working distance and narrowed beam waist by an immersed engineered hemisphere. Simulations show that a two-layer hemisphere of 4.5 µm radius exhibits a PNJ with the working distance of 9.6 µm, full width at half maximum of 287 nm, and length of 23.37 λ, under illumination of a plane wave with a 365 nm wavelength. A geometrical optics analysis indicated that the formed PNJ behind the immersed two-layer hemisphere results from the convergence of light of the outer-hemisphere fringe area, which refracts into and passes through the outer hemisphere and then directly leaves the outer-hemisphere flat surface. Thus the embedded hemisphere is comparable to an immersed focusing lens with high numerical aperture, which can promise both long working distance and narrowed beam waist. This is further demonstrated with the corresponding embedded-engineered single-layer hemisphere, whose spherical face is partly cut parallel to the hemispherical flat surface. In addition, the hemisphere is compatible with adjacent laser wavelengths. Finally, a spot size smaller than 0.5 λ is demonstrated in the lithography simulation. Due to these hemispheres low cost, they have potential in far-field lithography for pattern arrays with line width less than 0.5 λ.
Collapse
|
20
|
Geints YE, Zemlyanov AA, Minin IV, Minin OV. Overcoming refractive index limit of mesoscale light focusing by means of specular-reflection photonic nanojet. OPTICS LETTERS 2020; 45:3885-3888. [PMID: 32667310 DOI: 10.1364/ol.398367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The physical origin of subwavelength photonic nanojet in specular-reflection mode (s-PNJ) is theoretically considered. This specific type of photonic nanojet (PNJ) emerges upon double focusing of a plane optical wave by a transparent dielectric microparticle located near a flat mirror. For the first time, to the best of our knowledge, we report a unique property of s-PNJ for increasing its focal length and intensity using circular-shaped microparticles with a refractive index ratio exceeding the known limiting value that fundamentally distinguishes s-PNJ from regular PNJ behavior. This may drastically increase the trapping potential of PNJ-based optical tweezers.
Collapse
|
21
|
Jimidar ISM, Sotthewes K, Gardeniers H, Desmet G. Spatial Segregation of Microspheres by Rubbing-Induced Triboelectrification on Patterned Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6793-6800. [PMID: 32478522 DOI: 10.1021/acs.langmuir.0c00959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Particle (monolayer) assembly is essential to various scientific and industrial applications, such as the fabrication of photonic crystals, optical sensors, and surface coatings. Several methods, including rubbing, have been developed for this purpose. Here, we report on the serendipitous observation that microparticles preferentially partition onto the fluorocarbon-coated parts of patterned silicon and borosilicate glass wafers when rubbed with poly(dimethylsiloxane) slabs. To explore the extent of this effect, we varied the geometry of the pattern, the substrate material, the ambient humidity, and the material and size of the particles. Partitioning coefficients amounted up to a factor of 12 on silicon wafers and even ran in the 100s on borosilicate glass wafers at zero humidity. Using Kelvin probe force microscopy, the observations can be explained by triboelectrification, inducing a strong electrostatic attraction between the particles and the fluorocarbon zones, while the interaction with the noncoated zones is insignificant or even weakly repulsive.
Collapse
Affiliation(s)
- Ignaas S M Jimidar
- Department of Chemical Engineering CHIS, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Mesoscale Chemical Systems, University of Twente, Enschede 7522 NB, The Netherlands
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials, University of Twente, Enschede 7522 NB, The Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems, University of Twente, Enschede 7522 NB, The Netherlands
| | - Gert Desmet
- Department of Chemical Engineering CHIS, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
22
|
Abstract
The study of accelerating Airy-family beams has made significant progress, not only in terms of numerical and experimental investigations, but also in conjunction with many potential applications. However, the curvature of such beams (and hence their acceleration) is usually greater than the wavelength. Relatively recently, a new type of localized wave beams with subwavelength curvature, called photonic hooks, was discovered. This paper briefly reviews the substantial literature concerning photonic jet and photonic hook phenomena, based on the photonic jet principle. Meanwhile, the photonic jet ensemble can be produced by optical wave diffraction at 2D phase diffraction gratings. The guidelines of jets’ efficient manipulation, through the variation of both the shape and spatial period of diffraction grating rulings, are considered. Amazingly, the mesoscale dielectric Janus particle, with broken shape or refractive index symmetry, is used to generate the curved photonic jet—a photonic hook—emerging from its shadow-side surface. Using the photonic hook, the resolution of optical scanning systems can be improved to develop optomechanical tweezers for moving nanoparticles, cells, bacteria and viruses along curved paths and around transparent obstacles. These unique properties of photonic jets and hooks combine to afford important applications for low-loss waveguiding, subdiffraction-resolution nanopatterning and nanolithography.
Collapse
|
23
|
Chen IT, Schappell E, Zhang X, Chang CH. Continuous roll-to-roll patterning of three-dimensional periodic nanostructures. MICROSYSTEMS & NANOENGINEERING 2020; 6:22. [PMID: 34567637 PMCID: PMC8433208 DOI: 10.1038/s41378-020-0133-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 05/08/2023]
Abstract
In this work, we introduce a roll-to-roll system that can continuously print three-dimensional (3D) periodic nanostructures over large areas. This approach is based on Langmuir-Blodgett assembly of colloidal nanospheres, which diffract normal incident light to create a complex intensity pattern for near-field nanolithography. The geometry of the 3D nanostructure is defined by the Talbot effect and can be precisely designed by tuning the ratio of the nanosphere diameter to the exposure wavelength. Using this system, we have demonstrated patterning of 3D photonic crystals with a 500 nm period on a 50 × 200 mm2 flexible substrate, with a system throughput of 3 mm/s. The patterning yield is quantitatively analyzed by an automated electron beam inspection method, demonstrating long-term repeatability of an up to 88% yield over a 4-month period. The inspection method can also be employed to examine pattern uniformity, achieving an average yield of up to 78.6% over full substrate areas. The proposed patterning method is highly versatile and scalable as a nanomanufacturing platform and can find application in nanophotonics, nanoarchitected materials, and multifunctional nanostructures.
Collapse
Affiliation(s)
- I-Te Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712 USA
| | - Elizabeth Schappell
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Xiaolong Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Chih-Hao Chang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
24
|
Zhu J, Goddard LL. All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. NANOSCALE ADVANCES 2019; 1:4615-4643. [PMID: 36133120 PMCID: PMC9419186 DOI: 10.1039/c9na00430k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/09/2019] [Indexed: 05/22/2023]
Abstract
The photonic nanojet (PNJ) is a narrow high-energy beam that was originally found on the back side of all-dielectric spherical structures. It is a unique type of energy concentration mode. The field of PNJs has experienced rapid growth in the past decade: nonspherical and even pixelized PNJ generators based on new physics and principles along with extended photonic applications from linear optics to nonlinear optics have driven the re-evaluation of the role of PNJs in optics and photonics. In this article, we give a comprehensive review for the emerging sub-topics in the past decade with a focus on two specific areas: (1) PNJ generators based on natural materials, artificial materials and nanostructures, and even programmable systems instead of conventional dielectric geometries such as microspheres, cubes, and trihedral prisms, and (2) the emerging novel applications in both linear and nonlinear optics that are built upon the specific features of PNJs. The extraordinary features of PNJs including subwavelength concentration of electromagnetic energy, high intensity focusing spot, and lower Joule heating as compared to plasmonic resonance systems, have made PNJs attractive to diverse fields spanning from optical imaging, nanofabrication, and integrated photonics to biosensing, optical tweezers, and disease diagnosis.
Collapse
Affiliation(s)
- Jinlong Zhu
- Photonic Systems Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign 208 N. Wright St., MNTL 2231 Urbana IL 61801 USA
| | - Lynford L Goddard
- Photonic Systems Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign 208 N. Wright St., MNTL 2231 Urbana IL 61801 USA
| |
Collapse
|